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Abstract

This article is an expanded version of notes for a series of lectures given at the Corso
estivo Categorie e Topologia organised by the Gruppo Nazionale di Topologia del M.U.R.S.T. in
Bressanone, 2 - 6 September 1991. Those notes have been partially brought up to date by the
addition of new references and a summary of some of what has happen in the area in the last
20 years (inadequate at present!)

Recent requests for some information have made me think that it would be a good idea to make
the article [TP:Cubo] more available, and to do a little (wholly inadequate) up date of it. That
second feature will take some time and so as a first step a version with only minor additions and
corrections will be made available via my n-Lab page (http://ncatlab.org/nlab/show/Tim+Porter).
What follows is thus the introduction to that Cubo’ article from 2003.

In 1991, the Italian Gruppo Nazionale di Topologia organised a summer course on Category
Theory and Topology in the delightful setting of the town of Bressanone. There were several series
of lectures planned and they asked me to give some on abstract homotopy theory and its interaction,
both with category theory and with topology. The notes for the course were typed up and were
made available as preprints from both Genova and Bangor. In the ten years since that meeting, I
have been asked on several occasions if there was a published version of the course, or was there
a version online somewhere. It seemed that others had found the notes to be of some use as a
way into the area, giving, as I had hoped, some intution about what the problems were, what the
potential for new applications is and so on. There has been no published version, nor web version
available until now and my stock of hard copies was diminishing, and the contents was not as up
to date as they might be, so ... .

When it was suggested that I write an ‘overview’ article on my own area of research for Cubo, [?],
I realised that there was here a good opportunity to prepare an updated version of the notes. It
would fulfil the request from the editor and would make the notes more widely available, as a
similar version could be put ‘on-line’. In fact, in retyping the notes I found that not many changes
did need making and that article has retained the form of notes for an informal postgraduate
course (complete with suggestions for exercises etc.) The main body of the material has been
updated only in as much as the references have been changed to account for publication of material
previously in preprint form. Since [?] appeared much has happened and I will try (later) to
give some idea of that as well. In the meantime I strongly recommend consulting the n-Lab
(http://ncatlab.org/nlab/show/HomePage) where many of the themes mentioned here are followed
up much further than I can treat here.

I hope the notes are still found useful. They were aimed at postgraduate students one year into
their studies, so are intended to be approachable.
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T.P. Bangor, 2001.

Aims of the course.

• To give the background and some historical perspective on Abstract Homotopy Theory.

• To introduce some of the key ideas of abstract homotopy, its different ‘schools’ and how they
interact and to indicate the sources in which they may be found.

• To try to help build up categorical and geometrical intuition on the subject which, by its very
abstraction, can seem too unapproachable to be of use.

• To provide, where possible, a unifying ‘overview’, by concentrating on certain ‘themes’ that
illustrate:

1. what is abstract homotopy theory,

2. why the problems that form the subject matter of abstract homotopy theory can be of
interest outside the confines of that theory,

but they will not attempt to prove deep results nor do more than skate over the surface of
the subject.

Prerequisites

• A basic knowledge of homotopy theory with some intuition about the fundamental group (or
fundamental groupoid), polyhedra, etc. A knowledge of the higher homotopy groups would
be useful, but is not essential. In the last section, some covering space theory is used, but this
can be approached via sheaf theory for the reader with a categorical or algebraic geometric
background or can be found in books such as Massey [73]. All the material on groupoids and
much more can be found in Brown [13].

• A first course in category theory covering categories, functors, natural transformations, limits
(and colimits) and the idea of adjoint functors. (At the Corso estivo such a concentrated
course was given by R. Betti.) This subject matter corresponds approximately to the first
five chapters of Mac Lane [69], but we will not need the depth given there.

• For the last section of these notes, some ideas about sheaves and toposes are assumed. At the
Corso estivo, such material was beautifully covered in lectures by F. Borceux and the notes
are available (Borceux, [8]).
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1 Introduction to Abstract Homotopy Theory.

To understand the possible aims of abstract homotopy theory, it will help to list some general
‘problems’, some of which are of a philosophical or metatheoretic nature, others are very pragmatic
and practical.

• Notions of deformation and of homotopy occur in many parts of mathematics. Such ideas are
central in topological homotopy theory, but what is homotopy theory? What is ‘a homotopy
theory’? As one talks of homology and cohomology theories, what explicit structures, that
exist in the topological case, are needed for homotopy theory? In other words: ‘what is
homotopy theory?’ and ‘what makes homotopy theory work?’

In algebraic topology, one often looks for algebra that models the topology. How can one look
for algebraic models of homotopy types and once one has found them, can one ‘do homotopy
theory’ with them? This leads to a related problem:

• Early models for algebraic information on homotopy types, such as chain complexes, led
to the study of chain complexes of modules, etc., which represented ‘algebraic homotopy
types’. Their study led to the growth of homological algebra. Finding newer, fuller algebraic
models for homotopy types that take account of non-abelian behavior would seem to open
the door to a process of adaptation which could have implications in non-abelian cohomology,
homotopical algebra and hence, in particular, in algebraic geometry. This depends on being
able to ‘do’ homotopy theory with such models of algebraic homotopy types, and not just at
a trivial level.

• To manipulate algebra, one uses categorical tools such as limits and colimits. What are the
good categorical tools for working with homotopy theory?

• In some of the applications of abstract homotopy theory, one is studying geometric objects
such as spaces; one is using a geometric notion of homotopy, but the tools used, and even
the language used, seems simpler when viewed from the abstract viewpoint (cf. Edwards
and Hastings [36] for strong shape theory, Porter [79] and Hernańdez-Porter [46], [47] for
proper homotopy theory using inverse systems and Baues [5], [6] for an approach to classical
homotopy questions with remarkable new results, using in part insight gained by the abstract
homotopy theory he develops. There is also work by Baues with Ayala, Marquez, and Quin-
tero which is in preprint form and uses a direct abstract homotopy theory approach to proper
homotopy theory.)

2 First Theme: What is a Homotopy Theory?

To provide possible answers to this question, we start by listing some examples. Some of these will
be examined in more detail later.

A brief list might include Spaces, Groupoids, Simplicial Sets, Simplicial Objects in other cate-
gories, Cubical Sets, Chain Complexes and Small Categories.

In more detail:
Spaces: There is perhaps no real need for explanation here, but there are various points worth

making that can serve as an introduction to some of the ideas that come later. We consider a
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‘suitable’ category, Top, of topological spaces and continuous maps. Homotopy between maps is
defined by maps from a cylinder:

‘H : f0 ' f1 : X → Y ’ can be read as ‘ f0 is homotopic to f1 by the homotopy H’; it interprets
as ‘f0, f1 : X → Y in Top, H : X×I → Y (where I = [0, 1]) and H|X×{0} = f0, H|X×{1} = f1.’

From the notion of homotopy one gets that of ‘homotopy equivalence’:
f : X → Y is a homotopy equivalence if there is a g : Y → X and homotopies H : gf ' IdX ,

K : fg ' IdY . We also say X and Y have the same ‘homotopy type’ in this case.
Following the usual convention, we put [X,Y ] = Top(X,Y )/ '. The category Top/ ' has

spaces as objects but these [X,Y ] as sets of morphisms. Homotopy types correspond to isomorphism
classes in Top/ '.

There are special classes of maps called cofibrations and fibrations. These are defined by the
homotopy extension and homotopy lifting properties, respectively. For example if f : X → Y
is a cofibration then given any homotopy H : X × I → Z and any map g : Y → Z such that
H|X × {0} = gf , there is a homotopy K : Y × I → Z extending H and starting with g, i.e.
K(f×I) = H and K|Y ×{0} = g. This can be written more simply if we write e0(X) : X → X×I
for the map e0(X)(x) = (x, 0), then it reads f is a cofibration if and only if, given g : Y → Z so
that

X
e0(X)//

f

��

X × I
H

��
Y g

// Z

commutes, there is a K : Y × I → Z such that K(f × I) = H and f = He0(X). We also say that
f satisfies the homotopy extension property.

Note that fibrations are not a dual notion in the näıve sense!
Our final points on Top relate to pointed spaces and homotopy groups. A pointed space is

a pair (X,x0), where x0 ∈ X. ‘Pointed maps’ of pointed spaces f : (X,x0) → (Y, y0) send x0

to y0 and give a category Top0. Homotopies between such ‘pointed’ maps are assumed to be
constant on these base points. Writing Sn for the n-dimensional sphere, n ≥ 0, special attention
is given to the sets [(Sn, 1), (X,x0)]. For n = 0, S0 is a two point space {−1, 1} and we write
π0(X,x0) = [(S0, 1), (X,x0)]. It is the set of arcwise connected components of X, pointed at the
component corresponding to x0. This notation π0 is also used in the unpointed case. In general
we write πn(X,x0) = [(Sn, 1), (X,x0)]. For n ≥ 1, πn(X,x0) has a natural group structure and
for n ≥ 2, this structure is abelian. A map f : X → Y of spaces is called a weak equivalence
if π0(f) : π0(X) → π0(Y ) is a bijection and for all n ≥ 1 and all possible basepoints x0 ∈ X,
πn(f) : πn(X) → πn(Y ) is an isomorphism. Any homotopy equivalence is a weak equivalence but
the converse does not hold in general. For ‘locally nice’ spaces such as polyhedra and more generally
for CW-complexes (which are built up inductively by attaching ‘cells’ to others of lower dimensions),
the two concepts coincide and any weak equivalence between such spaces has a homotopy inverse.

Groupoids: These are small categories in which all morphisms are invertible. Groups corre-
spond to the special case in which there is only one object. A special class of examples are the
fundamental groupoids of spaces.

Let X be a space and let X0 be a subspace of X (often one takes X0 = X or X0 to be a
convenient finite set of base points). The fundamental groupoid Π1XX0 consists of all homotopy
classes of paths α : [0, 1] → X where α(0), α(1) ∈ X0 and where if α, β : [0, 1] → X are two
such paths, they are homotopic as paths if they are homotopic as maps with domain [0, 1] and the
homotopy fixes the ends of the paths, i.e. H : α ' β satisfies H(0, t) = α(0), H(1, t) = α(1) for all
t ∈ [0, 1] so we must have α(0) = β(0) and α(1) = β(1). The proof that Π1XX0 is a groupoid is
only slightly different from the proof that π1(X,x0) is a group. If you have not seen it before, try
to prove it or worse, look it up in some textbook.
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The groupoid Π1I{0, 1} consists of two objects 0 and 1, their identities, and two morphisms
ι : 0 → 1, ι−1 : 1 → 0. We will denote this groupoid by I as well. Homotopy of groupoids can be
defined by a cylinder G × I or by a ‘cocylinder’ HI , since, if G and H are groupoids, there is a
natural isomorphism

Gpd(G× I,H) ∼= Gpd(G,HI).

