Homotopy Type Theory homotopy type theory > history (Rev #26)

\tableofcontents

\section{Idea}

Homotopy type theory is a framework of dependent type theories which additionally consists of

  • identity types

  • dependent product types

  • dependent sum types

  • univalence

  • inductive types, higher inductive types, inductive type families, et cetera.

\section{Presentation}

The model of homotopy type theory we shall be presenting here is the objective type theory version of homotopy type theory. There are multiple reasons for this:

  • Since objective type theory lacks definitional equality,

    • The ruleset is simpler in the objective type theory model of homotopy type theory than other models such as Martin-Löf type theory, cubical type theory, or higher observational type theory

    • The results in objective type theory are more general than in models which use definitional equality

    • It is similar to other non-type theory foundations such as the various flavors of set theory, since it also only has one notion of equality, which is propositional equality in both objective type theory and set theory, and uses propositional equality to define terms and types.

  • From a more practical standpoint, objective type theory not only has decidable type checking, it has polynomial (quadratic) time type checking, which makes it efficient from a computational standpoint.

\subsection{Judgments and contexts}

Objective type theory consists of three judgments: type judgments AtypeA \; \mathrm{type}, where we judge AA to be a type, typing judgments, where we judge aa to be an element of AA, a:Aa:A, and context judgments, where we judge Γ\Gamma to be a context, Γctx\Gamma \; \mathrm{ctx}. Contexts are lists of typing judgments a:Aa:A, b:Bb:B, c:Cc:C, et cetera, and are formalized by the rules for the empty context and extending the context by a typing judgment

()ctxΓctxΓAtype(Γ,a:A)ctx\frac{}{() \; \mathrm{ctx}} \qquad \frac{\Gamma \; \mathrm{ctx} \quad \Gamma \vdash A \; \mathrm{type}}{(\Gamma, a:A) \; \mathrm{ctx}}

\subsection{Structural rules}

There are three structural rules in objective type theory, the variable rule?, the weakening rule?, and the substitution rule?.

The variable rule states that we may derive a typing judgment if the typing judgment is in the context already:

Γ,a:A,ΔctxΓ,a:A,Δa:A\frac{\vdash \Gamma, a:A, \Delta \; \mathrm{ctx}}{\vdash \Gamma, a:A, \Delta \vdash a:A}

Let 𝒥\mathcal{J} be any arbitrary judgment. Then we have the following rules:

The weakening rule:

Γ,Δ𝒥ΓAtypeΓ,a:A,Δ𝒥\frac{\Gamma, \Delta \vdash \mathcal{J} \quad \Gamma \vdash A \; \mathrm{type}}{\Gamma, a:A, \Delta \vdash \mathcal{J}}

The substitution rule:

Γa:AΓ,b:A,Δ𝒥Γ,Δ[a/b]𝒥[a/b]\frac{\Gamma \vdash a:A \quad \Gamma, b:A, \Delta \vdash \mathcal{J}}{\Gamma, \Delta[a/b] \vdash \mathcal{J}[a/b]}

The weakening and substitution rules are admissible rules: they do not need to be explicitly included in the type theory as they could be proven by induction on the structure of all possible derivations.

\subsection{Dependent types and sections}

A dependent type is a type BB in the context of the variable judgment x:Ax:A, x:ABtypex:A \vdash B \; \mathrm{type}, they are usually written as B(x)B(x) to indicate its dependence upon xx.

A section or dependent term is a term b:Bb:B in the context of the variable judgment x:Ax:A, x:Ab:Bx:A \vdash b:B. Sections are likewise usually written as b(x)b(x) to indicate its dependence upon xx.

\subsection{Equality}

Equality of elements of a type in objective type theory is represented by a type known as the equality type or the type of equalities. The elements of the equality type are called equalities.

