Homotopy Type Theory
identity type (Rev #3, changes)

Showing changes from revision #2 to #3: Added | Removed | Changed

This page is under construction. - Ali


The identity type has elements that are witnesses to the “sameness” of elements.


The identity type = A:AA𝒰=_A : A \to A \to \mathcal{U} can be defined as the inductive type? with the following constructor: * for any a:Aa:A, an element refl A:a= Aarefl_A: a=_A a

See also

Higher higher inductive type


HoTT book

category: type theory

Revision on September 6, 2018 at 18:07:24 by Ali Caglayan. See the history of this page for a list of all contributions to it.