Homotopy Type Theory homotopy type theory > history (Rev #47)

\tableofcontents

\section{Idea}

Homotopy type theory is a framework of dependent type theories which additionally consists of

  • identity types

  • dependent product types

  • dependent sum types

  • univalence

  • inductive types, higher inductive types, inductive type families, et cetera.

\section{Presentation}

The model of homotopy type theory we shall be presenting here is a version of homotopy type theory where all computational and uniqueness rules use the identity type rather than judgmental equality.

\subsection{Judgments and contexts}

Homotopy type theory consists of the following judgments:

  • Type judgments, where we judge AA to be a type, AtypeA \; \mathrm{type}

  • Type definition judgments, where we judge BB to be defined as the type AA, BAtypeB \coloneqq A \; \mathrm{type}

  • Judgmental equality of types, where we judge types AA and BB to be judgmentally equal, ABtypeA \equiv B \; \mathrm{type}

  • Term judgments, where we judge aa to be an element of AA, a:Aa:A

  • Term definition judgments, where we judge bb to be defined as the term a:Aa:A, ba:Ab \coloneqq a:A

  • Judgmental equality of terms, where we judge terms a:Aa:A and b:Ab:A to be judgmentally equal, ab:Aa \equiv b:A.

  • Context judgments, where we judge Γ\Gamma to be a context, Γctx\Gamma \; \mathrm{ctx}.

Contexts are lists of term judgments a:Aa:A, b:Bb:B, c:Cc:C, et cetera, and are formalized by the rules for the empty context and extending the context by a term judgment

()ctxΓctxΓAtype(Γ,a:A)ctx\frac{}{() \; \mathrm{ctx}} \qquad \frac{\Gamma \; \mathrm{ctx} \quad \Gamma \vdash A \; \mathrm{type}}{(\Gamma, a:A) \; \mathrm{ctx}}

\subsection{Structural rules}

Within any dependent type theory, the structural rules include the variable rule?, the weakening rule?, and the substitution rule?.

The variable rule states that we may derive a term judgment if the term judgment is in the context already:

Γ,a:A,ΔctxΓ,a:A,Δa:A\frac{\vdash \Gamma, a:A, \Delta \; \mathrm{ctx}}{\vdash \Gamma, a:A, \Delta \vdash a:A}

Let 𝒥\mathcal{J} be any arbitrary judgment. Then we have the following rules:

The weakening rule:

Γ,Δ𝒥ΓAtypeΓ,a:A,Δ𝒥\frac{\Gamma, \Delta \vdash \mathcal{J} \quad \Gamma \vdash A \; \mathrm{type}}{\Gamma, a:A, \Delta \vdash \mathcal{J}}

The substitution rule:

Γa:AΓ,b:A,Δ𝒥Γ,Δ[a/b]𝒥[a/b]\frac{\Gamma \vdash a:A \quad \Gamma, b:A, \Delta \vdash \mathcal{J}}{\Gamma, \Delta[a/b] \vdash \mathcal{J}[a/b]}

The weakening and substitution rules are admissible rules: they do not need to be explicitly included in the type theory as they could be proven by induction on the structure of all possible derivations.

\subsubsection{For definitions and judgmental equality}

In addition, there are also structural rules for definition judgments and judgmental equality.

  • Formation and judgmental equality reflection rules for type definition:

    ΓBAtypeΓBtypeΓBAtypeΓBAtype\frac{\Gamma \vdash B \coloneqq A \; \mathrm{type}}{\Gamma \vdash B \; \mathrm{type}} \qquad \frac{\Gamma \vdash B \coloneqq A \; \mathrm{type}}{\Gamma \vdash B \equiv A \; \mathrm{type}}
  • Introduction and judgmental equality reflection rules for term definition:

    Γba:AΓb:AΓba:AΓba:A\frac{\Gamma \vdash b \coloneqq a:A}{\Gamma \vdash b:A} \qquad \frac{\Gamma \vdash b \coloneqq a:A}{\Gamma \vdash b \equiv a:A}
  • Reflexivity of judgmental equality

