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Let S be a monoidal category with equalizers that are preserved by the tensor

product. The notion of categories internal to S is defined, generalizing the notions

of monoid and comonoid in S, and extending the usual notion of internal categories,

which is obtained when S is a category with products and equalizers.

The basic theory of internal categories is developed and several applications to

quantum groups are found. Deltacategories are defined; these are algebraic objects

that generalize groups or bialgebras, in the sense that attached to them there is

a monoidal category of representations. Quantum groups are constructed from

deltacategories. In particular a contruction of quantum groups generalizing that of

Drinfeld and Jimbo is presented. An invariant of finite dimensional quasitriangular

Hopf algebras is constructed.
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B.6.1 The binomial theorem . . . . . . . . . . . . . . . . . . . . . 217
B.6.2 Cauchy’s identities . . . . . . . . . . . . . . . . . . . . . . . 220
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Part I

Internal Category Theory
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In this part we develop the basic theory of internal categories and their mor-

phisms. The main goals are to introduce the notions of admissible sections of an

internal category and that of deltacategories.

In chapter 1 we summarize the basic results needed. Although this makes

the presentation considerably self-contained, familiarity with the basic notions of

category theory, in particular monoidal categories, is probably a prerequisite.

Throughout, a fixed monoidal category S will underlie all constructions. Cat-

egories internal to S are defined in section 2.3. The usual notion of internal cate-

gories [Joh 2.1] is obtained when S is a category with products and equalizers; from

the point of view of this work, though, the interesting cases arise when considering

more general monoidal categories.

Monoids and comonoids in S are particular examples of categories internal to S,

but these are in a way the trivial examples. Other basic examples will be discussed

in section 2.4 and as the theory of internal categories is developed in the subsequent

sections. The most interesting examples and applications are postponed for later

parts.

Different choices of S yield different types of internal categories, some of which

have been considered in the literature under various names, e.g. linear categories

[Mit], algebroids (called graphs in [Mal]), coalgebroids [Del], bialgebroids [Rav,

Mal] and others; see table 2.1 in section 2.4.

Most constructions on internal categories that we introduce (admissible sec-

tions, representations) are functorial with respect to functors that are the identity

on objects, but not with respect to arbitrary functors. Notably, there is an al-

ternative notion of morphism, called cofunctors, with respect to which these con-

structions are functorial. Functors and cofunctors, and the corresponding “natural

morphisms” among them are discussed in sections 4.1 and 4.2.
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The monoid of admissible sections is an ordinary monoid in Sets that is at-

tached to every internal category (chapter 5). This assignment generalizes many

constructions already in the literature for the case of ordinary categories.

Each internal category has a category of representations (chapter 6). This is

an ordinary category consisting of objects of S where the internal category acts in

some sense.

A deltacategory (section 7.4) is an internal category for which its category of

representations is monoidal in a natural way. These are interesting from the point

of view of quantum group theory, since the monoid of admissible sections of a

deltacategory in Veck carries a structure of k-bialgebra. This particular application

of the general theory to quantum groups will be developed in chapter 9.

Deltacategories in Sets appear to be very interesting objects as well; several

examples of these are worked out in chapter 8. Categories in Sets are just usual

small categories; one may think of them as “monoids with several objects”. Delta-

categories match this intuition even better, since, as monoids, they yield bialgebras

(after linearization) and monoidal categories of representations, as outlined in table

8.1.
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Chapter 1

Preliminaries on category theory
In this section we collect various basic results in category theory that will get used

throughout this work.

1.1 Forks and equalizers

A fork in a category S is a diagram of the form

E
i // X

f //
g

// Y where fi = gi .

The arrow i is an equalizer of the pair f , g if fi = gi and for any j : E ′ → X with

fj = gj, there is a unique e : E ′ → E such that j = ei.

E
i // X

f //
g

// Y

E ′

e

OO�
�
� j

>>}}}}}}}}

In this case i is unique up to isomorphism; we sometimes write E = EqS(f, g) and

refer to i as the canonical map E
can
−−→ X. This map is always a monomorphism.

A split fork is a fork as above with two more arrows h : Y → X and p : X → E

such that

hf = idX , hg = ip and pi = idE .

Lemma 1.1.1. In every split fork, i is the equalizer of f and g.

Proof. This is lemma VI.6 from [ML], in dual from. (Mac Lane uses “fork” for

what we would call “coforks”).
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1.2 Coreflexive pairs

A coreflexive pair in a category S is a pair X
f //
g
//Y for which there exists an arrow

h : Y → X such that hf = hg = idX .

The following useful result will be referred to as Johnstone’s lemma.

Lemma 1.2.1. Let

X0
f0 //

α0

��

X1

f1 //

f2
//

β0

��

X2

γ0
��

Y0
g0 //

α1

��
α2

��

Y1

g1 //
g2

//

β1

��
β2

��

Y2

γ1
��

γ2
��

Z0 h0

// Z1

h1 //

h2

// Z2

be a diagram in a category S such that

• the squares commute in the “obvious” way, that is

g0α0 = β0f0

h0αi = βig0, i = 1, 2

giβ0 = γ0fi, i = 1, 2

hiβj = γjgi, 1 ≤ i, j ≤ 2

• the rows and columns are equalizer diagrams

• the pairs (γ1, γ2) and (h1, h2) are coreflexive.

Then the diagonal

X0
g0α0 // Y1

h1β1 //

h2β2

// Z2

is an equalizer.

Proof. This is lemma 0.17 in [Joh], in dual form.

The hypothesis of Johnstone’s lemma can be slightly weakened, in view of the

following.
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Lemma 1.2.2. Let

X0
f0 //

α0

��

X1

f1 //

f2
//

β0

��

X2

γ0
��

Y0
g0 //

α1

��
α2

��

Y1

g1 //
g2

//

β1

��
β2

��

Y2

γ1
��

γ2
��

Z0 h0

// Z1

h1 //

h2

// Z2

be a diagram in a category S where all squares commute as before and all three

rows and columns 1 and 2 are equalizers. Then column 0 is also an equalizer.

Proof. First,

h0α2α0 = β2g0α0 = β2β0f0 = β1β0f0 = β1g0α0 = h0α1α0;

hence, α2α0 = α1α0, since h0 is monic.

Now let E
α
−→ Y0 be such that α2α = α1α. We have to show that α factors

through α0 to complete the proof (uniqueness of the factorization follows from the

fact that α0 is monic, which holds since so is g0α0 = β0f0). To this end, consider

the following diagram.

E

α
  A

AA
AA

AA
A
α̃ //___

α̃1

%%s
l f _ X R

K

X0
f0 //

α0

��

X1

f1 //

f2
//

β0

��

X2

γ0
��

Y0
g0 //

α1

��
α2

��

Y1

g1 //
g2

//

β1

��
β2

��

Y2

γ1
��

γ2
��

Z0 h0

// Z1

h1 //

h2

// Z2

First we show that g0α factors through β0, using that column 1 is an equalizer.

Indeed,

β2g0α = h0α2α = h0α1α = β1g0α,

so an arrow α̃1 : E → X1 such that

β0α̃1 = g0α (*)

6



exists. Now,

γ0f2α̃1 = g2β0α̃1

(∗)
= g2g0α = g1g0α

(∗)
= g1β0α̃1 = γ0f1α̃1;

hence, f2α̃1 = f1α̃1, since γ0 is monic. Thus, since row X is an equalizer, there is

an arrow α̃ : E → X0 such that

f0α̃ = α̃1 (**)

Hence

g0α
(∗)
= β0α̃1

(∗∗)
= β0f0α̃ = g0α0α̃,

from where, since g0 is monic,

α = α0α̃

as needed.

Remark 1.2.1. The above result is also a direct consequence of the result on page

227 of [ML] on iterated limits. Take C = 1 // //2 and F : C×C→ S, F (1, 1) = Y1,

F (1, 2) = Y2, F (2, 1) = Z1 and F (2, 2) = Z2. Then, by assumption,

limF (1,−) = Y0, limF (2,−) = Z0, limF (−, 1) = X1 and limF (−, 2) = X2,

from where

lim( Y0
// //Z0 ) = lim

i
lim
j
F (i, j) = lim

j
lim
i
F (i, j) = lim( X1

////X2 ) = X0 ,

which is the desired conclusion. The same type of argument can be used for proving

lemma 1.2.1.

1.3 2-categories

For the basic material on (strict) 2-categories the reader is referred to [KS].
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A strict 2-category K has objects or 0-cells A,B, . . ., arrows or 1-cells f, g, . . .

and 2-cells α, β, . . ., linked by means of source and target maps as suggested by

the following picture:

A

f
##

g

;;Bα
��

.

These data should satisfy the following conditions:

• The objects and the arrows form an ordinary category, with identities idA

and composition depicted as

A
f
−→ B

g
−→ C = A

gf
−→ C

• For each pair of objects A, B, the arrows A → B and the 2-cells between

them form a category, with identities idf and composition depicted as

A

f

��
g //

h

AA

α
��

β
��

B = A

f
##

h

;;β◦α
�� B

These compositions and identities are called the vertical structure of K.

• The objects and the 2-cells form a category, with identities ididA and compo-

sition depicted as

A

f
##

g

;;
α
�� B

u
##

v

;;β
�� C = A

uf
##

vg

;;β∗α
�� C

These composition and identities are called the horizontal structure of K.

• The vertical and horizontal category structures are compatible in the sense

that, in the situation

A

f
##

f

;;
idf
�� B

u
##

u

;;idu
�� C
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we have

idu ∗ idf = iduf ,

and in the situation

A

f

��
g //

h

AA

α
��

β
��

B

u

��
v //

w

AA

γ
��

δ��

C

we have

(δ ◦ γ) ∗ (β ◦ α) = (δ ∗ β) ◦ (γ ∗ α) .

The prototypical example of a 2-category is K = LCat , where the objects are

(large) categories, the arrows are functors and the 2-cells are natural transforma-

tions.

Another example is K = ALGk, where the objects are k-algebras (k being a fixed

field), an arrow A
M
−→ B is a B-A-bimodule M , and the 2-cells are the morphisms

of bimodules. Here vertical composition is the usual composition of maps, while

horizontal composition is the tensor product of bimodules:

A

M
##

N

;;
α
�� B

P
##

Q

;;β
�� C = A

P⊗BM
##

Q⊗BN

;;Cβ⊗Bα
��

.

Other examples will be dealt with in later sections.

1.4 Monoidal categories

The main references for this section are [K, chapter XI] and [P1].

A strict monoidal category S is a (strict) 2-category with just one object. It is

easy to see that this structure can be described more directly as follows. S is an

ordinary category with objects A,B, . . ., arrows f, g, . . ., and in addition there is

given a functor ⊗ : S× S→ S and an object I such that
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• f⊗(g⊗h) = (f⊗g)⊗h for all arrows f, g, h, in particular A⊗(B⊗C) = (A⊗B)⊗C

for all objects A,B,C, and

• idI⊗f = f = f⊗idI for all arrows f , in particular I⊗A = A = A⊗I for all

objects A.

In practice we will meet non-strict monoidal categories, which we will treat as

if they were strict. This is legitimate in view of theorem XI.5.3 in [K].

The category S = Sets of all sets is monoidal, taking ⊗ to be just the cartesian

product and I a one-element set. More generally, any category with finite products

and a final object can be seen as a monoidal category in this way [ML, proposition

III.5]. Such categories are called lex categories.

The category S = Veck of all vector spaces over a field k is monoidal, taking

⊗ = ⊗k to be the usual tensor product over k, and I = k a one-dimensional space.

Several other monoidal categories will be considered in this work.

Notice that if K is a 2-category, then for any object A of K, there is a monoidal

category S = K(A,A) whose objects are the arrows A → A of K and whose

morphisms are the 2-cells of K among these arrows. The tensor product in S

comes from the horizontal composition in K. In section 2.2 we will define a certain

2-category G, then internal categories will be defined as monoids in the monoidal

category G(C,C).

A monoid in a (strict) monoidal category S is a triple (A, µ, u) where A is an

object of S and µ : A⊗A → A and u : I → A are morphisms such that both

diagrams below commute:

A⊗A⊗A
µ⊗idA //

idA⊗µ
��

A⊗A

µ

��
A⊗A µ

// A

I⊗A
u⊗idA //

GGGG
GGG

GG

GGGG
GGG

GG A⊗A

µ

��

A⊗I
idA⊗uoo

www
ww

www
w

www
ww

www
w

A

A module over a monoid A (or an A-module) is a pair (M,χ) where M is an
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object of S and χ : A⊗M → M is a morphism such that both diagrams below

commute:

A⊗A⊗M
µ⊗idM //

idA⊗χ
��

A⊗M

χ

��
A⊗M χ

//M

I⊗M
u⊗idM //

IIIIIIIII

IIIIIIIII A⊗M

χ

��
M

Let A and B be two monoids in S. A morphism of monoids from A to B is a

morphism f : A→ B in S such that both diagrams below commute:

A⊗A
f⊗f //

µA
��

B⊗B

µB
��

A
f

// B

A
f // B

I

uA

__>>>>>>> uB

??��������

The category of all monoids in S is denoted by MonS.

Let M and N be two A-modules. A morphism of A-modules from M to N is

a morphism f : M → N in S such that the diagram below commutes:

A⊗M
idA⊗f //

χM
��

A⊗N

χN
��

M
f

// N

The category of all A-modules is denoted by ModSA.

Comonoids and comodules in S can be defined similarly, by reversing all arrows

in the above diagrams. We use the notation (C,∆, ǫ) for comonoids and (M, t)

for C-comodules. The resulting categories are denoted ComonS and ComodSC,

respectively. Equivalently, one may define

ComonS = (MonSop)
op and ComodSC = (ModSopC)op ,

where Kop denotes the category obtained from a category K by reversing all the

arrows (if K is monoidal then so is Kop, under the same tensor product).

Since comonoids and comodules are the building blocks of the notion of internal

categories, and we will deal with them throughout this work, it is worth displaying

the conditions in their definitions explicitly.
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For a comonoid (C,∆, ǫ), the following commutative diagrams are known as

coassociativity and counitality respectively:

C
∆ //

∆
��

C⊗C

idC⊗∆
��

C⊗C
∆⊗idC

// C⊗C⊗C

I⊗C

HHHHHHHHH

HHHHHHHHH
C⊗C

ǫ⊗idCoo idC⊗ǫ // C⊗I

vvvvvvvvv

vv
vvvvvvv

C

∆

OO

Similarly, for a C-comodule (M, t), the following commutative diagrams are known

as coassociativity and counitality respectively:

M
t //

t
��

C⊗M

idC⊗t
��

C⊗M
∆⊗t

// C⊗C⊗M

I⊗M

IIIIIIIII

IIIIIIIII C⊗M
ǫ⊗idMoo

M

χ

OO

The above are the definitions for left A-modules and C-comodules. The right and

mixed versions are defined in the obvious way. For instance, a C-D-bicomodule is

a triple (M, s, t) where (M, t) is a left C-comodule, (M, s) is a right D-comodule,

and the following diagram commutes:

M
t //

s

��

C⊗M

idC⊗s
��

M⊗D
t⊗idD

// C⊗M⊗D

.

The category of C-D-bicomodules in S is denoted by BicomodS(C,D).

Suppose now that S is a symmetric monoidal category. This means that for

every pair of objects A and B of S there is a natural isomorphism τA,B : A⊗B →

B⊗A satisfying some conditions [K, XIII.1.5]. In this case, both MonS and ComonS

are monoidal categories under the tensor product of S. More precisely, if A and B

are monoids in S then so is A⊗B, via

(A⊗B)⊗(A⊗B)
idA⊗τB,A⊗idB
−−−−−−−→ A⊗A⊗B⊗B

µA⊗µB−−−→ A⊗B and I = I⊗I
uA⊗uB−−−→ A⊗B ;

and dually for comonoids. Moreover, MonS and ComonS inherit the symmetric

structure from S as well.
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Under this assumption on S, a bimonoid in S may be defined equivalently as

a comonoid in MonS or as a monoid in ComonS. Explicitly, a bimonoid in S is a

5-tuple (H, µ, u,∆, ǫ) such that (H, µ, u) is a monoid in S, (H,∆, ǫ) is a comonoid

in S and the following diagrams commute:

H
∆

&&LLLLLLLLLLL

H⊗H

µ
88rrrrrrrrrrr

∆⊗∆
��

H⊗H

H⊗H⊗H⊗H
id⊗τ⊗id

//H⊗H⊗H⊗H

µ⊗µ

OO

H
ǫ

��?
??

??
??

?

I

u
??��������

I

H⊗H
ǫ⊗ǫ //

µ

��

I⊗I

H ǫ
// I

I
u //H

∆
��

I⊗I u⊗u
// H⊗H

The category of bimonoids is S is BimonS = ComonMonS
= MonComonS

.

Examples 1.4.1.

