
ON THE FUNDAMENTAL GROUP OF SURFACES

MATTHEW ACTIPES

Abstract. This paper begins by reviewing the idea of homotopy while moti-

vating the idea of the fundamental group. We then define free groups and the

free product operation in order to state the van Kampen Theorem, allowing
us to calculate the fundamental group of many different topological spaces.

We focus on surfaces in particular and are able to classify them by defining

the genus as the number of surgical cuts required to bring the surface into iso-
morphism with S2. After defining cell complexes we are able to combine van

Kampen’s Theorem with the notion of genus in order to provide an explicit

formula for the fundamental group of any closed, oriented surface of genus g.
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1. Homotopy

In algebraic topology one of the basic ways of classifying spaces is by using
the notion of homotopy. One reason we use this is to classify when spaces have
a ”similar shape,” i.e. when there exist continuous functions between the spaces
subject to a certain set of restrictions. To do so we shall begin with the following
definitions:

Definition 1.1. For any two spaces X and Y , a homotopy is any family of maps
ft : X→Y , t∈I such that the associated map F : X×I→Y given by F (x, t) = ft(x)
is continuous.

Definition 1.2. We say that two maps f0 and f1 are homotopic if there exists a
homotopy ft connecting them. We denote this as f0'f1.
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For now consider the case of a subspace A⊂X, and define a retraction on A as
follows:

Definition 1.3. Given a subspace A⊂X, a retraction of X onto A is a map r :
X→X such that r(X) = A and r|A = 1.

Our goal is to ”shrink” our space X onto its subspace A by sending each point
of X to a point in A via a continuous function in finite time. Note that any point
already in A does not move. Formally, this is defined as a deformation retract:

Definition 1.4. A deformation retraction of space X onto a subspace A is a family
of maps ft : X→X, where t∈I = [0, 1] such that

(1) f0 = 1,
(2) f1(X) = A,
(3) ft|A = 1 for all t.

We require that the family ft be continuous in the sense that the associated map
X×I→X, (x, t)→ft(x) is continuous.

Figure 1. A deformation retract of a once-punctured disk onto
its core circle [e]

Using this, we see that a deformation retraction of a space X onto a subspace
A is a homotopy from the identity map on X to a retraction of X onto A. Now
suppose ft : X→X is the given deformation retraction of X onto A. If r : X→A
denotes the resulting retraction map and i : A↪→X the standard inclusion map,
then we have that r◦i = 1A and i◦r'1X with homotopy given by the family ft,
with ft|A = 1A. This can be generalized to the following:

Definition 1.5. For spacesX and Y , a map f : X→Y is called a homotopy equivalence
if there exists a map g : Y→X such that f◦g'1Y and g◦f'1X . The spaces X
and Y are said to be homotopy equivalent or to have the same homotopy type. We
denote this by X'Y .

Remark 1.6. Notice that this is an equivalence relation:

(1) We see that X'X since the identity map satisfies the above definition.
(2) If X'Y then for the homotopy equivalence map f there exists a map g

satisfying f◦g'1Y and g◦f'1X . Thus g is also a homotopy equivalence
since picking the map f gives the same consequences, showing that Y'X.

(3) If X'Y via the map f and Y'Z via the map g, then X'Z via the map

h(x, t) =

{
f(x, 2t), t≤.5
g(x, 2t− 1), t > .5
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This function travels each homotopy ”twice as fast” in order to travel their
piecewise composition in the same amount of time.

Using this result, we can prove the following claim concerning homeomorphic
spaces:

Proposition 1.7. If X is homeomorphic to Y , then X'Y .

Proof. If h : X→Y is a homeomorphism, then h◦h−1 = 1Y and h−1◦h = 1X , so
that homotopy equivalence is an immediate consequence of reflexivity. �

Of course, the converse is not necessarily true. For example, the disk D1 is ho-
motopy equivalent to a point, but the two are not homeomorphic.
Homotopy equivalence between spaces is an intuitive way to understand spaces via
”stretching” and ”compressing” even when finding explicit formulas for the homo-
topies between them may be dificult. For example, consider figure 1. Intuitively
the picture of the once-puctured disk looks like it could be squeezed together con-
tinuously until it resembles the circle. However if there was no puncture in the disk,
i.e. we were only working with a copy of D1, then we would not be able to deform
the disk into the circle since there would be no logical place on the circle to send
the center point. Therefore we see that D1 6'S1 but D1 − [point]'S1.