ΓAtypeΓAAtype\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash A \equiv A \; \mathrm{type}}
ΓAtypeΓa:AΓaa:A\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash a:A}{\Gamma \vdash a \equiv a:A}
  • Symmetry of judgmental equality

    ΓABtypeΓBAtype\frac{\Gamma \vdash A \equiv B \; \mathrm{type}}{\Gamma \vdash B \equiv A \; \mathrm{type}}
    ΓAtypeΓab:AΓba:A\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash a \equiv b:A}{\Gamma \vdash b \equiv a:A}
  • Transitivity of judgmental equality

    ΓABtypeΓBCtypeΓACtype\frac{\Gamma \vdash A \equiv B \; \mathrm{type} \quad \Gamma \vdash B \equiv C \; \mathrm{type} }{\Gamma \vdash A \equiv C \; \mathrm{type}}
    ΓAtypeΓab:Abc:AΓac:A\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash a \equiv b:A \quad b \equiv c:A }{\Gamma \vdash a \equiv c:A}
  • Principle of substitution of judgmentally equal terms:

    ΓAtypeΓab:AΓ,x:A,ΔBtypeΓ,Δ[b/x]B[a/x]B[b/x]type\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash a \equiv b : A \quad \Gamma, x:A, \Delta \vdash B \; \mathrm{type}}{\Gamma, \Delta[b/x] \vdash B[a/x] \equiv B[b/x] \; \mathrm{type}}
    ΓAtypeΓab:AΓ,x:A,Δc:BΓ,Δ[b/x]c[a/x]c[b/x]:B[b/x]\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash a \equiv b : A \quad \Gamma, x:A, \Delta \vdash c:B}{\Gamma, \Delta[b/x] \vdash c[a/x] \equiv c[b/x]: B[b/x]}
  • The variable conversion rule for judgmentally equal types:

    ΓABtypeΓ,x:A,Δ𝒥Γ,x:B,Δ𝒥\frac{\Gamma \vdash A \equiv B \; \mathrm{type} \quad \Gamma, x:A, \Delta \vdash \mathcal{J}}{\Gamma, x:B, \Delta \vdash \mathcal{J}}

\subsection{Sections and dependent types}

A dependent type is a type BtypeB \; \mathrm{type} in the context of the variable judgment x:Ax:A, x:ABtypex:A \vdash B \; \mathrm{type}. A section is a term b:Bb:B in the context of the variable judgment x:Ax:A, x:Ab:Bx:A \vdash b:B.

\subsection{Identity types}

Formation rule for identity types:

ΓAtypeΓ,a:A,b:Aa= Abtype\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:A, b:A \vdash a =_A b \; \mathrm{type}}

Introduction rule for identity types:

ΓAtypeΓ,a:Arefl A(a):a= Aa\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:A \vdash \mathrm{refl}_A(a) : a =_A a}

Elimination rule for identity types:

Γ,a:A,b:A,p:a= Ab,Δ(a,b,p)C(a,b,p)typeΓ,a:A,Δ(a,a,refl A(a))t:C(a,a,refl A(a))Γ,a:A,b:A,p:a= Ab,Δ(a,b,p)J(t,a,b,p):C(a,b,p)\frac{\Gamma, a:A, b:A, p:a =_A b, \Delta(a, b, p) \vdash C(a, b, p) \; \mathrm{type} \quad \Gamma, a:A, \Delta(a, a, \mathrm{refl}_A(a)) \vdash t:C(a, a, \mathrm{refl}_A(a))}{\Gamma, a:A, b:A, p:a =_A b, \Delta(a, b, p) \vdash J(t, a, b, p):C(a, b, p)}

Computation rules for identity types:

Γ,a:A,b:A,p:a= Ab,Δ(a,b,p)C(a,b,p)typeΓ,a:A,Δ(a,a,refl A(a))t:C(a,a,refl A(a))Γ,a:A,b:A,p:a= Ab,Δ(a,b,p)β = A(a):J(t,a,a,refl(a))= C(a,a,refl A(a))t\frac{\Gamma, a:A, b:A, p:a =_A b, \Delta(a, b, p) \vdash C(a, b, p) \; \mathrm{type} \quad \Gamma, a:A, \Delta(a, a, \mathrm{refl}_A(a)) \vdash t:C(a, a, \mathrm{refl}_A(a))}{\Gamma, a:A, b:A, p:a =_A b, \Delta(a, b, p) \vdash \beta_{=_A}(a) : J(t, a, a, \mathrm{refl}(a)) =_{C(a, a, \mathrm{refl}_A(a))} t}