1. When S = Veck, monoids, comonoids and bimonoids are respectively k-algebras,

k-coalgebras and k-bialgebras.

2. When S = Sets , we get the usual definition of monoids. Every setX carries a

unique structure of comonoid, given by the diagonal map ∆X : X → X ×X,

∆X(x) = (x, x), and ǫX : X → I, ǫX(x) = ∗, where I = {∗}. This is

an obvious consequence of coassociativity and counitality. Hence bimonoids

coincide with monoids in this case. Moreover, X-comodules admit a simple

description as well. Namely, any (left) comodule structure map t : M →

X ×M is necessarly of the form t(m) = (t̃(m), m) where t̃ : M → X is some

(arbitrary) map. Thus we sometimes refer to X-comodules as X-graded sets,

and to t̃ as the degree map.

13



3. The same situation arises more generally when S is any lex category. Any

object X of S admits a unique comonoid structure, given by ∆X = (idX , idX)

and the unique map ǫX from X to the final object I. Similarly, X-comodules

are just X-graded objects of S. These observations are rather trivial, but

they provide the key for finding the right generalization of the notion of

internal categories from lex categories to more general monoidal categories,

as we shall see (section 2.3).
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Chapter 2

Definition and basic examples
In this chapter internal categories are defined. This is the main concept of this

work. Some basic examples will be discussed as the basic theory of internal cate-

gories is developed in later chapters of this part. The main examples and applica-

tions are postponed until chapters 9 and 10.

2.1 Regular monoidal categories

Let S be a monoidal category in which every pair of parallel arrows has an equal-

izer. Let A
f //
g
//A′ be a parallel pair of arrows, and B and C objects of S. Let

can : EqS(A
f //
g
//A′) //A be the canonical map. There is always a canonical map as

follows

B⊗EqS(A
f //
g

// A′)⊗C
idBcan⊗idC // EqS(B⊗A⊗C

idB⊗f⊗idC//

idB⊗g⊗idC

// B⊗A′⊗C) , (*)

since (idB⊗f⊗idC) ◦ (idB⊗can⊗idC) = (idB⊗g⊗idC) ◦ (idB⊗can⊗idC).

Definition 2.1.1. A monoidal category S is called regular if it possesses equalizers

for every pair of parallel arrows and, furthermore, the canonical map (*) is always

an isomorphism.

We say that equalizers are preserved by the tensor product in this case.

Examples 2.1.1.

1. The monoidal category Sets is regular: if (b, a, c) belongs to EqS(idB⊗f⊗idC ,

idB⊗g⊗idC), then f(a) = g(a), and hence (b, a, c) belongs to B⊗EqS(f, g)⊗C.

More generally, any lex category is regular. In fact, in view of Yoneda’s

lemma [ML,III.2], one can argue by using the same proof as for Sets , where

now b, a and c are to be interpreted as “generalized elements”.
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2. The monoidal category Veck is regular. This follows from the fact that

for any pair of linear maps f : V → V ′ and g : W → W ′, Ker(f⊗g) =

Kerf⊗W + V ⊗Kerg.

More generally, if R is a commutative ring and S = ModR viewed as a

monoidal category under ⊗R, then S is regular if and only if all R-modules are

flat. (This condition is equivalent to R being a regular ring in the sense of

von Neumann by [Row, proposition 2.11.20]; this is the reason for the chosen

terminology). In fact, if S is regular, then equalizers and in particular kernels

and monomorphisms are preserved by ⊗R, hence R is regular. Conversely, if

left exact sequences are preserved, consideration of the exact sequence

0 // EqS(A
f //
g

// A′) // A
f−g // A′

shows that EqS(A
f //
g

//A′) is preserved under ⊗R.

3. It follows from the above examples plus proposition 2.1.1 below that Monoids ,

the category of ordinary set-monoids, and Algk, the category of k-algebras,

are regular monoidal categories. So is Groups .

4. Let S be a monoidal category. Then Sop (a monoidal category under the

same tensor product as that of S) is regular if and only if the tensor product

preserves coequalizers in S. Vecopk , and more generally Mod
op
R for any ring R,

is regular, since ⊗R is always right exact. Sets op is also regular, by [ML,

exercise V.4.4].

5. Alg
op
k is regular. In fact, the coequalizer in Algk of A

f //
g

//A′ is A′/I(f, g),

where I(f, g) is the ideal generated by {f(a)− g(a) / a ∈ A}. Now, if B is

any other k-algebra, clearly

I(idB⊗f, idB⊗g) = 〈{b⊗f(a)− b⊗g(a) / b ∈ B, a ∈ A}〉 = B⊗I(f, g) ;
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hence, CoeqAlgk(idB
⊗f, idB⊗g) =

= B⊗A′/I(idB⊗f, idB⊗g) = B⊗A′/B⊗I(f, g) = B⊗CoeqAlgk(f, g) .

Recall that when S is a symmetric monoidal category, then so is MonS (section

1.4).

Proposition 2.1.1. Let S be a symmetric monoidal category. If S has equalizers

then so does MonS, and if S is regular then so is MonS.

Proof. Let A
f //
g

//A′ be a parallel pair in MonS. Let E0
can
−−→ A be the equalizer of

f and g in S. Then there is a map m0 : E0⊗E0 → E0 as below

E0⊗E0
can⊗can//

m0

���
�
� A⊗A

f⊗f //
g⊗g

//

m

��

A′⊗A′

m′

��
E0 can

// A
f //
g

// A′

because fm(can⊗can) = m′(f⊗f)(can⊗can) = m′(g⊗g)(can⊗can) = gm(can⊗can).

Similarly there is a map u0 : I → E0 as below

E0
can // A

f //
g

// A′

I

u0

``A
A

A
A
u

OO

u′

??~~~~~~~~

because fu = u′ = gu. Then (E0, m0, u0) becomes a monoid in S; the associativity

and unitality conditions follow from those for (A,m, u), plus the fact that can is

a monomorphism (being an equalizer). For instance, let us check left unitality.

In the following 3-d diagram, the front triangular face commutes by left unitality

for A, the top rectangular face by definition of u0, the lateral rectangular face

by definition of m0, and the hidden rectangular face by unitality in the monoidal

category S. Since can is monic, it follows that the bottom triangular face commutes,
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and this is left unitality for E0.

I⊗E0
u0⊗id//

id⊗can

{{ww
ww

ww
ww

w II
II

II
II

III
II

III
II

E0⊗E0

m0

��
can⊗can

zzuuuuuuuuu

I⊗A
u⊗id //

GGGGGGGGG

GGGGGGGGG A⊗A

m

��

E0

can

zztttttttttt

A

Notice that by construction of m0 and u0, can : E0 → A is a morphism of monoids.

Let α : M → A be a morphism of monoids such that fα = gα. Then there

is a unique morphism α0 : M → E0 such that canα0 = α. To conclude that

can : E0 → A is the equalizer in MonS of f and g, it only remains to show that α0

is a morphism of monoids. Again this follows from the corresponding fact for α,

plus the fact that can is monic.

Finally, if S is regular, then so is MonS, because if a morphism of monoids is

invertible in S, then it is clear that its inverse is also a morphism of monoids, hence

the given map is an isomorphism in MonS.

Remarks 2.1.1.

1. We have just shown that the forgetful functor MonS→ S creates isomorphims

and equalizers. One can similarly show that it creates limits. This is [P,

proposition 2.5].

2. Let A
f //
g

//B and A′
f ′ //

g′
//B′ be two parallel pairs in a monoidal category

S. There is a canonical map

EqS(f, g)⊗EqS(f
′, g′)

can⊗can
−−−−→ EqS(f⊗f ′, g⊗g′) .

This map need not be an isomorphism, even when S is regular: consider

the case S = Veck, f
′ = g′ = g = 0, f = idA. However, can⊗can is a

monomorphism when S is regular, since it is the composite of can⊗id and

id ⊗can, which are monic by regularity.
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2.2 The 2-category of bicomodules

From now on S is assumed to be a regular monoidal category (section 2.1).

Recall (section 1.3) that k-algebras can be seen as the objects of a 2-category,

whose arrows and 2-cells are bimodules and morphisms of bimodules respectively.

Horizontal composition is tensor product of bimodules, which is defined as a certain

coequalizer. This construction can be carried out more generally replacing Veck

by any monoidal category where the tensor product preserves coequalizers. We

are interested in the dual version of this: given a regular monoidal category S, we

will construct in this section a 2-category G as follows:

• the objects of G are the comonoids in S

• the arrows C → D of G are the D-C-bicomodules in S

• the 2-cells of G are the morphisms of bicomodules

• horizontal composition is the tensor coproduct of bicomodules.

The regularity assumption is needed in order to get an associative and unital tensor

coproduct, as we shall see.

The tensor coproduct of bicomodules is a well-known notion in the context

of k-coalgebra theory (that is when S = Veck), see for instance [Mon, definition

8.4.2], where it is called “cotensor product” and denoted by the symbol �C . We

will use the symbol ⊗
C instead.

Definition 2.2.1. The tensor coproduct of a D-C-bicomodule (A1, s1, t1) with a

C-E-bicomodule (A2, s2, t2) is the following object of S:

A1⊗
CA2 = EqS(A1⊗A2

s1⊗id2 //

id1⊗t2
//A1⊗C⊗A2) .

First, we show that A1⊗
CA2 carries a natural structure of D-E-bicomodule. No-

tice that (A1⊗A2, id1⊗s2, t1⊗id2) is a D-E-bicomodule; coassociativity and counitality

19



follow from those for (A1, t1) and (A2, s2), and cocommutativity

A1⊗A2
t1⊗id2 //

id1⊗s2
��

D⊗A1⊗A2

idD⊗id1⊗s2
��

A1⊗A2⊗Et1⊗id2⊗idE

// D⊗A1⊗A2⊗E

is obvious.

Proposition 2.2.1. There are unique maps s : A1⊗
CA2 → (A1⊗

CA2)⊗E and t :

A1⊗
CA2 → D⊗(A1⊗

CA2) fitting in commutative diagrams:

A1⊗
CA2

can //

s
���
�
�

A1⊗A2

id1⊗s2
��

(A1⊗
CA2)⊗E

can⊗idE

// A1⊗A2⊗E

A1⊗
CA2

can //

t
���
�
�

A1⊗A2

t1⊗id2

��
D⊗(A1⊗

CA2)
idD⊗can

// D⊗A1⊗A2

.

In other words, A1⊗
CA2 is a D-E-subbicomodule of A1⊗A2 via can.

Proof. By regularity, (A1⊗
CA2)⊗E = Eq(s1⊗id2⊗idE , id1⊗t2⊗idE). Therefore, to prove

the existence and uniqueness of s, we need to show that

(s1⊗id2⊗idE)(id1⊗s2)can = (id1⊗t2⊗idE)(id1⊗s2)can .

Now, since A2 is a bicomodule, s2 and t2 cocommute. This, and the definition of

A1⊗
CA2 as an equalizer, allows us to argue that

(id1⊗t2⊗idE)(id1⊗s2)can = (id1⊗idC⊗s2)(id1⊗t2)can

= (id1⊗idC⊗s2)(s1⊗id2)can = (s1⊗id2⊗idE)(id1⊗s2)can.

Similarly one shows the corresponding assertion for t. The bicomodule axioms for

A1⊗
CA2 follow from those for A1⊗A2, plus the fact that can is monic.

Now we define the tensor coproduct of morphisms. Let f1 : A1 → A′1 and

f2 : A2 → A′2 be morphisms of D-C and C-E-bicomodules respectively. The two

composites below

A1⊗
CA2

can // A1⊗A2
f1⊗f2 // A′1⊗A

′
2

s′1⊗id′2 //

id′1
⊗t′2

// A′1⊗C⊗A′2
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are respectively equal to, by assumption on f1 and f2,

A1⊗
CA2

can // A1⊗A2

s1⊗id2 //

id1⊗t2
// A1⊗C⊗A2

f1⊗idC⊗f2// A′1⊗C⊗A′2 ,

which are actually one same map by definition of A1⊗
CA2. It follows that there is

a unique map f1⊗
Cf2 fitting into the commutative diagram

A1⊗
CA2

can //

f1⊗
Cf2

���
�
�

A1⊗A2

f1⊗f2
��

A′1⊗
CA′2

can′
// A′1⊗A

′
2

.

Functoriality of ⊗
C follows from this uniqueness property plus the functoriality of

⊗. It is also clear that f1⊗
Cf2 is a morphism of D-E-bicomodules. We have thus

constructed a functor

⊗
C : BicomodS(D,C)× BicomodS(C,E)→ BicomodS(D,E) .

We next prove that the tensor coproduct is associative. To this end it is con-

venient to introduce the triple tensor coproduct of bicomodules as follows. Let Ci

be a comonoid in S for i = 0, 1, 2, 3 and (Ai, si, ti) be a Ci−1-Ci-bicomodule for

i = 1, 2, 3. Then we define

A1⊗
C1A2⊗

C2A3 = EqS(A1⊗A2⊗A3

s1⊗s2⊗id3//

id1⊗t2⊗t3
//A1⊗C1⊗A2⊗C2⊗A3) .

Proposition 2.2.2. There are canonical isomorphisms of C0-C3-bicomodules

(A1⊗
C1A2)⊗C2A3

∼= A1⊗
C1A2⊗

C2A3
∼= A1⊗

C1(A2⊗
C2A3) .

Proof. We will show that the following composite

(A1⊗
C1A2)⊗C2A3

can
−−→ (A1⊗

C1A2)⊗A3
can⊗id3−−−−→ A1⊗A2⊗A3

is the equalizer of s1⊗s2⊗id3 and id1⊗t2⊗t3. This will prove the first isomorphism

claimed; the proof for the other is analogous.
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To this end, consider the following diagram in S

(A1⊗
C1A2)⊗C2A3

can //

can⊗
C2id3

��

(A1⊗
C1A2)⊗A3

s12⊗id3 //

id12⊗t3
//

can⊗id3

��

(A1⊗
C1A2)⊗C2⊗A3

can⊗idC2
⊗id3

��
(A1⊗A2)⊗C2A3

can //

id1⊗t2⊗
C2id3

��

s1⊗id2⊗
C2id3

��

A1⊗A2⊗A3

id1⊗s2⊗id3 //

id1⊗id2⊗t3
//

id1⊗t2⊗id3

��

s1⊗id2⊗id3

��

A1⊗A2⊗C2⊗A3

id1⊗t2⊗idC2
⊗id3

��

s1⊗id2⊗idC2
⊗id3

��
(A1⊗C1⊗A2)⊗C2A3 can

// A1⊗C1⊗A2⊗A3

id1⊗idC1
⊗s2⊗id3//

id1⊗idC1
⊗id2⊗t3

// A1⊗C1⊗A2⊗C2⊗A3

Let us check the hypothesis in Johnstone’s lemma 1.2.1. The diagrams com-

mute as required, either by naturality of can, definition of s12 or functoriality

of ⊗. By regularity, the rows and columns of this diagram are equalizers, ex-

cept perhaps for the first column. But this is automatic in view of lemma 1.2.2.

Also, (id1⊗idC1
⊗s2⊗id3, id1⊗idC1

⊗id2⊗t3) and (id1⊗t2⊗id3, s1⊗id2⊗idC2
⊗id3) are both coreflex-

ive pairs, being split respectively by id1⊗idC1
⊗id2⊗ǫC2

⊗id3 and id1⊗ǫC1
⊗id2⊗idC2

⊗id3. Thus

Johnstone’s lemma applies, and it yields precisely the desired conclusion.

Remark 2.2.1. One can use lemma 1.2.2 in the same way as in the proof above to

deduce that the tensor coproduct over C preserves equalizers.

Notice that for any comonoid (C,∆, ǫ), (C,∆,∆) becomes a C-C-bicomodule.

Moreover, for any D-C-bicomodule (A, s, t), s : A → A⊗C and t : A → D⊗A are

morphisms of D-C-bicomodules, precisely by definition of bicomodule. Now it is

time for the unitality of the tensor coproduct.

Proposition 2.2.3. Let (A, s, t) be a D-C-bicomodule. There are canonical iso-

morphisms of D-C-bicomodules as follows:

A
s //

∼= ""E
E

E
E

E A⊗C

A⊗
CC

can

OO A
t //

∼= ""F
F

F
F

F D⊗A

D⊗
DA

can

OO
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Proof. Let us check the assertion for s, that for t is analogous. By definition of

⊗
C, it is enough to show that s : A → A⊗C is the equalizer of s⊗idC and idA⊗∆C .

Consider the diagram

A
s // A⊗C

s⊗idC //

idA⊗∆C
// A⊗C⊗C

Coassociativity for (A, s) says precisely that this diagram is a fork. Counital-

ity says, moreover, that this fork is split by idA⊗ǫC : A⊗C → A and idA⊗idC⊗ǫC :

A⊗C⊗C → A⊗C. Hence this is an equalizer diagram by lemma 1.1.1.