2. Homotopy and the Fundamental Group

In this section we will use the idea of homotopy to motivate what we will call
the fundamental group of a space X. Before proceeding, we must first introduce
some new terminology.

Definition 2.1. Given a space X, a path is a continuous map f : I→X.

Definition 2.2. Fix x, y∈X. A homotopy of paths in X is a family ft : I→X
such that the endpoints ft(0) = x and ft(1) = y are constant for each t and the
associated map H : I×I→X defined by H(t, s) = ft(s) is continuous.

Figure 2. An example of a homotopy [f]

If two paths are connected in such a way then we say that they are homotopic,
noted by f0'f1.
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Definition 2.3. For a path f , the homotopy class of f , denoted [f ], is the equiv-
alence class of f under the equivalence relation of homotopy.

To motivate the fundamental group, we will look at the paths where the starting
point and ending point are the same. In this case, we call these paths loops fixed
at a basepoint x0∈X.

Definition 2.4 (Fundamental Group). The set of all homotopy classes [f ] of loops
f : I→X at a basepoint x0 is denoted by π1(X,x0).

Remark 2.5. Notice that π1(X,x0) is a group with respect to the product [f ][g]=[f ·g]
(given without proof).

Since we are interested in classifying spaces X, we will next compare π1(X,x0)
to π1(X,x1) in order to determine when our choice of basepoint is arbitrary. Let
g : I→X be a path from x0 to x1 and let g∗(t) = g(1− t) be the inverse path from
x1 back to x0. Then to each loop f centered at x1 we know that g·f ·g∗ is a loop
based at x0, leading to our next proposition:

Proposition 2.6. The map Fg : π1(X,x1)→π1(X,x0) given by Fg[f ] = [g·f ·g∗] is
an isomorphism.

Proof. First, Fg is well defined by our construction above. Now Fg[f ·h] = [g·f ·h·g∗] =
[g·f ·g∗·g·h·g∗] = Fg[f ]Fg[h]. Hence Fg is a homomorphism. Also, Fg is an isomor-
phism with inverse Fg∗ since FgFg∗ [f ] = Fg[g

∗·f ·g] = [g·g∗·f ·g·g∗] = [f ], and
Fg∗Fg[f ] = Fg∗ [g·f ·g∗] = [g∗·g·f ·g∗·g] = [f ]. �

Remark 2.7. The only thing we assumed in this proof is that x0 and x1 lie in the
same path component of X. Thus we see that if X is path-connected, the group
π1(X,x0) is independent of the choice of basepoint x0 up to isomorphism. In cases
such as this we can simply denote the fundamental group by π1(X).

Example 2.8. Consider any loop in R
n. This loop can be continuously deformed

into a loop traveling arbitrarily close to its basepoint, meaning that there is only
one homotopy class of loops. In this case we say that Rn has trivial fundamental
group, denoted by π1(Rn) = 0. We say that a space is simply-connected if it is
path-connected and has trivial fundamental group.

Example 2.9. Now let’s try to intuitively understand what π1(S1) is without any
hard calculations. First let’s impose an orientation on our circle: we’ll denote the
positive direction as loops traveling clockwise. Then each homotopy class consists
of all loops that travel around the circle a given number of times. If one loop travels
around the circle a times and another loop travels around the circle b times, then
their product travels the circle a + b times. Therefore the set of all possible loops
around the circle is isomorphic to the group of integers with group operation of
addition, meaning π1(S1)∼=Z.

We’d also like to know how to find the fundamental group of a product space.
Thankfully the relation is very intuitive.

