
LECTURES ON ORBIFOLDS AND GROUP COHOMOLOGY
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Abstract. The topics discussed in these notes include basic properties and definitions

of orbifolds, and aspects of their cohomology and K–theory. Connections to group coho-

mology and equivariant algebraic topology appear in the context of orbifolds and their

associated invariants. These notes are based on lectures given by the first author at the

summer school on Orbifolds and Transformation Groups, held at Hangzhou China in

June/July 2008.
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1. Introduction

Orbifolds and their invariants play an important role in mathematics. The study of basic

examples of quotients by Lie groups acting with finite isotropy on smooth compact mani-

folds leads to applications of ideas and techniques ranging from differential geometry and

topology to algebraic geometry, group cohomology, homotopy theory and mathematical

physics.

In these lecture notes we present some basic definitions and properties of orbifolds em-

phasizing their connections to algebraic topology and group cohomology. The language of

∗Partially supported by NSERC and NSF.
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groupoids provides a convenient mechanism for connecting these apparently distinct top-

ics, and the global perspective this provides yields useful insight. In particular techniques

from classical transformation groups can be used to construct interesting examples and

formulate calculations in terms of better understood invariants from algebraic topology,

such as cohomology and K–theory. Plenty of examples are provided both as a source

of motivation and as a way to facilitate the understanding of the theory. We also dis-

cuss a stringy product in orbifold K–theory that was recently introduced in [5], which is

motivated by the Chen–Ruan product in orbifold cohomology.

These notes are intended for graduate students interested in the general topic of orbifolds

and their invariants. They reproduce the lectures given at the 2008 Hangzhou Summer

School on Orbifolds and Transformation Groups by the first author. Thus they are not

meant to be complete or fully rigorous; rather their goal is to motivate casual readers to

learn more about the subjects discussed here by consulting the literature; we offer the

book [2] and the references therein as a good place to start. Moreover for these notes this

book will be the standard reference, and we will omit referring to it to avoid repetition.

Both authors would like to thank the organizers of the summer school for their hospi-

tality, and in particular Lizhen Ji for his wonderful enthusiasm for mathematics and his

encouragement to write up these notes.

2. Classical orbifolds

In this section we give a definition of an orbifold from a geometric point of view which

is close to the original one (see [23] for Satake’s definition of V-manifold).

Definition 2.1. Let X be a topological space and fix n > 0.

(1) An n-dimensional orbifold chart on X is given by a connected open subset Ũ ⊆ Rn,

a finite group G of effective smooth automorphisms of Ũ , and a map ϕ : Ũ → X

such that ϕ is G-invariant and induces an homeomorphism of Ũ/G onto an open

subset U ⊆ X.

(2) An embedding λ : (Ũ , G, ϕ)→ (Ṽ , H, ψ) between two charts is a smooth embedding

λ : Ũ → Ṽ such that ψ ◦ λ = ϕ.

(3) An orbifold atlas on X is a family U =
{

(Ũ , G, ϕ)
}

of charts which cover X and are

locally compatible: given two charts (Ũ , G, ϕ) with U = ϕ(Ũ) and (Ṽ , H, ψ) with

V = ψ(Ṽ ), and a point x ∈ U∩V , there exists an open neighborhood W ⊆ U∩V of

x and a chart (W̃ ,K, φ) with φ(W̃ ) = W and such that there are two embeddings

λ : (W̃ ,K, φ)→ (Ṽ , H, ψ) and µ : (W̃ ,K, φ)→ (Ũ , G, ϕ).
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(4) An atlas U refines another atlas W if for every chart in U there exists an embedding

into some chart of W. Two orbifold atlases are equivalent if they have a common

refinement.

Definition 2.2. A (classical) orbifold X of dimension n is a paracompact Hausdorff space

X equipped with an equivalence class [U] of n-dimensional orbifold atlases.

Remark. We collect here some technical facts about orbifolds that are supposed to give a

better understanding of the above definition:

(1) For every chart (Ũ , G, ϕ) of an orbifold X, the group G acts freely on a dense open

subset of Ũ .

(2) By local smoothness, every orbifold has an atlas consisting of linear charts (Rn, G, ϕ)

where G ⊂ O(n) (see [9]).

(3) An embedding λ : (Ũ , G, ϕ) → (Ṽ , H, ψ) between two charts induces an injection

λ : G→ H.

(4) Every atlas is contained in a unique maximal one and two atlases are equivalent if

and only if they are contained in the same maximal one.

(5) If all the G-actions of an atlas are free, then X is a honest manifold.

Given the remarks above, we can think of an orbifold as a ”space with isolated singu-

larities”; a notion that we make more precise with the next two definitions:

Definition 2.3. Let x ∈ X with X = (X,U) an orbifold. The local group at x is the

group Gx = {g ∈ G|gu = u} where (Ũ , G, ϕ) is any local chart with ϕ(u) = x. The group

Gx is well defined up to conjugation. For an orbifold X = (X,U) its singular set is the

subspace Σ(X) = {x ∈ X|Gx 6= 0}. A point in Σ(X) is a singular point of the orbifold X.