Equality comes with a formation rule, an introduction rule, an elimination rule, and a computation rule:

Formation rule for equality types:

ΓAtypeΓ,a:A,b:Aa= Abtype\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:A, b:A \vdash a =_A b \; \mathrm{type}}

Introduction rule for equality types:

ΓAtypeΓ,a:Arefl A(a):a= Aa\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:A \vdash \mathrm{refl}_A(a) : a =_A a}

Elimination rule for equality types:

Γ,a:A,b:A,p:a= AbC(a,b,p)typeΓ,a:At:C(a,a,refl A(a))Γ,a:A,b:A,p:a= AbJ(t,a,b,p):C(a,b,p)\frac{\Gamma, a:A, b:A, p:a =_A b \vdash C(a, b, p) \mathrm{type} \quad \Gamma, a:A \vdash t:C(a, a, \mathrm{refl}_A(a))}{\Gamma, a:A, b:A, p:a =_A b \vdash J(t, a, b, p):C(a, b, p)}

Computation rules for equality types:

Γ,a:A,b:A,p:a= AbC(a,b,p)typeΓ,a:At:C(a,a,refl A(a))Γ,a:A,b:A,p:a= Abβ = A(a):J(t,a,a,refl(a))= C(a,a,refl A(a))t\frac{\Gamma, a:A, b:A, p:a =_A b \vdash C(a, b, p) \; \mathrm{type} \quad \Gamma, a:A \vdash t:C(a, a, \mathrm{refl}_A(a))}{\Gamma, a:A, b:A, p:a =_A b \vdash \beta_{=_A}(a) : J(t, a, a, \mathrm{refl}(a)) =_{C(a, a, \mathrm{refl}_A(a))} t}

\subsection{Centers of contraction}

Given a type AA, a term a:Aa:A is a center of contraction? if for all b:Ab:A there is an element p(b):a= Abp(b):a =_A b. This motivates the definition of isCentrContr\mathrm{isCentrContr} types, whose elements p:isCentrContr A(a)p:\mathrm{isCentrContr}_A(a) are proofs that aa is a center of contraction.

Formation rules for isCentrContr types:

ΓAtypeΓ,a:A,x:Aa= AxtypeΓ,a:AisCentrContr A(a)type\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, a:A, x:A \vdash a =_A x \; \mathrm{type}}{\Gamma, a:A \vdash \mathrm{isCentrContr}_A(a) \; \mathrm{type}}

Introduction rules for isCentrContr types:

ΓAtypeΓ,a:A,x:Aa= AxΓ,a:Aλ(x).p(x):isCentrContr A(a)\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, a:A, x:A \vdash a =_A x}{\Gamma, a:A \vdash \lambda(x).p(x):\mathrm{isCentrContr}_A(a)}

Elimination rules for isCentrContr types:

Γ,a:Ap:isCentrContr A(a)Γb:AΓp(b):a= Ab\frac{\Gamma, a:A \vdash p:\mathrm{isCentrContr}_A(a) \quad \Gamma \vdash b:A}{\Gamma \vdash p(b):a =_A b}

Computation rules for isCentrContr types:

Γ,a:A,x:Ap(x):a= AxΓb:AΓβ isCentrContr:(λ(x).p(x))(b)= a= Abp(b)\frac{\Gamma, a:A, x:A \vdash p(x):a =_A x \quad \Gamma \vdash b:A}{\Gamma \vdash \beta_\mathrm{isCentrContr}:(\lambda(x).p(x))(b) =_{a =_A b} p(b)}

Uniqueness rules for isCentrContr types:

Γ,a:Ap:isCentrContr A(a)Γη isCentrContr:p= isCentrContr A(a)λ(x).p(x)\frac{\Gamma, a:A \vdash p:\mathrm{isCentrContr}_A(a)}{\Gamma \vdash \eta_\mathrm{isCentrContr}:p =_{\mathrm{isCentrContr}_A(a)} \lambda(x).p(x)}

A term a:Aa:A of a type AA is a center of contraction if it has an element p:isCentrContr(A)p:\mathrm{isCentrContr}(A).

\subsection{Contractible types}

A type TT is true, a singleton, or contractible if TT has a term p:Tp:T and a term q:isProp(T)q:\mathrm{isProp}(T). This motivates the definition of isContr\mathrm{isContr} types, whose elements p:isContr(T)p:\mathrm{isContr}(T) are proofs that TT is contractible.