Proposition 2.10. If X and Y are path-connected, then π1(X×Y ) is isomorphic
to π1(X)×π1(Y ).
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Figure 3. Any loop in R
2 is equivalent to the identity map [j]

Figure 4. Intuition behind π1(S1) [g]

Proof. A map f : Z→X×Y is continuous if and only if the maps g : Z→X and
h : Z→Y defined by f(z) = (g(z), h(z)) are continuous. Therefore a loop f in X×Y
at a basepoint (x0, y0) is equivalent to a pair of loops g in X and h in Y based
at x0 and y0 respectively. Also, a homotopy ft of a loop in X×Y is equivalent
to apair of homotopies gt in X and ht in Y . This gives a bijection [f ]→([g], [h]),
where π1(X×Y, (x0, y0)) is isomorphic to π1(X,x0)×π1(Y, y0). This is a group
homomorphism, so it is an isomorphism as well, completing the proof. �

Example 2.11. This proposition gives us a way to calculate the fundamental group
of many different spaces. For instance, the torus T 2 is represented by the product
space S1×S1. We know that π1(S1) = Z, so by proposition 2.10 we have

π1(T 2) = π1(S1×S1)∼=Z×Z = Z
2.

In fact, when we notice that the n-torus Tn is a product space of n copies of S1,
we see that, in general,

π1(Tn)∼=Zn.
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Figure 5. A torus decomposed to its product space S1×S1 (de-
noted by generators a and b). [h]

3. Free Groups

Now that we have spent some time working with the fundamental group, we will
establish the basics behind a particular type of group that we will come in frequent
contact with.

Definition 3.1. A group G is free if there exists a subset T⊂G such that every
element of G can be written uniquely as a product of finitely many elements of T
along with their inverses. We call T the free generating set of G, and we denote
our resulting free group by FT .

Remark 3.2. Notice that FT is a group under the operation of concatenation, fol-
lowed by reduction if necessary. Define T−1 such that for every t∈T there exists
t−1∈T−1 and let S = T∪T−1. A word in T is any written product of elements of
S. A word is called reduced if no element of the word is directly next to its inverse
on either side. For example, the word a2b−1a−1a is not reduced but ab2ab−1 is
reduced. Then the free group FT is defined to be the group of all reduced words in
T .

Example 3.3. The group (Z,+) is free with generating set T = [1]. This is because
any integer z∈Z is equal to a finite summation

m∑
i=1

(+1) +

n∑
k=1

(−1),

where m,n∈N and m− n = z.

We would like to find a way to characterize free groups. Given a generating set
T of a group H, we’d like to be able to categorize the free group FT by functions
f : T→G for any group G. We can do so using the universal property of free groups.

Definition 3.4 (Universal Property). Let T⊂H generate the free group FT . For
any group G and any function f : T→G, there exists a unique homomorphism
ϕ : FT→G that makes the following diagram commute:
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This shows that homomorphisms between FT and G are in one-to-one correspon-
dence with functions between T and G, giving us the ability to characterize free
groups up to isomorphism.
We’re also interested in a way to classify free groups based on their generating sets.
We can do so using the following definition.

Definition 3.5. The rank of a free group FT is equal to the cardinality of the
generating set T .

Proposition 3.6. Two free froups FS and FT are isomorphic if and only if their
generating sets S and T have the same cardinality.

Using this with the universal property shows that for every n∈N there is exactly
one free group of rank n, up to isomorphism.

3.1. Free Product. We will now introduce a way for free groups to interact with
each other, but we must first state the following definition:

Definition 3.7. Let G and H be groups. A word in G and H is a product of
the form a1a2a3· · ·an where ai∈G or ai∈H. If aj and aj+1 are from the same
group then perform the group operation on them, removing all identity elements
1G and 1H in the process. This gives a reduced word in G and H of the form
g1h1g2h2· · ·gkhk.

With this in mind, we are going to define an operation between groups, denoted
G ∗H, creating a group containing the reduced words in G and H under the group
operation of concatenation and reduction.

Definition 3.8. Let Ti be the set of generators for group i and Ri be the set of
relations, so that G =< TG|RG > and H =< TH |RH >. Then the free product of
G and H is defined by

G ∗H =< TG∪TH |RG∪RH > .

