Homotopy Type Theory integers > history (Rev #1)

Idea

The integers as familiar from school mathematics.

Definition

The type of integers, denoted \mathbb{Z}, has several definitions as a higher inductive type.

Definition 1

The integers are defined as the higher inductive type generated by:

  • A function inj:2×inj : \mathbf{2} \times \mathbb{N} \rightarrow \mathbb{Z}.
  • A term representing that positive and negative zero are equal: ν 0:inj(0,0)=inj(1,0)\nu_0: inj(0, 0) = inj(1, 0).
  • A set-truncator
    τ 0: a: b:isProp(a=b)\tau_0: \prod_{a:\mathbb{Z}} \prod_{b:\mathbb{Z}} isProp(a=b)

Definition 2

The integers are defined as the higher inductive type generated by:

  • A function inj:×inj : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}.
  • A term representing that equivalent differences are equal:
    equivdiff: a: b: c: d:(a+d=c+b)(inj(a,b)=inj(c,d))equivdiff : \prod_{a:\mathbb{N}} \prod_{b:\mathbb{N}} \prod_{c:\mathbb{N}} \prod_{d:\mathbb{N}} (a + d = c + b) \to (inj(a,b) = inj(c,d))
  • A set-truncator
    τ 0: a: b:isProp(a=b)\tau_0: \prod_{a:\mathbb{Z}} \prod_{b:\mathbb{Z}} isProp(a=b)

Properties

TODO: Show that the integers are a Heyting ordered integral domain with decidable equality, decidable apartness, and decidable linear order, and that the integers are initial in the category of Heyting ordered integral domain.

See also

References

HoTT book

Revision on February 26, 2022 at 07:34:08 by Anonymous?. See the history of this page for a list of all contributions to it.