This ‘cocylinder’ is just the category of functors from I to H. It is easily seen to be a groupoid.
(Checking this is left to you!) (Reference for groupoids: Brown, [13].)

Note in some categories of spaces, there is a cocylinder XI which behaves in the same way as
above, but as it does not exist in all the usual categories of spaces that you might need, we have
only handled the cylinder based theory above.

Simplicial Sets: These form an extremely useful category in which to do homotopy theory.
The basic theory can be found in the first half of the survey article by Curtis, [31], whilst Gabriel
and Zisman, [39] look at the theory in a more categorical way.

Let [n] = {0 < 1 < . . . < n}, considered as an ordered set or as a small category. Looked at for
small values of n, it is clear why it is considered as a categorical simplex.

e.g. [2] =

2

��>>>>>>>

0 //

@@�������
2

Writing Cat for the category of small categories and ∆ for the full subcategory of Cat determined
by the objects, [n] for n ≥ 0, a simplicial set is a functor K : ∆op → Sets and S = Simp(Sets)
is just the notation for Sets∆op

, the category of contravariant functors from ∆ to Sets and all
natural transformations between them. A simplicial set K is often written diagrammatically as

. . . . . .
////////
K2

d0 // //
d2

//
oooooo

K1

d0 //
d1

//

s0
oo s1oo

K0

s0
oo

The maps di : Kn → Kn−1, 0 ≤ i ≤ n, are called the face maps, the maps si : Kn → Kn+1,
0 ≤ i ≤ n are called the degeneracies. (You should be asking yourself why “contravariant” and
why only these maps are shown.) The di and si satisfy certain “simplicial identities”, which can be
found in many books (e.g. Gabriel and Zisman [39]) or, better still can be worked out for yourself
from the definition of di and si (see below). As a simple example of a simplicial set, we can take
∆[n] = ∆(−, [n]), the n-simplex. Here are some other examples as exercises.

Exercises:

1. Consider the maps
δi : [n− 1]→ [n] 0 ≤ i ≤ n,
σi : [n+ 1]→ [n] 0 ≤ i ≤ n,

where δi is injective with image not containing the element i, for instance δ0 : [1] → [2], is given
by δ0(0) = 1, δ0(1) = 2, so referring back to the 2-simplex diagram above δi gives the face which is
opposite i; and where σi is surjective repeating i, (e.g. σ0 : [2] → [1], is σ0(0) = 0, σ0(1) = 0, and
σ0(2) = 1).

Prove that these maps for all n and i generate all the maps in ∆, i.e. any f : [m] → [n] can
be written as a composite of σs and δs, usually in many different ways. Find some relationships
between pairwise composites such as δiδj = some other composite of δks. Then compare your
answer with any list of the simplicial identities (e.g. in [31]), but BEWARE of the dual identities!

As any f in ∆ can be factorised in this way, K ∈ S can be specified by specifying the di = K(δi)
and si = K(σi).
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2. Let ∆n be the topological n-simplex, represented by

{(t0, . . . , tn) ∈ Rn+1 |
n∑
i=0

ti = 1}.

There are maps δi : ∆n → ∆n+1 given by

δi(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn),

for 0 ≤ i ≤ n, which insert ∆n as the ith face of ∆n+1. Similarly let σi : ∆n → ∆n−1 be the map

σi(t0, . . . , tn) = (t0, . . . , ti−1 + ti, . . . , tn).

Let X be a space and set Sing(X)n = Top(∆n, X). Using the compositions with the δi and σi,
prove that Sing(X) is a simplicial set. It is called the singular complex of X.

The singular complex construction gives a functor

Sing : Top→ S.

This has a left adjoint | | : S→ Top called geometric realisation:

Top(|K|, X) ' S(K,Sing(X))

and the natural map
|Sing(X)| → X

is a weak equivalence (that is, it induces isomorphisms for all πns). Check this for yourselves.
It is sometimes the case that within a category of spaces, Top, one can form mapping spaces Y X ,

but in any case provided that for each n, ∆n is in our chosen category, Top, and for all X in Top,
X×∆n is there as well, we can form something that plays the rôle of Sing(Y X) namely Top(X,Y ),
where Top(X,Y )n = Top(X ×∆n, Y ). (Checking that this is a simplicial set is again left to you.)
A similar device works in the category Cat, of small categories, Cat(C,D)n = Cat(C × [n], D),
and even inside S itself (i.e. S(K,L)n = S(K ×∆[n], L)).

2. Let C be a small category and put Ner(C)n = Cat([n], C). Check that Ner(C) is a simplicial
set. It is called the nerve of C. (The space BC = |Ner(C)| is called the classifying space of C
and for special cases of C is often used in algebraic K-theory.)

Simplicial Objects in Other Categories.
If A is any category, we can form Simp(A) = A∆op

. These categories often have a good notion
of homotopy. Of particular use are:
(i) Simp(Ab), the category of simplicial abelian groups. (This is equivalent to the category of
chain complexes by the Dold-Kan theorem (cf. Curtis, [31])).
(ii) Simp(Gps), the category of simplicial groups. (This ‘models’ all connected homotopy types, by
Kan [62] (cf. Curtis, [31])). There are adjoint functorsG : Sconn → Simp(Gps), W̄ : Simp(Gps)→
Sconn, with the two natural maps GW̄ → Id and Id → W̄G being weak equivalences. There are
fairly recent new results on simplicial groups by Carrasco [22] that generalise the Dold-Kan theorem
to the non-abelian case, (cf. Carrasco and Cegarra [23]).
(iii) Simp(Gpds): in 1984, Dwyer and Kan [35] (and also Joyal and Tierney, and Duskin and van
Osdol, cf. Nan Tie [74,75]) noted how to generalise the (G, W̄ ) adjoint pair to handle all simplicial
sets, not just the connected ones. (Beware there are several important printing errors in their
paper [35].) This category ‘models’ all homotopy types using a mix of algebra and combinatorial
structure.

Kan complexes and Kan fibrations.
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Within the category of simplicial sets, there is an important subcategory determined by those
objects that satisfy the Kan condition, that is the Kan complexes.

As before we set ∆[n] = ∆(−, [n]) ∈ S, then for each i, 0 ≤ i ≤ n, we can form a subsimplicial
set, Λi[n] of ∆[n] by discarding the top dimensional n-simplex (given by the identity map on [n])
and its ith face. We must also discard all the degeneracies of the simplices. This informal definition
does not give a ‘picture’ of what we have, so we will list the various cases for n = 2.

Λ0[2] = 1
←0th face missing

0

@@�������
// 2

Λ1[2] = 1

��>>>>>>>

0

@@�������
2

Λ2[2] = 1

��>>>>>>>

0 // 2

Any map p : E → B is a Kan fibration if given any n, i as above and any (n, i)-horn in E, i.e. any
map f1 : Λi[n]→ E, and n-simplex, f0 : ∆[n]→ B, such that

Λi[n]
f1 //

inc
��

E

p

��
∆[n]

f0
// B

commutes, then there is an f : ∆[n] → E such that pf = f0 and f.inc = f1, i.e. f lifts f0 and
extends f1.

A simplicial set, K, is a Kan complex if the unique map K → ∆[0] is a Kan fibration. This
is equivalent to saying that every horn in K has a filler, i.e. any f1 : Λi[n] → Y extends to an
f : ∆[n] → Y . This condition looks to be purely of a geometric nature but in fact has a strong
algebraic flavour; for instance if f1 : Λ1[2]→ Y is a horn, it consists of a diagram

b

��???????
a

??�������

of ‘composable’ arrows in K. If f is a filler, it looks like

b

��???????

c
//

a
??�������

and one can think of the third face c as a composite of a and b. This ‘composite’ c is not usually
uniquely defined by a and b, but is ‘up to homotopy’. If we write c = ab as a shorthand then if
g1 : Λ0[2]→ K is a horn, we think of g1 as being

e

d

??������� //
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and to find a filler is to find a diagram

x

?
?

?
?

d
??�������
e

//

and thus to ‘solve’ the equation dx = e for x in terms of d and e. This ‘algebraic ’ aspect of Kan
complexes is very important for understanding recent developments in the area (cf. Ashley [4], for
instance, or the work of Carrasco mentioned earlier.)

Examples and Exercises.
1) Sing(X) and Top(X,Y ) are always Kan complexes. Why?
2) Ner(C) is Kan if and only if C is a groupoid. Prove it.
3) A simplicial set K is weakly Kan if for any n and 0 < k < n, any (n, k)-horn in K has a

filler. Prove that for any C any small category, Ner(C) is weakly Kan.

Back to ‘ What is homotopy?’
In each of these settings, and in many more, one has a notion of equivalence (weak equivalence

or homotopy equivalence depending on the context). Suppose C is a category with a collection,
Σ, of maps called weak equivalences (no properties are thought of as being attached to the name,
for the moment, it is just a name). We can form a new category Ho(C) = C(Σ−1) by ‘formally
inverting’ the morphisms in Σ. We do this by taking for each f ∈ Σ, say f ∈ C(X,Y ), a new
symbol f−1 and we add it into C(Y,X). We then form composite words in the old arrows together
with all these new ‘inverses’ and if we ever see a pair, ff−1 or f−1f , we cancel it out. (See Gabriel
and Zisman, [39] for a proper description of this process). The resulting category comes with a
functor γ : C → Ho(C) with the nice universal property that if α : C → D is any functor such
that for all f ∈ Σ, α(f) is an isomorphism in D, then α factors uniquely through γ, i.e. there is a
unique ᾱ : Ho(C)→ D such that

C
α //

γ ##FFFFFFFFF D

Ho(C)

ᾱ

;;wwwwwwwww

commutes. This category will be called the homotopy category of C (and usually we will miss out
mention of Σ).

We will need this construction often later. We note that using it one can prove, for instance,
that Ho(Top) ' Ho(SimpGpds) for a suitable definition of weak equivalence in SimpGpds (cf.
Dwyer and Kan [35]).