Let us now turn our attention to the notion of a map between two orbifolds (which

turns out to be a more subtle concept that one might expect, as we will see later). We

give a first definition in the current geometric setting:

Definition 2.4. Let X = (X,U) and Y = (Y,V) be two orbifolds. A map f : X → Y is

a smooth map between orbifolds if for any point x ∈ X there are charts (Ũ , G, ϕ) around

x and (Ṽ , H, ψ) around f(x), with the property that f maps ϕ(Ũ) into ψ(Ṽ ) and can be

lifted to a smooth map f̃ : Ũ → Ṽ with ψf̃ = fϕ. Two orbifolds are diffeomorphic if

there are smooth maps f : X → Y and g : Y → X with fg = IdY and gf = IdX .

A way to construct orbifolds is to take the quotient of a manifold by some nice group

action. Let M be a smooth manifold and G a compact Lie group acting smoothly, effec-

tively and almost freely on M (i.e. with finite isotropy). For each element x ∈M there is
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a chart U ∼= Rn of M around x which is Gx invariant. The triples (U,Gx, π : U → U/Gx)

are the orbifold charts.

Definition 2.5. A quotient orbifold is an orbifold given as the quotient of a smooth,

effective, almost free action of a compact Lie group G on a smooth manifold M . If the

group G is finite, the associated orbifold is called a global quotient.

Remark. If a compact Lie group G acts smoothly and almost freely on a manifold M , then

we have a group extension:

1→ G0 → G→ Geff → 1

where G0 is finite and Geff acts effectively. Even though M/G = M/Geff , the original

G-action does not give a classical orbifold. This will be one of the motivations for a more

general definition of an orbifold, not involving the effective condition (see definition 5.15).

3. Examples of Orbifolds

(a) Consider a finite subgroup G ⊂ GLn(Z); it acts smoothly on the torus X = Rn/Zn

giving rise to a so called toroidal orbifold X → X/G (see [3] for a discussion of their

properties). Many important examples are of this form.

• The matrix−I ∈ GL4(Z) defines a Z/2-action given by τ(z1, z2, z3, z4) = (z−1
1 , z−1

2 , z−1
3 , z−1

4 ).

The quotient T4/G is the Kummer surface and it has sixteen isolated singularities.

• The group Z/4 acts on C3 via τ(z1, z2, z3) = (−z1, iz2, iz3). There is a lattice M ⊂ C3

on which the action has the form:

τ(a1, a2, a3, a4, a5, a6) = (a−1
1 , a−1

2 , a4, a
−1
3 , a6, a

−1
5 ).

This gives rise to a Z/4-action on T6 which has 16 isolated fixed points and [T6]
Z/2

consists

of 16 copies of T2. This example arises in the work of Vafa and Witten and has also been

studied by Joyce who has shown that it has 5 different desingularizations (see [16]).

• The action of (Z/2)2 on T6 defined on generators by:

σ1(z1, z2, z3, z4, z5, z6) = (z−1
1 , z−1

2 , z−1
3 , z−1

4 , z5, z6)

σ2(z1, z2, z3, z4, z5, z6) = (z−1
1 , z−1

2 , z3, z4, z
−1
5 , z−1

6 )

defines a toroidal orbifold T6/(Z/2)2 with {±1}6 as the set of fixed points and (T6)<σ1> ∼=

(T6)<σ2> ∼= T2 × {±1}4. Joyce showed that in contrast to the previous example, this

orbifold has many desingularizations (see [16]).
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(b) There are also beautiful examples defined using algebraic equations. Let Y be the

degree 5 hypersurface of CP 4 defined by the equation:

z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + ϕz0z1z2z3z4 = 0

where ϕ is a generic constant. The group G = (Z/5)3 acts on Y via:

e1(z0, z1, z2, z3, z4) = (λz0, z1, z2, z3, λ
−1z4)

e2(z0, z1, z2, z3, z4) = (z0, λz1, z2, z3, λ
−1z4)

e3(z0, z1, z2, z3, z4) = (z0, z1, λz2, z3, λ
−1z4)

where λ is a fifth root of the unity and the ei’s are the obvious generators of G. The

quotient Y/G is the very popular mirror quintic.

(c) Another family of examples arises from the natural action of the permutation group Sn

on the product Mn = M×· · ·×M of n copies of a smooth manifold M . The quotient space

SP n(M) = Mn/Sn is called the symmetric product and is of great interest in algebraic

geometry and topology.

(d) Yet another family of important examples arises from quotient singularities of the form

Cn/G for a subgroup G ⊂ GLn(C). They have the stucture of an algebraic variety arising

from the algebra of G-invariant polynomials in Cn. They appear in the context of the

McKay correspondence (see [22]).

(e) For a choice of n+1 coprime integers a0, ..., an; the circle group S1 acts on S2n+1 ⊂ Cn+1

as follows:

λ(z0, ..., zn) = (λa0z0, ..., λ
anzn)

for every λ ∈ S1. Since the integers are coprime, the action is effective and the quo-

tient orbifold WP(a0, ..., an) = S2n+1/S1 is called the weighted projective space. The case

WP(1, 2) has the shape of a teardrop. The WP’s are examples of orbifolds which are NOT

global quotients.

4. Orbifolds and manifolds

Similarly to the case of manifolds, we can construct a tangent bundle over an orb-

ifold. The tangent bundle of an orbifold carries the following properties reminiscent of the

manifold structure:
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Proposition 4.1. The tangent bundle TX = (TX, TU) of an n-dimensional orbifold has

the structure of a 2n-dimensional orbifold and the projection p : TX→ X defines a smooth

map of orbifolds with fibers p−1(x) = Tx̃Ũ/Gx̃.

