Homotopy Type Theory HoTT book real numbers > history (changes)

Showing changes from revision #12 to #13: Added | Removed | Changed

Contents

< HoTT book real numbers

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In set theory

Let FF be an Archimedean ordered field and let

F + a:F0<aF_{+} \coloneqq \sum_{a:F} 0 \lt a

be the positive elements in FF. FF is sequentially Cauchy complete if every Cauchy sequence in FF converges:

isCauchy(x)ϵF +.NI.iI.jI.(iN)(jN)(|x ix j|<ϵ)isCauchy(x) \coloneqq \forall \epsilon \in F_{+}. \exists N \in I. \forall i \in I. \forall j \in I. (i \geq N) \wedge (j \geq N) \wedge (\vert x_i - x_j \vert \lt \epsilon)
isLimit(x,l)ϵF +.NI.iI.(iN)(|x il|<ϵ)isLimit(x, l) \coloneqq \forall \epsilon \in F_{+}. \exists N \in I. \forall i \in I. (i \geq N) \to (\vert x_i - l \vert \lt \epsilon)
xF .isCauchy(x)lF.isLimit(x,l)\forall x \in F^\mathbb{N}. isCauchy(x) \wedge \exists l \in F. isLimit(x, l)

The set of HoTT book real numbers H\mathbb{R}_H is the initial sequentially Cauchy complete? Archimedean ordered field.

The set of HoTT book real numbers H\mathbb{R}_H is the initial object in the category of Cauchy structures and Cauchy structure homomorphisms.

In homotopy type theory

The HoTT book real numbers H\mathbb{R}_H are a homotopy initial Cauchy structure, i.e. a Cauchy structure such that for every other Cauchy structure SS, the type of Cauchy structure homomorphisms with domain H\mathbb{R}_H and codomain SS is contractible.

As a higher inductive-inductive type

Let \mathbb{Q} be the rational numbers and let

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x

be the positive rational numbers. The HoTT book real numbers H\mathbb{R}_H are inductively generated by the following:

  • a function inj: Hinj: \mathbb{Q} \to \mathbb{R}_H

  • a function lim:C( H) Hlim: C(\mathbb{R}_H) \to \mathbb{R}_H, where C( H)C(\mathbb{R}_H) is the type of Cauchy approximations in H\mathbb{R}_H.

  • a dependent family of terms

a: H,b: Heq H(a,b):( ϵ: +(a ϵb))(a= Hb)a:\mathbb{R}_H, b:\mathbb{R}_H \vdash eq_{\mathbb{R}_H}(a, b): \left( \prod_{\epsilon:\mathbb{Q}_{+}} (a \sim_{\epsilon} b) \right) \to (a =_{\mathbb{R}_H} b)

and the premetric type family \sim is simultaneously inductively generated by the following:

  • a dependent family of terms

    a:,b:,ϵ: +μ ,(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b))a:\mathbb{Q}, b:\mathbb{Q}, \epsilon:\mathbb{Q}_{+} \vdash \mu_{\mathbb{Q}, \mathbb{Q}}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))
  • a dependent family of terms

    a:,b:C( H),ϵ: +,η: +μ ,C( H)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b))a:\mathbb{Q}, b:C(\mathbb{R}_H), \epsilon:\mathbb{Q}_{+}, \eta:\mathbb{Q}_{+} \vdash \mu_{\mathbb{Q}, C(\mathbb{R}_H)}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
  • a dependent family of terms

    a:C( H),b:,δ: +,ϵ: +μ C( H),(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b))a:C(\mathbb{R}_H), b:\mathbb{Q}, \delta:\mathbb{Q}_{+}, \epsilon:\mathbb{Q}_{+} \vdash \mu_{C(\mathbb{R}_H), \mathbb{Q}}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
  • a dependent family of terms

    a:C( H),b:C( H),δ: +,ϵ: +,η: +μ C( H),C( H)(a,b,δ,ϵ,η):(a δ ϵb η)(lim(a) δ+ϵ+ηlim(b))a:C(\mathbb{R}_H), b:C(\mathbb{R}_H), \delta:\mathbb{Q}_{+}, \epsilon:\mathbb{Q}_{+}, \eta:\mathbb{Q}_{+} \vdash \mu_{C(\mathbb{R}_H), C(\mathbb{R}_H)}(a, b, \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} ) \to (lim(a) \sim_{\delta + \epsilon + \eta} lim(b))
  • a dependent family of terms

    a:,b:,ϵ: +π(a,b,ϵ):isProp(a ϵb)a:\mathbb{Q}, b:\mathbb{Q}, \epsilon:\mathbb{Q}_{+} \vdash \pi(a, b, \epsilon): isProp(a \sim_{\epsilon} b)

See also

References

Last revised on June 10, 2022 at 01:11:44. See the history of this page for a list of all contributions to it.