Formation rules for isContr types:

ΓAtypeΓ,x:AContr A(x)typeΓisContr(A)type\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash \mathrm{Contr}_A(x) \; \mathrm{type}}{\Gamma \vdash \mathrm{isContr}(A) \; \mathrm{type}}

Introduction rules for isContr types:

Γ,x:Ab(x):Contr A(x)Γa:AΓb:Contr(a)Γ(a,b):isContr(A)\frac{\Gamma, x:A \vdash b(x):\mathrm{Contr}_A(x) \quad \Gamma \vdash a:A \quad \Gamma \vdash b:\mathrm{Contr}(a)}{\Gamma \vdash (a, b):\mathrm{isContr}(A)}

Elimination rules for isContr types:

Γz:isContr(A)Γπ 1(z):AΓz:isContr(A)Γπ 2(z):Contr A(π 1(z))\frac{\Gamma \vdash z:\mathrm{isContr}(A)}{\Gamma \vdash \pi_1(z):A} \qquad \frac{\Gamma \vdash z:\mathrm{isContr}(A)}{\Gamma \vdash \pi_2(z):\mathrm{Contr}_A(\pi_1(z))}

Computation rules for isContr types:

Γ,x:Ab(x):Contr A(x)Γa:AΓβ Σ1:π 1(a,b)= AaΓ,x:Ab(x):Contr A(x)Γa:AΓβ Σ2:π 2(a,b)= Contr A(a)b\frac{\Gamma, x:A \vdash b(x):\mathrm{Contr}_A(x) \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\Sigma 1}:\pi_1(a, b) =_A a} \qquad \frac{\Gamma, x:A \vdash b(x):\mathrm{Contr}_A(x) \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\Sigma 2}:\pi_2(a, b) =_{\mathrm{Contr}_A(a)} b}

Uniqueness rules for isContr types:

Γz:isContr(A)Γη Σ:z= isContr(A)(π 1(z),π 2(z))\frac{\Gamma \vdash z:\mathrm{isContr}(A)}{\Gamma \vdash \eta_\Sigma:z =_{\mathrm{isContr}(A)} (\pi_1(z), \pi_2(z))}

A type AA is contractible if it has an element p:isContr(A)p:\mathrm{isContr}(A).

\subsection{Function types}

Formation rules for function types:

ΓAtypeΓBtypeΓABtype\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type}}{\Gamma \vdash A \to B \; \mathrm{type}}

Introduction rules for function types:

Γ,x:Ab(x):BΓ(xb(x)):AB\frac{\Gamma, x:A \vdash b(x):B}{\Gamma \vdash (x \mapsto b(x)):A \to B}

Elimination rules for function types:

Γf:ABΓa:AΓf(a):B\frac{\Gamma \vdash f:A \to B \quad \Gamma \vdash a:A}{\Gamma \vdash f(a):B}

Computation rules for function types:

Γ,x:Ab(x):BΓa:AΓβ :(xb(x))(a)= Bb\frac{\Gamma, x:A \vdash b(x):B \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\to}:(x \mapsto b(x))(a) =_{B} b}

Uniqueness rules for function types:

Γf:ABΓη :f= AB(xf(x))\frac{\Gamma \vdash f:A \to B}{\Gamma \vdash \eta_{\to}:f =_{A \to B} (x \to f(x))}

\subsection{Pi types}

Formation rules for Pi types:

ΓAtypeΓ,x:AB(x)typeΓ x:AB(x)type\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash B(x) \; \mathrm{type}}{\Gamma \vdash \prod_{x:A} B(x) \; \mathrm{type}}

Introduction rules for Pi types:

Γ,x:Ab(x):B(x)Γλ(x:A).b(x): x:AB(x)\frac{\Gamma, x:A \vdash b(x):B(x)}{\Gamma \vdash \lambda(x:A).b(x):\prod_{x:A} B(x)}

Elimination rules for Pi types:

Γf:x:AB(x)Γa:AΓf(a):B[a/x]\frac{\Gamma \vdash f:\prod{x:A} B(x) \quad \Gamma \vdash a:A}{\Gamma \vdash f(a):B[a/x]}

Computation rules for Pi types:

Γ,x:Ab(x):B(x)Γa:AΓβ Π:λ(x:A).b(x)(a)= B[a/x]b[a/x]\frac{\Gamma, x:A \vdash b(x):B(x) \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_\Pi:\lambda(x:A).b(x)(a) =_{B[a/x]} b[a/x]}

Uniqueness rules for Pi types:

Γf: x:AB(x)Γη Π:f= x:AB(x)λ(x).f(x)\frac{\Gamma \vdash f:\prod_{x:A} B(x)}{\Gamma \vdash \eta_\Pi:f =_{\prod_{x:A} B(x)} \lambda(x).f(x)}

\subsection{Product types}

We use the negative presentation for product types.