\subsection{Function types}

Formation rules for function types:

ΓAtypeΓBtypeΓABtype\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type}}{\Gamma \vdash A \to B \; \mathrm{type}}

Introduction rules for function types:

Γ,x:Ab(x):BΓ(xb(x)):AB\frac{\Gamma, x:A \vdash b(x):B}{\Gamma \vdash (x \mapsto b(x)):A \to B}

Elimination rules for function types:

Γf:ABΓa:AΓf(a):B\frac{\Gamma \vdash f:A \to B \quad \Gamma \vdash a:A}{\Gamma \vdash f(a):B}

Computation rules for function types:

Γ,x:Ab(x):BΓa:AΓβ :(xb(x))(a)= Bb\frac{\Gamma, x:A \vdash b(x):B \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\to}:(x \mapsto b(x))(a) =_{B} b}

Uniqueness rules for function types:

Γf:ABΓη :f= AB(xf(x))\frac{\Gamma \vdash f:A \to B}{\Gamma \vdash \eta_{\to}:f =_{A \to B} (x \to f(x))}

\subsection{Pi types}

Formation rules for Pi types:

ΓAtypeΓ,x:AB(x)typeΓ x:AB(x)type\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash B(x) \; \mathrm{type}}{\Gamma \vdash \prod_{x:A} B(x) \; \mathrm{type}}

Introduction rules for Pi types:

Γ,x:Ab(x):B(x)Γλ(x:A).b(x): x:AB(x)\frac{\Gamma, x:A \vdash b(x):B(x)}{\Gamma \vdash \lambda(x:A).b(x):\prod_{x:A} B(x)}

Elimination rules for Pi types:

Γf: x:AB(x)Γa:AΓf(a):B[a/x]\frac{\Gamma \vdash f:\prod_{x:A} B(x) \quad \Gamma \vdash a:A}{\Gamma \vdash f(a):B[a/x]}

Computation rules for Pi types:

Γ,x:Ab(x):B(x)Γa:AΓβ Π:λ(x:A).b(x)(a)= B[a/x]b[a/x]\frac{\Gamma, x:A \vdash b(x):B(x) \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_\Pi:\lambda(x:A).b(x)(a) =_{B[a/x]} b[a/x]}

Uniqueness rules for Pi types:

Γf: x:AB(x)Γη Π:f= x:AB(x)λ(x).f(x)\frac{\Gamma \vdash f:\prod_{x:A} B(x)}{\Gamma \vdash \eta_\Pi:f =_{\prod_{x:A} B(x)} \lambda(x).f(x)}

\subsection{Product types}

We use the negative presentation for product types.

Formation rules for product types:

ΓAtypeΓBtypeΓA×Btype\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type}}{\Gamma \vdash A \times B \; \mathrm{type}}

Introduction rules for product types:

Γa:AΓb:BΓ(a,b):A×B\frac{\Gamma \vdash a:A \quad \Gamma \vdash b:B}{\Gamma \vdash (a, b):A \times B}

Elimination rules for product types:

Γz:A×BΓπ 1(z):AΓz:A×BΓπ 2(z):B\frac{\Gamma \vdash z:A \times B}{\Gamma \vdash \pi_1(z):A} \qquad \frac{\Gamma \vdash z:A \times B}{\Gamma \vdash \pi_2(z):B}

Computation rules for product types:

Γa:AΓb:BΓβ ×1:π 1(a,b)= AaΓa:AΓb:BΓβ ×2:π 2(a,b)= Bb\frac{\Gamma \vdash a:A \quad \Gamma \vdash b:B}{\Gamma \vdash \beta_{\times 1}:\pi_1(a, b) =_A a} \qquad \frac{\Gamma \vdash a:A \quad \Gamma \vdash b:B}{\Gamma \vdash \beta_{\times 2}:\pi_2(a, b) =_B b}

Uniqueness rules for product types:

Γz:A×BΓη ×:z= A×B(π 1(z),π 2(z))\frac{\Gamma \vdash z:A \times B}{\Gamma \vdash \eta_\times:z =_{A \times B} (\pi_1(z), \pi_2(z))}

\subsection{Sigma types}

We use the negative presentation for sigma types.