Common structure in the examples?
There are various interacting structures and therein lies the problem in deciding exactly what is

an ‘abstract homotopy theory’. We note various attempts to encode at least part of that structure.

a) Quillen: [82–84]
This is one of the most widespread of the structures by which I mean that it is elegant and

quite powerful, so has often been considered as the basic abstract homotopy theory to use. It
considers a category C with infinite limits and colimits and three classes of morphisms called weak
equivalences, fibrations and cofibrations, whose behaviour, and in particular whose interaction, is
governed by various axioms. (We do not give them here as they can be found in many sources in
the list of references.) The origins of the work may be found in deformation theory and the need for
a cohomology of commutative algebras (cf. Quillen, [84]). Once developed, Quillen used it highly
successfully in [83] to produce new results on rational homotopy theory.
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One may criticise it from various viewpoints. For instance, the weak equivalences, etc. are given
right from the start and no guidance is given how these classes might arise. Thus weak equivalence
are often given by ‘external’ information (e.g. f : K → L in S is a weak equivalence if |f | is a weak
equivalence in Top). This does not help one when interpreting the notions geometrically. Linked
to this is the fact that several important ideas such as that of fundamental groupoid, homotopy
limits and even homotopy equivalence are ‘out of place’ in the theory. If one wants the homotopy
theory primarily to study some notion of homotopy, Quillen’s theory is not designed with your
application in mind. It can do a lot, but it is not the universal solution. (Of course I do not claim
to know if a universal solution exists, let alone what it is!)

b) Kan: [61].
Kamps: numerous articles from 1968 onwards, see [50–59] and, of course [60].
Here the ‘primitive’ idea is that of abstracting the structure of the functor ‘X goes to X× [0, 1]’

used as the basis for topological homotopy theory. Dually one can use ‘X goes to XI ’ when that
exists.

Let C be a category. A cylinder functor on C is a functor I : C → C together with natural
transformations e0, e1 : IdC → I and p : I → IdC with pe0 = pe1 = Id. This defines a notion of
homotopy in an obvious way, and hence a relation on the sets C(X,Y ), etc. This relation need not
be an equivalence relation, but one can still form C(Σ−1) for Σ the class of homotopy equivalences.

To control extra structure, form Q(X,Y )n = C(InX,Y ). These sets together with the maps
Q(X,Y )n → Q(X,Y )n+1 induced by the ei(X), for i = 0, 1 and Q(X,Y )n → Q(X,Y )n−1 induced
by p(X), give Q(X,Y ) the structure of a cubical set. Cubical sets are somewhat similar in definition
to simplicial sets, but one replaces simplices, [n], by cubes {0 < 1}n, to get the basic category. One
can define (n, i)-boxes and Kan conditions somewhat as before and the existence of fillers for certain
boxes gives properties of homotopy relations. For instance, if any box of the form

Q(X, Y)

fills to give an element in Q(X,Y )2 then the homotopy relation on C(X,Y ) is symmetric. We
sketch a proof.

Suppose f, g : X → Y , H : f ' g, then H : IX → Y and satisfies f = He0(X), g = He1(X).
Form the box

H

ff
fp

fp

f g

As we are supposing this has a filler, there is some K ∈ Q(X,Y )2 with form
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H’

ff
fp

fp

f g
H

K

Restricting to the last face (via an e1 induced face map) gives

H ′; g ∼= f.

Exercise: What fillers, if any, are needed to prove ' (i) reflexive, (ii) transitive?
If you look back at Kan’s paper or the papers of Kamps, you will see that they refer to fillers

as solutions to the ‘equations’, which are the ‘boxes’. This idea is very useful as was mentioned
before. Kamps and myself [60] include a discussion of how various fillers tegether with preservation
of pushouts and the initial object give classes of homotopy equivalences and cofibrations that satisfy
a weakened form of Quillen’s axioms that are due to K. Brown [12]. Baues has a similar result.

c) Baues [5]
Baues uses interacting structures, one of Quillen type (or rather of K. Brown’s version of half of

Quillen’s theory) and the other of cylinder functor type. The two structures are called cofibration
categories and I-categories.

Cofibration category: (C, cof, w.e.)
i.e. a category C with two classes of morphisms, cof of cofibrations and w.e. of weak equiva-

lences. These are to satisfy:
C 1) Isomorphisms are both cofibrations and weak equivalences. If

A
f→ B

g→ C

are composable morphisms in C, then if two of f , g gf are in w.e., so is the third; if f , g ∈ cof
then gf ∈ cof .

C2) Pushout axiom
Given B → A in cof and any f : B → Y , the pushout

B

i
��

// Y

ī
��

A
f̄

// A ∪B Y

exists and ī is in cof ; if f is a w.e., so is f̄ ; if i is also a w.e., so is ī.
C3) Factorisation axiom

Given B
f→ Y there is a factorisation

B
f //

i ��@@@@@@@ Y

A

g

??~~~~~~~

with i ∈ cof , g ∈ w.e.
C4) Axiom on fibrant models
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Using the terminology: “f is a trivial cofibration” to mean “f ∈ cof∩w.e.”, and “RX is fibrant”
to mean “Given any trivial cofibration i : RX

'→ Q, there is a retraction r : Q→ RX, ri = IdRX”,
the axiom states:

Given X ∈ C, there is trivial cofibration X → RX with RX fibrant.

I-category (C, cof, I, ∅).
Here C is a category, ‘cof ’ is a class of ‘cofibrations’, ∅ is the initial object of C and I is a

cylinder functor.
These are required to satisfy:
I 1) I is a cylinder functor;
I 2) Pushout axiom (almost as in the first part of C2 above, but I is also to preserve pushouts,

and I∅ = ∅;
I 3) Cofibration axiom:
Iso ⊂ cof ; ∅ → X is always in cof ; a composition of cofibrations is a cofibration and all

morphisms in cof satisfy the homotopy extension property (cf. the discussion of cofibration in Top
earlier in these notes.)

I 4) Relative cylinder axiom.
If i : B → A is a cofibration and one forms the pushout

B ∪B //

e0(B)+e1(B)

��

A ∪A

��
B × I // A ∪B (B × I) ∪B A

then the natural map
A ∪B (B × I) ∪B A→ A× I

is a cofibration;
I 5) The interchange axiom.

For all objects X, there is a map
T : I2X → I2X

interchanging the two copies of I, i.e.

Tei(IX) = Iei(X) T (Iei(X)) = ei(IX)

for i = 0, 1. (This corresponds to exchanging the first and second I-coordinates of X × I × I, that
is,

(x, s, t)→ (x, t, s).

These axioms are generally intuitive and are easy to use. (The relative cylinder axiom is the only
one that may require thought if you are from an algebraic or categorical rather than a topological
background.)

Theorem 1 (cf. Baues [5])
If (C, cof, I, ∅) is an I-category and we let w.e. be the class of homotopy equivalences with repect
to I, then (C, cof, w.e.) is a cofibration category.

Baues develops a large segment of homotopy theory in this setting and gives a large number of
examples. He then goes on to get deep new results on the homotopy theory of spaces via this
abstract homotopy approach. (See also Baues, [6]).
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3 Second Theme: Algebraic Models for Homotopy Types

Algebraic Homotopy

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which
is equivalent to homotopy theory in the same sort of way that ‘analytic’ is equivalent
to ‘pure’ projective geometry.

J.H.C.Whitehead, [91], (quoted in Baues, [5])

A statement of the aims of ‘algebraic homotopy’ might thus include the following homotopy clas-
sification problem (from the same source, J.H.C.Whitehead, [91]):

Classify the homotopy types of polyhedra, X, Y , . . . , by algebraic data.
Compute the set of homotopy classes of maps, [X,Y ], in terms of the classifying data
for X, Y .

These aims, with the possible enlargement of the class of objects of study to include many other
types of spaces, are still valid. One may summarise them by saying that one searches for a nice
“algebraic” category A together with a functor or functors

F : Spaces→ A

and an algebraically defined notion of homotopy in A such that
a) if X ' Y in Spaces, then F (X) ' F (Y ) in A;
b) if f ' g in Spaces, then F (f) ' F (g) in A,
and F induces an equivalence of homotopy categories

Ho(Spaces) ' Ho(A).

[Here Spaces is a category, perhaps of topological spaces such as polyhedra or CW-complexes, but
it may be larger than this and may contain the sort of ‘generalised space’ used in other contexts
such as algebraic geometry.]

Ideal Scenarios
i) If we know how X is constructed from simpler objects (e.g. from ‘cells’ or ‘simplices’) and if

we know F on these simple objects, then we can ‘calculate’ F (X) completely, (e.g. not just up to
extensions of groups or its analogue in A). For this to be the case, we would need a result of the
form of the van Kampen Theorem:

Recall (cf. Brown, [13] or Massey, [73]), the van Kampen theorem says that if X = A ∪ B, A,
B are open, then

Π1(A ∩B) //

��

Π1(A)

��
Π1(B) // Π1(X)

is a pushout of groups (or groupoids).
(For the group version, one needs A ∩ B arcwise connected; for the groupoid version A ∩ B

is a union of arcwise connected components and one bases the groupoids on at least one point in
each component, cf. Brown, [13]). It is worth noting that the usual proofs of the van Kampen
theorem use ideas of ‘subdivision’ and ‘filling’ similar to those we have looked at earlier. (It is a
useful exercise to examine the proofs from this viewpoint. There are other proofs using gluing of
covering spaces that do not use these ideas explicitly - find the connection!)

ii) It is to be hoped that the ‘algebra’ in A reflects the ‘geometry’ in the spaces. This is
evident in the fundamental groupoid where the algebraic composition is defined via a geometric
construction.

12



iii) Ideally the detailed ‘homotopy structure’ of Top, Poly, or your favourite category of ‘spaces’
will be reflected in A, . . . , but what does ‘detailed homotopy structure’ mean? We are back with
a version of our original question, now perhaps with richer intuition of ways of approaching it.

These ‘ideal scenarios’ are, at present, unrealistic. There are however various ideas that may
reduce the problem to more manageable proportions.

We could:
a) restrict the spaces being considered using geometric properties, e.g. having dimension ≤ n (cf.
Whitehead, [90] or more recently Baues [5] and [6]); or
b) find a model which models fully only certain homotopy types (typically those having some
condition such as πi(X) = 0 if i > n); or
c) find a model that classifies all spaces and maps, but up to a weaker relation than homotopy,
(e.g. up to n-equivalence, cf. Whitehead [89], but beware the definition of n-equivalence will be
slightly different in more recent work).

The specific examples of these strategies are, of course, not the only ones possible, but they
have the merit of being linked in the idea of n-type (Fox, [37], Whitehead, [89], Loday, [67], etc.)
The idea is that n-equivalence measures information detectable with maps coming from polyhedra
of dimension ≤ n, so the πi(X) for i > n do not have as much significance for this notion of
equivalence. Each n-equivalence class of spaces (= n-type) has a representative X with πi(X) = 0
for i > n, so here the three ideas are strongly linked.

