Homotopy Type Theory
group > history (Rev #2)
Definition
A group consists of
A type G G ,
A basepoint e : G e:G
A binary operation μ : G → G → G \mu : G \to G \to G
A unary operation ι : G → G \iota: G \to G
A left unitorλ : ∏ ( a : G ) μ ( e , a ) = a \lambda:\prod_{(a:G)} \mu(e,a)=a
A right unitorρ : ∏ ( a : G ) μ ( a , e ) = a \rho:\prod_{(a:G)} \mu(a,e)=a
An asssociatorα : ∏ ( a : G ) ∏ ( b : G ) ∏ ( c : G ) μ ( μ ( a , b ) , c ) = μ ( a , μ ( b , c ) ) \alpha:\prod_{(a:G)} \prod_{(b:G)} \prod_{(c:G)} \mu(\mu(a, b),c)=\mu(a,\mu(b,c))
A left invertorl : ∏ ( a : G ) μ ( ι ( a ) , a ) = e l:\prod_{(a:G)} \mu(\iota(a), a)=e
A right invertorr : ∏ ( a : G ) μ ( a , ι ( a ) ) = e r:\prod_{(a:G)} \mu(a,\iota(a))=e
A 0-truncatorτ 0 : ∏ ( a : G ) ∏ ( b : G ) ∏ ( c : a = b ) ∏ ( d : a = b ) ∑ ( x : c = d ) ∏ ( y : c = d ) x = y \tau_0: \prod_{(a:G)} \prod_{(b:G)} \prod_{(c:a=b)} \prod_{(d:a=b)} \sum_{(x:c=d)} \prod_{(y:c=d)} x=y
Examples
The integers are a group.
Given a set A A , the type of automorphisms Aut ( A ) Aut(A) has the structure of a group, with basepoint id A id_A , binary operation function composition, and unary operation inverse automorphism ( − ) − 1 {(-)}^{-1} .
See also
References
Revision on February 4, 2022 at 15:30:35 by
Anonymous? .
See the history of this page for a list of all contributions to it.