Remark 3.9. One property of the free product is that a pair of homomorphisms
φG : G→F and φH : H→F extends uniquely to a homomorphism φ : G ∗H→F .

Remark 3.10. There are no relations on free groups, so the free product between
free groups is always itself a free group. Hence for m,n∈N, we have that

Fm ∗ Fn∼=Fm+n,

where Fn denotes the free group on n generators.

Notice that all of these definitions can apply to more than two groups: ∗αGα
refers to the free product of a collection of groups Gα defined just as one would
expect. So a collection of homomorphisms φα : Gα→H extends uniquely to a homo-
morphism φ : ∗αGα→H with its action determined on the basis, i.e. φ(g1g1· · ·gn)
with gi∈Gαi is equal to φα1(g1)· · ·φαn(gn). This generalizes to the universal prop-
erty of the free product.

Definition 3.11 (Universal Property). The free product of a family of groups [Bα]
is a group B for which there exist homomorphisms φα : Bα→B such that for any
group G and any family of homomorphisms fα : Bα→G there exists a unique
homomorphism f : B→G such that f◦φα = fα for all α.
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4. Van Kampen’s Theorem

The tools we have developed so far now allow us to state the van Kampen
Theorem, which is helpful in calculating the fundamental group of a space com-
posed of spaces that are familiar to us. To motivate this, suppose we have a space
X =

⋂
αBα where each Bα is open and contains some basepoint x0∈X. We know

by properties of the free product that the homomorphisms jα : π1(Bα)→π1(X) in-
duced by the inclusions Bα↪→X extend to a homomorphism φ : ∗απ1(Bα)→π1(X).
Now if iαβ : π1(Bα∪Bβ)→π1(Bα) is the homomorphism induced by the inclusion
Bα∩Bβ ↪→Bα, then this combined with the inclusion Bα∩Bβ ↪→X gives us that
jαiαβ = jβiβα. This shows us that the kernel of φ contains all elements of the
form iαβ(r)iβα(r)−1 for r∈π1(Bα∩Bβ), meaning that the kernel of φ is generally
non-trivial. Van Kampen’s Theorem combines all this to give an explcit way to
calculate the fundamental group of such spaces.

Theorem 4.1 (The van Kampen Theorem). If X is the union of path-connected
open sets Bα each containing a basepoint x0∈X and if each intersection Bα∩Bβ is
path-connected, then the homomorphism φ : ∗απ1(Bα)→π1(X) is surjective. Fur-
thermore, if each intersection Bα∩Bβ∩Bγ is path-connected, then the kernel of φ
is the normal subgroup N generated by all elements of the form iαβ(r)iβα(r)−1,
meaning that φ induces an isomorphism π1(X)≈ ∗α π1(Bα)/N .

Let’s compute some examples to better our understanding of this theorem.

Example 4.2. We want to compute π1(
∨
αS

1
α). From van Kampen’s Theorem we

know that this is isomorphic to ∗απ1(S1)/N , which by our previous calculation is
equal to ∗αZ/N . Now we need to compute N . Remember that N is equal to the
kernel of the homomorphism φ, so if we define aαi to be the positively-oriented
generator for the circle S1

αi , then elements of the form aαia
−1
αi = 1S1

αi
are in the

kernel of φ. Therefore the kernel consists only of one point since the wedge sum
gives the relation that the base point of each copy of S1 is equivalent. Therefore
we see that π1(

∨
αS

1
α) = ∗αZ.

Example 4.3. Now let’s try a less-trivial example: computing the fundamental
group of the klein bottle. Below is a polygonal representation of the klein bottle. To
apply van Kampen’s Theorem we will cut it into two strips, the blue and pink strips
in figure 6 (Note that the pink area is only one strip since we can connect the top
and bottom edge to each other). Then the yellow strips represent their intersection.
Notice that the pink and blue strips give representations of the mobius strip, which
has a fundamental group equal to Z since the mobius strip can be homotoped to
a circle. Therefore we have that π1(K)≈Z ∗ Z/N . To find N , let’s look at our
intersection. It also gives a copy of the mobius strip, which needs to be traversed
twice in order to get the identity element. So if a and b are our generators for our
two copies of Z, we need iαβ(r)iβα(r)−1 = a2b−2 = 1, or a2 = b2. Therefore, we
arrive at the conclusion that π1(K) =< Z ∗ Z|a2 = b2 >=< a, b|a2 = b2 >.