Examples:
(For simplicity, assume that X is a connected CW-complex or polyhedron.)
n = 1 : the fundamental group π1(X) or groupoid Π1(X), completely models the 1-type of X,

classifies maps from 1-dimensional complexes into X and also classifies covering spaces of X.
Before we go to higher values of n, we need some more notation and terminology.
We write Xn for the union of the i-cells for i ≤ n. ‘Recall’ that if (X,A) is a pair of spaces,

with A ⊂ X, x0 ∈ A, then πn(X,A, x0) is the nth relative homotopy group of (X,A). It consists of
homotopy classes of maps from an n-cube In into X that map all but one face of In to x0 and the
remaining face into A. The detailed description will not be needed here, but can be found in most
books on homotopy theory. Restricting the maps to the last face gives a homomorphism

∂ : πn(X,A, x0)→ πn−1(A, x0).

We can now handle the case n = 2:

MacLane and Whitehead [70] showed that the algebraic structure of

∂ : πn(X,X1, x0)→ πn−1(X1, x0)

models the 2-type of X (Their 3-type is our 2-type - the terminology has changed in the years since
their work was published.)

The structure referred to is that of a crossed module (see below). We note that
(i) Ker ∂ ∼= π2(X);
(ii) Im ∂ � π1(X1)
and
(iii) Coker ∂ ∼= π1(X),
so the usual invariants π1 and π2 can be found from this data.

Crossed Modules
A crossed module, (C,G, θ), consists of groups C, G, an actionof G on C (written (g, c)→ gc)

and a homomorphism
θ : C → G

such that
CM1 θ(gc) = g.θc.g−1 for all g ∈ G, c ∈ C;
CM2 θcc′ = c.c′.c−1 for all c, c′ ∈ C.

13



Morphisms are pairs of maps preserving structure. These give a category, CMod, of crossed
modules.

Examples and Exercises.
1. If G is a group, and N C G with i : N → G the inclusion, then (N,G, i) is a crossed module,

where G acts by conjugation, gn = gng−1 ∈ N .
Exercise: If (C,G, θ) is a crossed module, prove that Im θ C G.

2. If M is a left G-module (so M is an abelian group with an action of G on it), let θ : M → G
be the morphism with, for all m ∈ M , θ(m) = 1G, the identity of G, then (M,G, θ) is a crossed
module.
Exercise: If (C,G, θ) is a crossed module, prove that Ker θ is a G-module on which Im θ acts
trivially.

3. Let G be any group. There is a natural homomorphism

α : G→ Aut(G),

where Aut(G) is the automorphism group of G. The homomorphism α is given by : if g ∈ G, α(g)
is the inner automorphism given by conjugation by g, i.e.

α(g)(x) = gxg−1 for x ∈ G.

Exercise: Prove that (G,Aut(G), α) is a crossed module.

Digression on Internal Categories.
Let C be a category with finite limits. An internal category in C is a diagram

C1

s //

t
// C0

i // C1

where

s = ‘source of - ’

t = ‘target of - ’

i = ‘identity on - ’

and si = ti = IdC0 , together with a composition map (in C)

C1 s ×t C1 → C1,

whose domain is given by the pullback

C1 s ×t C1
//

��

C1

��
C1

// C0

,

satisfying the usual associativity and identity rules. We say C1 is the object of arrows and C0 the
object of objects, then C1 s ×t C1 is the object of composable pairs of arrows.

[ Thinks : (b, a) ∈ C1 s ×t C1 if and only if ta = sb, i.e.(
s(a)

a // t(a)
= s(b)

b // t(b)

)
= s(a)

ba // t(b)

In general, objects of C may not have elements - in the case we need this however, they do as we
need C = Grps, the category of groups.]

We write Cat(C) for the category of internal categories in C.
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Proposition 1 (cf. Brown-Spencer [21] and see remarks in that paper.)
The categories CMod and Cat(Grps) are equivalent.

Sketch Proof.
With the same notation as before, set A = Ker s and let θ : A → C0 be given by θ(a) = t(a),

i.e. θ is the restriction of t to A. The action is

ga = i(g)ai(g)−1.

The verification of CM1 and CM2 is left to you.

Now suppose (A,G, θ) is a crossed module. Take C0 = G, C1 = AoG, the semidirect product
of A and G. [Look this up in a good Group Theory book for fuller details, but here you will need
to know the multiplication in this group:

(a, g).(a′, g′) = (a.ga′, gg′).]

Now define s(a, g) = g, t(a, g) = θ(a)g, i(g) = (1A, g) and the composition by the composite of

g
(a,g)// θ(a)g

(a′,θ(a)g)// θ(a′a)g)

is to be (a′a, g) : g → θ(a′a)g. Again the job of checking that s, t and i and the composition are
all group homomorphisms and that they make up an internal category in Grps is left to you. (In
fact it is an internal groupoid in Grps - prove it).

We saw that Π2(X,A)→ Π1(A) is a crossed module and so there will be a Cat(Group) as well.
It is fairly easy to see how to generalise these ideas from groups to groupoids, so we get a crossed
module of groupoids corresponds to a special type of double groupoids, that is a ‘groupoid with
two independant compositions’. This can be interpreted as homotopy classes of maps of squares.
We thus have that : 1-types correspond to groupoids; 2-types correspond to double groupoids (but
with a bit more extra structure in fact). For more details see Brown-Higgins, [15], which describes
a van Kampen theorem for crossed mouldes.

To try to approach our ‘ideal scenario’, our crossed modules should carry an abstract homotopy
theory that at least partially reflects that of spaces. In fact to get a richer structure than we have
here, it is best to go to ‘crossed complexes’. These were introduced by Whitehead in [89], where
they are called ‘homotopy systems’. Approximately they are obtained by attaching to a crossed
module

∂ : C → G

a chain complex of modules (over a groupoid)

. . .
∂→ Cn

∂→ Cn−1 . . .
∂→ C3

to get a ‘chain complex’

. . .
∂→ Cn

∂→ Cn−1 . . .
∂→ C3

∂→ C
∂→ G

(so ∂∂ = 0) of groupoids (but C and G may be non-abelian). Writing CRS for the category of
crossed complexes, we get a functor

Π : CW→ CRS

Π(X)n = {πn(Xn, Xn−1, p)|p ∈ X0}

Π(X)1 = Π1X
1X0 //// X0

the homotopy or fundamental crossed complex functor (cf. for instance Brown and Higgins, [19]).
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Note the following:
a) Π satisfies a van Kampen theorem (Brown-Higgins, [16]) and CRS supports, a Quillen model
category structure (Brown and Golasinski, [14]).
b) CRS is equivalent to several algebraic-geometric categories, e.g. ω − gpds, ∞− gpds, (which
are cubical sets with extra algebraic structure), simplicial T -complexes (which are Kan complexes
whose fillers are nicely behaved, (cf. Ashley [4])) and their cubical analogues. These T -complexes
remind one of the structures that Kamps imposes in his abstract homotopy theory to get nice
homotopy properties, but the structure used here is literally ‘infinitely richer’.
c) CRS has a tensor product and an internal hom-structure

CRS(X ⊗ Y,Z) ∼= CRS(X,CRS(Y, Z))

(cf. Brown-Higgins, [17]).
d) ΠX gives complete information on the 2-type of X and on the chain complex of modules over
Π1(X) given by the chains on the universal cover of X, (cf. Brown-Higgins, [18]).
e) There is a simply defined functor from simplicial groups (or simplical groupoids) to crossed
complexes which gives an algebraic version of Π, (cf. Carrasco and Cegarra [23] and Carrasco, [22]).

Crossed complexes thus model more information than chain complexes and have the additional
nice feature that they can easily be adapted to other algebraic settings (e.g. crossed complexes
of commutative algebras were used by Lichtenbaum and Schlessinger, [65], in work on the cotan-
gent complex construction). They may thus be useful in non-abelian homological algebra and
‘homotopical algebra’.

Other extensions of crossed modules have also been used.
The categories CMod and Cat(Grps) have finite limits so we can form

Cat2(Grps) = Cat(Cat(Grps))

and so on to get Catn(Grps) (Loday, [67])
These model all (n + 1)-types extending the Mac Lane - Whitehead result and they satisfy a

form of van Kampen theorem, (Brown-Loday, [20]). Cat2-groups correspond to crossed squares:

L
λ //

λ′

��

M

µ with µλ = νλ′

��
N

ν // P

in which λ, λ′, µ, ν, and µλ are crossed modules and there is an ‘h-map’, h : M × N → L that
behaves like a commutator. An almost typical example is when µ and ν are inclusions of normal
subgroups and L = M ∩N with λ, λ′, inclusions and h(m,n) = [m,n] ∈ L.

A useful observation is that if G is a simplicial group and M �G then

π0(M)→ π0(G)

is a crossed module (try to prove this yourself - it’s easy!) and up to isomorphism all crossed
modules arise in this way (cf. Loday, [67] or Porter, [81]). Now if N �G as well, form the square

π0(M ∩N) //

��

π0(M)

��
π0(N) // π0(G)

This is a crossed square and up to isomorphism all crossed squares arise in this way - and so on.
It seems likely that to get a nice homotopy theory of crossed squares one would need to add a

chain complex as a ‘tail’ in some way. Current research is investigating categorical and homotopical
properties of such objects.
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4 Third Theme: Categorical Structures of Homotopy Theory

(We use Ho(Top) as an example; the same sort of things happen in other homotopy categories.)

a) Homotopy categories have few limits and colimits in general.

(To prove this requires more algebraic topology than I am assuming and in fact specific proofs
of this are quite few in the literature. Heller ( [45], p.32.) gives the example

S2
f //

��

S2

∗

where the degree of f is 2. This diagram cannot have a pushout in Ho(Top) for if P was a pushout
then the cohomology of P with coefficients Z and Z/2 would violate the Universal Coefficient
Theorem.)

What is much easier to prove is:
b) Pullbacks (and pushouts) in Top are not preserved on passage to Ho(Top)
e.g. Suppose X is a space and A ⊆ X with i : A → X the inclusion. Let {∗} be a one point

space, x ∈ X \A, a ∈ A, and α : x ' a, a path.

{a} //

��

A

i and
��

{∗} a
// X

∅ //

��

A

i

��
{∗} x

// X

are both pulbacks in Top, where we have used a and x also to denote the functions picking out
those elements, and having domain {∗}. These two functions are homotopic, in fact the path α is
a homotopy between them, so the two diagrams

A

i and
��

{∗} a
// X

A

i

��
{∗} x

// X

considered as diagrams in Ho(Top) are isomorphic diagrams, hence their pullbacks (in Ho(Top)) if
they exist, are isomorphic. Clearly such a pullback cannot be isomorphic (i.e. homotopy equivalent)
both to a one-point set and the empty set, since there are no maps with the empty set as codomain
except the unique identity function having the empty set as both domain and codomain.

c) Basic constructions go wrong in homotopy categories
e.g. Suppose G is a group and X is a left G-space (i.e. X has an action

G×X → X

written
(g, x) 7→ gx

which is continuous - we will give G the discrete topology). This can also be thought of as a functor

X : G→ Top.

