Homotopy Type Theory commutative monoid > history (Rev #8, changes)

Showing changes from revision #7 to #8: Added | Removed | Changed

Definition

A commutative monoid consists of

  • A type AA,
  • A basepoint e:Ae:A
  • A binary operation μ:AAA\mu : A \to A \to A
  • A contractible left unit identity
    c λ: (a:G)isContr(μ(e,a)=a)c_\lambda:\prod_{(a:G)} isContr(\mu(e,a)=a)
  • A contractible right unit identity
    c ρ: (a:G)isContr(μ(a,e)=a)c_\rho:\prod_{(a:G)} isContr(\mu(a,e)=a)
  • A contractible associative identity
    c α: (a:G) (b:G) (c:G)isContr(μ(μ(a,b),c)=μ(a,μ(b,c)))c_\alpha:\prod_{(a:G)} \prod_{(b:G)} \prod_{(c:G)} isContr(\mu(\mu(a, b),c)=\mu(a,\mu(b,c)))
  • A contractible commutative identity
    c κ: (a:A) (b:A)isContr(μ(a,b)=μ(b,a))c_\kappa:\prod_{(a:A)} \prod_{(b:A)} isContr(\mu(a, b)=\mu(b, a))
  • A 0-truncator
    τ 0: (a:A) (b:A)isProp(a=b)\tau_0: \prod_{(a:A)} \prod_{(b:A)} isProp(a=b)

Properties

Relation to commutative A 3A_3-spaces

Since for all a,b,c:Aa, b, c:A, μ(e,a)=a\mu(e,a)=a, μ(a,e)=a\mu(a,e)=a, μ(μ(a,b),c)=μ(a,μ(b,c))\mu(\mu(a, b),c)=\mu(a,\mu(b,c)), and μ(a,b)=μ(b,a)\mu(a, b)=\mu(b, a) are contractible, the types

(a:A)μ(e,a)=a\prod_{(a:A)} \mu(e,a)=a
(a:A)μ(a,e)=a\prod_{(a:A)} \mu(a,e)=a
(a:A) (b:A) (c:A)μ(μ(a,b),c)=μ(a,μ(b,c))\prod_{(a:A)} \prod_{(b:A)} \prod_{(c:A)} \mu(\mu(a, b),c)=\mu(a,\mu(b,c))
(a:A) (b:A)μ(a,b)=μ(b,a)\prod_{(a:A)} \prod_{(b:A)} \mu(a, b)=\mu(b, a)

are contractible and thus pointed, and thus one could choose any point

λ: (a:A)μ(e,a)=a\lambda:\prod_{(a:A)} \mu(e,a)=a
ρ: (a:A)μ(a,e)=a\rho:\prod_{(a:A)} \mu(a,e)=a
α: (a:A) (b:A) (c:A)μ(μ(a,b),c)=μ(a,μ(b,c))\alpha:\prod_{(a:A)} \prod_{(b:A)} \prod_{(c:A)} \mu(\mu(a, b),c)=\mu(a,\mu(b,c))
κ: (a:A) (b:A)μ(a,b)=μ(b,a)\kappa:\prod_{(a:A)} \prod_{(b:A)} \mu(a, b)=\mu(b, a)

to be the left unitor, right unitor, associator, and commutator respectively, which means that a commutative monoid is a commutative $A_3$-space.

Similarly, any 0-truncated commutative A 3A_3-space or commutative A 3A_3-algebra in sets is a monoid, as any identity type between any two terms of a set are propositions, and thus for every a,b,c:Aa, b, c:A, the identity types μ(e,a)=a\mu(e,a)=a, μ(a,e)=a\mu(a,e)=a, μ(μ(a,b),c)=μ(a,μ(b,c))\mu(\mu(a, b),c)=\mu(a,\mu(b,c)), and μ(a,b)=μ(b,a)\mu(a, b)=\mu(b, a) are propositions. Since the dependent product types

(a:A)μ(e,a)=a\prod_{(a:A)} \mu(e,a)=a
(a:A)μ(a,e)=a\prod_{(a:A)} \mu(a,e)=a
(a:A) (b:A) (c:A)μ(μ(a,b),c)=μ(a,μ(b,c))\prod_{(a:A)} \prod_{(b:A)} \prod_{(c:A)} \mu(\mu(a, b),c)=\mu(a,\mu(b,c))
(a:A) (b:A)μ(a,b)=μ(b,a)\prod_{(a:A)} \prod_{(b:A)} \mu(a, b)=\mu(b, a)

are inhabited by definition of a commutative A 3A_3-space, each identity type μ(e,a)=a\mu(e,a)=a, μ(a,e)=a\mu(a,e)=a, μ(μ(a,b),c)=μ(a,μ(b,c))\mu(\mu(a, b),c)=\mu(a,\mu(b,c)), and μ(a,b)=μ(b,a)\mu(a, b)=\mu(b, a) is an inhabited proposition, which makes it contractible. Thus,

(a:A)isContr(μ(e,a)=a)\prod_{(a:A)} isContr(\mu(e,a)=a)
(a:A)isContr(μ(a,e)=a)\prod_{(a:A)} isContr(\mu(a,e)=a)
(a:A) (b:A) (c:A)isContr(μ(μ(a,b),c)=μ(a,μ(b,c)))\prod_{(a:A)} \prod_{(b:A)} \prod_{(c:A)} isContr(\mu(\mu(a, b),c)=\mu(a,\mu(b,c)))
(a:A) (b:A)isContr(μ(a,b)=μ(b,a))\prod_{(a:A)} \prod_{(b:A)} isContr(\mu(a, b)=\mu(b, a))

which along with the 0-truncator means that a 0-truncated commutative A 3A_3-space is a commutative monoid.

Examples

See also

Revision on June 13, 2022 at 06:18:09 by Anonymous?. See the history of this page for a list of all contributions to it.