We can summarize the above results as follows.

Theorem 2.2.1. Let S be a regular monoidal category. There is a 2-category G

such that

• the objects of G are the comonoids in S,

• the arrows C → D of G are the D-C-bicomodules in S, the identity of C

being the C-C-bicomodule (C,∆C , ǫC),

• the 2-cells of G are the morphisms of bicomodules, with obvious vertical com-

position and identities, and

• horizontal composition is the tensor coproduct of bicomodules and their mor-

phisms.

Proof. The relevant work has already been done in the above propositions and

constructions. For instance, the compatibility between the vertical and horizontal

structures is precisely the functoriality of ⊗
C.

2.3 Internal graphs and categories

Recall (section 1.4) that for any object C of a 2-category G, there is a monoidal

category G(C,C) whose objects and morphisms are respectively the arrows C → C
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of G and the 2-cells among them, and whose tensor product comes from horizontal

composition in G. From theorem 2.2.1 we thus deduce that:

Corollary 2.3.1. Let C be a comonoid in a regular monoidal category S. There is

a monoidal category GC consisting of C-C-bicomodules and their morphisms, with

tensor product ⊗
C and unit object (C,∆C ,∆C).

Proof. Take GC = G(C,C) in theorem 2.2.1.

We thus arrive at the main definition of this work.

Definition 2.3.1. An object of the monoidal category GC is called an internal

graph or a graph object in S. We refer to C as the base of the graph, or we say that

the graph is over C. A monoid in GC is called an internal category or a category

object in S.

We first discuss a few particular instances of these definitions.

Examples 2.3.1.

1. Let I be the unit object of S. Then every object of S has a unique I-I-bicomodule

structure, given by the identity of I. It follows that GI = S, and thus a cat-

egory over I is just a monoid in S.

2. Let S be a lex category, that is a category with finite products and equalizers.

As mentioned in section 1.4, any object X of S carries in this case a unique

comonoid structure and, moreover, a graph over X is just an X-X-graded

object. This is the usual definition of internal graph to a lex category, as

for instance in [CPP]. In addition, it is immediate from the definition that

the tensor coproduct of bicomodules (Ai, si, ti) coincides with the pull-back

of bigraded objects:

A1 ×
X A2 = {(a1, a2) ∈ A1 ×A2 / s̃1(a1) = t̃2(a2)},
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where si(a) = (a, s̃i(a)) and ti(a) = (t̃i(a), a), and s̃i and t̃i denote the degree

maps (as explained in section 1.4). Therefore, our definition of internal cate-

gory also reduces to the usual one [Joh 2.1, CPP] in this case. In particular,

internal graphs and categories to Sets are respectively just small graphs and

categories, in the usual sense of [ML, chapter I.2].

Before moving on to other basic examples, let us make explicit the conditions in

definition 2.3.1. Recalling that the unit object of the category GC of graphs over C

is (C,∆C , ǫC), we see that a category object C in S is a 6-tuple C = (A,C, s, t, i,m)

where

• C is a comonoid in S,

• (A, s, t) is a C-C-bicomodule, s being the right and t the left structures,

• i : C → A is a morphism of C-C-bicomodules,

• m : A⊗
CA→ A is a morphism of C-C-bicomodules,

and these are such that the following diagrams commute:

C⊗
CA

i⊗CidA // A⊗
CA

m

��

A⊗
CC

idA⊗
Cioo

A

t
∼=IIIII

ddIIII
s
∼=uuuuu

::uuuu

(A⊗
CA)⊗CA ∼= A⊗

C(A⊗
CA)

idA⊗
Cm//

m⊗
C
idA

��

A⊗
CA

m

��
A⊗

CA
m // A

.

We sometimes refer to (A,C, s, t, i,m) respectively as the “arrows, objects, source

and target maps, identities and composition” of the internal category C. The

requirements that i and m be morphisms of bicomodules can be described by

saying that they preserve sources and targets. This is their precise meaning when

S = Sets (or any lex category). The commutative diagrams above will be referred

to as the unitality and associativity conditions for C. When explicit mention of

part of the structure is not needed, we will abbreviate C = (A,C, . . .).
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Table 2.1: Instances of internal categories

S Comonoid C Graph over C Category over C

Sets set usual small graph usual small category
Monoids monoid small strict

monoidal category
Groups group cat1-group
Veck k-coalgebra C C-C-bicomodule see chapter 9

when C = kX linear graph linear category
over X over X

Vec
op
k k-algebra C-C-bimodule k-coalgebroid

Algk k-bialgebra C-C-bicomodule-algebra see chapter 10
Alg

op
k commutative k-algebroid k-bialgebroid

k-algebra

2.4 Basic examples

Internal categories to monoidal categories encompass various different concepts

such as linear categories [Mit], algebroids (called graphs in [Mal]), coalgebroids

[Del] and bialgebroids [Rav, Mal], as displayed in table 2.1. From the point of

view of this work, however, the most relevant applications to quantum group theory

arise instead from internal categories to Veck (including linear categories), as we

will see in chapter 9, or from internal categories to Algk, as we will see in chapter

10.

Let us explain the terminology and assertions in the table. We have already

mentioned that a category in Sets is just an ordinary small category. If C =

(A,X, . . .) is a category in Monoids , the multiplication of A and X can be seen

as a tensor product ⊗ on the arrows and objects of C; functoriality of ⊗ being

equivalent to m being a morphism of monoids. This turns C into a strict monoidal

category, and one can proceed conversely.
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Categories in Groups have been considered at various places in the literature;

they can be described more succintly as crossed modules or as cat1-groups [Lod1].

A generalization of this equivalence to other monoidal categories (replacing Sets

by Veck, for instance) is possible; this is the object of chapter 10.

Categories in Veck are studied in chapter 9, with an eye on applications to

quantum groups. A k-linear category yields the simplest example of a category

in Veck: the base coalgebra is the group-like coalgebra kX, where X is the set of

objects of the given category. See section 9.1 for more details.

Deligne has introduced the notion of a k-coalgebroid ([Del], also [Mal]). Com-

paring the definitions one sees immediately that this coincides with the notion of

a category in Vec
op
k .

Categories in Algk are studied in chapter 10, where the closely related notion

of cat1-algebra is defined, and the results on cat1-groups described above extended.

Let us look at the case S = Alg
op
k in detail. First, a comonoid in Alg

op
k is just a

monoid in Algk, and this is precisely a commutative k-algebra, by the well-known

Hilton-Eckmann argument [ML, exercise II.5.5]. Now, let (A,K, s, t) be a graph

in Alg
op
k . Thus, K is a commutative k-algebra, A is a k-algebra, and s : A⊗K → A

and t : K⊗A→ A are morphisms of k-algebras that turn A into a K-K-bimodule.

Define s̃ : K → A by s̃(x) = s(1⊗x) and t̃ : K → A by t̃(x) = t(x⊗1). Then

s̃ = s ◦ (uA⊗idK) is a morphism of algebras, and by unitality s(a⊗1) = a, hence

s̃(x)a = s(1⊗x)s(a⊗1) = s(a⊗x) = s(a⊗1)s(1⊗x) = as̃(x),

i.e. Ims̃ ⊆ Z(A). Similarly, t̃ : K → A is a morphism of algebras and Imt̃ ⊆

Z(A). Therefore, (A,K, s̃, t̃) is precisely what Ravenel calls a K-algebroid [Rav]

(and Maltsiniotis a “graph” [Mal]). Conversely, any K-algebroid comes from a

unique graph in Alg
op
k as above, so the concepts are equivalent. Finally, since

a K-bialgebroid [Rav, Mal] can be defined as a comonoid in the category of
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K-algebroids, it follows that K-bialgebroids and categories in Alg
op
k are equiva-

lent concepts too.

We next describe the simplest examples of internal categories.

Examples 2.4.1.

1. For any comonoid C in S, there is a category in S

Ĉ = (C,C,∆C,∆C , idC ,∆
−1
C )

called the discrete category on C. (Recall from proposition 2.2.3 that ∆C :

C → C⊗
CC is an isomorphism). When S = Sets , the only arrows of this

category are the identities.

2. For any monoid A in S there is a one-object category in S

A

ˇ
= (A, I, idA, idA, uA, µA) .

Together with the previous one, this example shows that category objects

generalize at the same time the notions of monoids and comonoids.

3. The one-arrow category in S is I = Î = I
ˇ

where I is the unit object of I.

4. For any comonoid C in S, the pair or coarse category on C in S is

Ĉ

ˇ
= (C⊗C,C, idC⊗∆C ,∆C⊗idC ,∆C , idC⊗ǫC⊗ǫC⊗idC) .

5. The definition of internal categories is as flexible as to admit as an example

the following category with “no arrows at all”. Suppose S has a zero object

0 such that 0⊗V = 0 = V ⊗0 for every object V of S. This is the case for

instance when S = Veck. Then for every comonoid C in S there is defined

the empty category over C as

ΦC = (0, C, s, t, i,m)
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where all s, t, i and m are zero. The axioms hold trivially. Notice that in

this case i is not a monomorphism, unlike the case of lex categories (where i

is split by both s̃ and t̃).
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Chapter 3

Corestriction and coinduction of

comodules
The familiar adjunction between restriction and induction for modules over k-algebras

holds in fact for arbitrary monoidal categories. We prove below the dual version

of this result, since it is mostly in this form that we will use it later.

Let f : C → D be a morphism of comonoids in a monoidal category S.

If (M, t) is a left C-comodule, we let fM denote the same object M but viewed

as left D-comodule via the map

M
t
−→ C⊗M

f⊗idM−−−→ D⊗M .

We say that fM is obtained from M by corestriction via f .

Corestriction is a functor

coresf : ComodSC → ComodSD, M 7→ fM .

Right corestriction is defined similarly; if M is a right C-comodule, we let Mf

denote the corresponding right D-comodule. More generally, if f ′ : C ′ → D′ is

another morphism of comonoids, there is the two-sided corestriction functor

coresf,f ′ : BicomodS(C,C
′)→ BicomodS(D,D

′), M 7→ fMf ′ .

Assume now that S is a regular monoidal category, so that the tensor coproduct

of bicomodules is well-defined and associative (section 2.2).

Lemma 3.0.1. Let X be a right C-comodule and Y a left one. Then there is a

natural monomorphism X⊗
CY → Xf⊗

D
fY making X⊗

CY //_____

can %%KKKK
Xf⊗

D
fY

canxxrrr
rr

X⊗Y

commu-

tative.
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Proof. The dotted arrow can be filled in because the squares below commute by

definition of corestriction.

X⊗
CY

can //

���
�
� X⊗Y

s⊗idY //

idX⊗t
// X⊗C⊗Y

idX⊗f⊗idY

��
Xf⊗

D
fY can

// Xf⊗fY
sXf

⊗idY
//

idX⊗t
fY

// X⊗D⊗Y

The C-D-bicomodule Cf is used to define the coinduction functor as follows:

coindf : ComodSD → ComodSC, N 7→ Cf⊗DN .

Proposition 3.0.1. coindf is right adjoint to coresf .

Proof. We have to show that

HomC(M,Cf⊗DN) ∼= HomD(fM,N)

naturally in M ∈ ComodSC and N ∈ ComodSD.

The correspondences are as follows: given u ∈ HomC(M,Cf⊗DN), one defines

ũ ∈ HomD(fM,N) as the composite

ũ : fM
u
−→ Cf⊗DN

ǫC⊗idN−−−→ N ,

and given v ∈ HomD(fM,N) one defines v̂ ∈ HomC(M,Cf⊗DN) as

v̂ : M
t
−→ C⊗

CM → Cf⊗DfM
idC⊗

Dv
−−−→ Cf⊗DN ,

where we have made use of the canonical maps of lemmas 2.2.3 and 3.0.1.

Let us check that ˜ and ˆ are in fact inverse correspondences, but omit the proof

that ũ and v̂ are morphisms of comodules as claimed, which is similar.
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First, ˜̂v = v simply by counitality for (M, t). On the other hand, the commu-

tativity of the following diagram shows that ˆ̃u = u:

M
t //

u
""F

FF
FF

FF
FF

C⊗
CM //

idC⊗
Cu

&&MMMMMMMMMMM
Cf⊗DfM

idC⊗
Du// Cf⊗DfCf⊗DN

idC⊗ǫC⊗idN // Cf⊗N

Cf⊗DN
∆C⊗

D
idN//

id

77

C⊗
CCf⊗DN

77ooooooooooo

Remarks 3.0.1.

1. Suppose that M and N are C-E-and D-E-bicomodules respectively. Then

the proof above also shows that there is a natural bijection

HomC−E(M,Cf⊗DN) ∼= HomD−E(fM,N) .

2. The right version of this result holds as well:

HomE−C(M,N⊗
D
fC) ∼= HomE−D(Mf , N) ,

naturally in M ∈ BicomodS(E,C) and N ∈ BicomodS(E,D). A particular

instance of this that will get used many times later is:

HomC(C,N⊗C) ∼= HomS(C,N) under u 7→ (idN⊗ǫC) ◦ u ,

whereN is any object of S and HomC denotes morphisms of right C-comodules.

(To deduce it from the previous one, take D = I, f = ǫC).
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Chapter 4

Functors and cofunctors

4.1 Functors and natural transformations

In this section we introduce the most natural (but, from the point of view of this

work, not the most useful) notion of morphism between internal categories; namely,

functors, along with their natural transformations.

Definition 4.1.1. Let C = (A,C, . . .) and D = (B,D, . . .) be categories in S. A

functor f : C→ D is a pair f = (f1, f0) where

• f0 : C → D is a morphism of comonoids in S,

• f1 : A→ B is a morphism in S,

and the following diagrams commute

A
f1 //

s

��

B

s

��
A⊗C

f1⊗f0
// B⊗D

A
f1 //

t
��

B

t
��

C⊗A
f0⊗f1

// D⊗B

A
f1 // B

C
f0

//

i

OO

D

i

OO

A⊗
CA

�

� //

m

��

A⊗
DA

f1⊗
Df1// B⊗

DB

m

��
A

f1
// B

.

Above, A is viewed as D-bicomodule by corestriction via f0. Hence the canon-

ical map A⊗
CA→ A⊗A maps to A⊗

DA. The first two diagrams say that f1 : A→ B

is a morphism of D-bicomodules, hence f1⊗
Df1 : A⊗

DA→ B⊗
DB is defined.

The composition of two functors f : C → D and g : D → E is the functor

h = g ◦ f : C → E defined by h0 = g0 ◦ f0 and h1 = g1 ◦ f1. The identity functor

of C is idC = (idA, idC). We use
−−→
CatS to denote the category whose objects are the

internal categories to S with functors as morphisms.
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A category C is said to be augmented if it admits a functor ǫ : C → I. In this

case necessarly ǫ0 = ǫC , since this is the unique morphism of comonoids C → I. If

S is lex then every category is uniquely augmented. In general a category need not

be augmented, see below.

Examples 4.1.1.

1. Let C and D be two comonoids in S. If f : C → D is a morphism of

comonoids then (f, f) : Ĉ → D̂ is a functor; conversely, any functor Ĉ → D̂

is of that form for some f . This yields a fully-faithful functor ComonS→
−−→
CatS.

In particular there is a unique functor ǫ : Ĉ→ I, given by ǫ = (ǫC, ǫC). Thus

Ĉ is augmented.

2. Let A and B be two monoids in S. If f : A → B is a morphism of monoids

then (f, idI) : A

ˇ
→ B

ˇ
is a functor; conversely, any functor A

ˇ
→ B

ˇ
is of

that form for some f . This yields a fully-faithful functor MonS →
−−→
CatS.

In particular there is a unique functor u : I → A

ˇ
, given by u = (uA, idI).

Not every monoid A admits a morphism to I. Hence not every category is

augmented.

3. Ĉ

ˇ
is augmented via (ǫC⊗ǫC, ǫC).

4. For any category C over C in S there is a functor Ĉ→ C given by (i, idC). If C

is augmented, with augmentation ǫ, then there is also a functor C→ Ĉ

ˇ
given

by idC : C → C and A
s
−→ A⊗C

t⊗idC−−−→ C⊗A⊗C
idC⊗ǫ1⊗idC−−−−−−→ C⊗C. Conversely, if

there is a functor f : C→ Ĉ

ˇ
then C is augmented via ǫcC

ˇ
◦ f .