(Exercise: Check that by considering a group as a groupoid and hence as a category, a G-space
is a functor as stated.)

If we replace X by a homotopy equivalent Y , i.e. an isomorphic object in Ho(Top), we cannot
claim that Y will be a G-space (see later as well) so the notion of G-space is not homotopy invariant.
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Some simple exercises on limits and colimits - for later use.
Let X : G→ Sets be a G-set (or more generally a G-space).
1) The colimit of X satisfies:

Sets(ColimX, Y ) ∼= G− Sets(X, k(Y ))

where, if Y is a set, k(Y ) is Y with trivial G-action.
Prove that ColimX is isomorphic to X/G, the set of G-orbits of X (i.e. the set of equivalence

classes for the relation x ∼ gx).

2) The limit of X satisfies

G− Sets(k(Y ), X) ' Sets(Y,LimX).

By taking Y to be a singleton set, {∗}, or otherwise, prove that LimX is FixGX, the fixed point
set of X:

FixGX = {x ∈ X : x = gx for all g ∈ G}.

The corresponding constructions for G-spaces, of course, work in the same way.

Many problems in algebraic topology are linked to the problem of calculating the invariants of
the homotopy type of X/G or FixGX given similar information on X. An important variation
on this is to consider homotopic group actions and to find invariants of X/G or FixGX which are
invariants for all related actions.

Exercise: Find an example of a G-space X such that within Ho(Top), the limit and colimit
of γX : G→ Ho(Top) do not exist. (Recall: γ : Top→ Ho(Top) is the natural quotient functor,
see earlier.)

The next subject we need to look at in this section also needs a bit more category theory,
namely, the theory of Kan extensions. [Historical thought: D. M. Kan whilst working in abstract
homotopy theory made a great contribution to ‘pure’ category theory. He was one of the first to
identify the fundamental properties of adjoint functors and also looked at the extension problem
that is now central to ‘Kan extensions’, (cf. Mac Lane [69]).]

Problem:
Given

A
K //

F
��

B

C

,

find the ‘best’ F̆ : B→ C completing the diagam, i.e. to ‘extend’ F along K.
In general an exact extension, i.e. F̆K = F , is not possible and ‘best’ is interpreted, as with

adjoints, etc., as a universal property.

Two solutions:
(i)

A
K //

F
��

B

RanKF~~~~~~~~~

C

RanKF , the right Kan extension of F along K, (when it exists) comes with an isomorphism

Nat(SK,F ) ∼= Nat(S,RanKF )
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natural in S : B→ C. [Thinks: it is a right Kan extension because it occurs in the righthand part
of the Nat( , ) expression.]

In particular, there is a natural transformation (RanKF )K → F that corresponds to the
identity on RanKF .

(ii) The left Kan extension, LanKF , comes with a natural isomorphism

Nat(F, SK) ∼= Nat(LanKF, S).

[Thinks: Yes, a left Kan extension is in the left hand position of the Nat.]
Note: if A, B are small, then CA and CB, that is the functor categories, exist and K : A→ B

induces a functor
CK : CB → CA

by composition with K. If right and left Kan extensions along K exist for all F in CA, this is the
same as saying that CK has right and left adjoints.

Exercise:
Suppose G, H are groups (considered as categories), K : G → H a functor, (i.e. a group

homomorphism), X : G → Sets, a G-set. What are RanKX and LanKX? (These correspond to
quite well known constructions in group representation theory.) It may help to notice that when
H = {1}, the trivial group, these are LimX and ColimX. The way to try to calculate RanKX
and LanKX is to imitate the arguments used with LimX and ColimX earlier.

Back to homotopy theory : Homotopy Limits and Colimits.
(Bousfield-Kan [11], Illusie, [48], Boardman-Vogt, [7], Vogt [88], Edwards and Hastings [36], Bourn-
Cordier, [10], etc.)

Idea:
Lim : CJ → C is right adjoint to k : C→ CJ , the ‘constant diagram’ functor.

If C has a homotopy structure (e.g. notion of weak equivalence) so that Ho(C) can be formed,
then k induces

Ho(k) : Ho(C)→ Ho(CJ)

for a suitable notion of weak equivalence in CJ . [In fact one uses the level weak equivalences in
CJ) which are those

f : X → Y X, Y ∈ CJ

for which each f(j) : X(j)→ Y (j) is a weak equivalence.] In many cases Ho(k) has a right adjoint,
Holim

Ho(CJ)(k(X), Y ) ∼= Ho(C)(X,HolimY ).

Problem: understand the construction of HolimY in sufficient generality.
Of course, as we can interpret homotopy structure in several ways, so we can interpret Holim.

We shall look at Ho(Top) and homotopy fibres as we have already looked at ‘fibres’.
Example:
If f : X → Y is a fibration and Y is arcwise connected, then the fibre F (f) is determined up

to homotopy
F (f)y //

��

X

[pullback]

��
{∗} y

// Y

If F is not a fibration, then we can make it into one using factorisation (compare Baues’ Axiom
C3 and dualise) and then take fibres, or . . . we can do it directly and get a homotopy fibre using a
homotopy pullback.
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Let Fh(f)y = {(λ, x)|λ : I → Y, λ(0) = y, λ(1) = f(x)}, then we have a diagram

Fh(f)y
p //

��

X

f p(λ,x) = x

��
{∗} y

// Y

which is not commutative, but there is a homotopy H : Fh(f)y → Y I given by H(λ, x) = λ,
between the two composites of the sides, H : y ' pf . Note that if we change y along a path (i.e.
change the map y within its homotopy class, then the homotopy type of Fh(f)y does not change.
Thus Fh(f)y is more robust than the fibre itself. We tend therefore to omit the y from the notation
where possible.

For a more concrete example, take f : A→ X to be the inclusion, then

π2(X,A) ∼= π1(Fh(f))

as can easily be checked directly. [Hint: pick a0 ∈ A as basepoint so Fh(f) is {(λ, a)|λ : I →
Y, λ(0) = a0, λ(1) = f(a)}. Base Fh(f) at the constant path at a0, i.e. (λ, a0) with λ(t) = a0 for
all t ∈ I. Now describe a loop in Fh(f) at this basepoint.]

Exercise: (Returning to a general f : X → Y .)
Suppose we try to fill in the corner with another square plus homotopy

A //

��

X

f

��
{∗} y

// Y

����
=EK

K : A× I → Y or, if you prefer, K : A→ Y I .
Is there some universal property for the original square that leads, say, to a map A → Fh(f),

together with factorisations of the homotopy K via the natural homotopy H? e.g. something like

A

��

""EEEEEEEE g

%%
Fh(f) //

��

X

f

��
{∗} // Y

����
>FH

This suggests that homotopy limits should ‘store’ more homotopy information than ordinary limits
allow - but in Ho(C), this information has been destroyed. This further suggests that homotopy
limits correspond to structure in C rather than in Ho(C) as such, and this would seem to be the
case. (Some authors use Holim for the functor at the homotopy category level and holim for a
functorial construction in C that gives representative objects for Holim.)

All these ideas can be dualised to give homotopy colimits

Ho(CJ)(X, k(Y )) ∼= Ho(C)(HocolimX, Y )

and more generally homotopy Kan extensions:
if A B are small, k : A→ B induces Ho(Ck) : Ho(CB)→ Ho(CA), homotopy Kan extensions

are left and right adjoints to this functor, if they exist.

20



Grothendieck [44] started a discussion of the existence of homotopy Kan extensions as ‘integra-
tors’ in derived category theory (cf. Verdier, [87], Deligne, [32], Illusie, [48]; the theory of derived
categories is a rich homotopy structure on categories of chain complexes in various settings of, for
instance, algebraic geometry.) His idea relates to his ‘Pursuit of stacks’. Stacks (cf. Giraud [40] or
Deligne - Mumford [33] ) are ‘fibred categories’ of a certain type, but Grothendieck thinks of them
as a varying family of models of homotopy types much as a sheaf can be thought of as a varying
family of sets; the gluing of sections is also slightly different. To handle the homotopy theory of
stacks easily, he needs to be able to form extensions along maps between the ‘bases’ (i.e. whatever
objects are playing the role of space, or site, in the theory of stacks). His manuscript [44] contains
an enormous amount of abstract homotopy theory.

Although the motivation was different, the use of homotopy Kan extensions was also considered
essential by Anderson [1] and, taking his ideas further, Heller, [45] has placed them at the centre
of his ideas on abstract homotopy theory. He describes a homotopy theory as being the functorial
assignment to each small category, J of a category T(J) (thought of, for us here, as Ho(CJ), and
adjoints, both right and left, to the induced functors

Ho(CF) : Ho(CJ′
)→ Ho(CJ)

if F : J→ J′, with these data satisfying certain axioms. The standard example is Ho(SJ) and he
shows that it acts on arbitrary homotopy theories in a natural and useful way. This theory is quite
hard going, but it looks as if it is very rich, and a lot of further research needs to be done in it to
exploit its potential for the applications that Heller just touches on.

5 Fourth Theme: Enriched Categories and Homotopy Theory

We saw how the Kan-Kamps approach to homotopy theory in a category leads to a cubical set
Q(X,Y ) with Q(X,Y )0 being the ordinary hom-set, in other words it enriches the ‘hom’ with more
structure. The theory of enriched categories can be approached for the algebraic topologist via the
simplicially enriched categories used in Quillen [82] or for the categorist via the book by Kelly [64].
We will not go into the theory in detail, but will give some examples:

- For each X, Y in Top, we can form a simplicial set Top(X,Y ) with

Top(X,Y )n = Top(X ×∆n, Y ).

This behaves as if it were Sing(Y X) even if Y X does not always exist within the category of spaces
being considered.

- For each X, Y ∈ S, we get S(X,Y ) with

S(X,Y )n = S(X ×∆[n], Y ).

If Y is Kan, then so is S(X,Y ), no matter what X is.

- For each X, Y ∈ Cat, the category of small categories, then we similarly get Cat(X,Y ),

Cat(X,Y )n = Cat(X × [n], Y ).