Now that we are equipped with the tools we need, we will switch our discussion
of general spaces X to that of surfaces. Van Kampen’s Theorem will be used later
in showing how to compute the fundamental group of any closed, orientable surface.
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Figure 6. A representation of the klein bottle [j]

5. Surfaces

For the purposes of this paper we will define a surface as a two-dimensional
topological manifold. Intuitively this means that every point on a surface is locally
homeomorphic to R

2. For now, we will define the genus of a surface to be the
number of punctures throughout the surface.

Figure 7. An example of a genus-1 surface (the torus) [a]

5.1. Classification of Surfaces. The purpose of this section is to motivate a way
to quantify surfaces. One natural way of doing so is to look at the components that
make up surfaces and to extraxt information from them. This leads into our first
theorem:

Theorem 5.1. Every Surface is Triangulable.

The intuition behind this result is easily realizable if we can relate surfaces down
to the 2-dimensional level. Consider a square with boundary aba−1b−1, where
a−1 and b−1 are the oppositely-oriented sides across from a and b. From here we
can obtain a cylinder with two copies of S1 as its boundary by gluing one pair
of oppositely-oriented sides together. Then we glue the two copies of S1 together
(Note that they are oppositely-oriented by design) to obtain a torus. Notice that
if we were to start with the surface it would take two cuts along a and b in order
to recover our original polygon.
We can generalize this process to all closed surfaces:
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Figure 8. Polygonal construction of the torus [c]

Lemma 5.2. Any orientable surface of genus g can be cut open using 2g cuts and
can be represented by a regular 4g-gon with boundary

a1b1a
−1
1 b−11 a2b2a

−1
2 b−12 · · ·agbga−1g b−1g .

Remark 5.3. Note that any orientable surface of genus 0 is isomorphic to S2, mean-
ing that it can be represented by an ”empty polygon” with boundary aa−1.

One way to visualize this result is to notice that a genus-g surface is homeomor-
phic to a glued collection of g toruses. This surface would require 2 cuts to open
each torus completely and each resulting polygon would have 4 sides, thus leading
to a 4g-gon and a total of 2g cuts. Using a well-known result in geometry that any
polygon can be triangulated using a finite number of cuts, we see that orientable
surfaces can be triangulated as well. With this in mind we are now able to quantify
a surface based on its triangulation:

Definition 5.4. For any triangulation T of a surface S, the Euler Characteristic
of S, denoted χ(S), is defined by

χ(S) = V ertices(T )− Edges(T ) + Faces(T ).

Although we will leave it without proof, using homology one can prove that for
a surface S, χ(S) is invariant under any triangulation of S. Therefore we see that
if T'S, then χ(S) = χ(T ).

Our next goal will be to introduce a way to classify surfaces. To do this we must
find an upper bound on the Euler Characteristic which will require the use of some
basic graph theory (we know such a bound exists since our surface S is compact).

Definition 5.5. A graph G = (V,E) is a collection of vertices and edges between
these vertices. Every edge must connect two vertices, but it is not necessary that
every vertex be connected to an edge. A connected graph is a graph in which for
every vertex there exist paths connecting every other vertex to the initial vertex.
A tree P is a graph on which any two vertices are connected by at most one edge,
i.e. a connected graph with no cycles. A spanning tree K of a graph G is a tree
which contains every vertex of G and contains the maximum number of edges such
that no cycles are found in K.

With this in mind, we will be able to bound the euler characteristic by relating
surfaces to their triangulations. But first we will need the following result:
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Figure 9. A spanning tree of the 4 by 4 grid [d]

Lemma 5.6. Let G be a finite connected graph. Then χ(G)≤1 with equality if and
only if G is a tree.