Remark. The tangent bundle is an important object because it allows us to define some of

the manifold structures over orbifolds. We can construct for example the dual bundle T ∗X

of TX, the frame bundle Fr(X) and the exterior power
∧
T ∗X. In this way we can also

define Riemannian metrics, almost complex structures, orientability, differential forms and

De Rham cohomology.

The objects above satisfy, among others, the following properties:

Proposition 4.2. The orbifold De Rham cohomology with real coefficients depends only

on the underlying space, i.e H∗
DR(X,R) ∼= H∗(X,R). If X is an orientable orbifold, then

H∗
DR(X) is a Poincare duality algebra, in particular for a proper, almost free action of a

compact Lie group G on a smooth manifold M , the De Rham cohomology of the quotient

orbifold satisfies Poincare duality.

This in particular says that De Rham cohomology is not the most appropriate for

orbifolds since, in the case of a group action on a manifold for example, it only carries

information about the quotient, forgetting the group action giving rise to it. Another

interesting result is:

Theorem 4.3. For a given orbifold X, its frame bundle Fr(X) is a smooth manifold with

a smooth, effective and almost free O(n)-action. In this way X is naturally isomorphic to

the resulting quotient orbifold Fr(X)/O(n).

Remark. The theorem above says in particular that every classical orbifold is a quotient

orbifold. The manifold and the group action from which we can obtain a given orbifold

are not unique.

5. Orbifolds and groupoids

We now set some categorical notions which will be used to re-define and generalize the

concept of an orbifold. Our work will be justified by theorem 5.14 (see [20]).

Definition 5.1. A groupoid is a small category in which every morphism is an isomor-

phism.

Definition 5.2. A topological groupoid G is a groupoid whose sets of objects G0 and

arrows G1 are endowed with a topology in such a way that the five following maps are

continuous:
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(1) s : G1 → G0, where s(g) is the source of g,

(2) t : G1 → G0, where t(g) is the target of g,

(3) m : G1s×tG1 = {(h, g) ∈ G1 ×G1|s(h) = t(g)} → G1, where m(h, g) = h ◦ g is the

composition,

(4) u : G0 → G1, where u(x) is the identity of x,

(5) i : G1 → G1, where i(g) is the inverse of g.

Definition 5.3. A Lie groupoid G is a topological groupoid where G0 and G1 are smooth

manifolds with s, t smooth submersions and m, u and i smooth maps.

Example 5.4. Let G be Lie group acting smoothly from the left on a smooth manifold

M . One defines a Lie groupoid GnM by setting (GnM)0 = M and (GnM)1 = G×M .

The source map s : G×M →M is the projection, the target map t : G×M →M is the

action and the composition is defined by the product in the group G: if (g, x) ∈ G×M and

(g′, x′) ∈ G×M are such that s(g, x) = x = g′x′ = t(g′, x′) then (g, x) ◦ (g′, x′) = (gg′, x′).

Definition 5.5. Let G be a Lie groupoid. For a point x ∈ G0 the set of all arrows from

x to x form group denoted by Gx and called the isotropy group at x. The set ts−1(x) of

targets or arrows out of x is called the orbit of x. The orbit space |G| of G is the quotient

space of G0 under the relation: x ∼ y iff x and y are in the same orbit, i.e. iff there is an

arrow going from x to y.

Remark. Since Gx = s−1(x) ∩ t−1(x) and s and t are submersions, we have that Gx is a

Lie group.

Before establishing the connection between orbifolds and groupoids, we need more def-

initions:

Definition 5.6. Let G be a Lie groupoid.

(1) G is proper if (s, t) : G1 → G0 × G0 is proper (recall that a map is proper if the

pre-image of every compact is compact),

(2) G is a foliation groupoid if each isotropy group is discrete,

(3) G is étale if s and t are local diffeomorphisms. In this case we define the dimension

of G as follow: dim(G) = dim(G0) = dim(G1).

We remark immediately that every étale groupoid is a foliation groupoid. Furthermore

if G is a proper foliation groupoid, then all the isotropy groups are finite. It follows that

given a proper, étale groupoid G, for any point x ∈ G0 there exists a neighborhood Ux of

x with the following property: for any g ∈ Gx let σ : Ux → Wg be a local inverse to s with
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t : Wg → Ux a diffeomorphism. Then t ◦ σ : Ux → Ux is a well defined diffeomorphism of

Ux. Thus we have a map Gx → Diff(Ux).

Definition 5.7. A proper, étale groupoid G is effective if the above group homomorphism

Gx → Diff(Ux) is injective.

We begin now the discussion concerning morphisms.

Definition 5.8. A homomorphism between two Lie groupoids G and H is a functor φ :

G→ H such that the two maps φ0 : G0 → H0 and φ1 : G1 → H1 are smooth.

A natural transformation between two homomorphisms φ, ψ : G → H is a categorical

natural transformation α : ψ → φ between the two functors such that α : H0 → G1 is a

smooth map.

Definition 5.9. A homomorphism φ : G→ H between Lie groupoids is called an equiva-

lence if:

(1) The map t ◦ π1 : G1s×φH0 → G0 defined on the fibered product of manifolds

{(g, y) ∈ G1 ×H0|s(g) = φ(y)} is a surjective submersion.

(2) The square:

H1

φ
//

(s,t)
��

G1

(s,t)
��

H0 ×H0
φ×φ

// G0 ×G0

is a fibered product of manifolds.

This crucial but rather mysterious definition hides the fact that an equivalence is in

particular an equivalence of categories. This will be important in the sequel.