These are all examples of S-enriched categories (or S-categories for short), i.e. categories C,
where C(X,Y ) = C(X,Y )0 for some simplicial set C(X,Y ), where the composition map in C
extends to one between these C(X,Y )s

i.e. C(X,Y )×C(Y,Z)→ C(X,Z)

satisfying associativity and identity rules in the obvious way. Similarly, there is a notion of S-
functor F : A→ B between general S-categories; this consists of an assignment, F on objects and
for pairs A0, A1 of objects in A, a simplicial map

FA0,A1 : A(A0, A1)→ B(FA0,FA1)
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satisfying axioms expressing compatibility with composition and identities. (For full detail, see
Kelly [64].)

If C is an S-category, we can form a category π0C with the same objects and having

(π0C)(X,Y ) = π0(C(X,Y )).

For instance, if C = CW, then π0CW = Ho(CW), the homotopy category of CW-complexes.
Similarly we could obtain a groupoid enriched category using the fundamental groupoid (cf. Gabriel
and Zisman, [39]).

One can ‘do’ some elementary homotopy theory in any S-category, C, by saying that two maps
f0, f1 : X → Y in C are homotopic if there is an H ∈ C(X,Y )1 with d0H = f1, d1H = f0.

This theory will not be very rich unless at least some low dimensional Kan conditions are
satisfied. The S-category, C, is called locally Kan if each C(X,Y ) is a Kan complex, locally weakly
Kan if . . . , etc.

The theory is ‘geometrically’ nicer to work with if C is tensored or cotensored :
If for all K ∈ S, X,Y,∈ C, there is an object K⊗̄X in C such that

C(K⊗̄X,Y ) ∼= S(K,C(X,Y )

naturally in K, X and Y , then C is said to be tensored over S.
Dually, if we require objects C̄(K,Y ) such that

C(X, C̄(K,Y )) ∼= S(K,C(X,Y )

then we say C is cotensored over S.

Proposition 2 (cf. Kamps and Porter, [60])
If C is a locally Kan S-category tensored over S then taking IX = ∆[1]⊗̄X, we get a good cylinder
functor such that for the cofibrations relative to I and weak equivalences taken to be homotopy
equivalences, the category C has a cofibration category structure.

There are variants of this, due to Kamps alone, where C is both tensored and cotensored over
S and the conclusion is that C has a Quillen model category structure. The examples of locally
Kan S-categories include Top, Kan, Grpd and CRS, but not Cat or S itself.

6 Fifth Theme: Homotopy Coherence

(We will often use h.c. as an abbreviation for “homotopy coherent”.)
We have already seen several problems in which homotopy coherence plays a part ( e.g. changing

a G-space X by a homotopy equivalence, or describing the universal property of a homotopy
pullback.) What is homotopy coherence?

Examples of h.c. diagrams in a category with cylinder.
1) A diagram indexed by the small category, [2].

X(1)
X(12)

##GGGGGGGG

X(0)
X(02)

//

X(01)

X(012)

;;wwwwwwww
X(2)

is h.c. if there is specified a homotopy

X(012) : IX(0)→ X(2),

X(012) : X(02) ' X(12)X(01).

22



2) For a diagram indexed by [3]: Draw a 3-simplex, marking the vertices X(0), . . . , X(3), the
edges X(ij), etc., the faces X(ijk), etc. The homotopies X(ijk) fit together to make the sides of
a square

X(13)X(01)
X(123)X(01)// X(23)X(12)X(01)

X(03)

X(013)

OO

X(023)
// X(23)X(02)

X(23)X(012)

OO

and the diagram is made h.c. by specifying a second level homotopy

X(0123) : I2X(0)→ X(3)

filling this square.

These can be continued for larger [n], and the results glued together to make larger h.c. dia-
grams. Of course, this is not how it is done, but it provides some understanding of the basic idea.
The basic theory was developed by Vogt, [88] following methods introduced with Boardman, [7]
(see also the references in that source for other earlier papers on the area). Cordier [25] provides
a simple S-category theory way of working with h. c. diagrams and hence released the ‘arsenal’
of categorical tools for working with h. c. diagrams (cf. Bourn-Cordier [10] and Cordier [26] for
an h. c. description of homotopy limits of h. c. diagrams using S-categorical language, again
generalising earlier work of Vogt.)

Results
(i) If X : A → Top is a commutative diagram and we replace some of the X(a) by homotopy

equivalent Y (a) with specified homotopy equivalence data:

f(a) : X(a)→ Y (a), g(a) : Y (a)→ X(a)

H(a) : g(a)f(a) ' Id, K(a) : f(a)g(a) ' Id,

then we can combine these data into the construction of a h. c. diagram Y based on the objects
Y (a) and homotopy coherent maps

f : X → Y, g : Y → X, etc.,

making X and Y homotopy equivalent as h.c. diagrams.
Exercise: Investigate this in simple cases, e.g. when A = [1] or [2].
(This applied to G-space X shows that if we replace X by a homotopy equivalent Y , then Y is

a h. c. version of a G-space, i.e. a h. c. diagram of type G.)

(ii) Vogt [88] If A is a small category, there is a category Coh(A,Top) of h.c. diagrams and
homotopy classes of h. c. maps between them. Moreover there is an equivalence of categories

Coh(A,Top)
'→ Ho(TopA)

(This ‘explains’ in part why homotopy limits can be interpreted in terms of h. c. cones, cf.
Bourn-Cordier, [10] and Bousfield-Kan [11]

(iii) Cordier (1980) [25].
Given A, a small category, then there is an S-category S(A) (with π0S(A) ∼= A) such that a

h. c. diagram of type A in Top is given precisely by an S-functor

F : S(A)→ Top

This suggests the extension of h. c. diagrams to other contexts such as a general locally Kan
S-category, B:
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(iv) Cordier-Porter, [27]
Vogt’s theorem generalises to a locally Kan, B, replacing Top.

(v) Cordier-Porter, [28]
If B is locally Kan, f : F → G an h. c. map between h. c. diagrams of type A in B and

H(a) : g(a) ' f(a), then there is a h. c. map g : F → G constructed from f and H having g(a) at
index a.

More recently, results seem to be revealing a rich theory of S-categories, S-functors and coherent
maps between them, that runs parallel to ordinary category theory. There seem to be coherent
versions of representability theorems, adjointness, monads etc. Evidence for these in special cases
has been found many times before and has proved crucial in the development of algebraic topology.
What is now appearing would seem to be a much more global view providing a lot more machinery
and an underlying theory for handling examples.

7 Sixth Theme: A wider perspective and some surprising links.

Why bother developing such theories? Do they interact well with other parts of Mathematics
or are they, as some people would suggest, the equivalent of ‘contemplating one’s navel’, merely
introspective Mathematics. Such questions are useful, even when difficult to answer. Interactions
with different parts of maths seem to be a sign of health, although absence of such interactions
often only means a lack of ‘ripeness’, of ‘maturity’ in some sense, of the subject. Following ideas
of Grothendieck and others, I will attempt to show reasons for optimism in the future of abstract
homotopy theory.

1. Grothendieck(SGA1, [42]): The fundamental group of a topos.
Let E be a Grothendieck topos (think of E as the category, Sh(X), of set valued sheaves

on a space X). Within E, we can pick out a subcategory, C, of locally finite, locally constant
objects in E. (If X is a space with E = Sh(X), C corresponds to those sheaves whose ‘espace
étalé’ (cf. Borceux [8]) is a finite covering space of X.) Picking a base point in X generalises
to picking a ‘fibre functor’ F : C → Setsfin, a functor satisfying various conditions implying
that it is ‘pro-representable’. (If x0 ∈ X is a base point {x0} → X induces a ‘fibre functor’
Sh(X)→ Sh{x0} ∼= Sets, by pullback.)

If F is ‘pro-representable’ by P , then π1(E, F ) is defined to be Aut(P ), which is a profinite
group. (Usually I will simply write π1(E), for this.) Grothendieck proves there is an equivalence of
categories C ' π1(E) − Setsfin, the category of finite π1(E)-sets. If X is a locally nicely behaved
space such as a CW-complex and E = Sh(X), then π1(E) is the profinite completion of π1(X). This
profinite completion occurs only because Grothendieck considers locally finite objects. Without
this restriction, a covering space Y of X would correspond to a π1(X)-set, Y ′, but if Y is a
finite covering of X then the homomorphism from π1(X) to the finite group of transformations
of Y factors through the profinite completion of π1(X). This is defined by : if G is a group,
Ĝ = lim(G/H : H C G,H of finite index) is its profinite completion. This idea of using covering
spaces or their analogue in E raises several important points:

a) these are homotopy theoretic results, but no paths are used. The argument involving sheaf
theory, the theory of (pro)representable functors, etc., is of a purely categorical nature. This means
it is applicable to spaces where the use of paths, and other homotopies is impossible because of bad
(or unknown) local properties. Such spaces have been studied within Shape Theory and Strong
Shape Theory, although not by using Grothendieck’s fundamental group, nor using sheaf theory.
(See 2 below for more on this connection and such sources as Lisica and Mardesić [66], Edwards
and Hastings, [36], Cordier and Porter, [29], Mardesić and Segal [71] for more information on Shape
and Strong Shape).

b) As no paths are used, these methods can also be applied to ‘non-spaces’, e.g. locales (cf.
Borceux [8]) and possibly to their non-commutative analogues, quantales. For instance, classically
one could consider a field k and an algebraic closure K of k and then choose C to be a category
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of étale algebras over k, in such a way that π1(E) ∼= Gal(K/k), the Galois group of k. A beautiful
treatment of this can be found in Douady and Douady, [34], and the link with locales (which is
very strong) is explored in Joyal and Tierney, [49]. It, in fact, leads to a classification theorem for
Grothendieck toposes. From this viewpoint, low dimensional homotopy theory is ssen as being part
of Galois theory, or vice versa.

c) This underlines the fact that π1(X) classifies covering spaces – but for i > 1, πi(X) does not
seem to classify anything other than maps from Si into X!

This is abstract homotopy theory par excellence, but where are the links with earlier work?

Artin- Mazur (1965-66), [3].
Their aim was to ‘study the analogues of homotopy invariants which can be obtained from

algebraic varieties by using the étale topology of Grothendieck, thus their starting point was a nice
Grothendieck topos (namely sheaves for the étale Grothendieck topology on a nice scheme).

[Thinks: do I need to know a lot about schemes, varieties and the étale topology to under-
stand their work? No, certain of their constructions do need an algebraic geometric or categorical
viewpoint to be interpreted easily, but the general picture can be obtained without that. Spe-
cific results, of course, do refer to algebraic geometric properties, but the essence of these can be
extracted without detailed knowledge.]

Digression on Čech methods
Given a (compact) space X and a finite open cover, α, of X, we can form a simplicial set

C(X,α), whose n-simplices are (n+ 1)-strings of open sets from α, i.e. 〈U0, . . . , Un〉, each Ui ∈ α,
satisfying ∩Ui 6= ∅.