Formation rules for product types:

ΓAtypeΓBtypeΓA×Btype\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type}}{\Gamma \vdash A \times B \; \mathrm{type}}

Introduction rules for product types:

Γa:AΓb:BΓ(a,b):A×B\frac{\Gamma \vdash a:A \quad \Gamma \vdash b:B}{\Gamma \vdash (a, b):A \times B}

Elimination rules for product types:

Γz:A×BΓπ 1(z):AΓz:A×BΓπ 2(z):B\frac{\Gamma \vdash z:A \times B}{\Gamma \vdash \pi_1(z):A} \qquad \frac{\Gamma \vdash z:A \times B}{\Gamma \vdash \pi_2(z):B}

Computation rules for product types:

Γa:AΓb:BΓβ ×1:π 1(a,b)= AaΓa:AΓb:BΓβ ×2:π 2(a,b)= Bb\frac{\Gamma \vdash a:A \quad \Gamma \vdash b:B}{\Gamma \vdash \beta_{\times 1}:\pi_1(a, b) =_A a} \qquad \frac{\Gamma \vdash a:A \quad \Gamma \vdash b:B}{\Gamma \vdash \beta_{\times 2}:\pi_2(a, b) =_B b}

Uniqueness rules for product types:

Γz:A×BΓη ×:z= A×B(π 1(z),π 2(z))\frac{\Gamma \vdash z:A \times B}{\Gamma \vdash \eta_\times:z =_{A \times B} (\pi_1(z), \pi_2(z))}

\subsection{Sigma types}

We use the negative presentation for sigma types.

Formation rules for Sigma types:

ΓAtypeΓ,x:AB(x)typeΓ x:AB(x)type\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash B(x) \; \mathrm{type}}{\Gamma \vdash \sum_{x:A} B(x) \; \mathrm{type}}

Introduction rules for Sigma types:

Γ,x:Ab(x):B(x)Γa:AΓb:B[a/x]Γ(a,b): x:AB(x)\frac{\Gamma, x:A \vdash b(x):B(x) \quad \Gamma \vdash a:A \quad \Gamma \vdash b:B[a/x]}{\Gamma \vdash (a, b):\sum_{x:A} B(x)}

Elimination rules for Sigma types:

Γz: x:AB(x)Γπ 1(z):AΓz: x:AB(x)Γπ 2(z):B(π 1(z))\frac{\Gamma \vdash z:\sum_{x:A} B(x)}{\Gamma \vdash \pi_1(z):A} \qquad \frac{\Gamma \vdash z:\sum_{x:A} B(x)}{\Gamma \vdash \pi_2(z):B(\pi_1(z))}

Computation rules for Sigma types:

Γ,x:Ab(x):B(x)Γa:AΓβ Σ1:π 1(a,b)= AaΓ,x:Ab:BΓa:AΓβ Σ2:π 2(a,b)= Bπ 1(a,b)b\frac{\Gamma, x:A \vdash b(x):B(x) \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\Sigma 1}:\pi_1(a, b) =_A a} \qquad \frac{\Gamma, x:A \vdash b:B \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\Sigma 2}:\pi_2(a, b) =_{B\pi_1(a, b)} b}

Uniqueness rules for Sigma types:

Γz: x:AB(x)Γη Σ:z= x:AB(x)(π 1(z),π 2(z))\frac{\Gamma \vdash z:\sum_{x:A} B(x)}{\Gamma \vdash \eta_\Sigma:z =_{\sum_{x:A} B(x)} (\pi_1(z), \pi_2(z))}

\subsection{Fibers}

In set theory, the fiber of a function ff with domain? AA and codomain? BB at an element bb in BB is the indexed disjoint union? of all elements a:Aa:A such that f(a)=bf(a) = b. This definition could also be translated into objective type theory: the fiber of a function f:ABf:A \to B at the element b:Bb:B is the type

a:Af(a)= Bb\sum_{a:A} f(a) =_B b

This motivates the definition of fiber types, whose elements p:fiber A,B(f,y)p:\mathrm{fiber}_{A, B}(f, y) are the fibers of the function f:ABf:A \to B at element y:By:B

Formation rules for fiber types:

ΓAtypeΓBtypeΓ,f:AB,y:B,x:Af(x)= BytypeΓ,f:AB,y:Bfiber A,B(f,y)type\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type} \quad \Gamma, f:A \to B, y:B, x:A \vdash f(x) =_B y \; \mathrm{type}}{\Gamma, f:A \to B, y:B \vdash \mathrm{fiber}_{A, B}(f, y) \; \mathrm{type}}

