Homotopy Type Theory cohesive homotopy type theory > history (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

Contents

Overview

Cohesive homotopy type theory is a two-sorted dependent type theory of spaces and homotopy types, where there exist judgments

  • for spaces

    ΓΓ ,Sspace \frac{\Gamma}{\Gamma, \frac{\Gamma}{\Gamma \vdash S\ space}
  • for homotopy types

    ΓΓ ,Thomotopytype \frac{\Gamma}{\Gamma, \frac{\Gamma}{\Gamma \vdash T\ homotopy\ type}
  • for points

    Γ ,SspaceΓ ,s:S \frac{\Gamma, \frac{\Gamma \vdash S\ space}{\Gamma, space}{\Gamma \vdash s:S}
  • for terms

    Γ ,ThomotopytypeΓ ,t:T \frac{\Gamma, \frac{\Gamma \vdash T\ homotopy\ type}{\Gamma, type}{\Gamma \vdash t:T}
  • for indexed fibrations spaces

    Γ ,SspaceΓ,s:SA(s)space \frac{\Gamma, \frac{\Gamma \vdash S\ space}{\Gamma, s:S \vdash A(s)\ space}
  • for dependent types

    Γ ,ThomotopytypeΓ,t:TB(t)homotopytype \frac{\Gamma, \frac{\Gamma \vdash T\ homotopy\ type}{\Gamma, t:T \vdash B(t)\ homotopy\ type}
  • for path sections spaces

    Γ ,a:S, b space:SΓ,s:Sa= S( b s)space:A(s) \frac{\Gamma, \frac{\Gamma a:S, \vdash b:S}{\Gamma, S\ a space}{\Gamma, =_S s:S b\ \vdash space} a(s):A(s)}
  • for identity dependent types terms

    Γ ,a:T, b homotopy: T typeΓ, a t= T:Tb( homotopy t)type:B(t) \frac{\Gamma, \frac{\Gamma a:T, \vdash b:T}{\Gamma, T\ a =_T b\ homotopy\ type} type}{\Gamma, t:T \vdash b(t):B(t)}
  • for mapping spaces

    Γ,Aspace,BspaceΓ,ABspace\frac{\Gamma, A\ space, B\ space}{\Gamma, A \to B\ space}
  • for function types

    Γ,Ahomotopytype,BhomotopytypeΓ,ABhomotopytype\frac{\Gamma, A\ homotopy\ type, B\ homotopy\ type}{\Gamma, A \to B\ homotopy\ type}

Cohesive homotopy type theory has the following additional judgments, 2 for turning spaces into homotopy types and the other two for turning homotopy types into spaces:

  • Every space has an underlying homotopy type

    ΓSspaceΓp *(S)homotopytype \frac{S\ \frac{\Gamma space}{p_*(S)\ \vdash S\ space}{\Gamma \vdash p_*(S)\ homotopy\ type}
  • Every space has a fundamental homotopy type

    ΓSspaceΓp !(S)homotopytype \frac{S\ \frac{\Gamma space}{p_!(S)\ \vdash S\ space}{\Gamma \vdash p_!(S)\ homotopy\ type}
  • Every homotopy type has a discrete space

    ΓThomotopytypeΓp *(T)space \frac{T\ \frac{\Gamma \vdash T\ homotopy\ type}{p^*(T)\ type}{\Gamma \vdash p^*(T)\ space}
  • Every homotopy type has an indiscrete space

    ΓThomotopytypeΓp !(T)space \frac{T\ \frac{\Gamma \vdash T\ homotopy\ type}{p^!(T)\ type}{\Gamma \vdash p^!(T)\ space}

The underlying homotopy type and fundamental homotopy type are sometimes represented by the greek letters Γ\Gamma and Π\Pi respectively, but both are already used in dependent type theory to represent the context and the dependent/indexed product.

From these judgements one could construct the sharp modality? as

Modalities

(S)p !(p *(S))\sharp(S) \coloneqq p^!(p_*(S))

From these judgements one could construct the sharp? modality? as

the flat modality as

(S)p !(p *(S))\sharp(S) \coloneqq p^!(p_*(S))
(S)p *(p *(S))\flat(S) \coloneqq p^*(p_*(S))

the flat? modality as

and the shape modality as

(S)p *(p *(S))\flat(S) \coloneqq p^*(p_*(S))
esh(S)p !(p !(S))\esh(S) \coloneqq p^!(p_!(S))

and the shape modality as

for a space SS.

esh(S)p !(p !(S))\esh(S) \coloneqq p^!(p_!(S))

for a space SS.

Other types

Path spaces

Γ,a:S,b:SΓa= Sbspace\frac{\Gamma, a:S, b:S}{\Gamma \vdash a =_S b\ space}

Identity types

Γ,a:T,b:TΓa= Tbhomotopytype\frac{\Gamma, a:T, b:T}{\Gamma \vdash a =_T b\ homotopy\ type}

Mapping spaces

Γ,Aspace,BspaceΓABspace\frac{\Gamma, A\ space, B\ space}{\Gamma \vdash A \to B\ space}

Function types

Γ,Ahomotopytype,BhomotopytypeΓABhomotopytype\frac{\Gamma, A\ homotopy\ type, B\ homotopy\ type}{\Gamma \vdash A \to B\ homotopy\ type}

Section spaces

Γ,s:SA(s)spaceΓ s:SA(s)space\frac{\Gamma, s:S \vdash A(s)\ space}{\Gamma \vdash \prod_{s:S} A(s)\ space}

Dependent function types

Γ,t:TA(t)homotopytypeΓ t:TA(t)homotopytype\frac{\Gamma, t:T \vdash A(t)\ homotopy\ type}{\Gamma \vdash \prod_{t:T} A(t)\ homotopy\ type}

Product spaces

Γ,Aspace,BspaceΓA×Bspace\frac{\Gamma, A\ space, B\ space}{\Gamma \vdash A \times B\ space}

Pair types

Γ,Ahomotopytype,BhomotopytypeΓA×Bhomotopytype\frac{\Gamma, A\ homotopy\ type, B\ homotopy\ type}{\Gamma \vdash A \times B\ homotopy\ type}

Total spaces

Γ,s:SA(s)spaceΓ s:SA(s)space\frac{\Gamma, s:S \vdash A(s)\ space}{\Gamma \vdash \sum_{s:S} A(s)\ space}

Dependent pair types

Γ,t:TA(t)homotopytypeΓ t:TA(t)homotopytype\frac{\Gamma, t:T \vdash A(t)\ homotopy\ type}{\Gamma \vdash \sum_{t:T} A(t)\ homotopy\ type}

See also

Revision on April 2, 2022 at 21:23:13 by Anonymous?. See the history of this page for a list of all contributions to it.