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The Quest for a Complete Answer

Heuristic arguments can motivate studies of backreaction,
but are only a first step towards a complete understanding

Exactly solvable systems give interesting insights, but are
always toy models that miss some aspects of reality

Perturbative methods allow quantitative statements but have
limited domain of validity

Numerical simulations are a unique tool to study scenarios
that resemble reality more closely
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The Quest for a Complete Answer

Heuristic arguments can motivate studies of backreaction,
but are only a first step towards a complete understanding

Exactly solvable systems give interesting insights, but are
always toy models that miss some aspects of reality

Perturbative methods allow quantitative statements but have
limited domain of validity

Numerical simulations are a unique tool to study scenarios
that resemble reality more closely

Numerical Challenge: include all relevant aspects of reality

• Allow for fully nonlinear evolution of matter

• Consistently solve the evolution of perturbed geometry

• Compute actual observables
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A Brief Overview of gevolution

gevolution, a general relativistic N-body code
Adamek, Daverio, Durrer & Kunz, Nature Phys. 12 (2016) 346–349

spin-1 metric perturbation
with gevolution

• based on weak-field expansion (in
Poisson gauge)

• for any given T
µ
ν computes the six

metric d.o.f. (Φ, Ψ, Bi, hij)

• N-body particle ensemble evolved using
relativistic geodesic equation

https://github.com/gevolution-code/gevolution-1.1.git
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Strategy

• choose ansatz for the metric (perturbed FLRW)

ds2=a2(τ)
[

−e2Ψdτ2+ e−2Φδijdx
idxj+ hijdx

idxj− 2Bidx
idτ

]
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Strategy

• choose ansatz for the metric (perturbed FLRW)

ds2=a2(τ)
[

−e2Ψdτ2+ e−2Φδijdx
idxj+ hijdx

idxj− 2Bidx
idτ

]

• metric components are evolved with Einstein’s equations

G
µ
ν = 8πGT

µ
ν

• stress-energy tensor is determined by solving the EOM’s of
all sources of stress-energy

T
µν
m =

∑

n
m(n)

δ(3)(x−x(n))√
−g

(

−gαβ
dxα

(n)

dτ

dx
β

(n)

dτ

)− 1
2 dx

µ

(n)

dτ

dxν
(n)

dτ
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Canonical Momentum

One-particle action ⇒ canonical momentum

S = −m
∫

√

−gµν
dxµ

dτ
dxν

dτ
dτ ⇒ q = ∂L

∂v
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Canonical Momentum

One-particle action ⇒ canonical momentum

S = −m
∫

√

−gµν
dxµ

dτ
dxν

dτ
dτ ⇒ q = ∂L

∂v

Geodesic equation

dqi
dτ

= − ∂
∂xi

(

eΨ
√

q2e2Φ − qjqkhjk +m2a2 + qjBj

)

dxi

dτ
= ∂

∂qi

(

eΨ
√

q2e2Φ − qjqkhjk +m2a2 + qjBj

)

Stress-energy tensor

T 0
0 = −δ(3)(x−x(n))

e3Φ

a4

(

√

q2e2Φ − qiqjhij +m2a2 + qiBi

)
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Einstein’s Equations

−a2

2 G
0
0 =

3
2e

−2Ψ (H− Φ′)2 + e2Φ
[

∆Φ− 1
2 (∇Φ)2

]

a2

2 G
0
i = e−Ψ∇i

[

e−Ψ (H− Φ′)
]

− 1
4∆Bi

a2
(

Gi
j −

1
3δ

i
jG

k
k

)

=
(

δikδlj −
1
3δ

i
jδ

kl
)[

eΦ+Ψ∇k∇le
Φ−Ψ − 2e2Φ (∇kΨ) (∇lΨ)+

B′
(k,l) + 2HB(k,l) +

1
2h

′′
kl +Hh′kl −

1
2∆hkl

]

Here I dropped quadratic and higher-order terms only with Bi

or hij .

For computational efficiency the exponentials can be expanded
(weak-field expansion).
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Features

Version 1.1 (public)

• Multiple particle species (CDM, baryons, neutrinos)

• Initial condition generation “on the fly”

• Auto- and cross-power spectra

• Linear perturbations in the radiation field

• Newtonian mode compatible with radiation perturbations
(using N-body gauge)

• Massive neutrinos can be treated as linear perturbations
and/or as particles

Version 1.2 (upcoming)

• Particle & metric light cones for ray tracing and
post-processing

• Linear dark energy fluids (w-cs-parametrization)
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Ray Tracing

Instead of keeping snapshots = {data | τ = τsnap}, we store a
thick light cone = {data | τ − τo + r ∈ [−∆τ,∆τ ]}, where ∆τ is
chosen such that the perturbed light cone ⊂ thick light cone.

In a post-processing step, we integrate backwards in time
(without approximation):

null geodesic
equation

⇓
observed angles &

redshifts

This allows us to construct the statistics of observed sources.
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Preliminary Results
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Concluding Remarks

Backreaction is a real phenomenon that. . .

• can be quantified accurately with numerical experiments

• quantitatively cannot explain observed data without dark
energy

• may nevertheless be relevant for precision cosmology with
future surveys

Our insights from this debate will help us to test gravity on
cosmological scales
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Discussion

• What about boundary conditions?

• What about black holes?

• Is this “full GR” yet?

• How does this compare to Numerical Relativity fluid
simulations?

• What is wrong with arguments that give large effects on
H0?

• Do we need a mathematical proof about backreaction?

• Add your own question here
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Discussion

• What about boundary conditions?

For sufficiently large box, the
Cauchy data for a light cone fits
into the simulation volume. Data
outside the light cone is irrele-
vant and can be chosen to fulfill
periodic boundary conditions.
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Discussion

• What about black holes?

Black holes fall the same way as stars or other matter
(equivalence principle)
⇒ gravitational dynamics of large-scale structure is
unaffected.
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Discussion

• Is this “full GR” yet?

Yes it is.

. . . to the extent that for a particular class of solutions (i.e.
cosmological ones) we obtain an accurate rendition of
spacetime and the matter configuration in it. We do not miss
any relativistic aspects.
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Discussion

• How does this compare to Numerical Relativity fluid
simulations?

Good agreement expected (but further studies warranted)
East, Wojtak & Abel, Phys. Rev. D97 (2018) 043509

Comparison needs to be done based on observables
Adamek, Gosenca & Hotchkiss, Phys. Rev. D93 (2016) 023526

NB: Fluid simulations
often use coordinates in
which the light cone is
heavily distorted!

Naive interpretation
easily fails.

Fluid simulations have no access to the clustering /
multistream regime!
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Discussion

• What is wrong with arguments that give large effects on
H0?

In an inhomogeneous universe the notion of H0 becomes
ambiguous: one can define multiple quantities that coincide
with H0 in the FLRW limit, some of which can be very
sensitive to the presence of inhomogeneities.

Such arguments can be
misleading.

The correct, unambi-
guous procedure is to
predict the statistics of
observed sources. ?

figure: Tammann & Reindl, IAU Symp. 289 (2013) 13
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Discussion

• Do we need a mathematical proof about backreaction?

No (even though I appreciate the effort).

We need a satisfactory understanding of how observed
phenomena arise from laws of nature.
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