Introduction rules for fiber types:

ΓAtypeΓBtypeΓ,f:AB,y:B,x:Ab(x):f(x)= ByΓa:AΓ,f:AB,y:Bp:f[a/x]= ByΓ,f:AB,y:B(a,b):fiber A,B(f,y)\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type} \quad \Gamma, f:A \to B, y:B, x:A \vdash b(x):f(x) =_B y \quad \Gamma \vdash a:A \quad \Gamma, f:A \to B, y:B \vdash p:f[a/x] =_B y}{\Gamma, f:A \to B, y:B \vdash (a, b):\mathrm{fiber}_{A, B}(f, y)}

Elimination rules for fiber types:

Γ,f:AB,y:Bz:fiber A,B(f,y)Γπ 1(z):AΓ,f:AB,y:Bz:fiber A,B(f,y)Γ,f:AB,y:Bπ 2(z):f(π 1(z))= By\frac{\Gamma, f:A \to B, y:B \vdash z:\mathrm{fiber}_{A, B}(f, y)}{\Gamma \vdash \pi_1(z):A} \qquad \frac{\Gamma, f:A \to B, y:B \vdash z:\mathrm{fiber}_{A, B}(f, y)}{\Gamma, f:A \to B, y:B \vdash \pi_2(z):f(\pi_1(z)) =_B y}

Computation rules for fiber types:

Γ,f:AB,y:B,x:Ab(x):f(x)= BbΓa:AΓβ Σ1:π 1(a,b)= AaΓ,f:AB,y:B,x:Ab(x):f(x)= ByΓa:AΓ,f:AB,y:Bβ Σ2:π 2(a,b)= f(π 1(a,b))= Byb\frac{\Gamma, f:A \to B, y:B, x:A \vdash b(x):f(x) =_B b \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\Sigma 1}:\pi_1(a, b) =_A a} \qquad \frac{\Gamma, f:A \to B, y:B, x:A \vdash b(x):f(x) =_B y \quad \Gamma \vdash a:A}{\Gamma, f:A \to B, y:B \vdash \beta_{\Sigma 2}:\pi_2(a, b) =_{f(\pi_1(a, b)) =_B y} b}

Uniqueness rules for fiber types:

Γ,f:AB,y:Bz:fiber A,B(f,y)Γ,f:AB,y:Bη Σ:z= fiber A,B(f,y)(π 1(z),π 2(z))\frac{\Gamma, f:A \to B, y:B \vdash z:\mathrm{fiber}_{A, B}(f, y)}{\Gamma, f:A \to B, y:B \vdash \eta_\Sigma:z =_{\mathrm{fiber}_{A, B}(f, y)} (\pi_1(z), \pi_2(z))}

Equivalences

In set theory, a function is a bijection? if all its fibers at every element of the codomain are singletons. This definition can be translated over to objective type theory, but the name used for such a function in objective type theory is equivalence?: A function f:ABf:A \to B is an equivalence if there is an element

c(f): b:BisContr(fiber A,B(f,b))c(f):\prod_{b:B} \mathrm{isContr}(\mathrm{fiber}_{A, B}(f, b))

The type of equivalences is given by

f:AB b:BisContr(fiber A,B(f,b))\sum_{f:A \to B} \prod_{b:B} \mathrm{isContr}(\mathrm{fiber}_{A, B}(f, b))

Definitions

Parts of the following section is adapted from Egbert Rijke’s Introduction to Homotopy Type Theory?:

We can make definitions at the end of a derivation if the conclusion is a certain type in context, or if the conclusion is a certain term of a type in context. In the case where the conclusion is a certain term of a type in context, where we have a derivation

𝒟Γa:A\frac{\mathcal{D}}{\Gamma \vdash a:A}

if we wish to make a definition bab \coloneqq a, then we can extend the derivation tree with

Γa:AΓba:A\frac{\Gamma \vdash a:A}{\Gamma \vdash b \coloneqq a:A}

The effect of such a definition is that we have extended our type theory with a new constant bb, for which the following inference rules are valid

𝒟b:A𝒟defeq(a,b):b= Aa\frac{\mathcal{D}}{b:A} \qquad \frac{\mathcal{D}}{\mathrm{defeq}(a, b):b =_A a}

