Homotopy Type Theory group > history (Rev #2)

Definition

A group consists of

  • A type GG,
  • A basepoint e:Ge:G
  • A binary operation μ:GGG\mu : G \to G \to G
  • A unary operation ι:GG\iota: G \to G
  • A left unitor
    λ: (a:G)μ(e,a)=a\lambda:\prod_{(a:G)} \mu(e,a)=a
  • A right unitor
    ρ: (a:G)μ(a,e)=a\rho:\prod_{(a:G)} \mu(a,e)=a
  • An asssociator
    α: (a:G) (b:G) (c:G)μ(μ(a,b),c)=μ(a,μ(b,c))\alpha:\prod_{(a:G)} \prod_{(b:G)} \prod_{(c:G)} \mu(\mu(a, b),c)=\mu(a,\mu(b,c))
  • A left invertor
    l: (a:G)μ(ι(a),a)=el:\prod_{(a:G)} \mu(\iota(a), a)=e
  • A right invertor
    r: (a:G)μ(a,ι(a))=er:\prod_{(a:G)} \mu(a,\iota(a))=e
  • A 0-truncator
    τ 0: (a:G) (b:G) (c:a=b) (d:a=b) (x:c=d) (y:c=d)x=y\tau_0: \prod_{(a:G)} \prod_{(b:G)} \prod_{(c:a=b)} \prod_{(d:a=b)} \sum_{(x:c=d)} \prod_{(y:c=d)} x=y

Examples

  • The integers are a group.

  • Given a set AA, the type of automorphisms Aut(A)Aut(A) has the structure of a group, with basepoint id Aid_A, binary operation function composition, and unary operation inverse automorphism () 1{(-)}^{-1}.

See also

References

Revision on February 4, 2022 at 15:30:35 by Anonymous?. See the history of this page for a list of all contributions to it.