Formation rules for Sigma types:

ΓAtypeΓ,x:AB(x)typeΓ x:AB(x)type\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash B(x) \; \mathrm{type}}{\Gamma \vdash \sum_{x:A} B(x) \; \mathrm{type}}

Introduction rules for Sigma types:

Γ,x:Ab(x):B(x)Γa:AΓb:B[a/x]Γ(a,b): x:AB(x)\frac{\Gamma, x:A \vdash b(x):B(x) \quad \Gamma \vdash a:A \quad \Gamma \vdash b:B[a/x]}{\Gamma \vdash (a, b):\sum_{x:A} B(x)}

Elimination rules for Sigma types:

Γz: x:AB(x)Γπ 1(z):AΓz: x:AB(x)Γπ 2(z):B(π 1(z))\frac{\Gamma \vdash z:\sum_{x:A} B(x)}{\Gamma \vdash \pi_1(z):A} \qquad \frac{\Gamma \vdash z:\sum_{x:A} B(x)}{\Gamma \vdash \pi_2(z):B(\pi_1(z))}

Computation rules for Sigma types:

Γ,x:Ab(x):B(x)Γa:AΓβ Σ1:π 1(a,b)= AaΓ,x:Ab:BΓa:AΓβ Σ2:π 2(a,b)= Bπ 1(a,b)b\frac{\Gamma, x:A \vdash b(x):B(x) \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\Sigma 1}:\pi_1(a, b) =_A a} \qquad \frac{\Gamma, x:A \vdash b:B \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_{\Sigma 2}:\pi_2(a, b) =_{B\pi_1(a, b)} b}

Uniqueness rules for Sigma types:

Γz: x:AB(x)Γη Σ:z= x:AB(x)(π 1(z),π 2(z))\frac{\Gamma \vdash z:\sum_{x:A} B(x)}{\Gamma \vdash \eta_\Sigma:z =_{\sum_{x:A} B(x)} (\pi_1(z), \pi_2(z))}

\subsection{Sum types}

Formation rules for sum types:

ΓAtypeΓBtypeΓA+Btype\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type}}{\Gamma \vdash A + B \; \mathrm{type}}

Introduction rules for sum types:

Γa:AΓinl(a):A+BΓb:BΓinr(b):A+B\frac{\Gamma \vdash a:A}{\Gamma \vdash \mathrm{inl}(a):A + B} \qquad \frac{\Gamma \vdash b:B}{\Gamma \vdash \mathrm{inr}(b):A + B}

Elimination rules for sum types:

Γ,z:A+BCtypeΓ,x:Ac(x):C(inl(x))Γ,y:Bd(y):C(inr(y))Γe:A+BΓind A+B C(c(x),d(y),e):C(e)\frac{\Gamma, z:A + B \vdash C \; \mathrm{type} \quad \Gamma, x:A \vdash c(x):C(\mathrm{inl}(x)) \quad \Gamma, y:B \vdash d(y):C(\mathrm{inr}(y)) \quad \Gamma \vdash e:A + B}{\Gamma \vdash \mathrm{ind}_{A + B}^C(c(x), d(y), e):C(e)}

Computation rules for sum types:

Γ,z:A+BCtypeΓ,x:Ac(x):C(inl(x))Γ,y:Bd(y):C(inr(y))Γa:AΓβ 1:ind A+B C(c(x),d(y),inl(a))= C(inl(a))c(a)\frac{\Gamma, z:A + B \vdash C \; \mathrm{type} \quad \Gamma, x:A \vdash c(x):C(\mathrm{inl}(x)) \quad \Gamma, y:B \vdash d(y):C(\mathrm{inr}(y)) \quad \Gamma \vdash a:A}{\Gamma \vdash \beta_1:\mathrm{ind}_{A + B}^C(c(x), d(y), \mathrm{inl}(a)) =_{C(\mathrm{inl}(a))} c(a)}
Γ,z:A+BCtypeΓ,x:Ac(x):C(inl(x))Γ,y:Bd(y):C(inr(y))Γb:BΓβ 2:ind A+B C(c(x),d(y),inr(b))= C(inr(b))d(b)\frac{\Gamma, z:A + B \vdash C \; \mathrm{type} \quad \Gamma, x:A \vdash c(x):C(\mathrm{inl}(x)) \quad \Gamma, y:B \vdash d(y):C(\mathrm{inr}(y)) \quad \Gamma \vdash b:B}{\Gamma \vdash \beta_2:\mathrm{ind}_{A + B}^C(c(x), d(y), \mathrm{inr}(b)) =_{C(\mathrm{inr}(b))} d(b)}

Uniqueness rules for sum types:

Γ,z:A+BCtypeΓ,x:Ac(x):C(inl(x))Γ,y:Bd(y):C(inr(y))Γe:A+BΓ,x:A+Bu:CΓ,a:Ai inl(u):u(inl(a))= C(inl(a))c(a)Γ,b:Bi inr(u):u(inr(b))= C(inr(b))d(b)Γη A+B:u(e)= C(e)ind A+B C(c(inl(e)),d(inl(e)),e)\frac{\Gamma, z:A + B \vdash C \; \mathrm{type} \quad \Gamma, x:A \vdash c(x):C(\mathrm{inl}(x)) \quad \Gamma, y:B \vdash d(y):C(\mathrm{inr}(y)) \quad \Gamma \vdash e:A + B \quad \Gamma, x:A + B \vdash u:C \quad \Gamma, a:A \vdash i_\mathrm{inl}(u):u(\mathrm{inl}(a)) =_{C(\mathrm{inl}(a))} c(a) \quad \Gamma, b:B \vdash i_\mathrm{inr}(u):u(\mathrm{inr}(b)) =_{C(\mathrm{inr}(b))} d(b)}{\Gamma \vdash \eta_{A + B}:u(e) =_{C(e)} \mathrm{ind}_{A + B}^C(c(\mathrm{inl}(e)), d(\mathrm{inl}(e)), e)}

\subsection{Empty type}

Formation rules for the empty type:

ΓctxΓ𝟘type\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{0} \; \mathrm{type}}

Elimination rules for the empty type:

Γ,x:𝟘CtypeΓp:𝟘Γind 𝟘 C(p):C(p)\frac{\Gamma, x:\mathbb{0} \vdash C \; \mathrm{type} \quad \Gamma \vdash p:\mathbb{0}}{\Gamma \vdash \mathrm{ind}_\mathbb{0}^C(p):C(p)}

Uniqueness rules for the empty type:

Γ,x:𝟘CtypeΓp:𝟘Γ,x:𝟘u:CΓη 𝟘(p,u):u[p/x]= C[p/x]ind 𝟘 C(p)\frac{\Gamma, x:\mathbb{0} \vdash C \; \mathrm{type} \quad \Gamma \vdash p:\mathbb{0} \quad \Gamma, x:\mathbb{0} \vdash u:C}{\Gamma \vdash \eta_\mathbb{0}(p, u):u[p/x] =_{C[p/x]} \mathrm{ind}_\mathbb{0}^{C}(p)}

\subsection{Unit type}

Formation rules for the unit type:

ΓctxΓ𝟙type\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{1} \; \mathrm{type}}

Introduction rules for the unit type:

ΓctxΓ*:𝟙\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash *:\mathbb{1}}

Elimination rules for the unit type:

Γ,x:𝟙CtypeΓc *:C[*/x]Γp:𝟙Γind 𝟙 C(p,c *):C[p/x]\frac{\Gamma, x:\mathbb{1} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_*:C[*/x] \quad \Gamma \vdash p:\mathbb{1}}{\Gamma \vdash \mathrm{ind}_\mathbb{1}^C(p, c_*):C[p/x]}

Computation rules for the unit type:

Γ,x:𝟙CtypeΓc *:C[*/x]Γβ 𝟙:ind 𝟙 C(*,c *)= C[*/x]c *\frac{\Gamma, x:\mathbb{1} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_*:C[*/x]}{\Gamma \vdash \beta_\mathbb{1}: \mathrm{ind}_\mathbb{1}^C(*, c_*) =_{C[*/x]} c_*}

Uniqueness rules for the unit type:

Γ,x:𝟙CtypeΓc *:C[*/x]Γp:𝟙Γ,x:𝟙u:CΓi *(u):u[*/x]= C[*/x]c *Γη 𝟙(p,u):u[p/x]= C[p/x]ind 𝟙 C(p,c *)\frac{\Gamma, x:\mathbb{1} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_*:C[*/x] \quad \Gamma \vdash p:\mathbb{1} \quad \Gamma, x:\mathbb{1} \vdash u:C \quad \Gamma \vdash i_*(u):u[*/x] =_{C[*/x]} c_* }{\Gamma \vdash \eta_\mathbb{1}(p, u):u[p/x] =_{C[p/x]} \mathrm{ind}_\mathbb{1}^{C}(p, c_*)}

\subsection{Booleans}

Formation rules for the booleans:

ΓctxΓ𝟚type\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{2} \; \mathrm{type}}

Introduction rules for the booleans:

ΓctxΓ0:𝟚ΓctxΓ1:𝟚\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 0:\mathbb{2}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 1:\mathbb{2}}

Elimination rules for the booleans:

Γ,x:𝟚CtypeΓc 0:C[0/x]Γc 1:C[1/x]Γp:𝟚Γind 𝟚 C(p,c 0,c 1):C[p/x]\frac{\Gamma, x:\mathbb{2} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma \vdash c_1:C[1/x] \quad \Gamma \vdash p:\mathbb{2}}{\Gamma \vdash \mathrm{ind}_\mathbb{2}^{C}(p, c_0, c_1):C[p/x]}

Computation rules for the booleans:

Γ,x:𝟚CtypeΓc 0:C[0/x]Γc 1:C[1/x]Γβ 𝟚 0:ind 𝟚 C(0,c 0,c 1)= C[0/x]c 0\frac{\Gamma, x:\mathbb{2} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma \vdash c_1:C[1/x]}{\Gamma \vdash \beta_\mathbb{2}^{0}: \mathrm{ind}_\mathbb{2}^{C}(0, c_0, c_1) =_{C[0/x]} c_0}
Γ,x:𝟚CtypeΓc 0:C[0/x]Γc 1:C[1/x]Γβ 𝟚 1:ind 𝟚 C(1,c 0,c 1)= C[1/x]c 1\frac{\Gamma, x:\mathbb{2} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma \vdash c_1:C[1/x]}{\Gamma \vdash \beta_\mathbb{2}^{1}: \mathrm{ind}_\mathbb{2}^{C}(1, c_0, c_1) =_{C[1/x]} c_1}

Uniqueness rules for the booleans:

Γ,x:𝟚CtypeΓc 0:C[0/x]Γc 1:C[1/x]Γp:𝟚Γ,x:𝟚u:CΓi 0(u):u[0/x]= C[0/x]c 0Γi 1(u):u[1/x]= C[1/x]c 1Γη 𝟚(p,u):u[p/x]= C[p/x]ind 𝟚 C(p,c 0,c 1)\frac{\Gamma, x:\mathbb{2} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma \vdash c_1:C[1/x] \quad \Gamma \vdash p:\mathbb{2} \quad \Gamma, x:\mathbb{2} \vdash u:C \quad \Gamma \vdash i_0(u):u[0/x] =_{C[0/x]} c_0 \quad \Gamma \vdash i_1(u):u[1/x] =_{C[1/x]} c_1}{\Gamma \vdash \eta_\mathbb{2}(p, u):u[p/x] =_{C[p/x]} \mathrm{ind}_\mathbb{2}^{C}(p, c_0, c_1)}

\subsection{Natural numbers}

Formation rules for the natural numbers:

ΓctxΓtype\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{N} \; \mathrm{type}}

