Homotopy Type Theory sequentially Hausdorff space > history (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In Archimedean set ordered theory fields

Let F S F S be an a Archimedean preconvergence ordered space field. Then F S F S is a sequentially Hausdorff space if for all sequences x :S F x:\mathbb{N} x \to \in F S^\mathbb{N} , the type set of alllimits of xx is has a at most one elementproposition

isSequentiallyHausdorff( F S) x:F isProp xS .{lS|isLimit S(lim nx,l)}{lS|isLimit S( n x,l) ) }𝟙 isSequentiallyHausdorff(F) isSequentiallyHausdorff(S) \coloneqq \prod_{x:\mathbb{N} \forall \to x F} \in isProp(\lim_{n S^\mathbb{N}. \to \{l \infty} \in x(n)) S \vert isLimit_S(x, l)\} \cong \emptyset \vee \{l \in S \vert isLimit_S(x, l)\} \cong \mathbb{1}

All where Archimedean ordered fields are sequentially Hausdorff spaces.𝟙\mathbb{1} is the singleton set.

Most general definition

One could directly define the limit lim n()(n)\lim_{n \to \infty} (-)(n) as a partial function

Let SS be a type with a predicate \to between the type of sequences in SS, S\mathbb{N} \to S, and SS itself. Then SS is a sequentially Hausdorff space if for all sequences x:Sx:\mathbb{N} \to S, the type of all limits of xx is a proposition

lim n()(n)(S) 𝒰S\lim_{n \to \infty} (-)(n) \in (\mathbb{N} \to S) \to_{\mathcal{U}} S
isSequentiallyHausdorff(S) x:SisProp( l:Sxl)isSequentiallyHausdorff(S) \coloneqq \prod_{x:\mathbb{N} \to S} isProp\left(\sum_{l:S} x \to l\right)

In homotopy type theory

One Let could directly define the limitlim nS()(n) \lim_{n S \to \infty} (-)(n) as be a partial preconvergence function space. Then SS is a sequentially Hausdorff space if for all sequences x:Sx:\mathbb{N} \to S, the type of all limits of xx is a proposition

lim nisSequentiallyHausdorff()(n):(S) 𝒰S x:SisProp( l:Sxl) \lim_{n isSequentiallyHausdorff(S) \coloneqq \prod_{x:\mathbb{N} \to \infty} S} (-)(n): isProp\left(\sum_{l:S} (\mathbb{N} x \to S) l\right) \to_{\mathcal{U}} S

One could directly define the limit lim n()(n)\lim_{n \to \infty} (-)(n) as a partial function

lim n()(n):(S) 𝒰S\lim_{n \to \infty} (-)(n): (\mathbb{N} \to S) \to_{\mathcal{U}} S

Properties

Every Hausdorff space and thus every Archimedean ordered field is a sequentially Hausdorff space.

See also

Revision on April 14, 2022 at 05:33:57 by Anonymous?. See the history of this page for a list of all contributions to it.