Homotopy Type Theory divisible group > history (Rev #1)

Definition

An abelian group GG is a divisible group if there exists a left +\mathbb{Z}_{+}-action ()(): +×GG(-)(-):\mathbb{Z}_{+} \times G \to G, where +\mathbb{Z}_{+} is the positve integers, such that for all n: +n:\mathbb{Z}_{+} and all g:Gg:G, the fiber of n()n(-) at gg is contractible:

n: + g:GisContr(fiber(n(),g))\prod_{n:\mathbb{Z}_{+}} \prod_{g:G} \mathrm{isContr}(\mathrm{fiber}(n(-),g))

Properties

  • Just as every abelian group is a \mathbb{Z}-bimodule, every divisible group is a \mathbb{Q}-bimodule, or a \mathbb{Q}-vector space?.

See also

References

  • Phillip A. Griffith (1970), Infinite Abelian group theory. Chicago Lectures in Mathematics. University of Chicago Press. ISBN 0-226-30870-7

Revision on May 2, 2022 at 06:21:20 by Anonymous?. See the history of this page for a list of all contributions to it.