Introduction rules for the natural numbers:

ΓctxΓ0:Γn:Γs(n):\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 0:\mathbb{N}} \qquad \frac{\Gamma \vdash n:\mathbb{N}}{\Gamma \vdash s(n):\mathbb{N}}

Elimination rules for the natural numbers:

Γ,x:CtypeΓc 0:C[0/x]Γ,x:,c:Cc s:C[s(x)/x]Γn:Γind C(n,c 0,c s):C[n/x]\frac{\Gamma, x:\mathbb{N} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma, x:\mathbb{N}, c:C \vdash c_s:C[s(x)/x] \quad \Gamma \vdash n:\mathbb{N}}{\Gamma \vdash \mathrm{ind}_\mathbb{N}^C(n, c_0, c_s):C[n/x]}

Computation rules for the natural numbers:

Γ,x:C(x)typeΓc 0:C(0)Γ,x:,c:Cc s:C[s(x)/x]Γβ 0:ind C(0,c 0,c s)= C[0/x]c 0\frac{\Gamma, x:\mathbb{N} \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c_0:C(0) \quad \Gamma, x:\mathbb{N}, c:C \vdash c_s:C[s(x)/x]}{\Gamma \vdash \beta_\mathbb{N}^{0}: \mathrm{ind}_\mathbb{N}^C(0, c_0, c_s) =_{C[0/x]} c_0}
Γ,x:C(x)typeΓc 0:C(0)Γ,x:,c:Cc s:C[s(x)/x]Γβ s(n):ind C(s(n),c 0,c s)= C[s(n)/x]c s(n,ind C(n,c 0,c s))\frac{\Gamma, x:\mathbb{N} \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c_0:C(0) \quad \Gamma, x:\mathbb{N}, c:C \vdash c_s:C[s(x)/x]}{\Gamma \vdash \beta_\mathbb{N}^{s(n)}: \mathrm{ind}_\mathbb{N}^C(s(n), c_0, c_s) =_{C[s(n)/x]} c_s(n, \mathrm{ind}_\mathbb{N}^C(n, c_0, c_s))}

Uniqueness rules for the natural numbers:

Γ,x:CtypeΓc 0:C[0/x]Γ,x:,c:Cc s:C[s(x)/x]Γn:Γ,x:u:CΓi 0(u):u[0/x]= C[0/x]c 0Γ,x:i s(u):u[s(x)/x]= C[s(x)/x]c s[u/c]Γη (n,u):u[n/x]= C[n/x]ind C(p,c 0,c s)\frac{\Gamma, x:\mathbb{N} \vdash C \; \mathrm{type} \quad \Gamma \vdash c_0:C[0/x] \quad \Gamma, x:\mathbb{N}, c:C \vdash c_s:C[s(x)/x] \quad \Gamma \vdash n:\mathbb{N} \quad \Gamma, x:\mathbb{N} \vdash u:C \quad \Gamma \vdash i_0(u):u[0/x] =_{C[0/x]} c_0 \quad \Gamma, x:\mathbb{N} \vdash i_s(u):u[s(x)/x] =_{C[s(x)/x]} c_s[u/c]}{\Gamma \vdash \eta_\mathbb{N}(n, u):u[n/x] =_{C[n/x]} \mathrm{ind}_\mathbb{N}^{C}(p, c_0, c_s)}

\subsection{Equivalence types}

Given a type AA, we define the type isContr(A)\mathrm{isContr}(A) representing whether AA is a contractible type as

isContr(A) a:A b:Aa= Ab\mathrm{isContr}(A) \coloneqq \sum_{a:A} \prod_{b:A} a =_A b

Given types AA and BB, function f:ABf:A \to B, and element b:Bb:B, we define the fiber of ff at bb fiber A,B(f,y)\mathrm{fiber}_{A, B}(f, y) as

fiber A,B(f,y) a:Af(a)= Bb\mathrm{fiber}_{A, B}(f, y) \coloneqq \sum_{a:A} f(a) =_B b