Definition 5.10. Two Lie groupoids G and G′ are Morita equivalent if there exists a

third groupoid H and two equivalences:

G← H→ G′

Remark. If two Lie groupoids G and G′ are Morita equivalent, then G is proper (resp.

foliation) iff G′ is proper (resp. foliation). However, being étale is NOT invariant under

Morita equivalence.

The above definitions are related by the following theorem:
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Theorem 5.11. A Lie groupoid is a foliation groupoid iff it is Morita equivalent to an

étale groupoid and a Lie groupoid is a proper, foliation groupoid iff it is Morita equivalent

to a proper, étale groupoid (see [21]).

Example 5.12. Consider as usual a compact Lie group G acting on a smooth manifold

M with finite stabilizers Gx. Then G n M is a Lie groupoid. By the slice theorem for

smooth actions, for all x ∈ M we have a slice Vx ⊂ M for which the action defines a

diffeomorphism K ×Gx
Vx → M onto an open neighborhood Ux of x. Then Gx n Vx is

an étale groupoid Morita equivalent to Gn Ux. Patching these étale groupoids together,

yields an étale groupoid Morita equivalent to GnM .

We now turn to the relation between groupoids and classical orbifolds.

Proposition 5.13. Let G be a proper, effective, étale groupoid. Then its orbit space

X = |G| carries an orbifold structure constructed from the groupoid G.

We are now in the following situation: to every classical orbifold X we can associate a

proper, effective, étale groupoid GX = O(n) n Fr(X) and to every proper, effective, étale

groupoid G we can associate an orbifold |G|. Moreover, by construction, we have that

|GX| ∼= X. The key theorem relating orbifolds to groupoids is the following.

Theorem 5.14. Two proper, effective, étale orbifolds G and G′ give rise to the same

classical orbifold up to isomorphism if and only if they are Morita equivalent (see [20]).

We can now generalize the notion of an orbifold, leaving out the effective condition (see

end of section 2).

Definition 5.15. An orbifold groupoid is a proper, étale, Lie groupoid. An orbifold

structure on a paracompact Hausdorff space X consists of an orbifold groupoid G and a

homeomorphism f : |G| → X. If φ : H → G is an equivalence, then |φ| : |H| → |G| is a

homeomorphism and we say that the composition f ◦ |φ| : |H| → X defines an equivalent

orbifold structure on X. An orbifold X is a paracompact, Hausdorff space X with an

equivalence class of orbifold structures. A specific structure f : |G| → X is called a

presentation of the orbifold X.

Example 5.16. Under this new definition the weighted projective space WP(a0, ..., an) is

an orbifold for any choice of the integers a0, ..., an.

To define maps between orbifolds we have to keep in mind the fact that an orbifold

may have different presentations and we want to be allowed to take refinements before
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defining our map. From the groupoid point of view this means considering maps that

factor through Morita equivalence.

Definition 5.17. A generalized map between two Lie groupoids G and H is a pair of

maps:

H H′ε
oo

φ
// G

such that φ is a homomorphism of groupoids and ε is an equivalence of groupoids.

A map between two orbifolds Y → X presented by GY and GX is a continuous map of

underlying spaces Y → X together with an orbifold morphism GY → GX such that the

following diagram commutes:

GY

��

// GX

��

Y // X

Now, for a given orbifold X we choose a presentation f : GX → X. We can then consider

the simplicial object given by the nerve N•GX of the underlying category. Taking the

geometric realization BGX = |N•GX| we get a classifying space arising from the orbifold

structure. Since Morita equivalent Lie groupoids are in particular equivalent categories,

we obtain:

Proposition 5.18. If G and G′ are Morita equivalent Lie groupoids, then BG and BG′

are homotopy equivalent. For the action groupoid GnM , its classifying space B(GnM)

is homotopy equivalent to the Borel construction EG×G M .

Based on this we can define:

Definition 5.19. Let X be an orbifold and G any groupoid representing X via a given

homeomorphism f : |G| → X.

(1) The nth orbifold homotopy group of X based at x ∈ X is the group:

πn(X, x) = πn(BG, x̃)

where x̃ ∈ G0 maps to x under the composition G0 → |G| → X.

(2) Let R be a commutative ring with unit. The singular cohomology of X with

coefficients in R is H∗(X, R) = H∗(BG, R).

Remark. The map G0 → |G| gives rise to a map π : BG → |G|. For the action groupoid

B(G n M) ' EG ×G M and the map above is the projection EG ×G M → M/G which
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induces an isomorphism π∗ : H∗(|G|,Q) → H∗(BG,Q). The above definition of fun-

damental group recovers Thurston’s orbifold fundamental group, which plays a role for

orbifold covers analogous to that of the usual fundamental group (see [24]). The notion

of orbifold homotopy groups has been generalized by Leida in [18], where he introduces

extended orbifold homotopy groups as a more complete invariant, which encodes notions

from equivariant homotopy theory.

We end the section with some calculation involving two examples already given (see

section 2).

Example 5.20. For a toroidal orbifold, BX ' EG ×G Tn which is a K(Γ, 1) with Γ =

Zn n G. Therefore π1(X) = Γ, πk(X) = 0 for k > 1 and H∗(X) = H∗(Γ). In particular

for the Kummer surface one can calculate the cohomology of the corresponding group and

obtain:

H i(BX,Z) =





Z, if i = 0;

0, if i is odd;

Z6 ⊕ (Z/2)5, if i = 2;

Z⊕ (Z/2)15, if i = 4;

Z16, if i > 4 even.

