A unital dagger 2-poset is a dagger 2-poset$C$ with an object $\mathbb{1}:Ob(C)$ such that for every morphism $f:Hom(\mathbb{1}, \mathbb{1})$, $f \leq 1_\mathbb{1}$, and for every object $A:Ob(C)$ , there is a an morphism$u:A \to \mathbb{1}$onto morphism such that${1}_{u}\le :\mathrm{uA}\circ \to {u}^{\u2020}\U0001d7d9$ 1_A u_A:A \leq \to u \mathbb{1} \circ u^\dagger.

Examples

The dagger 2-poset of sets and relations is a unital dagger 2-poset.