Definition 4.1.2. Let f, g : C → D be two functors. A natural transformation
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α : f ⇒ g is a morphism α : C → B in S such that the following diagrams commute

C
α //

∆C
��

B

s

��
C⊗C

α⊗f0
// B⊗D

C
α //

∆C
��

B

t
��

C⊗C g0⊗α
// D⊗B

A⊗
CC

�

� // Ag⊗DgC
g1⊗

Dα // B⊗
DB

m

""E
EE

EE
EE

EE

A

s
∼=

<<zzzzzzzzz

t

∼=

""D
DD

DD
DD

DD
B

C⊗
CA

�

� // Cf⊗DfA
α⊗Df1

// B⊗
DB

m

<<yyyyyyyyy

To explain the notation in the last diagram, notice that the first two diagrams

say that α : gCf → B is a morphism of D-D-bicomodules, where the subindices

denote corestriction via (g0, f0) as in chapter 3. Recall also that, by definition of

functor, f1 : fAf :→ B is a morphism of D-D-bicomodules, and similarly for g;

hence, the maps g1⊗
Dα and α⊗

Df1 in the third diagram are well-defined. We have

also made use of the canonical map of lemma 3.0.1.

The identity natural transformation idf : f ⇒ f is defined by the map C
f0
−→

D
i
−→ B. In this case the commutativity of diagrams 4.1.2 follows from the defini-

tion of functor for f and the unitality property for C.

Now consider three functors f, g, h : C → D and natural transformations α :

f ⇒ g and β : g ⇒ h. The composition β ◦ α : f ⇒ h is defined by the composite

map

C
∆C−→ C⊗

CC →֒ Cg⊗DgC
β⊗Dα
−−−→ B⊗

DB
m
−→ B ;

where we have made use of the canonical map of lemma 3.0.1. Let us check the

axioms for a natural transformation in detail. As explained above, the commuta-

tivity of the first two diagrams in 4.1.2 is equivalent to the fact that β◦α : hCf → B

be a morphism of D-D-bicomodules. To see that this is the case we make explicit
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the bicomodule structures involved in the definition of β ◦ α as a composition:

hCf
∆C−→ hC⊗

CCf →֒ hCg⊗DgCf
β⊗Dα
−−−→ B⊗

DB
m
−→ B .

Since m, α, β and ∆C are all morphisms of D-D-bicomodules as indicated, so is

β ◦α. The remaining condition is the commutativity of the diagram below, which

holds by

(1) coassociativity of s and t

(2) s and t cocommute

(3) α and β are natural transformations

(4) associativity of m.

A⊗
DC

idA⊗
D∆C// A⊗

DC⊗
DC
h1⊗

Dβ⊗Dα// B⊗
DB⊗

DB
idB⊗

Dm //

m⊗
D
idB

��

B⊗
DB

m

��

A⊗
DC

s⊗DidC

OO

t⊗DidC
��

(3) B⊗
DB

m

&&MMMMMMMMMMM

A

s

OO

s
88rrrrrrrrrrr

t &&LLLLLLLLLLL

t

��

(2)

(1)

(1)

C⊗
DA⊗

DC
β⊗Dg1⊗

Dα// B⊗
DB⊗

DB

m⊗
D
idB

OO

idB⊗
Dm

��

(4) B

(4)

(4)C⊗
DA

idC⊗
Ds

OO

idC⊗
Dt

��

(3) B⊗
DB

m

88qqqqqqqqqqq

C⊗
DA

∆C⊗
D
idA

// C⊗
DC⊗

DA
β⊗Dα⊗Df1

// B⊗
DB⊗

DB
m⊗

D
idB

//

idB⊗
Dm

OO

B⊗
DB

m

OO

One can similarly define the horizontal composition of a natural transformation

with a functor. One obtains in this way a 2-category of internal categories, functors

and natural transformations, that we still denote by
−−→
CatS.

We next describe the monoid of endomorphisms in
−−→
CatS of the identity func-

tor idC for some simple choices of C. It is easy to see that End(idC) is always a

commutative monoid; this is a general fact for 2-categories. Later we will prove

the stronger assertion that End(idC) is in the center of the monoid of admissible

sections of C (corollary 5.3.1).
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Examples 4.1.2.

For the functor ǫ : Ĉ → I we have End(ǫ) = HomS(C, I); the naturality of any

such map C → I boils down to the counitality of C. In this case the composition

of natural transformations coincides with the convolution product in HomS(C, I).

By generalities on 2-categories, ǫ induces a morphism of monoids

End(idbC
)→ End(ǫ ◦ idbC

) = HomS(C, I), α 7→ ǫC ◦ α .

It is easy to see that this is an isomorphism onto {ϕ ∈ HomS(C, I) / (ϕ⊗idC)◦∆C =

(idC⊗ϕ) ◦∆C}, which is a submonoid of the center of HomS(C, I).

For the functor u : I → A

ˇ
we have End(u) = HomS(I, A); the naturality of any

such map I → A boils down to the unitality of A. In this case the composition

of natural transformations coincides with the convolution product in HomS(I, A).

By generalities on 2-categories, u induces a morphism of monoids

End(idA

ˇ
)→ End(idA

ˇ
◦ u) = HomS(I, A), α 7→ α ◦ idI ,

which turns out to be the inclusion. It is easy to see that in fact End(idA

ˇ
) = {a ∈

HomS(I, A) / µA ◦ (a⊗idA) = µA ◦ (idA⊗a)}, which is a submonoid of the center of

HomS(I, A).

4.2 Cofunctors and natural cotransformations

In this section we introduce an alternative notion of morphism for internal cate-

gories, with respect to which most later constructions will be functorial. This is

one of the most important technical notions in this work.

Definition 4.2.1. Let C = (A,C, . . .) and D = (B,D, . . .) be categories in S. A

cofunctor ϕ : C→ D is a pair ϕ = (ϕ1, ϕ0) where
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• ϕ0 : D → C is a morphism of comonoids in S,

• ϕ1 : A⊗
CD → B is a morphism of C-D-bicomodules in S (where B and D are

viewed as left C-comodules by corestriction via ϕ0),

and the following diagrams commute

A⊗
CD

ϕ1 // B

C⊗
CD

i⊗CidD

OO

D

i

OO

∼=oo

A⊗
CA⊗

CD
idA⊗

Cϕ1//

m⊗
C
idD

��

A⊗
CB ∼= A⊗

CD⊗
DB

ϕ1⊗
D
idB// B⊗

DB

m

��
A⊗

CD ϕ1

// B

.

Cofunctors can be composed. Given two cofunctors ϕ : C→ D and ψ : D→ E,

where C = (P,C, . . .), D = (Q,D, . . .) and E = (R,E, . . .), the composite ρ =

ψ ◦ ϕ : C→ E is defined as ρ = (ρ1, ρ0) where

ρ0 : E
ψ0
−→ D

ϕ0
−→ C and

ρ1 : P⊗
CE ∼= P⊗

CD⊗
DE

ϕ1⊗
D
idE−−−−→ Q⊗

DE
ψ1
−→ R .

Composition of cofunctors is associative and has identities: the identity cofunctor

of C is (idC , idP ). We use
←−−
CatS to denote the category whose objects are the internal

categories to S with cofunctors as morphisms.

Remark 4.2.1. Let C and D be categories over the same comonoid C = D. A

cofunctor ϕ = (ϕ1, ϕ0) : C→ D with ϕ0 = idC is the same as a functor f = (f1, f0) :

C → D with f0 = idC , via A⊗
CC

ϕ1 // B

A

t ∼=

OO

f1

<<yyyyyyyyy

; the cofunctor and functor axioms

correspond to each other in this case. Similarly, a cofunctor ϕ = (ϕ1, ϕ0) : C→ D

with ϕ0 invertible is the same as a functor f = (f1, f0) : C→ D with f0 = ϕ−1
0 . In

particular, isomorphisms in
←−−
CatS coincide with isomorphisms in

−−→
CatS.

Examples 4.2.1.
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1. Let C and D be two comonoids in S. Let ϕ0 : D → C be a morphism of

comonoids. Then there is a cofunctor (ϕ1, ϕ0) : Ĉ → D̂ where ϕ1 is the

canonical isomorphism C⊗
CD → D. Conversely, any cofunctor Ĉ → D̂ is of

this form for some ϕ0. This yields a fully-faithful functor (ComonS)
op →

←−−
CatS.

In particular there is a unique cofunctor I→ Ĉ.

2. There is a fully-faithful functor MonS →
←−−
CatS. This follows from the corre-

sponding fact for
−−→
CatS (examples 4.1.1), plus remark 4.2.1 that functors over

the identity are the same as cofunctors over the identity. In particular there

is a unique cofunctor I→ A

ˇ
.

3. For any category C, there is a unique cofunctor
←−
i : I→ C given by the pair

C
ǫC−→ I and I⊗

IC ∼= C
i
−→ A.

Definition 4.2.2. Let ϕ, ψ : C → D be two cofunctors. A natural cotransforma-

tion α : ϕ ⇒ ψ is a morphism α : D → B in S such that the following diagrams

commute

D
α //

∆D
��

B

s

��
D⊗D

α⊗idD

// B⊗D

D
α //

∆D
��

B

t
��

D⊗D

ϕ0⊗idD

��

D⊗B

ψ0⊗idB

��
C⊗D

idC⊗α
// C⊗B

A⊗
C
ψB

∼= // A⊗
C
ψD⊗

DB
ψ1⊗

D
idB// B⊗

DB
m

!!D
DD

DD
DD

DD

A⊗
C
ϕD

idA⊗
Cα

::uuuuuuuuu

ϕ1
%%J

JJJJJJJJJ
B

B ∼=
// D⊗

DB
α⊗DidB

// B⊗
DB

m

<<yyyyyyyyy

To explain the subindices in the last diagram, notice that the first diagram

says that α : D → B is a morphism of right D-comodules, while the second one
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that α : ϕD → ψB is a morphism of left C-comodules; these subindices denote

left corestriction via ϕ0 and ψ0 respectively, as in chapter 3. Recall also that, by

definition of cofunctor, ψ1 : A⊗
C
ψD → B is a morphism of right D-comodules, and

similarly for ϕ; hence, the maps in the third diagram are well-defined.

The identity natural cotransformation idϕ : ϕ ⇒ ϕ is defined by the map

i : C → A. The commutativity of diagrams 4.2.2 is easy to check in this case.

Now consider three cofunctors ϕ, ψ , ρ : C→ D and natural cotransformations

α : ϕ ⇒ ψ and β : ψ ⇒ ρ. The composition β ◦ α : ϕ ⇒ ρ is defined by the

composite map

D
α
−→ B

t
−→ D⊗

DB
β⊗DidB−−−→ B⊗

DB
m
−→ B .

Let us check the axioms for a natural cotransformation in detail. As explained

above, the commutativity of the first two diagrams in 4.2.2 is equivalent to the

fact that β ◦ α : ϕD → ρB be a morphism of C-D-bicomodules. To see that this is

the case we make explicit the bicomodule structures involved in the definition of

β ◦ α as a composition:

ϕD
α
−→ ψB

t
−→ ψD⊗

DB
β⊗DidB−−−→ ρB⊗

DB
m
−→ ρB .

Since m, α, β and t are all morphisms of C-D-bicomodules as indicated, so is β ◦α.

The remaining condition is the commutativity of the diagram below, which holds

by

(1) associativity of m

(2) conaturality of β

(3) conaturality of α
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A⊗
CB

∼= // A⊗
CD⊗

DB
ρ1⊗

D
idB// B⊗

DB

m

��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,

(1)A⊗
CB⊗

DB
∼= //

idA⊗
Cm

77nnnnnnnnnnnn
A⊗

CD⊗
DB⊗

DB
ρ1⊗

D
id//

(2)

B⊗
DB⊗

DB
m⊗

D
idB

%%LLLLLLLLLL

idB⊗
Dm

99rrrrrrrrrr

A⊗
CD⊗

DB
ψ1⊗

D
idB

''NNNNNNNNNNN

idA⊗
Cβ⊗DidB

88ppppppppppp

(3)

B⊗
DB

m

""D
DD

DD
DD

D

(1)A⊗
CB

∼=
99rrrrrrrrrr

B⊗
DB

∼= //

m

''PPPPPPPPPPPPP D⊗
DB⊗

DB
β⊗Did // B⊗

DB⊗
DB

m⊗
D
idB

99rrrrrrrrrr

idB⊗
Dm

%%LLLLLLLLLL B

A⊗
CD

idA⊗
Cα

OO

ϕ1

��

B
∼= //D⊗

DB
β⊗DidB // B⊗

DB

m
<<zzzzzzzz

B ∼=
// D⊗

DB
α⊗DidB

// B⊗
DB

m

77nnnnnnnnnnnnn

∼=
// D⊗

DB⊗
DB

β⊗Did

// B⊗
DB⊗

DB

idB⊗
Dm

99rrrrrrrrrr

m⊗
D
idB

// B⊗
DB

m

EE���������������
(1)

Moreover, composition of natural cotransformations is associative, and uni-

tal with respect to the identity defined above. In fact, what we just did is to

show that the set of all natural cotransformations {α : ϕ → ψ / ϕ, ψ : C →

D are cofunctors } is a submonoid of the monoid of admissible sections Γ(D), to

be introduced in section 5.1.

One can similarly define the horizontal composition of a natural cotransforma-

tion with a cofunctor. One obtains in this way a 2-category of internal categories,

cofunctors and natural cotransformations, that we still denote by
←−−
CatS.

Finally, let us mention that if the cofunctors ϕ and ψ are both the identity

on objects, so that they can equivalently be seen as functors, then any natural

cotransformation ϕ ⇒ ψ can equivalently be seen as a natural transformation

ϕ⇒ ψ.

4.3 Functors versus cofunctors

In this section we compare the definitions of functors and cofunctors in various

ways. These results should be useful in gaining familiarity with the a priori not so

natural notion of cofunctor.
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First, in the case S = Sets , we may describe functors f : C→ D and cofunctors

ϕ : C→ D through pictures as follows.

C

f

��

x
a

++
_

f0
��

x′_
f0
��

D f0(x)
f1(a)

,,

_

f1
��

f0(x
′)

D y
ϕ1(a,y)

++
_

ϕ0

��

y′
_

ϕ0

��
C

ϕ

OO

ϕ0(y)
a ,,
_

ϕ1

OO

ϕ0(y
′)

These are meant to indicate the behavior of the various maps with respect to source

and targets. Similar pictures can be used to describe compositions, unitality and

associativity both for functors and cofunctors. We see that, just as a functor can

be thought ot as “push-forward” of arrows from the category C to the category D,

a cofunctor may be thought of as a “lifting” of arrows from C to D. Moreover,

these push-forward and lifting should preserve identities and compositions in the

obvious ways.

This model becomes even more meaningful in the following particular example.

Let X and Y be topological spaces, f : X → Y a continuous map and p : Y → X

a covering space map. Let π(X) and π(Y ) denote the fundamental groupoids of X

and Y . Then there is a functor f∗ : π(X)→ π(Y ), obtained by pushing paths on X

forward to Y through composition with f , but also a cofunctor p∗ : π(X)→ π(Y ),

obtained by lifting paths from X to Y along p (the unique lifting property of p

guarantees that compositions and identities are preserved).

Next, we discuss an alternative description of the notion of functor, which

highlights its “duality” with the notion of cofunctor. This is valid for any S, and

is based on the adjunction

HomC−D(M,Cf⊗DN) ∼= HomD−D(fM,N) .

for C-D-bicomodulesM andD-D-bicomodulesN , where there is given a morphism

of comonoids f : C → D (remark 3.0.1).
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Let C = (A,C, . . .) and D = (B,D, . . .) be categories in S and f : C → D a

functor, f = (f1, f0) as in definition 4.1.1. Recall that f1 : fAf → B is a morphism

of D-D-bicomodules, where the subindices denote corestriction along f0. Hence

f1 corresponds, under the adjunction above (M = Af , N = B), to a morphism

f̃1 : Af → Cf⊗DB of C-D-bicomodules. Let us rename

ϕ0 = f0 : C → D and ϕ1 = f̃1 : Af → Cf⊗DB .

One checks easily that the conditions in definition 4.1.1 for (f1, f0) translate into

the following conditions for (ϕ1, ϕ0):

• ϕ0 : C → D is a morphism of comonoids in S,

• ϕ1 : A→ C⊗
DB is a morphism of C-D-bicomodules in S (where A and C are

viewed as right D-comodules by corestriction via ϕ0),

and the following diagrams commute

A
ϕ1 // C⊗

DB

C

i

OO

∼= // C⊗
DD

idC⊗
Di

OO A⊗
CA

idA⊗
Cϕ1//

m

��

A⊗
CC⊗

DB ∼= A⊗
DB

ϕ1⊗
D
idB// C⊗

DB⊗
DB

idC⊗
Dm

��
A ϕ1

// C⊗
DB

.

These conditions are to be compared with those in definition 4.2.1 of cofunctor.

The “duality” is remarkable.

There is a parallel alternative description of natural transformations, which

bears the same dual relationship to that of natural cotransformations. Let f, g :

C → D be functors and α : f ⇒ g a natural transformation as in definition 4.1.2.