If β is another cover such that for each V ∈ β, there is a U ∈ α with V ⊆ U , then the assignment
V → U in this case defines a map

C(X,α)→ C(X,β)

dependent on the choice of U for each V , but independent ‘up to homotopy’. Applying one’s
favourite homotopy functor F : S→ A, to each C(X,α) and to these homotopy classes of induced
transition maps, yields an inverse system of objects in A, what is called, in Artin-Mazur, [3], a pro-
object in A. [Thinks: Profinite groups occurred in Grothendieck’s work? Is there a connection?]
Čech in the 1930s, applied homology and cohomology in this situation to extend simplicially-
based homology to a much wider class of spaces. Lefshetz, without the language of category
theory, studied, again in the 1930s, the formal properties of inverse systems of polyhedra and
maps between them and his student Christie [24] looked at the homotopy groups in this setting.
Borsuk [9] developed Shape Theory, which although initially very geometric in flavour turned out
also to be described in terms of Christie’s theory of the “Čech extensions” of homotopy theory, (see
Cordier and Porter, [29] for a categorical approach to Shape Theory).

The use of modified Čech methods in algebraic geometry was well established when Grothendieck
and his collaborators in Paris started adapting it to work with a Grothendieck topology. Verdier
in SGA4 [2] introduced hypercoverings and we return to Artin and Mazur to find their use in
homotopy theory. (The work of Lubkin, [68], should also be mentioned here as it contains much
that is parallel to the development by Verdier, Artin and Mazur and is sometimes much easier to
decipher for the non-specialist algebraic geometer.)

Given that a Grothendieck topology is essentially about abstracting a notion of ‘covering’ (cf.
Borceux, [8]), it is not surprising that modified Čech methods can be applied. Artin and Mazur [3]
used Verdier’s idea of a hypercovering to get, for each Grothendieck topos, E, a pro-object in Ho(S)
(i.e. an inverse system of simplicial sets), which they call the étale homotopy type of the topos E
(which for them is ‘sheaves for the étale topology on a variety’). Applying homotopy group functors
gives pro-groups πi(E) such that π1(E) is essentially the same as Grothendieck’s π1(E). (Here you
need to know that the category of profinite groups, i.e. inverse limits of finite groups each with
the discrete topology, is equivalent to the category of pro-objects in the category of finite groups.
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The proof is not difficult and should be clear if you first check up on the definition of profinite
groups. WARNING: if you remove ‘finite’ the result does not hold, but you can recover it in part
by working with “pro-discrete localic groups” instead of topological groups, i.e. take limits of finite
groups within the category of ‘localic’ rather than ‘topological’ groups, remembering that ‘locales’
are almost ‘spaces without points’, again see Borceux, [8].)

Grothendieck’s nice π1 has thus an interpretation as a limit of a Čech type, or shape theoretic,
system of π1s of ‘hypercoverings’. Can shape theory (or its more powerfully structured ‘strong’
or ‘coherent’ version, cf. Lisica and Mardešić, [66], or the book [72], Edwards and Hastings, [36],
Porter [76–78]) be useful for studying étale homotopy type? Not without extra work, since the
Artin-Mazur-Verdier approach leads one to look at inverse systems in proHo(S), i.e. inverse systems
(diagrams) in a homotopy category not a homotopy category of inverse systems as in Strong Shape
Theory (in the same references as above and for comparison Porter, [80]). Attempts to ‘rigidify’
the hypercovering approach, so as to get into Hopro(S) have been made (e.g. by Lubkin, [68]) or
using simplicial schemes in Friedlander, [38]) but none has yet come to light that can be said to be
the definitive method.

One of the difficulties with this hypercovering approach is that ‘hypercovering’ is a difficult
concept and to the ‘non-expert’ seem non-geometric and lacking in intuition. Thankfully for us,
there is an alternative approach put forward by Ken Brown [12]. (Thinks: I’ve already seen that
paper referred to earlier in these notes, haven’t I?)

As the Grothendieck topos E ‘pretends to be’ the category of Sets, but with a strange logic, we
can ‘do’ simplicial set theory in Simp(E) as long as we take care of the arguments we use. To see a
bit of this in action we can note that the object [0] in Simp(E) will be the constant simplicial sheaf
with value the ordinary [0], “constant” here taking on two meanings at the same time, (a) constant
sheaf, i.e. not varying ‘over X’ if E is thought of as Sh(X), and (b) constant simplicial object,
i.e. each Kn is the same and all face and degeneracy maps are identities. Thus [0] interpreted as
an étale space is the identity map X → X as a space over X. Of course not all simplicial objects
are constant and so Simp(E) can store a lot of information about the space (or site) X. One can
look at the homotopy structure of Simp(E). Ken Brown [12] showed it had a fibration category
structure (i.e. more or less dual to the axioms that Baues gives (see above) and giving half of
Quillen’s structure) and if we look at those fibrant objects K in which the natural map

p : K → [0]

is a weak equivalence, we find that these K are exactly the hypercoverings. Global sections of p give
a simplicial set, Γ(K) and varying K amongst the hypercoverings gives a pro-simplicial set (still in
proHo(S) not in Hopro(S) unfortunately) which determines the Artin-Mazur pro-homotopy type
of E

This makes the link between shape theoretic methods and derived category theory more explicit.
In the first, the ‘space’ is resolved using ‘coverings’ and these, in a sheaf theoretic setting, lead to
simplicial objects in Sh(X) that are weakly equivalent to [0]; in the second, to evaluate the derived
functor of some functor F : C→ A, say, on an object C, one takes the ‘average’ of the values of F
on objects weakly equivalent to G, i.e. one works with the functor

F ′ : W(C)→ A

(where W(C) has objects, α : C → C ′, α a weak equivalence, and maps, the commuting ‘triangles’,
and this has a ‘domain’ functor δ : W(C) → C, δ(α) = C ′ and F ′ is the composite Fδ). This
is in many cases a pro-object in A - unfortunately standard derived functor theory interprets
‘commuting triangles’ in too weak a sense and thus corresponds to shape rather than strong shape
theory - one thus, in some sense, arrives in proHo(A) instead of in Ho(proA) , (cf. [32]).

Grothendieck (letter to L. Breen, [43] mid 1970s; Pursuing Stacks [44], 600 page
manuscript.)
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Already within his non-abelian cohomology, Giraud had introduced stacks. These are fibred
categories with a special sheaf-like property. A fibred category is a functor f : E → B with lifting
properties that are rather like those of a Kan fibration in low dimensions. As an example, let
F : B → Cat be a functor, then Grothendieck had introduced a semidirect product construction,
as had Ehresmann (for which see his collected works).

Exercise:
Given F : B → Cat, form up a category F o B, that has a functor pF : F o B → B with

p−1
F = F (B), and there is an induced map so that if β : B → B′ in B, there is a functor p−1

F (β) :
p−1
F (B)→ p−1

F (B′) corresponding to F (β). Investigate this structure more fully.

Thomason [85], trying to look for the structure of homotopy limits and colimits in Cat for
potential applications in algebraic K-theory, proved that hocolim(F ) ∼= F o B, for a suitable and
natural homotopy structure on Cat.

We will not need to know the detailed definition of a stack in Giraud’s sense, but will think of
it as a varying family of homotopy types with a gluing rule that is a homotopy coherent version of
the gluing rule for local sections in a sheaf. Stacks occur quite naturally in various situations, (cf.
Deligne and Mumford, [33]).

Grothendieck’s suggestion in his letter to Breen was that there was a higher order covering
space concept and a corresponding Galois theory. Covering spaces correspond to locally constant
sheaves and the fibres of a covering space projection are sets, therefore representing “0-types”
in the homotopy sense. A stack of groupoids (as in Deligne and Mumford, [33]) is a varying
family of 1-types, so we could consider a suitable notion of “locally constant” stack of groupoids
as corresponding to a 1st order generalisation of a covering space. Covering spaces are classified
by G-sets, where G = π1(X), or more generally π1(E) or a groupoid version of it. Locally constant
stacks of groupoids are, perhaps, classified by G-groupoids, where G is . . . what? At this stage in
Grothendieck’s thought experiment, we can see a need for a concept.

We saw that if G was a group,
G→ Aut(G)

was a crossed module. If we form up the corresponding cat1-group, GoAut(G) and call it Aut(G),
then we have the possibility that a cat1-group C could act on G via a map C→ Aut(G) of cat1-
groups. This idea is however depending too much on a rather special consruction, but does suggest
that automorphism objects of n-types might be (n + 1)-types - a sort of higher order symmetry
groupoid construction.

Exercises
1) Let G be a groupoid. Form the functor category GG and select those functors that are

automorphisms of G. Let Aut(G) be the corresponding full subcategory. Show that Aut(G) is
a cat1-group with group structure coming from composition of functors. Describe in detail the
corresponding crossed module of groupoids.

2) Specialise the above construction to the case where G has only one object, i.e. is a group.
Seen this somewhere before?

3) Generalise the construction of 1) in the following way. Let Equiv(G) be the full subcategory
of GG determined by the self equivalences of G, i.e. those f : G → G that are equivalences of
categories. Find an adequate description of the structure that Equiv(G) has - it is not a group as
such, since such an f need not have an inverse. Compare the resulting ‘thing’ with Aut(G).

The idea, then, that perhaps ‘locally constant’ stacks of groupoids might be equivalent in some
way to that of G-groupoids, for some crossed module or cat1-group, G does not seem so silly as
all that. We have proved nothing, but the analogies suggest what approach might work. Before,
however, we can do that various problems have to be resolved, for instance do we really know what
‘locally constant’ is to mean. ‘Constant’ might be imagined to mean each ‘stalk’ isomorphic to
all the others, but ‘stalks’ are defined ony up to equivalence so perhaps ‘equivalent’ to the others
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might be more reasonable. Another problem is that we do not know the level of ‘equivalence’ to
expect between locally constant stacks of groupoids and G-groupoids. One expects an equivalence
of homotopy categories, but what is that to mean for these two situations and is it all that can be
achieved.