Proof. First notice that for a graph G, χ(G) = V (G)−E(G). Suppose G contains
n vertices. G is connected, so there must be a path connecting any two vertices of
G. This implies that there must be at least n− 1 edges in G since any less would
leave a vertex with no edges leading into it, contradicting the connectedness of G.
Thus χ(G) is bounded above by

χ(G) = V (G)− E(G)≤n− (n− 1) = 1

for any finite connected graph G.
Now suppose χ(G) = 1, where G is a finite connected graph. Then we know that
there is one more vertex than edge in G. G is connected, so to show that G is a
tree we must show that it contains no cycles. Suppose it does. Then we can create
a new graph G′ by removing one edge from this cycle while still leaving the graph
connected, meaning that χ(G′) = n − (n − 2) = 2, contradicting our earlier proof
that χ(G′)≤1. Therefore G is connected and contains no cycles, thus implying that
G is a tree.
Now suppose we have a finite connected graph G that is a tree. We will prove by
induction that χ(G) = 1. Suppose G has 2 vertices. Then the addition of one edge
connecting the two vertices would result in a tree, where χ(G) = 2 − 1 = 1. Now
suppose G is a tree with n vertices and n− 1 edges. If we add one more vertex to
G then it is no longer connected. However, if we add an edge connecting the new
vertex to any other vertex of G, then G is connected and is a tree since the new
edge does not create any cycles in G. Now χ(G) = (n+ 1)−n = 1, so by induction
χ(G) = 1 for any tree G. �

Theorem 5.7. For any surface S, χ(S)≤2.

Proof. Let T be a triangulation of S. T is a graph, so pick K to be a spanning tree
in T . Now let R⊂T be a connected graph that has vertices on every face of T and
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every edge in T that is not in K. Then we have

χ(S) = V (T )− E(T ) + F (T )

= V (K)− (E(K) + E(R)) + V (R)

= (V (K)− E(K)) + (V (R)− E(R))

= χ(K) + χ(R)

= 1 + χ(R)

≤2,

since K is a tree and R is a connected graph. �

Figure 10. Example triangulation. R is in blue, K is in red [i]

Remark 5.8. Notice that χ(S) = 2 only when R is a tree. This implies that there
are no cycles in R, meaning there does not exist a loop γ : S1→S that does not
separate S. Therefore, we see that S∼=S2 by the Jordan Separation Theorem.

We’ve now seen how surfaces without boundary can be classified by their Euler
characteristic. However, for more complex surfaces it is often undesirable to find a
triangulation of the surface and actually compute χ. Our next theorem will give
a much simpler way to calculate χ that depends only on the genus of the surface.
But first we must state the following lemma:

Lemma 5.9. If M and N are topological spaces, then

χ(MqN) = χ(M) + χ(N).

Proof. This lemma follows from the fact that their triangulations are disjoint, mean-
ing that χ(MqN) = VM − EM + FM + VN − EN + FN = χ(M) + χ(N). �

Our next theorem gives us the tool we need to classify surfaces by formally
defining the notion of genus.

Theorem 5.10 (Classifaction of Surfaces). For any closed, orientable surface S
there exists g∈N such that χ(S) = 2− 2g.
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Proof. We will prove this theorem using a procedure called topological surgery.
Suppose we have a surface N . If χ(N) = 2, then we know that N∼=S2 and we
define it to have genus 0 by Remark 5.8. If χ(N) 6=2, then N is not isomorphic to
S2, so there exists a loop γ that does not separate N . We can cut the surface along
this loop to create two boundary components in N , call them γ1 and γ2.

Figure 11. Surgery on a surface of genus 2 [b]

Next we glue one copy of D2 on to each boundary component, making sure that
they are properly oriented. Call this new surface N ′. Notice that N ′ is closed and
has no boundary components. Furthermore,

χ(N ′) = χ(NqD2qD2)

= χ(N) + χ(D2) + χ(D2)

= χ(N) + 2.