View f and g as pairs (ϕ1, ϕ0) and (ψ1, ψ0) as above. Recall that α : ψCϕ → B is

a morphism of D-D-bicomodules, where the subindices denote corestriction along

ϕ0 = f0 and ψ0 = g0. Hence α corresponds, under the adjunction above (M = Cϕ,

N = B), to a morphism α̃ : Cϕ → Cψ⊗
DB of C-D-bicomodules. Again, one checks

easily that the conditions in definition 4.1.2 for α translate into the following
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conditions for α̃: α̃ : Cϕ → Cψ⊗
DB is a morphism of C-D-bicomodules and the

following diagram commutes

A⊗
CCψ⊗

DB
∼= // Aψ⊗

DB
ψ1⊗

D
idB// Cψ⊗

DB⊗
DB

idC⊗
Dm

&&MMMMMMMMMM

A⊗
CCϕ

idA⊗
Cα̃

88rrrrrrrrrr

∼=
&&LLLLLLLLLLL

Cψ⊗
DB

Aϕ ϕ1
// Cϕ⊗

DB
α̃⊗DidB

// Cψ⊗
DB⊗

DB
idC⊗

Dm

88qqqqqqqqqq

These conditions are to be compaired with those in definition 4.2.2 of natural

cotransformation.

Let us close this section by mentioning that both functors and cofunctors

C → D naturally give rise to particular C-D-birepresentations. When S = Sets ,

birepresentations are also called profunctors in the literature. For reasons of space,

birepresentations will not be discussed in this work.

4.4 Cofunctors in Sets

Higgins and Mackenzie [HM] have introduced the notion of comorphims for Lie

groupoids, and hence for ordinary small categories, by forgetting the additional

structure (a Lie groupoid is after all a special type of small category). It is the

purpose of this section to check that in the case S = Sets , a cofunctor as in

definition 4.2.1 is just a comorphism in the sense of [HM]. This section is otherwise

independent of the rest of this work.

We start by recalling a construction for ordinary categories, sometimes known

as the Bousfield-Kan construction or homotopy colimit [Lod2, appendix B.13]. Let

C = (A,C, . . .) be a category in Sets and p : D → C a map, where D is another

set. Suppose that in addition there is given an action of C on p, that is, for

every arrow a : x → x′ in C, there is given a map ã : p−1(x) → p−1(x′), and this
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assignment preserves identities and compositions. In this setting, the Bousfield-

Kan construction is the category C ⋉ D = (A ×C D,D, . . .) where A ×C D =

{(a, y) ∈ A × D /s(a) = p(y)}, a pair (a, y) ∈ A ×C D is an arrow from y to

ã(y), and identities and composition are defined in the obvious way, so that the

assignments p : D → C and A×C D → A, (a, y) 7→ a define a functor C ⋉D → C.

This can be illustrated as follows:

C ⋉D

��

y
(a,y)

,,
_

p

��

ã(y)
_

p

��
C x

a
++
x′

.

Now we are in position to state Higgins and Mackenzie’s definition of comor-

phism. Let C = (A,C, . . .) and D = (B,D, . . .) be categories in Sets . These

authors define a comorphism C→ D to consist of a map p : D → C, an action of C

on p as above, and a functor C ⋉D → D which is the identity on D (the objects).

This notion is equivalent to that of cofunctor, as we now explain. Given a

cofunctor (ϕ1, ϕ0) as in definition 4.2.1, let p = ϕ0, and define an action on C on

p as

ã(y) = t̃(ϕ1(a, y)) ∈ D for (a, y) ∈ A×C D,

where t̃ is the target map of the category D. These data, together with the functor

(ϕ1, idD) : C ⋉ D → D, define a comorphism in the sense of [HM]. It is clear how

to proceed conversely.

This description of cofunctors in terms of actions holds true for arbitrary lex

categories S, not only for S = Sets , but it does not seem possible to extend it to

the case of general monoidal categories.
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Chapter 5

The monoid of admissible sections

5.1 Definition

Definition 5.1.1. Let C = (A,C, s, t, i,m) a category in S. An admissible section

for C is a map u : C → A in S such that

C
u //

∆C
��

A

s

��
C⊗C

u⊗idC

// A⊗C

commutes. The set of admissible sections for C is denoted by Γ(C).

In other words, an admissible section is a morphism of right C-comodules

u : C → A. An admissible section of an ordinary small category (in Sets )

C = (A,X, s̃, t̃, . . .) is just a map u : X → A such that s̃u(c) = c ∀x ∈ X:

x

u(x)

''
• .

Admissible sections of ordinary categories were introduced by Chase in the context

of affine groupoid schemes [Cha1]. They have also been considered in the Lie

groupoid literature [Mac, definition II.5.1]; in this context the notion apparently

goes back to Ehresmann.

In the proof of the following result we will make use of every single axiom in

the definition of internal categories 2.3.1.

Proposition 5.1.1. Let C be as before. Then Γ(C) is an ordinary monoid as

follows:

• the unit element is i : C → A, and
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• given u and v in Γ(C), their product is

u ∗ v : C
v
−→ A

t
−→ C⊗

CA
u⊗CidA−−−→ A⊗

CA
m
−→ A .

Proof. First notice that indeed u ∗ v ∈ Γ(C) and i ∈ Γ(C), because all v, t, idA, m

and i are morphisms of right C-comodules; the latter two by definition of internal

categories.

Also, i is a morphism of left C-comodules, so t ◦ i = (idC⊗i) ◦∆C , hence

u ∗ i = m ◦ (u⊗idA) ◦ t ◦ i = m ◦ (u⊗idA) ◦ (idC⊗i) ◦∆C

= m ◦ (idA⊗i) ◦ (u⊗idC) ◦∆C = m ◦ (idA⊗i) ◦ s ◦ u = u,

by right unitality for m and i, and since u is a morphism of right C-comodules.

On the other hand, left unitality for i and m yields directly that i ∗ v = v.

Finally, associativity for ∗ is the commutativity of the following diagram (the

top boundary is (u∗v)∗w, the bottom u∗(v∗w)), which holds because m preserves

targets (is a morphism of left C-comodules) and is associative:

A
t // C⊗

CA
v⊗CidA // A⊗

CA
t⊗CidA// C⊗

CA⊗
CA
u⊗CidA⊗

C
idA//

idC⊗
Cm

��>
>>

>>
>>

>>
>>

>>
>>

>>
> A⊗

CA⊗
CA
m⊗

C
idA //

idA⊗
Cm

��:
::

::
::

::
::

::
::

::
A⊗

CA
m

""E
EE

EE
EE

EE

C

w
??~~~~~~~

w
��@

@@
@@

@@
A

A t
// C⊗

CA
v⊗CidA

// A⊗
CA m

//

t⊗CidA

AA�����������������
A t

// C⊗
CA

u⊗CidA

// A⊗
CA

m

<<yyyyyyyyy

When S = Sets , multiplication of admissible sections can be described through

the following simple picture:

x

v(x)
))

(u∗v)(x)

88t̃v(x)

u(t̃v(x))

'' •
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5.2 Examples

We first compute the monoid of admissible sections for the discrete, one-object

and pair categories (section 2.4).

For the discrete category Ĉ we have, by remark 3.0.1,

Γ(Ĉ) = HomC(C,C) ∼= HomS(C, I) under u 7→ ǫC ◦ u .

Let us check that this is actually an isomorphism of monoids Γ(Ĉ) ∼= HomS(C, I)
op.

Here, HomS(C, I) is a monoid under convolution, which we also denote by the

symbol ∗: f ∗ g = (f⊗g) ◦ ∆C . First, the unit element i = idC ∈ Γ(Ĉ) maps

to the unit element ǫC ∈ HomS(C, I). Second, the fact that multiplication of

admissible sections corresponds to the opposite of convolution is the commutativity

of the following diagram, where the top boundary is ǫC ◦ (u ∗ v) and the bottom

(ǫC ◦ v) ∗ (ǫC ◦ u):

C
v //

∆C
��

C
∆C //

∆C
��

C⊗
CC

u⊗CidC //

idC⊗ǫC
��

C⊗
CC

∆−1
C //

ǫC⊗ǫC
��

C

ǫC
��

C⊗C
v⊗idC

//

(ǫC◦v)⊗idC //

C⊗C

ǫC⊗idC

III
I

$$II
II

C⊗I
(ǫC◦u)⊗idI

// I⊗I I

I⊗C idI⊗(ǫC◦u)

GG

(The first square commutes by definition of admissible section: v is a morphism of

right C-comodules).

For the one-object category A

ˇ
we have, since ComodS(I) = S,

Γ(A

ˇ
) = HomI(I, A) = HomS(I, A).

It is immediate from the definition that multiplication of admissible sections cor-

responds to the convolution product in HomS(I, A).

For the pair category Ĉ

ˇ
, we can use remark 3.0.1 again to conclude that

Γ(Ĉ

ˇ
) = HomC(C,C⊗C) ∼= EndS(C) under u 7→ (idC⊗ǫC) ◦ u .
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Let us check that this is actually an isomorphism of monoids, where we view

EndS(C) as a monoid under composition. In fact, the unit element i = ∆C ∈ Γ(Ĉ

ˇ
)

maps by counitality to (idC⊗ǫC) ◦∆C = idC , the unit element of EndS(C). The fact

that multiplication of admissible sections corresponds to composition of maps is the

commutativity of the following diagram, where the top boundary is (idC⊗ǫC)◦(u∗v)

and the bottom ((idC⊗ǫC) ◦ u) ◦ ((idC⊗ǫC) ◦ v):

C
v //

(idC⊗ǫC)◦v --

C⊗C
∆C⊗idC//

idC⊗ǫC
��

u⊗idC

KKK
K

%%KK
KK

C⊗C⊗C
u⊗idC⊗C// C⊗C⊗C⊗C

idC⊗ǫC⊗ǫC⊗idC // C⊗C

idC⊗ǫC
��

C

(idC⊗ǫC)◦u

44C⊗C⊗C

idC⊗∆C⊗idCoooo

77oooo

idC⊗ǫC⊗ǫC
// C

(The triangle commutes by definition of admissible section: u is a morphism of

right C-comodules).

For the empty category ΦC (assuming S has a zero object), obviously Γ(ΦC) =

{0}, the trivial monoid.

We close the section by announcing two important results that will be proved

in later chapters.

We have mentioned that a category in Groups can be equivalently described as

a crossed module of groups. The monoid of admissible sections of such a category

turns out to be Whitehead’s monoid of derivations of the crossed module [W, N].

This will be proved in section 10.1.

The monoid of admissible sections of a linear category (which, as already said, is

a particular example of a category in Veck) coincides (essentially) with Mitchell’s

matrix ring of the linear category [Mit]. This will be proved in section 9.1. In

particular Rota’s incidence algebra of a locally finite poset [Rot] is an instance of

this.
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5.3 Cofunctors and admissible sections

As announced in the introduction, the construction of admissible sections is func-

torial with respect to cofunctors, this being the main reason for our interest in this

type of morphisms for internal categories.

Let C = (A,C, . . .) and D = (B,D, . . .) be categories in S and ϕ : C → D a

cofunctor. Given u : C → A in Γ(C), define Γ(ϕ)(u) : D → B as the composite

Γ(ϕ)(u) : D
∆D−−→ D⊗

DD →֒ Dϕ⊗
C
ϕD

ϕ0⊗
C
idD−−−−→ C⊗

C
ϕD

u⊗CidD−−−→ A⊗
C
ϕD

ϕ1
−→ B ,

where the subindices denote corestriction via ϕ0 : D → C as in section 3, and the

canonical map of lemma 3.0.1 has been used. Notice that since ϕ1 is a morphism

of right D-comodules, so is Γ(ϕ)(u), i.e. Γ(ϕ)(u) ∈ Γ(D).

When S = Sets , this definition can be illustrated as follows. Given u ∈ Γ(C)

and y an object of D, Γ(ϕ)(u)(y) is the lift of u(ϕ0(y)) to y provided by ϕ1:

D y
Γ(ϕ)(u)(y)

++g d b _ ] Z X
_

ϕ0

��

•

C

ϕ

OO

ϕ0(y)
u(ϕ0(y))

++

_
ϕ1

OO

•

Proposition 5.3.1. Γ(ϕ) : Γ(C)→ Γ(D) is a morphism of monoids.

Proof. First, Γ(ϕ)(i) = i precisely by unitality for the cofunctor ϕ. Second, the

fact that Γ(ϕ)(u ∗ v) = Γ(ϕ)(u) ∗ Γ(ϕ)(v) is the commutativity of the following

diagram (where Γ(ϕ)(u ∗ v) is the top boundary and Γ(ϕ)(u) ∗Γ(ϕ)(v) the bottom

one), which holds by

(1) ϕ1 is a morphism of left C-comodules

(2) associativity for the cofunctor ϕ

( ) the unlabeled diagrams commute by naturality or functoriality
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C⊗
CA⊗

CD
u⊗CidA⊗

C
idD//

idC⊗
Cϕ1

��

A⊗
CA⊗

CD
m⊗

C
idD//

idA⊗
Cϕ1

��

A⊗
CD

ϕ1

""F
FF

FF
FF

FF

D
∼= // C⊗

CD
v⊗CidD // A⊗

CD

t⊗CidD
88qqqqqqqqqq

ϕ1

zztttttttttt
(1) C⊗

CB
u⊗CidB // A⊗

CB

∼=
��

(2) B

B t
// D⊗

DB

∼=
88qqqqqqqqqq

∼=
// C⊗

CD⊗
DB
u⊗CidD⊗

D
idB

// A⊗
CD⊗

DB
ϕ1⊗

D
idB

// B⊗
DB

m

<<xxxxxxxxx

(In this diagram, D-comodules are viewed, when convenient, as C-comodules by

corestriction via ϕ0).

The functoriality of Γ is easier. First, Γ(idC)(u) is by definition the following

composite

C
∆C−→ C⊗

CC
u⊗CidC−−−→ A⊗

CC
∼=
−→ A

which is just u : C → A. Second, given cofunctors ϕ : C → D and ψ : D → E as

in section 4.2, Γ(ψ ◦ ϕ)(u) is, by definition, the following composite

E
∆E−→ E⊗

EE
ψ0ϕ0⊗

C
idE−−−−−−→ C⊗

CE
u⊗CidD−−−→ P⊗

CD
∼=
−→ P⊗

CD⊗
DE

ϕ1⊗
D
idE−−−−→ Q⊗

DE
ψ1
−→ R

which clearly coincides with Γ(ψ)Γ(ϕ)(u).

The above shows that admissible sections is a functor

Γ :
←−−
CatS→ Monoids .

Actually, more than this holds: the 2-categorical structure of
←−−
CatS is also preserved,

in the following sense.

Proposition 5.3.2. Let α : ϕ ⇒ ψ be a natural cotransformation between two

cofunctors as above. Then α ∈ Γ(D), and for any u ∈ Γ(C),

α ∗ Γ(ϕ)(u) = Γ(ψ)(u) ∗ α .

Proof. By definition of natural cotransformation (first diagram in 4.2.2), α is a

morphism of right D-comodules, i.e. α ∈ Γ(D). The equality above is the com-

mutativity of the diagram below (where the top boundary is α ∗ Γ(ϕ)(u) and the

bottom Γ(ψ)(u) ∗ α), where
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( ) the unlabeled diagrams commute by naturality or functoriality

(1) second diagram in def. 4.2.2 for α

(2) third diagram in def. 4.2.2 for α

(3) commutes because it does after composing with the isomorphism

C⊗
CD⊗

DB
idC⊗

C(ǫD⊗idB)
−−−−−−−→ C⊗

CB, by counitality of t and ∆D.

ϕD
∆D //

α

��

D⊗
DD

ϕ0⊗idD //

(1)

C⊗
C
ϕD

u⊗CidD //

idC⊗
Cα

��

A⊗
C
ϕD

ϕ1 //

idA⊗
Cα

��

B
t // D⊗

DB
α⊗DidB // B⊗

DB

m

��
C⊗

C
ψB

u⊗CidB //

idC⊗
Ct

''NNNNNNNNNNN

(3)

A⊗
C
ψB

idA⊗
Ct

''NNNNNNNNNNN
(2) B

ψB t
// D⊗

DB

ψ0⊗idB

99ssssssssss

∆D⊗
D
idB

// D⊗
DD⊗

DB
ψ0⊗idD⊗

D
idB

// C⊗
C
ψD⊗

DB
u⊗CidD⊗

D
idB

// A⊗
C
ψD⊗

DB
ψ1⊗

D
idB

// B⊗
DB

m

OO

Proposition 5.3.2 allows us to view natural contransformations as admissible

sections. Notice that the composition of natural cotransformations defined in sec-

tion 4.2 is then just a special case of multiplication of admissible sections. This

had been announced in section 4.2.

We can now derive a result that was already mentioned in section 4.1, when

computing the monoid of endomorphisms of the identity functor (examples 4.1.2).

