Homotopy Type Theory cohesive homotopy type theory > history (Rev #13, changes)

Showing changes from revision #12 to #13: Added | Removed | Changed

\tableofcontents

\section{Presentation} \section{The continuum-flat axiom}

We shall begin be by using defining a combination of the objective abstract type continuum theory line version of homotopy type theory, described inhomotopy type theory𝔸\mathbb{A} along to with be the an cohesive arbitrary homotopy non-trivial type commutative theory ring: developed there by are Mike terms Shulman.0:𝔸0:\mathbb{A} and 1:𝔸1:\mathbb{A} and functions (βˆ’)+(βˆ’):(𝔸×𝔸)→𝔸(-)+(-):(\mathbb{A} \times \mathbb{A}) \to \mathbb{A}, βˆ’(βˆ’):𝔸→𝔸-(-):\mathbb{A} \to \mathbb{A}, and (βˆ’)β‹…(βˆ’):(𝔸×𝔸)→𝔸(-)\cdot(-):(\mathbb{A} \times \mathbb{A}) \to \mathbb{A}, such that (𝔸,0,+,βˆ’)(\mathbb{A}, 0, +, -) is an abelian group, (𝔸,1,β‹…)(\mathbb{A}, 1, \cdot) is a commutative monoid, and β‹…\cdot distributes over ++. 𝔸\mathbb{A} is non-trivial if there is a witness p:(0= 𝔸1)β†’πŸ˜p:(0 =_\mathbb{A} 1) \to \mathbb{0}.

\subsection{Judgments Axiom and contexts}𝔸♭\mathbb{A} \flat then states that for every crisp type AA, AA is discrete if and only if the function const:Aβ†’(𝔸→A)\mathrm{const}:A \to (\mathbb{A} \to A) is an equivalence of types.

Cohesive homotopy type theory consists with of axiom four judgments:type judgments𝔸♭\mathbb{A} \flat is called A 𝔸type A \mathbb{A} \; \mathrm{type} , -cohesive where homotopy we type judge theory.AA to be a type, cohesive typing judgments, where we judge aa to cohesively be an element of AA, a:Aa:A, crisp typing judgments, where we judge aa to crisply be an element of AA, a::Aa::A, and context judgments, where we judge Ξ“\Gamma to be a context, Ξ“ctx\Gamma \; \mathrm{ctx}. Contexts are lists of typing judgments a:Aa:A, b:Bb:B, c:Cc:C, et cetera, and crisp typing judgments a::Aa::A, b::Bb::B, c::Cc::C et cetera, and are formalized by the rules for the empty context and extending the context by a cohesive typing judgment and a crisp typing judgment

()ctxΞ“ctxΞ“βŠ’Atype(Ξ“,a:A)ctxΞ“ctxΞ“βŠ’Atype(Ξ“,a::A)ctx\frac{}{() \; \mathrm{ctx}} \qquad \frac{\Gamma \; \mathrm{ctx} \quad \Gamma \vdash A \; \mathrm{type}}{(\Gamma, a:A) \; \mathrm{ctx}} \qquad \frac{\Gamma \; \mathrm{ctx} \quad \Gamma \vdash A \; \mathrm{type}}{(\Gamma, a::A) \; \mathrm{ctx}}

Let us define the successor function on 𝔸\mathbb{A} as a function s:𝔸→𝔸s:\mathbb{A} \to \mathbb{A} with a dependent function

def(s):∏ x:𝔸:s(x)= 𝔸x+1\mathrm{def}(s):\prod_{x:\mathbb{A}}:s(x) =_\mathbb{A} x + 1

and the square function on 𝔸\mathbb{A} as a function (βˆ’) 2:𝔸→𝔸(-)^2:\mathbb{A} \to \mathbb{A} with a dependent function

def((βˆ’) 2):∏ x:𝔸:x 2= 𝔸xβ‹…x\mathrm{def}((-)^2):\prod_{x:\mathbb{A}}:x^2 =_\mathbb{A} x \cdot x

One definition of the abstract circle π•Š 1\mathbb{S}^1 is the (homotopy) coequalizer of ss and the identity function id 𝔸\mathrm{id}_\mathbb{A}. An equivalent definition of the abstract circle π•Š 1\mathbb{S}^1 is the dependent sum type

βˆ‘ x:π”Έβˆ‘ y:𝔸x 2+y 2=1\sum_{x:\mathbb{A}} \sum_{y:\mathbb{A}} x^2 + y^2 = 1

\section{See also}

\section{References}

  • Mike Shulman, Brouwer’s fixed-point theorem in real-cohesive homotopy type theory, Mathematical Structures in Computer Science Vol 28 (6) (2018): 856-941 (arXiv:1509.07584, doi:10.1017/S0960129517000147)

  • Homotopy Type Theory: Univalent Foundations of Mathematics, The Univalent Foundations Program, Institute for Advanced Study, 2013. (web, pdf)

  • Egbert Rijke, Introduction to Homotopy Type Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press (pdf) (478 pages)

  • Benno van den Berg, Martijn den Besten, Quadratic type checking for objective type theory (arXiv:2102.00905)

Revision on October 22, 2022 at 21:15:13 by Anonymous?. See the history of this page for a list of all contributions to it.