In the case where the conclusion is a certain type in context, where we have a derivation

𝒟ΓAtype\frac{\mathcal{D}}{\Gamma \vdash A \; \mathrm{type}}

if we wish to make a definition BAB \coloneqq A, then we can similarly extend the derivation tree with

ΓAtypeΓBAtype\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash B \coloneqq A \; \mathrm{type}}

The effect of such a definition in this case is that we have extended our type theory with a new constant BB, for which the following inference rules are valid

𝒟Btype𝒟defequiv(B,A): f:BA a:AisContr(fiber A,B(f,b))\frac{\mathcal{D}}{B \; \mathrm{type}} \qquad \frac{\mathcal{D}}{\mathrm{defequiv}(B, A): \sum_{f:B \to A} \prod_{a:A} \mathrm{isContr}(\mathrm{fiber}_{A, B}(f, b))}

In essence, we define an element bb to be equal to aa, and a type BB to be equivalent to AA, in the same way that in structural set theory?, which usually also doesn’t have definitional equality, one would define element bb to be equal to aa and set BB to be in bijection? with AA.

This allows us to define and use constants for certain long and unwieldy types, such as the type of equivalences defined in the previous section:

AB f:AB b:BisContr(fiber A,B(f,b))A \simeq B \coloneqq \sum_{f:A \to B} \prod_{b:B} \mathrm{isContr}(\mathrm{fiber}_{A, B}(f, b))

\subsection{Empty type}

Formation rules for the empty type:

ΓctxΓ𝟘type\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{0} \; \mathrm{type}}

Elimination rules for the empty type:

Γ,x:𝟘CtypeΓp:𝟘Γind 𝟘 C(p):C(p)\frac{\Gamma, x:\mathbb{0} \vdash C \; \mathrm{type} \quad \Gamma \vdash p:\mathbb{0}}{\Gamma \vdash \mathrm{ind}_\mathbb{0}^C(p):C(p)}

Uniqueness rules for the empty type:

Γ,x:𝟘CtypeΓp:𝟘Γ,x:𝟘u:CΓη 𝟘(p,u):u[p/x]= C[p/x]ind 𝟘 C(p)\frac{\Gamma, x:\mathbb{0} \vdash C \; \mathrm{type} \quad \Gamma \vdash p:\mathbb{0} \quad \Gamma, x:\mathbb{0} \vdash u:C}{\Gamma \vdash \eta_\mathbb{0}(p, u):u[p/x] =_{C[p/x]} \mathrm{ind}_\mathbb{0}^{C}(p)}

\subsection{Unit type}

Formation rules for the unit type:

ΓctxΓ𝟙type\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{1} \; \mathrm{type}}

Introduction rules for the unit type:

ΓctxΓ*:𝟙\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash *:\mathbb{1}}

Elimination rules for the unit type:

Γ,x:𝟙CtypeΓc *:C[*/x]Γp:𝟙Γind 𝟙 C(p,c *):C[p/x]\frac{\Gamma, x:\mathbb{1} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_*:C[*/x] \quad \Gamma \vdash p:\mathbb{1}}{\Gamma \vdash \mathrm{ind}_\mathbb{1}^C(p, c_*):C[p/x]}

Computation rules for the unit type:

Γ,x:𝟙CtypeΓc *:C[*/x]Γβ 𝟙:ind 𝟙 C(*,c *)= C[*/x]c *\frac{\Gamma, x:\mathbb{1} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_*:C[*/x]}{\Gamma \vdash \beta_\mathbb{1}: \mathrm{ind}_\mathbb{1}^C(*, c_*) =_{C[*/x]} c_*}

Uniqueness rules for the unit type:

Γ,x:𝟙CtypeΓc *:C[*/x]Γp:𝟙Γ,x:𝟙u:CΓi *(u):u[*/x]= C[*/x]c *Γη 𝟙(p,u):u[p/x]= C[p/x]ind 𝟙 C(p,c *)\frac{\Gamma, x:\mathbb{1} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_*:C[*/x] \quad \Gamma \vdash p:\mathbb{1} \quad \Gamma, x:\mathbb{1} \vdash u:C \quad \Gamma \vdash i_*(u):u[*/x] =_{C[*/x]} c_* }{\Gamma \vdash \eta_\mathbb{1}(p, u):u[p/x] =_{C[p/x]} \mathrm{ind}_\mathbb{1}^{C}(p, c_*)}