Example 5.21. For a weighted projective space given by the action of S1 on S3, we have

as usual BX ' ES1 ×S1 S3 which gives a fibration S3 → BX → CP∞. We deduce then

that π1(X) = 0, π2(X) = Z and πk(X) = πk(S
3) for k > 2.

Using the spectral sequence of the above fibration, we can compute the cohomology

groups. Observe first that:

E∗∗
2 = H∗(CP∞)⊗H∗(S3) = Z [z]⊗ E(e3)

Assume now that our weighted projective space is of the form WP(p, q) with p, q distinct

primes. Then the image of e3 under the differential of the second page of the spectral

sequence is: d(e3) = pqz2. (This follows from the fact that only 1, Z/p, Z/q ⊂ S1 have

fixed points). Therefore:

H i(BX,Z) =





Z, if i = 0, 2;

Z/pq, if i > 2 is even;

0, if i > 0 is odd.

Note that |G| = S2 and that BX 'Q |G| as expected.
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6. The Orbifold Euler Characteristic and K–theory

We now introduce the notion of an orbifold Euler characteristic. This number was first

introduced by physicists in the late 1980’s (see [12] and [13]).

Definition 6.1. Let M be a smooth manifold with a smooth, effective G-action, where

G is a finite group. The orbifold Euler characteristic for M →M/G is defined as:

χorb(M/G) = (1/|G|)
∑

gh=hg

χ(M<g,h>)

After some manipulations, this number becomes:

χorb(M/G) =
∑

(g)

χ(M<g>/ZG(g))

where ZG(g) is the centralizer of g in G and the sum runs over the congugacy classes of

elements g in G.

Given M a manifold with a G-action, consider

Y = {(x, g) ∈M ×G|gx = x} .

If h ∈ G, then we define h(x, g) = (hx, hgh−1). The new quotient Y → Y/G is called the

inertia orbifold and it is usually denoted by ΛX, where X stands for the original orbifold

(M/G,U).

It turns out that

|ΛX| ∼=
∏

(g)

M<g>/ZG(g).

The pieces corresponding to g 6= 1 are called the twisted sectors. Note that for g = 1 we

get M/G. In this context we are interested in the inertia orbifold because it yields the

following property:

χorb(X) = χ(|ΛX|).

Example 6.2. For the Kummer surface T4 → T4/(Z/2) we have:

χorb(X) = χ(T4/(Z/2)) + 16 = 8 + 16 = 24.

We now give a K-theoretic interpretation of the orbifold Euler characteristic defined

above. For a finite group G, the standard G-equivariant K-theory admits the following

decomposition (see [7])

K∗
G(M)⊗ C ∼= ⊕(g)K

∗(M<g>/ZG(g))⊗ C
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so that:

χorb(X) = dim(K0
G(M)⊗ C)− dim(K1

G(M)⊗ C).

In order to give a more general interpretation using orbifold K-theory, we need the

notion of vector bundles for orbifolds.

Definition 6.3. Let G be an orbifold groupoid. A right G-space is a manifold E with

a G-action; which is given by two maps: π : E → G0 and µ : E ×G0
G1 → E, where

E ×G0
G1 = {(e, g) ∈ E ×G|π(e) = t(g)}. We write µ(e, g) = eg and the maps satisfy the

usual properties:

(1) π(eg) = (s(g)),

(2) e1x = e,

(3) (eg)h = e(gh) whenever defined.

Definition 6.4. A vector bundle over a groupoid G is a G-space E for which π : E → G0

is a vector bundle and the action of G on E is fibrewise linear, i.e. any arrow g : x → y

induces a linear isomorphism g−1 : Ey → Ex.

We write V ect(G) for the category of vector bundles on G and we observe that if G is

Morita equivalent to H, then V ect(G) is equivalent to V ect(H)

Proposition 6.5. If X is a quotient orbifold M → M/G, then V ect(X) is equivalent to

V ectG(M), the category of G-equivariant vector bundles on M . In particular:

Korb(X) ∼= KG(M)

Note that if a quotient is represented in two ways, M → M/G and N → N/H then

KH(N) ∼= Korb(X) ∼= KG(M).

For a classical orbifold we have Korb(X) ∼= KO(n)(Fr(X)) so that the next goal is to

compute Korb(X) for a quotient orbifold. Assume that G is a compact Lie group acting

smoothly on M , therefore admitting an equivariant cellular decomposition. We have the

following spectral sequence converging to K∗
G(M):

Epq
1 =

{
⊕[∆p]R(G∆p

), if q is even;

0, if q is odd.

Thus we have: χorb(M) =
∑

[∆p]

(−1)prk(R(G∆p
)), where [∆p] is the equivalence class of

the p-cell ∆p and R(G∆p
) is the representation ring of the isotropy subgroup G∆p

. Using
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an equivariant Chern character, the following decomposition of orbifold K–theory can be

obtained for quotient orbifolds M →M/G:

Theorem 6.6. If X is a quotient orbifold M → M/G, where G is a compact Lie group

acting smoothly and almost freely on M , then there is a multiplicative isomorphism:

Korb(X) ∼=
∏

(C)

(K(MC/ZG(C))⊗Q(ζ|C|))
WG(C)

where the product is taken over conjugacy classes of finite cyclic subgroups C ⊂ G, ζ|C| is

a primitive |C|–th root of unity and WG(C) = NG(C)/ZG(C) (see [4]).