Corollary 5.3.1. For any category C, End(idC) ⊆ Z(Γ(C)), where End(idC) denotes

the monoid of natural transformations idC⇒ idC.

Proof. Immediate from proposition 5.3.2, plus the observation that natural trans-

formations coincide with natural cotransformations in this case (section 4.2).

5.4 Functors and admissible sections

In general, a functor f : C → D between internal categories does not induce a

morphism Γ(C)→ Γ(D) (unless, for instance, if it is the identity on objects, i.e. it
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can be seen as a cofunctor). For instance, consider the functor ǫ : Ĉ→ Î between

discrete categories, and assume for simplicity that S = Veck. We know from section

5.2 that in this case Γ(Ĉ) = (C∗)op and Γ(̂I) = k, so we certainly do not expect

any morphism Γ(Ĉ) → Γ(̂I). On the other hand, in general a functor f : C → D

does not induce a morphism Γ(D)→ Γ(C) either: consider the case of one-object

categories.

However, it is possible to pull-back subsets of Γ(D) to Γ(C) along a functor

f : C → D, in a way that is compatible with the multiplication of admissible

sections. For each x ∈ Γ(D) define

f−1(x) = {u ∈ Γ(C) / C u //

f0 ��

A
f1��

D x
//B

commutes }.

Proposition 5.4.1. Let f : C→ D be a functor as above.

1. For any x, y ∈ Γ(D), f−1(x) ∗ f−1(y) ⊆ f−1(x ∗ y).

2. f−1(i) is a submonoid of Γ(C).

Proof. 1. For any u ∈ f−1(x) and v ∈ f−1(y), the following diagram commutes

C
v //

f0
��

A
t //

f1
��

C⊗
CA

u⊗CidA //

f0⊗
Df1
��

A⊗
CA

m //

f1⊗
Df1
��

A

f1
��

D y
// B t

// D⊗
DB

x⊗DidB

// B⊗
DB m

// B

,

by definition of functor 4.1.1 and of f−1. Hence u ∗ v ∈ f−1(x ∗ y).

2. It only remains to show that i ∈ f−1(i). This is the unitality condition for f

in definition 4.1.1.

More generally, for any subset X ⊆ Γ(D) one can define

f−1(X) =
⋃

x∈X

f−1(x) ⊆ Γ(C) and f−1(∅) = ∅ .
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It follows from the proposition above that for anyX, Y ⊆ Γ(D), f−1(X)∗f−1(Y ) ⊆

f−1(X ∗ Y ), and that if M is a submonoid of Γ(D) then f−1(M) is a submonoid

of Γ(C). Thus:

Corollary 5.4.1. A functor f : C→ D induces an order-preserving mapping from

the lattice of submonoids of Γ(D) to that of Γ(C).

Proof. Done above.
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Chapter 6

Representations of an internal category

6.1 Definition and examples

Definition 6.1.1. Let C = (A,C, s, t, i,m) be a category in S. A (left) represen-

tation of C in S is an object X of S together with:

• a left C-comodule structure p : X → C⊗X and

• a morphism of left C-comodules a : A⊗
CX → X,

such that the following diagrams commute

A⊗
CX

a // X

∼=
xx

xx

p
{{xxx

x

C⊗
CX

i⊗CidX

OO A⊗
CA⊗

CX
idA⊗

Ca //

m⊗
C
idX

��

A⊗
CX

a

��
A⊗

CX a
//X

.

Sometimes we refer to a : A⊗
CX → X as the A-action onX, and to the diagrams

above as the unitality and associativity of the action.

A morphism between representations X and Y of C is a map f : X → Y in S

such that both diagrams below commute:

X
f //

pX
��

Y

pY
��

C⊗X
idC⊗f

// C⊗Y

A⊗
CX

aX
��

idA⊗
Cf // A⊗

CY

aY
��

X
f

// Y

;

in particular f is a morphism of left C-comodules. The resulting category RepSC

comes thus equipped with a forgetful functor RepSC→ ComodSC.

Examples 6.1.1.

For any category C = (A,C, . . .), A itself is a representation, via t : A→ C⊗A

and m : A⊗
CA→ A. This is called the (left) regular representation of C.
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Obviously, a representation of a one-object category is just a module over the

underlying monoid: RepS(A

ˇ
) = ModSA. Also, a representation of a discrete cat-

egory is just a comodule over the underlying comonoid: RepS(Ĉ) = ComodSC

(unitality forces a = p−1).

When S is a lex category, the definition above coincides with the definition of

internal diagram or internal functor for usual internal categories [Joh, definition

2.14]. The reason for this terminology is that, specializing even further to the

case when C is a category in S = Sets , a representation of C is just a functor

C → Sets . In fact, given a functor F : C → Sets , one obtains a representation

XF of C as follows:

XF =
∐

c∈C

F (c) ,

with the C-comodule structure corresponding to the given C-grading (examples

1.4.1), and with A-action A ×C XF → XF , (a, x) 7→ F (a)(x). Conversely, any

representation arises from a unique functor in this way. Also, morphisms of repre-

sentations correspond to natural transformations of functors.

Let us remark the obvious fact that, in the general case (arbitrary S), it does

not make sense to talk about functors C→ Sets or C→ S.

6.2 Restriction along functors and cofunctors

Let C = (A,C, . . .) and D = (B,D, . . .) be categories in S and ϕ = (ϕ1, ϕ0) :

C → D a cofunctor. We will define a functor (between ordinary large categories)

RepSD → RepSC. Let (X, p, a) be a representation of D. First, view X as a

C-comodule by corestriction along ϕ0 (section 3), that is via

p̃ : X
p
−→ D⊗X

ϕ0⊗idX−−−−→ C⊗X .
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Then, consider the map

ã : A⊗
CX ∼= A⊗

CD⊗
DX

ϕ1⊗
D
idX−−−−→ B⊗

DX
a
−→ X .

Proposition 6.2.1. The resulting (X, p̃, ã) is a representation of C.

Proof. ã is a morphism of left C-comodules, since so are ϕ1 and a. We only need to

check unitality and associativity for the A-action ã. Unitality is the commutativity

of the following diagram, which holds by

(1) unitality for ϕ

(2) unitality for a

A⊗
CX

∼= // A⊗
CD⊗

DX
ϕ1⊗

D
idX//

(1)

B⊗
DX

a //

(2)

X

ptt
C⊗

CX

i⊗CidX

OO

∼=
// C⊗

CD⊗
DX

i⊗CidD⊗
D
idX

OO

D⊗
DX

i⊗DidX

OO

∼=
oo

.

(To see that the map D⊗
DX → C⊗

CX is induced by ϕ0⊗idX , compose with the

isomorphism C⊗
CD⊗

DX
idC⊗

C(ǫD⊗idX)
−−−−−−−→ C⊗

CX and use counitality of p and ∆D).

Associativity is the commutativity of the following diagram, which holds by

(1) associativity for ϕ

(2) associativity for a

A⊗
CA⊗

CX
∼= //

m⊗
C
idX

��

A⊗
CA⊗

CD⊗
DX

idA⊗
Cϕ1⊗

D
idX//

m⊗
C
idD⊗

D
idX

��

A⊗
CB⊗

DX
idA⊗

Ca //

∼=
��

A⊗
CX

∼=
��

A⊗
CD⊗

DB⊗
DX

ϕ1⊗
D
idB⊗

D
idX

��

A⊗
CD⊗

DX

ϕ1⊗
D
idX

��
B⊗

DB⊗
DX

idB⊗
Da //

m⊗
D
idX

��

B⊗
DX

a

��
A⊗

CX ∼=
// A⊗

CD⊗
DX

ϕ1⊗
D
idX

// B⊗
DX a

//

(1)

X

(2)

.
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We sometimes write resϕ(X) for the resulting representation of C, and say that

resϕ(X) has been obtained from X by restriction along ϕ. Clearly, a morphism

f : X → Y of representations of D is also a morphism between the corresponding

representations of C. This defines a functor

resϕ : RepSD→ RepSC,

which by construction fits into a commutative diagram

RepSC // ComodSC

RepSD

resϕ

OO

// ComodSD

coresϕ0

OO ,

where the unlabelled arrows are forgetful functors. Notice that resϕ preserves the

forgetful functors to S, i.e.

RepSC

""F
FF

FF

S

RepSD

<<xxxxx

resϕ

OO

commutes. Incidentally, the forgetful functor RepSC→ S is res←−
i

where
←−
i : I→ C

is the cofunctor of examples 4.2.1.

Now, let ϕ, ψ : C → D be two cofunctors and α : ϕ ⇒ ψ a natural cotransfor-

mation (definition 4.2.2). For each D-representation X, define

αX : ϕX ∼= ϕD⊗
DX

α⊗DidX−−−−→ ψB⊗
DX

a
−→ ψX,

where the subindices denote corestriction as in section 3.

Proposition 6.2.2. αX defines a natural transformation resϕ ⇒ resψ.

Proof. By construction, αX is a morphism of left C-comodules (a is a morphism of

D-comodules by definition of representation, hence in particular of C-comodules).

The fact that the A-actions are preserved by αX is the commutativity of the fol-

lowing diagram, which holds by
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(1) conaturality of α

(2) associativity of a

A⊗
CX

∼= //

∼=
��

(1)

A⊗
CD⊗

DX
idA⊗

Cα⊗DidX // A⊗
CB⊗

DX
idA⊗

Ca //

∼=
��

A⊗
CX

∼=
��

A⊗
CD⊗

DX

ϕ1⊗
D
idX

��

A⊗
CD⊗

DB⊗
DX

ψ1⊗
D
idB⊗

D
idX

��

A⊗
CD⊗

DX

ψ1⊗
D
idX

��
B⊗

DB⊗
DX

idB⊗
Da //

m⊗
D
idX

��

B⊗
DX

a

��

B⊗
DX

∼= //

a

��

D⊗
DB⊗

DX
α⊗DidB⊗

D
idX// B⊗

DB⊗
DX

m⊗
D
idX //

idB⊗
Da
��

B⊗
DX

a
QQQQQQ

((QQQQQQQQ

X ∼=
// D⊗

DX
α⊗DidX

// B⊗
DX a

// X

(2)

(2)

.

Finally, naturality for αX is the commutativity of the following diagram, where (1)

commutes since, by assumption, f : X → Y is a morphism of D-representations:

X
∼= //

f
��

D⊗
DX

α⊗DidX//

idD⊗
Df
��

B⊗
DX

a //

idB⊗
Df
��

X

f
��

Y ∼=
// D⊗

DY
α⊗DidY

// B⊗
DY a

// Y

(1)

.

In addition, one can similarly show that the construction of res preserves com-

positions: resϕ ◦ resψ = resψ◦ϕ, for any pair of composable cofunctors ϕ and ψ.

Also, composition of natural cotransformations corresponds to composition of the

associated natural transformations. All these results can thus be summarized as

follows.

Corollary 6.2.1. Restriction is a 2-functor (contravariant on arrows and covari-

ant on 2-cells)

←−−
CatS→ LCat, C 7→ RepSC, ϕ 7→ resϕ, α 7→ α .

Proof. Done above.
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Example 6.2.1. Recall from examples 6.1.1 that a representation of a category

D = (B,D, . . .) in Sets can be equivalently described as a D-graded set

X =
∐

d∈D

Xd equipped with maps Xb : Xd → Xd′ for each arrow b : d→ d′ of D ,

such that associativity and unitality are preserved in the obvious way. If ϕ : C→ D

is a cofunctor, then the C-representation resϕ(X) is the same set X, with C-grading

defined by

Xc =
∐

d∈ϕ−1
0 (c)

Xd

and where the action of an arrow a : c → c′ of C on Xc is given by the action of

ϕ1(a, d) on Xd ⊆ Xc for each d ∈ ϕ−1
0 (c). In pictures:

D d

ϕ1(a,d)
++

_

��

d′_

��
C

ϕ

OO

c
a

++
c′

∐
Xd

‘
Xϕ1(a,d) //

∐
Xd′

Xc
Xa //_______ Xc′

.

We close the section by briefly describing an analogous construction that can

be carried out for functors instead of cofunctors. Namely, given a functor f =

(f1, f0) : C→ D, one can again define a restriction functor

resf : RepSD→ RepSC,

which now fits into a commutative diagram

RepSC // ComodSC

RepSD

resf

OO

// ComodSD

coindf0

OO .

In particular resf does not preserve the forgetful functors to S, since coindf0 does

not, unless f0 = idC , in which case f can be seen as a cofunctor and then the two

types of restriction along f (as a functor or as a cofunctor) coincide.
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Explicitly, given a D-representation X, its restriction along f is

resf (X) = Cf⊗DX

with its canonical structure of left C-comodule, and the following A-action:

A⊗
Cresf(X) = A⊗

CCf⊗DX ∼= Af⊗DX
f1⊗

D
idX−−−−→ Cf⊗DB⊗

DX
idC⊗

Da
−−−→ Cf⊗DX = resf (X) .

Here, we are viewing the functor f as a pair (f1, f0) with f0 : C → D and f1 :

Af → Cf⊗DB, as explained in section 4.3. Associativity of the A-action follows

easily from that of the B-action plus functoriality of f , similarly for unitality.

One can proceed similarly with natural transformations. If α : f ⇒ g is

a natural transformation between functors C → D, so that (in the alternative

notation of section 4.3) α : Cf → Cg⊗DB is a morphism of C-D-bicomodules, one

can define a natural transformation resf ⇒ resg via

αX : Cf⊗DX
α⊗DidX−−−−→ Cg⊗DB⊗

DX
idC⊗

Da
−−−→ Cg⊗DX .

Altogether this gives a 2-functor (contravariant on arrows, covariant on 2-cells)

−−→
CatS→ LCat , C 7→ RepSC, f 7→ resf , α 7→ α .

6.3 Yoneda’s lemma

The result below generalizes at the same time [Joh, proposition 2.21] and [P, the-

orem 2.2]. The former is the special case when S is lex, the latter is for arbitrary

monoidal categories S but for monoids instead of internal categories (i.e. the spe-

cial case C = A

ˇ
). For the definition of monads and monadic functors the reader is

referred to [ML, chapter VI].

Proposition 6.3.1. Let C be a category in S, with base comonoid C. Then the

forgetful functor RepSC→ ComodSC is monadic.
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Proof. Let T : ComodSC → ComodSC be T (X) = A⊗
CX. Define natural transfor-

mations µ : T 2 ⇒ T and η : Id⇒ T by

µX : A⊗
CA⊗

CX
m⊗

C
idX−−−−→ A⊗

CX and ηX : X
∼=
−→ C⊗

CX
i⊗CidX−−−→ A⊗

CX .

Then the axioms in the definition of internal category (2.3.1) immediately imply

that (T, µ, η) is a monad in ComodSC. Moreover, comparing the definition of alge-

bras over a monad [ML, VI.2] with that of representations of an internal category

(6.1.1), we see that there is an equivalence K as in the diagram below

RepSC

))SSSSSSSS

K

���
�
�
�

ComodSC

(ComodSC)T

55kkkkkk

,

where (ComodSC)T is the category of T -algebras in ComodSC. This means that

RepSC→ ComodSC is monadic.

We can now derive Yoneda’s lemma for internal categories.

Corollary 6.3.1. The forgetful functor RepSC → ComodSC possesses a left ad-

joint ComodSC → RepSC, which sends X to A⊗
CX, where A⊗

CX is viewed as

C-representation via the following left C-comodule structure and A-action maps:

A⊗
CX

s⊗CidX−−−→ C⊗A⊗
CX and A⊗

CA⊗
CX

m⊗
C
idX−−−−→ A⊗

CX .

Proof. This follows from proposition 6.3.1 plus [ML, theorem VI.2.1].

When S = Sets , the above corollary specializes to the usual Yoneda lemma

(for small categories). To explain this, assume that C is a category in Sets , let

F : C→ Sets be a functor and u ∈ C an object of C. Recall (section 6.1) that F

can equivalently be seen as a representation XF of C. We can view u as a morphism
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of comonoids u : I → C, and hence consider the corestricted C-comodule uI. Then,

the adjunction of corollary 6.3.1 implies in particular that

HomC(A⊗
C
uI,XF ) ∼= HomC(uI,XF ) .

Now, when viewed as a functor C→ Sets , the C-representation A⊗
C
uI is precisely

the hom-functor C(u,−), since

A⊗
C
uI = {a ∈ A / s̃(a) = u} =

∐

v∈C

{a ∈ A / s̃(a) = u, t̃(a) = v} =
∐

v∈C

C(u, v) .

Also, by definition of XF , HomC(uI,XF ) ∼= F (u). Hence the bijection above be-

comes

Hom(C(u,−), F ) ∼= F (u) ,

where Hom now denotes natural transformations. This is Yoneda’s lemma [ML,

lemma III.2].