These condsiderations are in any case only a simple case of the general ones. Grothendieck’s
problem was to prove a general version of this. Stacks are thought of as varying families of homotopy
types. An n-stack will be a varying family of n-types (so the above discussion was about 1-stacks),
whilst if G is a model for an n-type, one hopes to find an automorphism (n+1)-type so that (n+1)-
type can act on an N -type G via a homomorphism to its automorphism (n + 1)-type. Hopefully
you have guess Grothendieck’s idea by now. The generalisation of Galois theory to higher order
should be:

Locally Constant n-stacks on E↔ G(E)-(n-types)
where G(E) is an (n+ 1)-type. We can list some of the problems and possible methods of attack.
We have already seen some ideas:

0-types 1-types 2-types . . . n-types

Sets Groupoids Cat1-groupoids . . . Catn−1-groupoids
= crossed modules . . . crossed (n− 1)-cubes
= special double . . . = special n-fold

groupoids . . . groupoids

but Grothendieck, although himself in favour of an n-fold groupoid model warns that there may be
as many choices of model as there are mathematicians working with them and his n-fold groupoid is
not constructed as Loday’s cat(n−1)-groups are, so even if the idea is the same, the model may be
somewhat different. Grothendieck is thus suggesting an ‘equivalence’ between stacks of (n−1)-fold
groupoids and G(E)-(n-1)-fold groupoid, where he hopes G(E) can be constructed fairly directly
from E, will be a ‘homotopy invariant’ etc. and will be an n-fold groupoid.

Assuming that we picked models for n-types, what is to be an n-stack. That they exist is not
in doubt. A stack, as was said earlier, is a special type of fibred category, small categories model
all homotopy types (Thomason [86]), but in a somewhat non-geometric way, so we could possibly
look for categories that correspond to n-types, but then where do n-fold groupoids with quite a bit
of mixed algebraic and geometric structure in them, fit in? If we keep categories as our models, we
need to describe n-types in those terms, if we abandon categories for n-fold groupoids, we do not
know any longer what is a stack!

We still have the problems that we noted earlier with 1-stacks: what does ‘locally constant’
mean? and what does ‘equivalence’ mean? We must also point out that the automorphism object
of an n-fold groupoid has yet to be shown to be a (n + 1)-fold groupoid, although intuitively it
seems ‘obvious’ !

There is some evidence for Grothendieck’s idea since if X is nice, i.e. a CW-complex, the étale
homotopy type of E = Sh(X) is given by the homotopy type of X, so the crossed module of the
Mac Lane-Whitehead theorem yields a possible 2-fold groupoid associated to E in a natural way:

Π2(X,X1)→ Π1(X1),

but this is dependent on the choice of 1-skeleton, X1, so is only really determined ‘up to equivalence’.
There is a lovely elegant proof of the classical or groupoid van Kampen theorem which uses

covering spaces. Brown and Loday [20] have proved a generalised van Kampen theorem for catn-
groups. This may also be seen as evidence for some sort of Galois theory involving a ‘fundamental’
n-fold groupoid of a space and in that way giving a geometric interpretation of the Brown-Loday
van Kampen theorem.

Grothendieck also, in [41], looked at cofibred additive categories and his results again suggest
that there is, here again, the same sort of phenomenon occurring. The pay-off of a proof of a higher
order Galois theorem would be considerable. The technical tools needed for producing such a proof
may exist already, but they need adapting.
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8 Conclusion (to the Bressanone notes)

I have tried to give you a taste of abstract homotopy theory, of some of its different facets and to
show how a categorical viewpoint is essential for producing a ‘coherent’ view of homotopy theory.
Abstract homotopy theory can produce new results of a calculatory nature in the hands of someone
like Baues, [5], but is also very important in providing general categorical machinery for handling
homotopy types. (I have not tried to be exhaustive in my coverage of the area.) I have ended
with an attempt to explain the core of Grothendieck’s programme ‘Pursuing Stacks’. Those notes
mention quite a lot of abstract homotopy theory, of a very elegant type, but their motivation is best
found in Grothendieck’s higher order Galois theory, an idea that, if it could be pushed through,
would have an enormous potential for applications in algebraic geometry, algebraic number theory,
etc., as well as in more topological areas. To complete Grothendieck’s programme, many of the
ideas mentioned in these notes will be needed. The questions that that programme raise still need
more formulation before it can be even classed as a conjecture, but it is a useful focus for developing
further this area of abstract homotopy theory.

9 Conclusion : Ten years on.

Since the notes were first written, there has been considerable activity in the area of abstract
homotopy theory and related areas of homotopical algebra. I cannot hope to do justice to all of it
so will attempt merely to indicate some new sources, texts and results closely related to the themes
of the various sections.

The material on homotopy theories, both generically and for specific examples has been signifi-
cantly increased with, in particular, the book by Goerss and Jardine, [G&J], on simplicial homotopy
theory, and Mark Hovey’s [MH] on Model Categories. At an introductory level, there is also my
own text with Kamps, [60], already cited, which was still in preparation when the original lectures
were given. Other material can be found in James’ Handbook, [IMJ], especially the article by
Dwyer and Spalinski, [D&S], and my own one on proper homotopy theory.

For work on algebraic models for homotopy types, the Handbook article by Baues, [HJB] sum-
marises a lot and is reasonably accessible with the background assumed here. Work extending
that mentioned in the notes includes the beginnings of a clear theory relating the different models
for 3-types. This extends early but unpublished work by Joyal and Tierney that discussed ‘lax
3-groupoids’ as such a model. (A 2-groupoid is equivalent to a cat1-groupoid or a crossed module;
a lax 3-groupoid similarly is related to the quadratic modules mentioned by Baues in [HJB].)

My own work with Mutlu, [M&P1,M&P2,M&P3,M&P4], has continued the analysis initiated by
Carrasco, [22] and Cegarra, [23], and has tried to study the way in which the categorical/ algebraic
structures inherent in the models of the different n-types, is already visible in the simplicial groupoid
model.

The 2-groupoid/crossed module models mentioned in the notes are derived from filtered spaces,
e.g. from the skeletal filtration of a CW-complex. The problem of finding ‘absolute’ models, inde-
pendent of any additional structure and extending the construction of the fundamental groupoid,
seemed to be a hard one. An elegant construction has now been given by Hardie, Kamps and
Kieboom, [HK&K], and again the techniques should be reasonably accessible with the background
assumed here.

Good source material on derived category theory and triangulated categories is now available.
These areas are treated in Mark Hovey’s book, but also in the book by Neeman, [AM]. This latter
handles in detail the question of Brown representability, that is, approximately, representability of
functors ‘up to homotopy’ in those settings.

When the original notes were being written, I was working with Cordier on an attempt to
produce homotopy coherent analogues of much of elementary category theory, with a view to
applying it to aspects of the Pursuit of Stacks. The amount of enriched category theory needed to
read [C&P] is slightly more than has been assumed here but that paper does try to bridge the gap

29



between the abstract categorical machinery and the interpretation in terms of homotopy coherence.
The ‘Pursuit’ continues (see also later)!

The work of Grothendieck and its relationship with classical Galois theory etc. is now treated
in detail in a beautifully accessible text by Borceux and Janelidze, [B&J]. Some insight on the
homotopy coherence of the nerve construction and the rigidification of hypercoverings has been
given in a recent thesis (M. Alinor, University of Wales, Bangor, 2000), but this is not yet available
in preprint form.

Gradually Grothendieck’s ‘Pursuit’ has attracted more and more interest. Results on alge-
braic stacks are now much more readily available, [G&M-B], whilst simplicial versions of some of
Grothendieck’s ideas have been developed by Simpson, [CS], Toen, [BT] and others. (Check the
math preprint archive at : http://arXiv.org/ and then look on the nearest mirror site to you to
find these and many related papers.)

‘Globular’ models for n-types were suggested by Grothendieck in [44]. Globular descriptions
of (strict) n-categories and groupoids have been know for some time, but it has become clear
that they do not model all homotopy types. For example, 3-groupoids do not model all 3-types,
merely those with vanishing Whitehead product. On the other hand ‘lax 3-groupoids’ also called
‘Gray-groupoids’ do, as was mentioned earlier. Lax versions of∞-categories were sought for avidly
and now several different successful approaches have emerged. Papers by Batanin, [MB], Baez
and Dolan, [B&D], and Tamsamani, [ZT] are amongst the earliest, whilst Hermida, Makkai and
Power, [HM&P], and Leinster, [TL] have looked at comparisons between these models. (Again
look up these authors on the Archive, and on their homepages, to see the current state of play on
this.) It is of note that the motivation for these papers is often very different. Some of the authors
are motivated by considerations mentioned earlier in this article, but Baez and his co-workers
are coming at the problem from the direction of, and with insights from, mathematical physics.
Others approach it with applications in Logic and Computer Science in mind. [The Newsletter
maintained by John Baez (http://math.ucr.edu/home/baez/TWF.html) is an excellent place to
gain information on what is happening in the area.)

As you can see, the area has exploded. (I have not done justice to much of the work that
has been done, even in the limited area on which I have concentrated.) There remains however,
a lot to be done. The abstract homotopy theory of weak ∞-categories is little understood as yet.
The evidence for Grothendieck’s idea gets stronger and stronger, but explicit (and understandable)
direct constructions of say, ‘universal 2-stacks’ or similar objects still seem some way off.

As I said in the introduction, I hope the notes and these brief additional comments will be useful
and will persuade more researchers that abstract homotopy and its many facets, has something to
offer them.

T.P., Bangor, 26 July 2001.
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[41] A. Grothendieck, (1968), Catégories cofibrées additives et complexe cotangent relatif, Lecture
Notes in Maths. 79, Springer-Verlag. 28

[42] A. Grothendieck, (1971), S.G.A.1 Revetements étales et groupe fondamental, Lecture Notes in
Maths. 224, Springer-Verlag. 24

[43] A. Grothendieck, (197?), Letter to L. Breen. 26

[44] A. Grothendieck, (1983), Pursuing stacks, manuscript, 600 + pages. 21, 26, 30

[45] A. Heller, (1988) Homotopy Theories, Mem. Amer. Math. Soc. 71, 383. 17, 21
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[52] K.H. Kamps, Über einige formale eigenschaften von faserungen und h-faserungen, Manu.
Math., 3 (1970) 237-255. 9

[53] K.H. Kamps, Kan-Bedingungen und abstrakte homotopietheorie, Math. Z., 124 (1972) 215-
236. 9

[54] K.H. Kamps, Zur homotopietheorie von Gruppoiden, Arch. Math., 23 (1972) 610-618. 9

[55] K.H. Kamps, On exact sequences in homotopy theory, Topol. Appl. Sympos. Budva, (Yu-
goslavia) 1972, 136-141. 9

[56] K.H. Kamps, Fundamental gruppoid und homotopien, Arch. Math., 24 (1973) 456-460. 9

[57] K.H. Kamps, Zur struktur der Puppe-Folge fur halbexakte funktoren, Manu. Math., 12 (1974)
93-104. 9

[58] K.H. Kamps, Operationem auf homotopiemengen, Math. Nach., 81 (1978) 233-241. 9

[59] K.H. Kamps, On a sequence of K.A.Hardie, Cah. Top. Géom. Diff., 19 (1978) 147-154. 9
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