Corollary 6.7. It follows that: Korb(X)⊗Q ∼= K(|ΛX|)⊗Q.

Example 6.8. For the Kummer surface T4 → T4/(Z/2) we have that (T4)Z/2 = {±1}4

and therefore

Korb(X) ∼=Q K(|X|)×K({±1}4) ∼= K(T4/(Z/2))×Q16

Example 6.9. Consider X = WP(p, q) with p, q two distinct primes. Then Korb(X) =

KS1(S3) where the action of S1 on S3 is given by λ(v, w) = (λpv, λqw). The quotient space

has two singular points [(1, 0)] and [(0, 1)] with isotropy Z/p and Z/q respectively. We have

(S3)Z/p = {(v, 0)|v ∈ S1} and (S3)Z/q = {(0, w)|w ∈ S1}. Moreover (S3)Z/p/S1 = [(1, 0)]

and (S3)Z/q/S1 = [(0, 1)], so that:

Korb(X) ∼=Q Q(ζp)×Q(ζq)×K(S1)

and χorb(X) = p− 1 + q − 1 + 2 = p+ q.

Example 6.10. There are some important examples known as arithmetic orbifolds that

can be analyzed in this context. Let G(R) be a semisimple arithmetic group, K ⊂ G(R) a

maximal compact subgroup and Γ ⊂ G(Q) an arithmetic subgroup. Then Γ acts properly

on X = G(R)/K. Moreover XH is contractible if H is finite and XH = ∅ otherwise.

Replacing X with the Borel–Serre compactification, we can assume that these spaces are

of finite type, and that we can apply the methods outlined here. Then we have

χorb(X/Γ) =
∑

(γ)

χ(BZΓ(γ))

where the sum runs over the conjugacy classes of finite order elements of Γ; in fact we

have the following computation which appears in [1] (see also [19]):

K0
Γ(X)⊗Q = ⊕(γ)H

ev(ZΓ(γ),Q)
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K0
Γ(X)⊗Q = ⊕(γ)H

odd(ZΓ(γ),Q)

where ZΓ(γ) denotes the centralizer of γ in Γ.

Example 6.11. Set Γ = G1 ∗H G2 for some subgroup H ⊂ G1, H ⊂ G2. Here we assume

that G1 and G2 are finite. The spectral sequence here is:

K0
Γ(X)→ R(G1)⊕R(G2)→ R(H)→ K1

Γ(X)

and

χorb(X/Γ) = rk(R(G1)) + rk(R(G2))− rk(R(H)),

where for a finite group Q, R(Q) denotes its ring of complex characters. We can identify

K0
Γ(X) = lim

H⊂Γ
R(H) where the limit is taken over finite subgroups H ⊂ Γ subject to

inclusions and conjugation (so-called stable elements). It has rank equal to n(Γ), the

number of distinct conjugacy classes of elements of finite order in Γ. Now, from our

sequence above we have that:

χorb(X/Γ) = n(G1) + n(G2)− n(H) = n(Γ)− dimK1
Γ(X)⊗Q

and this yields the following

Theorem 6.12. Let Γ = G1 ∗H G2 denote an amalgamated product of finite groups. Then

the number of distinct conjugacy classes of elements of finite order in Γ is given by

n(Γ) = n(G1) + n(G2)− n(H) +
∑

(γ)

dimQH
1(ZΓ(γ),Q)

where the sum runs over the conjugacy classes of elements of finite order in Γ.

In particular for Γ = SL2(Z) = (Z/6) ∗(Z/2) (Z/4) we have n(Γ) = 6 + 4− 2 = 8, since

all the centralizers ZΓ(γ) are finite. For Γ = S3 ∗(Z/3) S3 we have n(Γ) = 4, since there

exists an element γ ∈ Γ of finite order with H1(ZΓ(γ)) ∼= Q.

7. Stringy Products in K–theory

We start by considering a basic example: let G be a finite group and KG(G) its G-

equivariant complex K-theory with respect to the conjugation action. From the decom-

position into orbits of the form G/ZG(g), we see that KG(G) ∼=
∑

(g) R(ZG(g)) where the

sum runs over the conjugacy classes of elements g in G. We are interested in the following

special product on KG(G): a bundle over G can be thought of as a complex vector space



LECTURES ON ORBIFOLDS AND GROUP COHOMOLOGY 16

with a G-action, V =
∑

g∈G Vg, such that hVg = Vhgh−1. Given two bundles V and W , we

define their product as:

(V ∗W )g =
∑

st=g

Vs ⊗Wt

This product was first introduced by Lusztig and also appears in the work of physicists

(see [10]).

Example 7.1. Consider G = Z/2. In this case KG(G) has a Z-basis s0, s1, t0, t1 with

products given by:

s0 s1 t0 t1
s0 s0 s1 t0 t1
s1 s1 s0 t1 t0
t0 t0 t1 s0 s1

t1 t1 t0 s1 s0

Another way of understanding this product is by using the multiplication map. We have

three G-equivariant maps e1, e2, e12 : G×G → G, given by e1(g, h) = g, e2(g, h) = h and

e12(g, h) = gh. Then we have:

α ∗ β = (e12)∗(e
∗
1(α) · e∗2(β))

This is also know as the Pontryagin product, better known for H∗(G), G a topological

group. Our next goal is to extend this to an orbifold setting and to develop a twisted

version of it; we will follow the exposition in [5].