\subsection{Booleans}

Formation rules for the booleans:

ΓctxΓ𝟚type\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{2} \; \mathrm{type}}

Introduction rules for the booleans:

ΓctxΓ0:𝟚ΓctxΓ1:𝟚\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 0:\mathbb{2}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 1:\mathbb{2}}

Elimination rules for the booleans:

Γ,x:𝟚CtypeΓc 0:C[0/x]Γc 1:C[1/x]Γp:𝟚Γind 𝟚 C(p,c 0,c 1):C[p/x]\frac{\Gamma, x:\mathbb{2} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma \vdash c_1:C[1/x] \quad \Gamma \vdash p:\mathbb{2}}{\Gamma \vdash \mathrm{ind}_\mathbb{2}^{C}(p, c_0, c_1):C[p/x]}

Computation rules for the booleans:

Γ,x:𝟚CtypeΓc 0:C[0/x]Γc 1:C[1/x]Γβ 𝟚 0:ind 𝟚 C(0,c 0,c 1)= C[0/x]c 0\frac{\Gamma, x:\mathbb{2} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma \vdash c_1:C[1/x]}{\Gamma \vdash \beta_\mathbb{2}^{0}: \mathrm{ind}_\mathbb{2}^{C}(0, c_0, c_1) =_{C[0/x]} c_0}
Γ,x:𝟚CtypeΓc 0:C[0/x]Γc 1:C[1/x]Γβ 𝟚 1:ind 𝟚 C(1,c 0,c 1)= C[1/x]c 1\frac{\Gamma, x:\mathbb{2} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma \vdash c_1:C[1/x]}{\Gamma \vdash \beta_\mathbb{2}^{1}: \mathrm{ind}_\mathbb{2}^{C}(1, c_0, c_1) =_{C[1/x]} c_1}

Uniqueness rules for the booleans:

Γ,x:𝟚CtypeΓc 0:C[0/x]Γc 1:C[1/x]Γp:𝟚Γ,x:𝟚u:CΓi 0(u):u[0/x]= C[0/x]c 0Γi 1(u):u[1/x]= C[1/x]c 1Γη 𝟚(p,u):u[p/x]= C[p/x]ind 𝟚 C(p,c 0,c 1)\frac{\Gamma, x:\mathbb{2} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma \vdash c_1:C[1/x] \quad \Gamma \vdash p:\mathbb{2} \quad \Gamma, x:\mathbb{2} \vdash u:C \quad \Gamma \vdash i_0(u):u[0/x] =_{C[0/x]} c_0 \quad \Gamma \vdash i_1(u):u[1/x] =_{C[1/x]} c_1}{\Gamma \vdash \eta_\mathbb{2}(p, u):u[p/x] =_{C[p/x]} \mathrm{ind}_\mathbb{2}^{C}(p, c_0, c_1)}

\subsection{Natural numbers}

Formation rules for the natural numbers:

ΓctxΓtype\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{N} \; \mathrm{type}}

Introduction rules for the natural numbers:

ΓctxΓ0:Γn:Γs(n):\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 0:\mathbb{N}} \qquad \frac{\Gamma \vdash n:\mathbb{N}}{\Gamma \vdash s(n):\mathbb{N}}

Elimination rules for the natural numbers:

Γ,x:CtypeΓc 0:C[0/x]Γ,x:,c:Cc s:C[s(x)/x]Γn:Γind C(n,c 0,c s):C[n/x]\frac{\Gamma, x:\mathbb{N} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma, x:\mathbb{N}, c:C \vdash c_s:C[s(x)/x] \quad \Gamma \vdash n:\mathbb{N}}{\Gamma \vdash \mathrm{ind}_\mathbb{N}^C(n, c_0, c_s):C[n/x]}

Computation rules for the natural numbers:

Γ,x:C(x)typeΓc 0:C(0)Γ,x:,c:Cc s:C[s(x)/x]Γβ 0:ind C(0,c 0,c s)= C[0/x]c 0\frac{\Gamma, x:\mathbb{N} \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c_0:C(0) \quad \Gamma, x:\mathbb{N}, c:C \vdash c_s:C[s(x)/x]}{\Gamma \vdash \beta_\mathbb{N}^{0}: \mathrm{ind}_\mathbb{N}^C(0, c_0, c_s) =_{C[0/x]} c_0}
Γ,x:C(x)typeΓc 0:C(0)Γ,x:,c:Cc s:C[s(x)/x]Γβ s(n):ind C(s(n),c 0,c s)= C[s(n)/x]c s(n,ind C(n,c 0,c s))\frac{\Gamma, x:\mathbb{N} \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c_0:C(0) \quad \Gamma, x:\mathbb{N}, c:C \vdash c_s:C[s(x)/x]}{\Gamma \vdash \beta_\mathbb{N}^{s(n)}: \mathrm{ind}_\mathbb{N}^C(s(n), c_0, c_s) =_{C[s(n)/x]} c_s(n, \mathrm{ind}_\mathbb{N}^C(n, c_0, c_s))}

Uniqueness rules for the natural numbers:

Γ,x:CtypeΓc 0:C[0/x]Γ,x:,c:Cc s:C[s(x)/x]Γn:Γ,x:u:CΓi 0(u):u[0/x]= C[0/x]c 0Γ,x:i s(u):u[s(x)/x]= C[s(x)/x]c s[u/c]Γη (n,u):u[n/x]= C[n/x]ind C(p,c 0,c s)\frac{\Gamma, x:\mathbb{N} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma, x:\mathbb{N}, c:C \vdash c_s:C[s(x)/x] \quad \Gamma \vdash n:\mathbb{N} \quad \Gamma, x:\mathbb{N} \vdash u:C \quad \Gamma \vdash i_0(u):u[0/x] =_{C[0/x]} c_0 \quad \Gamma, x:\mathbb{N} \vdash i_s(u):u[s(x)/x] =_{C[s(x)/x]} c_s[u/c]}{\Gamma \vdash \eta_\mathbb{N}(n, u):u[n/x] =_{C[n/x]} \mathrm{ind}_\mathbb{N}^{C}(p, c_0, c_s)}

\subsection{Function extensionality}

\subsection{Universes}

Universe formation

ΓctxΓ,x:𝒰type\frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{N} \vdash \mathcal{U} \; \mathrm{type}}

Hierarchy formation

Γn:Γ𝒰[n/x]:𝒰[s(n)/x]\frac{\Gamma \vdash n:\mathbb{N}}{\Gamma \vdash \mathcal{U}[n/x]:\mathcal{U}[s(n)/x]}

Type reflection

Γ,x:A:𝒰Γ,x:AtypeRussellΓ,x:A:𝒰Γ,x:El(A)typeTarski\frac{\Gamma, x:\mathbb{N} \vdash A : \mathcal{U}}{\Gamma, x:\mathbb{N} \vdash A \; \mathrm{type}}\mathrm{Russell} \qquad \frac{\Gamma, x:\mathbb{N} \vdash A : \mathcal{U}}{\Gamma, x:\mathbb{N} \vdash \mathrm{El}(A) \; \mathrm{type}}\mathrm{Tarski}

Lifting

Γ,x:A:𝒰Γ,x:A[s(x)/x]:𝒰[s(x)/x]\frac{\Gamma, x:\mathbb{N} \vdash A : \mathcal{U}}{\Gamma, x:\mathbb{N} \vdash A[s(x)/x] : \mathcal{U}[s(x)/x]}

Univalence

Γ,x:𝒰typeΓ,x:,A:𝒰,B:𝒰ua:(A= 𝒰B) 𝒰[s(x)/x](A 𝒰B)\frac{\Gamma, x:\mathbb{N} \vdash \mathcal{U} \; \mathrm{type}}{\Gamma, x:\mathbb{N}, A:\mathcal{U}, B:\mathcal{U} \vdash \mathrm{ua}:(A =_\mathcal{U} B) \simeq_{\mathcal{U}[s(x)/x]} (A \simeq_\mathcal{U} B)}

\section{References}

  • Homotopy Type Theory: Univalent Foundations of Mathematics, The Univalent Foundations Program, Institute for Advanced Study, 2013. (web, pdf)

  • Egbert Rijke, Introduction to Homotopy Type Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press (pdf) (478 pages)

  • Benno van den Berg, Martijn den Besten, Quadratic type checking for objective type theory (arXiv:2102.00905)

\section{See also}

\section{External links}

Revision on October 12, 2022 at 21:42:03 by Anonymous?. See the history of this page for a list of all contributions to it.