The forgetful functor RepSC → S does not always have a left adjoint. For

instance, if S = Veck and C = Ĉ

ˇ
C, then the result in corollary A.3.1 says that

RepSC → Veck has a left adjoint if and only if C is finite-dimensional. Similarly,

one can show that RepSets Ĉ

ˇ
→ Sets has a left adjoint if and only if C = {∗}.

6.4 Representations and admissible sections

We expect representations of an internal category C to be somehow related to

representations of the monoid of admissible sections Γ(C). This cannot hold on

the nose since RepSC consists of objects of S while Γ(C) is an ordinary monoid (in

Sets ). In some cases it is possible to introduce an internal version of Γ(C) (a

monoid in S) for which there will be a functor

RepSC→ ModS(Γ(C)) ;
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for reasons of space this is not discussed in this work (unless for the case S = Veck,

which is addressed in section 9.2). In this section we discuss the “external” version

of this; namely, for each representation X of C, we define a morphism of monoids

Γ(C)→ EndS(X) ,

which is natural with respect to cofunctors.

Proposition 6.4.1. Let C = (A,C, . . .) be a category in S and (X, p, a) a repre-

sentation. Then there is a morphism of monoids γX : Γ(C)→ EndS(X), where

γX(u) : X
p
−→ C⊗

CX
u⊗CidX−−−→ A⊗

CX
a
−→ X .

Proof. First, γX(i) = idX precisely by unitality for the representation X. The fact

that γX transforms multiplication of admissible sections u and v into composition

of maps is the commutativity of the following diagram, which holds since

(1) a is a morphism of left C-comodules

(2) a is associative

X
p // C⊗

CX
v⊗CidX // A⊗

CX

a

��

t⊗CidX // C⊗
CA⊗

CX

idC⊗
Ca
��

u⊗CidA⊗
C
idX// A⊗

CA⊗
CX

idA⊗
Ca
��

m⊗
C
idX // A⊗

CX

a

��
X

(1)

p
// C⊗

CX
u⊗CidX

// A⊗
CX a

// X

(2)

.

Next we show that γ is natural with respect to cofunctors.

Proposition 6.4.2. Let ϕ : C→ D be a cofunctor, Y ∈ RepSD and X = resϕ(Y ) ∈

RepSC. Then the following diagram commutes:

Γ(C)
γX //

Γ(ϕ)
��

EndS(X)

Γ(D) γY
// EndS(Y )

.
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Proof. The desired result is the commutativity of the following diagram, where

the top boundary is γY

(
Γ(ϕ)(u)

)
and the bottom γX(u) ((1) and (2) commute by

definition of resϕ):

Y
pY // D⊗

DY
∆D⊗

D
idY// D⊗

DD⊗
DY

ϕ0⊗
D
idD⊗

D
idY // C⊗

CD⊗
DY

∼=
��

u⊗CidD⊗
D
idY// A⊗

CD⊗
DY

∼=
��

ϕ1⊗
D
idY// B⊗

DY

aY
��

X pX
//

(1)

C⊗
CX

u⊗CidX

// A⊗
CX aX

// Y

(2)

.
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Chapter 7

Tensor product of internal categories
In this chapter the regular monoidal category S is assumed to be symmetric, in

addition. We will introduce a monoidal structure on
−−→
CatS and

←−−
CatS and study

its relationship to admissible sections and representations. Deltacategories will be

defined as comonoids in
←−−
CatS.

7.1 The monoidal 2-category of bicomodules

We proceed in an analogous way to that of chapter 2; namely, we first study the

2-category G of bicomodules and then specialize to graphs and categories. We will

show that, when S is symmetric monoidal, G is a monoidal 2-category. For the

definition of monoidal 2-categories in the general (non-strict) case see [KV]. In

the strict case, a monoidal structure on G is a 2-functor ⊗ : G × G → G, which is

associative and unital in the obvious sense. In particular, the tensor product ⊗ is

defined on objects, arrows and 2-cells, and preserves the vertical and horizontal

composition and identities.

Recall (section 1.4) that, since S is symmetric monoidal, so is ComonS, under the

same symmetry τ of S. In particular, given comonoids (C,∆C, ǫC) and (D,∆D, ǫD),

the following defines a structure of comonoid on C⊗D:

C⊗D
∆C⊗∆D−−−−→ C⊗C⊗D⊗D

idC⊗τC,D⊗idD
−−−−−−−→ C⊗D⊗C⊗D and C⊗D

ǫC⊗ǫD−−−→ I⊗I = I .

Moreover, given a C1-C2-bicomodule (A, sA, tA) and aD1-D2-bicomodule (B, sB, tB),

the following define a structure of C1⊗D1-C2⊗D2-bicomodule on A⊗B:

A⊗B
tA⊗tB−−−→ C1⊗A⊗D1⊗B

idC1
⊗τA,D1

⊗idB

−−−−−−−−→ C1⊗D1⊗A⊗B

and

A⊗B
sA⊗sB−−−−→ A⊗C2⊗B⊗D2

idA⊗τC2,B
⊗idD2−−−−−−−−→ A⊗B⊗C2⊗D2 .
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This defines the tensor product of G on objects and morphisms; schematically:

(C2
A
−→ C1)⊗(D2

B
−→ D1) = C2⊗D2

A⊗B
−−→ C1⊗D1 .

On 2-cells, we let ⊗ be just the tensor product of morphisms in S. This clearly

preserves vertical composition and identities, since these come from those of S.

Preservation of horizontal identities is also obvious:

(C
C
−→ C)⊗(D

D
−→ D) = C⊗D

C⊗D
−−−→ C⊗D .

On the other hand, preservation of the horizontal composition is the content of the

following lemma.

Lemma 7.1.1. In the situation

C2
A2−→ C1

A1−→ C0 and D2
B2−→ D1

B1−→ D0 ,

there is a canonical isomorphism of C0⊗D0-C2⊗D2-bicomodules

(A1⊗
C1A2)⊗(B1⊗

D1B2) ∼= (A1⊗B1)⊗C1⊗D1(A2⊗B2) .

Proof. We will show that the following composite

(A1⊗
C1A2)⊗(B1⊗

D1B2)
can⊗can
−−−−→ A1⊗A2⊗B1⊗B2

id1⊗τ⊗id2−−−−−→ A1⊗B1⊗A2⊗B2

is the equalizer of the two rows below

A1⊗B1⊗A2⊗B2

s1⊗s1⊗id22 //

id11⊗t2⊗t2
//
A1⊗C1⊗B1⊗D1⊗A2⊗B2

A1⊗B1⊗C1⊗A2⊗D1⊗B2

id1⊗τ⊗idD⊗id22//

id11⊗idC⊗τ⊗id2

// A1⊗B1⊗C1⊗D1⊗A2⊗B2 ,

which by definition is (A1⊗B1)⊗C1⊗D1(A2⊗B2). This will complete the proof.

To this end, consider the following diagram in S

(A1⊗
C1A2)⊗(B1⊗

D1B2)
can⊗id12 //

id12⊗can

��

(A1⊗A2)⊗(B1⊗
D1B2)

s1⊗id2⊗id12 //

id1⊗t2⊗id12

//

id12⊗can

��

(A1⊗C1⊗A2)⊗(B1⊗
D1B2)

id112⊗can

��
(A1⊗

C1A2)⊗(B1⊗B2)
can⊗id12 //

id12⊗id1⊗t2

��

id12⊗s1⊗id2

��

(A1⊗A2)⊗(B1⊗B2)
s1⊗id2⊗id12 //

id1⊗t2⊗id12

//

id12⊗id1⊗t2

��

id12⊗s1⊗id2

��

(A1⊗C1⊗A2)⊗(B1⊗B2)

id112⊗id1⊗t2

��

id112⊗s1⊗id2

��
(A1⊗

C1A2)⊗(B1⊗D1⊗B2)
can⊗id112

// (A1⊗A2)⊗(B1⊗D1⊗B2)
s1⊗id2⊗id112//

id1⊗t2⊗id112

// (A1⊗C1⊗A2)⊗(B1⊗D1⊗B2)
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Let us check the hypothesis in Johnstone’s lemma 1.2.1. The squares commute

as required, either by naturality of can or functoriality of ⊗. By regularity, all

rows and columns of this diagram are equalizers. Also, (id112⊗s1⊗id2, id112⊗id1⊗t2)

and (s1⊗id2⊗id112, id1⊗t2⊗id112) are both coreflexive pairs, being split respectively by

id112⊗id1⊗ǫD1
⊗id2 and id1⊗ǫC1

⊗id2⊗id112. Thus Johnstone’s lemma applies, and we deduce

that

(A1⊗
C1A2)⊗(B1⊗

D1B2)
can⊗can // A1⊗A2⊗B1⊗B2

s1⊗id2⊗s1⊗id2//

id1⊗t2⊗id1⊗t2
// A1⊗C1⊗A2⊗B1⊗D1⊗B2

is an equalizer. This is the top boundary of the following diagram, which commutes

since τ is a symmetry. It follows that the bottom boundary is also an equalizer,

since the vertical arrows are isomorphisms. This is the desired conclusion.

(A1⊗
C1A2)⊗(B1⊗

D1B2)
can⊗can// A1⊗A2⊗B1⊗B2

s1⊗id2⊗s1⊗id2 //

id1⊗t2⊗id1⊗t2
//

id1⊗τ⊗id2

��

A1⊗C1⊗A2⊗B1⊗D1⊗B2

id1⊗idC⊗τ⊗idD⊗id2��
A1⊗C1⊗B1⊗A2⊗D1⊗B2

id1⊗τ⊗τ⊗id2
��

A1⊗B1⊗A2⊗B2

s1⊗s1⊗id22//

id11⊗t2⊗t2
//
A1⊗C1⊗B1⊗D1⊗A2⊗B2

A1⊗B1⊗C1⊗A2⊗D1⊗B2

id1⊗τ⊗idD⊗id22//

id11⊗idC⊗τ⊗id2

//
A1⊗B1⊗C1⊗D1⊗A2⊗B2

The isomorphism of lemma 7.1.1 will be denoted by

τ(A1,A2,B1,B2) : (A1⊗
C1A2)⊗(B1⊗

D1B2)
∼=
−→ (A1⊗B1)⊗C1⊗D1(A2⊗B2) .

It is natural in all A1, A2, B1 and B2. Since it is induced by idA1
⊗τA2,B1

⊗idB2 , it

is valid to use the same notation τ(A1,B1,A2,B2) for its inverse, which is induced by

idA1
⊗τB1,A2

⊗idB2 .

As explained above, this completes the proof of the fact that the 2-category G of

bicomodules is monoidal under the tensor product described above. In particular,

for any comonoids C and D in S, there is a functor

GC × GD
⊗

−→ GC⊗D, (A,B) 7→ A⊗B,
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where GC = G(C,C) is the category of internal graphs over C. Recall that GC is in

turn a monoidal category, under ⊗
C. Thus, the fact that ⊗ : G×G→ G preserves hor-

izontal composition implies that ⊗ : GC ×GD → GC⊗D is a monoidal functor. Since

monoids are preserved under monoidal functors, it follows that ⊗ carries internal

categories to internal categories. Explicitly, if C = (A,C, . . .) and D = (B,D, . . .)

are categories in S then their tensor product C⊗D = (A⊗B,C⊗D, s, t, i,m) is as

follows:

• C⊗D is a comonoid via

C⊗D
∆C⊗∆D−−−−→ C⊗C⊗D⊗D

idC⊗τC,D⊗idD
−−−−−−−→ C⊗D⊗C⊗D and C⊗D

ǫC⊗ǫD−−−→ I⊗I = I ,

• t : A⊗B
tA⊗tB−−−→ C⊗A⊗D⊗B

idC⊗τA,D⊗idB
−−−−−−−→ C⊗D⊗A⊗B and

s : A⊗B
sA⊗sB−−−−→ A⊗C⊗B⊗D

idA⊗τC,B⊗idD
−−−−−−−→ A⊗B⊗C⊗D,

• i : C⊗D
iA⊗iB−−−→ A⊗B, and

• m : (A⊗B)⊗C⊗D(A⊗B)
τ(A,B,A,B)
−−−−−−→ (A⊗

CA)⊗(B⊗
DB)

mA⊗mB−−−−−→ A⊗B.

Moreover, it is clear that if f = (f1, f0) : C → C′ and g = (g1, g0) : D → D′ are

functors, then so is

f⊗g = (f1⊗g1, f0⊗g0) : C⊗D→ C′⊗D′ .

Thus
−−→
CatS is a monoidal category; the unit object being I = Î = I

ˇ
.

Similarly, if ϕ = (ϕ1, ϕ0) : C → C′ and ψ = (ψ1, ψ0) : D → D′ are cofunctors,

then so is ϕ⊗ψ : C⊗D→ C′⊗D′, where (ϕ⊗ψ)0 : D⊗D′
ϕ0⊗ψ0
−−−→ C⊗C ′ and

(ϕ⊗ψ)1 : (A⊗B)⊗C⊗D(C ′⊗D′)
τ(A,B,C′,D′)
−−−−−−→ (A⊗

CC ′)⊗(B⊗
DD′)

ϕ1⊗ψ1
−−−→ A′⊗B′.

Thus
←−−
CatS is a monoidal category; the unit object being again I.

Finally, notice that there is a functor

τC,D : C⊗D→ D⊗C given by (τA,B, τC,D) .
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This is an isomorphism; in fact, τD,C◦ τC,D = idC⊗D. Thus C⊗D ∼= D⊗C in
−−→
CatS, and

hence also in
←−−
CatS (isomorphisms in these categories coincide, by remark 4.2.1).

This turns
−−→
CatS and

←−−
CatS into symmetric monoidal categories.

We should also remark that when S = Sets , the tensor product of categories

just described boils down to the usual product of categories as in [ML, II.3].

7.2 Products and admissible sections

We begin by discussing one particular example of tensor product of categories, that

shows that convolution of maps is a particular case of multiplication of admissible

sections. If C is a comonoid in S with comultiplication ∆C and counit ǫC , then

Ccop denotes the same object C but viewed as a comonoid with comultiplication

∆Ccop : C
∆C−→ C⊗C

τC,C
−−→ C⊗C and the same counit ǫCcop = ǫC.

Example 7.2.1. Let A be a monoid and C a comonoid in S. Then there is an

isomorphism of monoids

Γ(A

ˇ
⊗Ĉ) ∼= HomS(C

cop, A)

where HomS(C
cop, A) is a monoid under convolution.

Proof. By remark 3.0.1, there is a bijection

Γ(A

ˇ
⊗Ĉ) = HomC(C,A⊗C) = HomS(C,A), u 7→ ũ := (idA⊗ǫC) ◦ u .

We only need to check that this is a morphism of monoids. The unit of Γ(A

ˇ
⊗Ĉ)

is uA⊗idC , so it gets sent to (idA⊗ǫC) ◦ (uA⊗idC) = uA ◦ ǫC, which is the unit of

HomS(C
cop, A). The fact that multiplication of admissible sections corresponds to

convolution in Hom(Ccop, A) is the commutativity of the following diagram, where
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the top boundary is ũ ∗ v and the bottom ũ ∗ ṽ:

C
v //

∆C
��

A⊗C
idA⊗∆C //

idA⊗∆C
��

A⊗(C⊗
CC)
τ(I,A,C,C)//

idA⊗idC⊗ǫC
��

C⊗
C(A⊗C)

u⊗CidA⊗C//

idC⊗idA⊗ǫC
��

(A⊗C)⊗C(A⊗C)
τ(A,C,A,C)//

idA⊗idC⊗idA⊗ǫC
��

(A⊗A)⊗(C⊗
CC)

µA⊗∆−1
C //

idA⊗idA⊗ǫC⊗ǫC
��

A⊗C

idA⊗ǫC
��

C⊗C
v⊗idC

//

τC,C
��

A⊗C⊗C
idA⊗ǫC⊗idC

//

τA⊗C,C

��

A⊗C τA,C
// C⊗A

u⊗idA

// A⊗C⊗A
idA⊗ǫC⊗idA

// A⊗A µA
// A

C⊗C
idC⊗v

// C⊗A⊗C idC⊗idA⊗ǫC

99

(The first square commutes by definition of admissible section: v is a morphism

of right C-comodules; the others commute by functoriality of ⊗, naturality of τ , or

counitality of C).

We now study the behavior of admissible sections with respect to products.

Let C and D be two categories in S. The monoidal structure on G (section 7.1)

yields in particular a map

Γ(C)× Γ(D) = HomC(C,A)× HomD(D,B)
⊗

−→ HomC⊗D(C⊗D,A⊗B) = Γ(C⊗D) .

Proposition 7.2.1. The map Γ(C)×Γ(D)
⊗

−→ Γ(C⊗D) is a morphism of monoids.