In order to generalize the previous concepts to orbifolds, we need to introduce some

definitions.

Definition 7.2. Given a groupoid G, its inertia groupoid ΛG is given by

ΛG0 = {g ∈ G1|s(g) = t(g)}

and

ΛG1 = {(a, v) ∈ G1 ×G1|s(a) = t(a) = s(v)}

with s(a, v) = a and t(a, v) = v−1av.

More generally we define the groupoid of k-sectors Gk as:

Gk
0 =

{
(a1, ..., ak) ∈ G

k
1|s(ai) = t(ai) ∀ i = 1, ..., k

}

Gk
1 =

{
(a1, ..., ak, u) ∈ G

k+1
1 |s(ai) = t(ai) ∀ i = 1, ..., k and t(ak) = s(u)

}

and with s(a1, ..., ak, u) = (a1, ..., ak) and t(a1, ..., ak, u) = (u−1a1u, ..., u
−1aku).
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As in the group case explained above, we have three maps e1, e2, e12 : G2 → ΛG defined

by e1(a1, a2) = a1 and e1(a1, a2, u) = (a1, u); e2(a1, a2) = a2 and e2(a1, a2, u) = (a2, u);

e12(a1, a2) = a1a2 and e12(a1, a2, u) = (a1a2, u).

Remark. If U/G is a local chart for G, then (
∐

g∈G U
g)/G is a local chart for ΛG and

(
∐

g1,g2∈G U
g1 ∩ Ug2)/G is a local chart for the 2-sectors. The three embeddings above

correspond to the three inclusions (U g1 ∩Ug2) ⊂ Ug1 , (Ug1 ∩Ug2) ⊂ Ug2 and (Ug1 ∩Ug2) ⊂

Ug1g2.

Consider the pull back:

H //

��

G2

e1

��

G2
e12

// ΛG

In fact we can identify H with G3 i.e. we can think of the two copies of G2 as suborbifolds

of ΛG under e1, e12 and with intersection G3:

G3
π2

//

π1

��

G2

e1

��

G2
e12

// ΛG

The problem is that the intersection is not transverse in general. Let

ν = ((e12π1)∗T (ΛG))/(π∗
1TG2 ⊕ π∗

2TG2)

This is called the excess bundle of the intersection. We have an additional ingredient:

there exists a bundle E defined on Gk such that EG3 = π∗
1EG2⊕π∗

2EG2⊕ν, which is called

the obstruction bundle. We are now ready to define our product in this more general

setting.

Definition 7.3. For G an almost complex orbifold and for α, β ∈ K(ΛG), we define

α ∗ β = (e12)∗(e
∗
1(α) · e∗2(β) · e(EG2)) where e(EG2) is the Euler class.

Theorem 7.4. This defines an associative product on K(ΛG).

The basic ingredients to prove the theorem are (see [5]) the obstruction bundle and

Quillen’s clean intersection formula: if i1 : H1 → G and i2 : H2 → G are suborbifolds

forming a clean intersection, then for u ∈ K(H1) we have i∗2i1∗u = π2∗(π
∗
1u · e(ν)). This

yields the K–theoretic version of the Chen–Ruan product.
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8. Twisted version

Let’s go back to the basic example above and consider a finite group G. In this case

sometimes the twisting can be understood very explicitly. Let α ∈ Z2(G,U(1)) denote a

2-cocycle, which gives rise to a central extension:

1 // S1 // G̃α
// G // 1

If M is a closed manifold with a G-action, we can consider all G̃α-bundles over M such

that the action restricts on S1 to scalar multiplication on the fibers. This gives rise to
αKG(M) in the usual way. For this construction, the usual pairing gives:

αKG(M)⊗ βKG(M)→ α+βKG(M)

i.e. the level jumps. Our goal will be to define a product on αK(ΛG) (for suitable twisting)

which is based on the product defined previously in the untwisted case.

What we have to do now, is to define a twisting where the levels match up to give the

wanted product. Dijkgraaf and Witten (see [11]) describe the inverse transgression, which

for G a compact Lie group inverts the usual map H3(G)→ H4(BG). We look first at the

case when G is finite. In this context their construction is of the form

Z3(G,U(1))→ Z2(ZG(h), U(1))

α 7→ θ(α)h where:

θ(φ)h(g1, g2) = φ(g1, g2, h)− φ(g1, h, g2) + φ(h, g1, g2)

for g1, g2 ∈ ZG(h). We extend this to orbifolds by defining a cochain map on continous

U(1)–valued cochains:

θ : Ck+1(G, U(1))→ Ck(∧G, U(1))

as follows:

θ(φ)(a, u1, · · · , uk) = (−1)kφ(a, u1, · · · , uk) +

k∑

i=1

(−1)i+kφ(u1, · · · , ui, ai, ui+1, · · · , uk)

where ai = (u1 · · ·ui)
−1au1 · · ·ui. We have remarked that a twisting cocycle for K-theory

should be in Z2(−, U(1)). Here θ : Z3(G, U(1)) → Z2(ΛG, U(1)) gives rise to a twisting

cocycle for K(ΛG). In order to solve our twisting problem, we have to analyze the compo-

sitions of θ : Ck(G)→ Ck−1(ΛG) with the three maps e∗1, e
∗
2, e

∗
12 : Ck−1(ΛG)→ Ck−1(G2).
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Definition 8.1. Define µ : Ck+2(G, U(1))→ Ck(G2, U(1)) by:

µ(φ)(a, b, u1, · · · , uk) =

φ(a, b, u1, · · · , uk)+
∑

{(i,j) | 0≤i≤j≤k (i,j)6=(0,0)}

(−1)i+jφ(u1, · · · , ui, ai, ui+1, · · · , uj , bj , uj+1, · · · , uk).