Here, we repeat the previous process: If χ(N ′) = 2 then we terminate the process
because N ′∼=S2. In this case we say that N has genus 1. If χ(N ′) 6=2 then we
know that we can repeat the process over again, arriving at a surface N ′′ such that
χ(N ′′) = χ(N ′) + 2 = χ(N) + 4. We keep doing this until we find a surface Nk

such that χ(Nk) = 2. Then the process terminates and we say that N has genus
k. Thus we have that

χ(N) = χ(Nk)− 2k = 2− 2g,

which is our desired result. �

This shows that the Euler Characteristic of any closed, oriented surface is uniquely
determined by its genus, which is defined above as the number of surgical cuts re-
quired to make the surface isomorphic to the sphere.

6. Calculating the Fundamental Group of Surfaces

In this section we will combine the power of van Kampen’s Theorem with the
notion of genus in order to give an explicit formula for the fundamental group of a
closed, oriented surface. In order to do so, we must first have a basic understanding
of how surfaces are built.

6.1. Cell Complexes. For the purposes of this paper we will define a 2-cell as
an open disk, a 1-cell as an edge and a 0-cell as a point. For example, in any
triangulation of a surface the vertices are the 0-cells, the edges are the 1-cells and
the faces are the 2-cells. The n-skeleton of a surface is formed inductively by
attaching a collection of n-cells to the (n − 1)-skeleton, where the 0-skeleton is a
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discrete collection of 0-cells. We will take for granted the fact that attaching cells
of dimension greater than two to a surface does not affect its fundamental group,
indicating that these three cell-types are the only ones of interest to us.
Before proving our main theorem, we must first motivate a supporting lemma.
Suppose X is a path-connected space. We can attach a collection of 2-cells e2α to
X via maps φα : S1→X resulting in a space Y . Choose a basepoint s0 for S1 and
let φα denote the loop in Y based at s0. Now choose a basepoint x0∈X and a
path ϕα in X from x0 to s0 for every α. Then the loop ϕαφαϕ

∗
α is a loop based

at x0 for every α. As designed, this loop homotopes trivially in Y after the cell e2α
is attached. Therefore, the normal subgroup N⊂π1(X,x0) generated by the loops
ϕαφαϕ

∗
α varying over α is contained in the kernel of the map π1(X,x0)→π1(Y, x0)

induced by the inclusion X↪→Y . This results in the following lemma:

Lemma 6.1. The inclusion X↪→Y induces a surjection π1(X,x0)→π1(Y, x0) whose
kernel is N . Thus π1(Y )≈π1(X)/N .

This follows from the van Kampen Theorem.

6.2. Calculation of π1. We begin with a quick definition:

Definition 6.2. Let a, b be generators of a group. The commutator of a and b,
denoted [a, b], is given by

[a, b] = aba−1b−1.

Theorem 6.3 (Calculation of π1). Let S be a closed, oriented surface of genus g.
Then

π1(S) =< a1, b1, · · ·, ag, bg|[a1, b1]· · ·[ag, bg] = 1 > .

Proof. Consider a wedge sum
∨2g
i=1S

1
i of 2g circles labeled a1, a2, · · ·, ag, b1, b2, · · ·, bg.

Notice that this is the 1-skeleton of S. By Lemma 5.2 we know that S can
be represented by a regular 4g-gon with boundary a1b1a

−1
1 b−11 · · ·agbga−1g b−1g =

[a1, b1]· · ·[ag, bg]. We can achieve this polygonal representation of S by attaching a
2-cell to our 1-skeleton, resulting in a closed, oriented surface of genus g.

Figure 12. 2-skeleton of a closed, oriented surface of genus 2. [j]

We saw in Example 4.2 that π1 of the wedge sum of 2g circles is the free group
on 2g generators. Therefore by Lemma 6.1 we see that π1(S) = π1(

∨2g
i=1S

1
i )/N ,

where N is the normal subgroup generated by the loop a1b1a
−1
1 b−11 · · ·agbga−1g b−1g =

[a1, b1]· · ·[ag, bg]. Furthermore, we know that this loop is nullhomotopic by the ad-
dition of the attached 2-cell. Therefore, we get that

π1(S) =< a1, b1, · · ·, ag, bg|[a1, b1]· · ·[ag, bg] = 1 >,

which is our desired result. �
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