Given types AA and BB and function f:ABf:A \to B, we define the type isEquiv(f)\mathrm{isEquiv}(f) representing whether ff is a equivalence of types? as

isEquiv(f) b:BisContr(fiber A,B(f,b))\mathrm{isEquiv}(f) \coloneqq \prod_{b:B} \mathrm{isContr}(\mathrm{fiber}_{A, B}(f, b))

Given types AA and BB, we define the type of equivalences ABA \simeq B as

AB f:ABisEquiv(f)A \simeq B \coloneqq \sum_{f:A \to B} \mathrm{isEquiv}(f)

\subsection{Transport}

Transport is the statement that given a type family PP indexed by AA, elements a:Aa:A and b:Ab:A, and an identification p:a= Abp:a =_A b, there is an equivalence trans P(a,b,p):P(a)P(b)\mathrm{trans}^P(a, b, p):P(a) \simeq P(b) between the types P(a)P(a) and P(b)P(b). This is inductively defined on reflexivity on a:Aa:A, which transport takes to the identity function on P(a)P(a), trans P(a,a,refl A(a))= P(a)P(a)id P(a)\mathrm{trans}^P(a, a, \mathrm{refl}_A(a)) =_{P(a) \simeq P(a)} id_{P(a)}.

Transport is given by the following rules:

ΓAtypeΓ,x:APtypeΓa:AΓb:AΓp:a= AbΓtrans P(a,b,p):P[a/x]P[b/x]\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash P \; \mathrm{type} \quad \Gamma \vdash a:A \quad \Gamma \vdash b:A \quad \Gamma \vdash p:a =_A b}{\Gamma \vdash \mathrm{trans}^P(a, b, p):P[a/x] \simeq P[b/x]}
ΓAtypeΓ,x:APtypeΓa:AΓind trans P refl:trans P(a,a,refl A(a))= P[a/x]P[a/x]id P[a/x]\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash P \; \mathrm{type} \quad \Gamma \vdash a:A}{\Gamma \vdash \mathrm{ind}_{\mathrm{trans}^P}^{\mathrm{refl}}:\mathrm{trans}^P(a, a, \mathrm{refl}_A(a)) =_{P[a/x] \simeq P[a/x]} \mathrm{id}_{P[a/x]}}

Transport is very important in defining higher inductive types.

\subsection{Dependent identity types}

We define the dependent identity type? as follows:

x= P pytrans P(a,b,p)(x)= P(b)yx =_P^p y \coloneqq \mathrm{trans}^P(a, b, p)(x) =_{P(b)} y

\subsection{Dependent actions on identifications}

Additionally, for a term f:Pf:P in the context of x:Ax:A, there is a dependent identification? called the dependent action on identifications? apd(f)(p):f(x)= P pf(y)\mathrm{apd}(f)(p):f(x) =_P^p f(y) for all x:Ax:A, y:Ay:A, and p:x= Ayp:x =_A y, inductively defined by reflexivity for all x:Ax:A.

apd(f)(refl A(x)):f(x)= P refl A(x)f(x)\mathrm{apd}(f)(\mathrm{refl}_A(x)):f(x) =_P^{\mathrm{refl}_A(x)} f(x)

The rules for apd\mathrm{apd} are as follows

ΓAtypeΓ,x:Af:PΓ,x:A,y:A,p:x= Ayapd(f)(p):f(x)= P pf(y)\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash f:P}{\Gamma, x:A, y:A, p:x =_A y \vdash \mathrm{apd}(f)(p):f(x) =_P^p f(y)}
ΓAtypeΓ,x:Af:PΓ,x:Aapd(f)(refl A(x)):f(x)= P refl A(x)f(x)\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash f:P}{\Gamma, x:A \vdash \mathrm{apd}(f)(\mathrm{refl}_A(x)):f(x) =_P^{\mathrm{refl}_A(x)} f(x)}

\section{References}

  • Homotopy Type Theory: Univalent Foundations of Mathematics, The Univalent Foundations Program, Institute for Advanced Study, 2013. (web, pdf)

  • Egbert Rijke, Introduction to Homotopy Type Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press (pdf) (478 pages)

\section{See also}

\section{External links}

Revision on November 8, 2022 at 21:04:29 by Anonymous?. See the history of this page for a list of all contributions to it.