A key multiplicative formula is given by the equation:

µδ + δµ = e∗1θ + e∗2θ − e
∗
12θ.

Theorem 8.2. Let φ be a 2-gerbe on an orbifold groupoid G and let α, β ∈ θ(φ)K(ΛG).

Then, if we define:

α ∗ β = e12∗(e
∗
1(α) · e∗2(β) · e(EG2))

this element lies in θ(φ)K(ΛG) and makes it into an associative algebra.

We make some clarifying remarks:

(1) Here we use the definition of twisted K-theory developed in [17] (see also [6]) using

Fredholm operators.

(2) The Euler class is still untwisted.

(3) Recall that we have the three maps:

e∗1 : θ(φ)K(ΛG)→ e∗
1
θ(φ)K(G2)

e∗2 : θ(φ)K(ΛG)→ e∗
2
θ(φ)K(G2)

e∗12 : θ(φ)K(ΛG)→ e∗
12

θ(φ)K(G2)

So that e∗1(α)e∗2(β) ∈ e∗
1
θ(φ)+e∗

2
θ(φ)K(G2). Since φ is a cocycle, the key formula

above becomes

δµ(φ) + e∗12θ(φ) = e∗1θ(φ) + e∗2θ(φ)

where δµ(φ) is a coboundary. Therefore we have a canonical isomorphism

δµ(φ)+e∗
12

θ(φ)K(G2) ∼= e∗
12

θ(φ)K(G2).

Now applying the pushforward yields:

e∗
12

θ(φ)K(G2) e12∗

// θ(φ)K(ΛG)

to obtain an element in θ(φ)K(ΛG).

(4) The cocycle φ ∈ Z3(G, U(1)) defines a cohomology class in H3(BG, U(1)) ∼=

H4(BG,Z) and the inverse trangsression lies in H2(BΛG, U(1)) ∼= H3(BΛG,Z).
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We now go back to the finite group case to construct some examples. For a finite group

G and an element g ∈ G, we have a group homomorphism

ρg : Z× ZG(g)→ G

given by (T i, x) 7→ gix where T generates Z.

Proposition 8.3. If [φ] ∈ H4(G,Z) and e ∈ H1(Z,Z) is the canonical generator, then

ρ∗g([φ]) = [θ(φ)g]⊗ e + [res(φ)]⊗ 1

where θ(φ)g is the inverse transgression.

Remark. The formula given in [11] is in fact a particular case of a ”shuffle product”

type construction, which gives a (co)chain level construction for the multiplication map

ρg : C∗(Z× ZG(g))→ C∗(G).

We restrict now our attention to G an abelian group. In this case ZG(g) = G and

our compatibility condition is simply θ(φ)gh = θ(φ)g + θ(φ)h, i.e. a homomorphism G →

H3(G,Z). The easiest non-trivial examples are elementary abelian 2-groups Gn = (Z/2)n.

Indeed the group Z/2×Z/2 is the smallest group such that its fourth and third cohomology

groups are non-zero. This property holds for all the larger groups of this type. Noting that

2 ·H
∗
(Gn,Z) = 0 we obtain an inclusion H∗(Gn,Z) → H∗(Gn,F2) given by the modulo

2 reduction map. The image is precisely the kernel of the connecting homomorphism

δ : H∗(Gn,F2)→ H∗+1(Gn,Z). However, as the modulo 2 reduction map is injective, this

is the same as the kernel of Sq1 : H∗(Gn,F2)→ H∗+1(Gn,F2).

We have that H∗(Gn,F2) ∼= F2 [x1, ..., xn] with all the generators of degree 1 and

with Sq1xi = x2
i . We can now compute explicitly for G2 and G3. We use the sets

of letters x, y and x, y, z for the variables. Consider first the G2 case and the map

θ∗ : H4(G2,Z) → H3(G2,Z). All the classes in H4(G2,Z) are squares and θ∗ is deter-

mined on H1(G2,Z), hence the coefficient for the unit e must be zero and so θ∗ = 0. This

means that θ(φ)KG2
(G2) ∼= KG2

(G2) for all φ ∈ Z3(G2, U(1)).

We now consider the case G3 with H∗(G3,F2) = F2 [x, y, z] and the cohomology class

Sq1(xyz) = x2yz + xy2z + xyz2

which by construction defines an integral class.

Proposition 8.4. Let g = xaybzc, then

θ∗(x2yz + xy2z + xyz2)g = a(y2z + z2y) + b(x2z + xz2) + c(x2y + xy2)

and this defines an isomorphism G3
∼= H3(G3,Z).
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Hence we see that on this class, the inverse transgression gives rise to non-trivial

classes on all components except the untwisted sectors, as expected and desired. For

φ = x2yz+xy2z+xyz2 we see that θ(φ)KG3
(G3) has an interesting stringy product, which

is very different from the untwisted one and the rank of KG3
(G3) is 64 while the rank of

θ(φ)KG3
(G3) is 22. Calculations for quotients by abelian groups can be found in [8]. An

interesting related product can be found in [15]. For much more on such products in the

context of compact Lie groups, we refer the reader to [14].
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