Moreover, it is natural with respect to cofunctors, in the sense that if ϕ : C → C′

and ψ : D→ D′ are cofunctors, then the following diagram commutes:

Γ(C)× Γ(D)
⊗ //

Γ(ϕ)×Γ(ψ)
��

Γ(C⊗D)

Γ(ϕ⊗ψ)
��

Γ(C′)× Γ(D′)
⊗

// Γ(C′⊗D′)

Proof. The fact that ⊗ preserves unit elements is direct from the definition of identi-

ties for C⊗D. Multiplications are preserved too, since in the following commutative

diagram, the top boundary is (u ∗u′)⊗(v ∗ v′) and the bottom (u⊗v) ∗ (u′⊗v′), where

u, u′ ∈ Γ(C) and v, v′ ∈ Γ(D) are arbitrary:

C⊗D
u′⊗v′ // A⊗B

tA⊗tB //

tA⊗B ''OOOOOOOOOOOO (C⊗
CA)⊗(D⊗

DB)
u⊗CidA⊗v⊗DidB //

τ(C,A,D,B)

��

(A⊗
CA)⊗(B⊗

DB)
mA⊗mB//

τ(A,A,B,B)⊗idB

��

A⊗B

(C⊗D)⊗C⊗D(A⊗B)
(u⊗v)⊗C

⊗D
idA⊗B

// (A⊗B)⊗C⊗D(A⊗B)

mA⊗B

77oooooooooooo

.
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Finally, the commutativity of the diagram below yields the desired naturality with

respect to cofunctors, since the top is Γ(ϕ⊗ψ)(u⊗v) and the bottom Γ(ϕ)(u)⊗Γ(ψ)(v).

C ′⊗D′ ∼= (C⊗D)⊗C⊗D(C ′⊗D′)
u⊗v //

τ(()C,D,C
′,D′) **VVVVVVVVVVVVVVVVVV

(A⊗B)⊗C⊗D(C ′⊗D′)
τ(()A,B,C

′,D′)
// (A⊗

CC ′)⊗(B⊗
DD′)

ϕ1⊗ψ1 // A′⊗B′

(C⊗
CC ′)⊗(D⊗

DD′)
u⊗CidC′⊗v⊗

D
idD′

55jjjjjjjjjjjjjjj

The map Γ(C) × Γ(D) → Γ(C⊗D) is not an isomorphism in general. For in-

stance, consider the case S = Sets , C = G

ˇ
and D = X̂, where G is a monoid and

X a set. Then we know from section 5.2 and example 7.2.1 that

Γ(C) = G, Γ(D) = {∗} while Γ(C×D) = GX ,

the set of all maps X → G under point-wise multiplication (since that is what

convolution boils down to in this case). Hence Γ(C)× Γ(D) is far from Γ(C×D).

The lack of duals in Sets is responsible for this behavior. On the other hand, let

us look at the “same” example when S = Veck: C = A

ˇ
, D = Ĉ, where A is a

k-algebra and C a k-coalgebra. Then

Γ(C) = A, Γ(D) = (C∗)op and Γ(C⊗D) = Homk(C
cop, A),

from where we see that Γ(C)× Γ(D)→ Γ(C⊗D) induces an isomorphism

Γ(C)⊗kΓ(D)→ Γ(C⊗D)

if and only if C is finite-dimensional. In fact, this turns out to be true for arbitrary

categories in Veck as long as the base coalgebras C and D are finite-dimensional,

as we will see in section 9.2. (Notice that in this case Γ(C) is not just a monoid

but a k-algebra, under addition of linear maps).
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7.3 Products and representations

Proposition 7.3.1. Let C and D be categories in S. Consider two representations

X of C and Y of D. Then X⊗Y becomes a C⊗D-representation when equipped with

the following C⊗D-comodule structure and A⊗B-action:

pX⊗Y : X⊗Y
pX⊗pY−−−−→ C⊗X⊗D⊗Y ∼= C⊗D⊗X⊗Y

and

aX⊗Y : (A⊗B)⊗C⊗D(X⊗Y ) ∼= (A⊗
CX)⊗(B⊗

DY )
aX⊗aY−−−−→ X⊗Y .

Proof. We have to check the axioms in definition 6.1.1. The considerations of

section 7.1 (on the monoidal structure of G) show thatX⊗Y is a left C⊗D-comodule

with structure map pX⊗Y and also that aX⊗Y is a morphism of C⊗D-comodules (this

uses lemma 7.1.1). Unitaliy and associativity for aX⊗Y boil down to those of aX

and aY , plus some obvious naturality properties of the isomorphism of lemma 7.1.1

(which in turn follow from those of the symmetry τ).

Thus, for any two categories C and D there is a functor

RepSC× RepSD
⊗

−→ RepS(C⊗D) .

This may be seen as a natural transformation between the (large) contravariant

functors RepS(−)×RepS(−) and RepS(−⊗−) : CatS×CatS→ LCat , where CatS de-

notes either
−−→
CatS or

←−−
CatS, in view of the fact that the following diagrams commute

(where ϕ : C→ C′ and ψ : D→ D′ are either functors or cofunctors):

RepSC× RepSD
⊗ // RepS(C⊗D)

RepS(C
′)× RepS(D

′)

resϕ×resψ

OO

⊗

// RepS(C
′
⊗D′) .

resϕ⊗ψ

OO
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These assertions follow readily from lemma 7.1.1, complemented with routine ma-

nipulations.

We close the section by relating products of representations and admissible

sections of products, via the canonical map γ of proposition 6.4.1.

Proposition 7.3.2. Let X and Y be representations of two categories C and D

and view X⊗Y as a C⊗D-representation as above. Then the following diagram

commutes:

Γ(C)× Γ(D)
γX×γY//

⊗

��

EndS(X)× EndS(Y )

⊗

��
Γ(C⊗D) γX⊗Y

// EndS(X⊗Y )

Proof. In the following diagram, the top is γX(u)⊗γY (v) and the bottom γX⊗Y (u⊗v).

The diagram commutes by naturality of the isomorphism in lemma 7.1.1 and def-

inition of pX⊗Y and aX⊗Y .

X⊗Y
pX⊗pY //

pX⊗Y ''OOOOOOOOOOOO (C⊗
CX)⊗(D⊗

DY )
u⊗CidX⊗v⊗DidY //

∼=
��

(A⊗
CX)⊗(B⊗

DY )
aX⊗aY //

∼=
��

X⊗Y

(C⊗D)⊗C⊗D(X⊗Y )
(u⊗v)⊗C

⊗D
idX⊗Y

// (A⊗B)⊗C⊗D(X⊗Y )

aX⊗Y

77oooooooooooo

.

7.4 Deltacategories

Let S continue to be a symmetric regular monoidal category. In section 7.1 it was

stablished that then
←−−
CatS is a monoidal category.

Definition 7.4.1. A deltacategory in S is a comonoid in
←−−
CatS.

Notice that by construction of the monoidal structure of
←−−
CatS, the forget-

ful functor (
←−−
CatS)

op → ComonS, C = (A,C, . . .) 7→ C, is monoidal. In par-

ticular, if (C,∆, ǫ) is a deltacategory with coassociative and counital cofunctors
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∆ = (∆1,∆0) : C → C⊗C and ǫ = (ǫ1, ǫ0) : C → I, then the comonoid C is ac-

tually a bimonoid, with multiplication ∆0 : C⊗C → C and unit ǫ0 : I → C. In

addition, ∆1 : A⊗
C
∆(C⊗C)→ ∆(A⊗A) is a morphism of C-C⊗C-bicomodules (where

the subindex denotes corestriction along ∆0), ǫ1 : A⊗
C
ǫI → ǫI is a morphism of left

C-comodules (where the subindex denotes corestriction along ǫ0), and these are

such that seven diagrams commute, expressing the facts that ∆ and ǫ are coasso-

ciative and counital cofunctors. Instead of making these conditions explicit, which

is not very illuminating, we will present several different examples of deltacategories

in Sets in chapter 8. These will be complemented with important examples of

deltacategories in Veck in chapter 9.

Example 7.4.1. Bimonoids in S provide trivial examples of deltacategories in S. In

fact, it is clear that the fully-faithful functors

(ComonS)
op →

←−−
CatS, C 7→ Ĉ, MonS→

←−−
CatS, A 7→ A

ˇ
of example 4.2.1 are monoidal; hence,

H is a bimonoid ⇔ Ĥ is a deltacategory ⇔ H

ˇ
is a deltacategory.

In section 7.3 we constructed a functor

RepSC× RepSD
⊗

−→ RepS(C⊗D),

which yields a natural transformation between the functors RepS(−)×RepS(−) and

RepS(−⊗−) :
←−−
Cat

op
S
×
←−−
Cat

op
S
→ LCat . This turns the functor

RepS(−) :
←−−
Cat

op
S
→ LCat

into a lax monoidal functor, in the sense that for categories C, D and E, the

following diagram (clearly) commutes:

RepSC× RepSD× RepSE
⊗×id //

id×⊗

��

RepS(C⊗D)× RepSE

⊗

��
RepSC× RepS(D⊗E)

⊗

// RepS(C⊗D⊗E) .

75



It is well-known that lax monoidal functors preserve monoids (but not comonoids,

unless one requires the natural transformation in question to be invertible). We

thus obtain that:

Corollary 7.4.1. If C is a deltacategory, then RepSC is a monoidal category, in

such a way that the forgetful functor RepSC→ S is monoidal.

Proof. According to the discussion above, if ∆ : C → C⊗C and ǫ : C → I are the

structure cofunctors of C, then RepSC is monoidal under the tensor product

RepSC× RepSC
⊗

−→ RepS(C⊗C)
res∆−−→ RepSC ,

with unit object I = resǫ(I). The forgetful functor is monoidal because res∆ and

resǫ preserve the forgetful functors (a general fact for cofunctors, section 6.2).

The situation for admissible sections of deltacategories is more complicated.

Consider the case S = Veck. The natural transformation Γ(C)× Γ(D)
⊗

−→ Γ(C⊗D)

of section 7.2 induces another natural transformation

Γ(C)⊗kΓ(D)
⊗

−→ Γ(C⊗D)

(recall that in this case one can view admissible sections as a functor Γ :
←−−
CatVeck →

Algk). This turns the functor Γ :
←−−
CatS → Algk into a lax monoidal functor. As

pointed out above, this can be used to equip Γ(C) with a structure of k-bialgebra

only if Γ(C)⊗kΓ(C)→ Γ(C⊗C) is an isomorphism. As already announced, this is the

case when C is finite-dimensional. This is how many interesting quantum groups

arise. We will elaborate on this in chapter 9.
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Chapter 8

Deltacategories in Sets

Deltacategories in Sets are interesting objects deserving further study. In this

chapter we limit ourselves to presenting a few families of examples.

We summarize the distinctive properties of deltacategories in Sets in table

8.1. This shows the relative position among the set-theoretic notions of monoids,

deltacategories and categories.

Here, linearization means passage to a linear category (a category in Veck)

and then to admissible sections. For the case of monoids this simply yields the

usual monoid-algebra. Unlike the case of arbitrary small categories, the category

of representations of a monoid or deltacategory is monoidal in such a way that the

forgetful functor to Sets (or to Veck, if dealing with the linear case) is monoidal.
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Table 8.1: Monoids, categories and deltacategories

Type Representations Linearization

One-object case monoid monoidal category bialgebra
Many-object case small category large category algebra

deltacategory monoidal category bialgebra

Before going into examples, let us say a word about a general deltacategory

(C,∆, ǫ) in Sets . Let C = (A,X, . . .). As explained in section 7.4, X is then

a monoid with multiplication xy = ∆0(x, y) and unit element 1 = ǫ0(∗). In the

notation of section 4.3, ∆1 : A×X (X ×X)→ A×A and ǫ1 : A×X I → I provide

lifts of arrows as in the following pictures

C× C (x, y)

∆1(a,(x,y))

��

_

��

•_

��

I ∗
id∗

))
_

��

∗_

��
C

∆

OO

xy
a

** • C

ǫ

OO

1
a

))
1

.

The pictures indicate the behavior of ∆1 and ǫ1 with respect to source and tar-

gets (when targets are not relevant we use the symbol •, which is not to be confused

with the element ∗ ∈ I). They must also preserve compositions and identities. No-

tice that ǫ1 is uniquely determined, and automatically preserves compositions and

identities. The remaining conditions are coassociativity and counitality. In most

of the examples that follow these will be checked with the aid of this pictorial

notation.

8.1 Double groups

Let (Γ, G) be a double group (also called a matched pair of groups, as in [K, defi-

nition IX.1.1]). Thus, there is given a left action of Γ on G, (γ, g) 7→ γ · g, and a
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right action of G on Γ, (γ, g) 7→ γg, such that

γ · (fg) = (γ · f)(γf · g) (1)

(δγ)g = δγ·gγg (2)

Examples of double groups abound; the simplest one being that when Γ acts on G

by automorphisms and G acts trivially on Γ.

A deltacategory C = C(Γ, G) may be attached to every double group (Γ, G) as

follows. C = (Γ×G,G, s̃, t̃, i,m) where

• s̃(γ, g) = g and t̃(γ, g) = γ · g,

• i(g) = (1, g) and m((δ, γ · g), (γ, g)) = (δγ, g).

In pictures:

g

(γ,g)

��

(δγ,g)

;;
γ · g

(δ,γ·g)

  
δ · γ · g g

(1,g)

��
.

Composition and identities preserve targets precisely because of the axioms for an

action: δ · γ · g = (δγ) · g and 1 · g = g. Associativity and unitality for m and i boil

down to those of Γ.

Notice that the definition of the category structure on C only involves the action

of Γ on G, not the group structure of G or the action of G on Γ. These are used

to define the deltacategory structure (C,∆, ǫ) on C as follows.

• ∆0 : G×G→ G and ǫ0 : I → G are the multiplication and unit maps of the

group G,

• ∆1 : (Γ×G)×G (G×G)→ (Γ×G)× (Γ×G) is (γ, fg, f, g) 7→ (γ, f, γf , g),

• ǫ1 : (Γ×G)×G I → I is (γ, 1, ∗) 7→ ∗.
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Notice that ∆1 is a morphism of (left) G-graded sets precisely by equation (1)

above, and so is ǫ1 because it is a consequence of (1) that γ · 1 = 1 ∀ γ ∈ Γ. It is

obvious that they are morphisms of (right) G×G-graded sets and I-graded sets

respectively. Let us check that ∆ preserves compositions and identities. To this

end, let us denote the arrow (γ, g) by g
γ
−→ γ · g. When not relevant, we may also

omit the target and simply write g
γ
−→ •. Below, the picture on the left shows the

lifts of two composable arrows, and that on the right, the lift of their composition.

We see that the composition of the lifts coincides with the lift of the composition

precisely by equation (2) above.

C× C (f, g)

(γ,γf )

%%

_

��

(γ · f, γf · g)
_

��

(δ,δγ·f )

##
•_

��

(f, g)

(δγ,(δγ)f )

��

_

��

•_

��
C

∆

OO

fg
γ

,,
γ · fg

δ --
δ · γ · fg

=

fg
δγ --

δγ · fg

.

Also, the lift of the identity of fg to (f, g) is

C× C (f, g)
(1,1f )

))
_

��

•_

��
C

∆

OO

fg
1 **

fg

,

which is the identity of (f, g), since it is a consequence of (2) that 1f = 1 ∀ f ∈ G.

It only remains to show that ∆ and ǫ are coassociative and counital (recall

that the fact that ǫ preserves compositions and identities is trivial, since I is the

one-arrow category). It is here where associativity and unitality of the action of

G on Γ enters. Coassociativity and counitality reduce respectively to γfg = (γf)g
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and γ1 = γ, as the following pictures show:

C× C× C (f, g, h)

(γ,γf ,γfg)

$$

_

��

•_

��

C× C× C (f, g, h)

(γ,γf ,(γf )g)

$$

_

��

•_

��
C× C

∆×id

OO

(fg, h)

(γ,γfg)

$$

_

��

•_

��

C× C

id×∆

OO

(f, gh)

(γ,γf )

$$

_

��

•_

��
C

∆

OO

fgh

γ

&&
γ · fgh C

∆

OO

fgh

γ

&&
γ · fgh

I× C (∗, f)

(∗,γ1)

&&
_

��

•_

��

C× I (f, ∗)

(γ,∗)

&&
_

��

•_

��
C× C

ǫ×id

OO

(1, f)

(γ,γ1)

&&
_

��

•_

��

C× C

id×ǫ

OO

(f, 1)

(γ,γf )

&&
_

��

•_

��
C

∆

OO

f

γ
))
γ · f C

∆

OO

f

γ
))
γ · f

The monoidal category of representations of the deltacategory C(Γ, G) admits

a simple description. A representation is a set X together with a left action of Γ

on X, (γ, x) 7→ γ · x, and a G-grading on X, x 7→ |x|, such that

|γ · x| = γ · |x| .

The tensor product of two representations X and Y is X × Y with

γ · (x, y) = (γ · x, γ|x| · y) and |(x, y)| = |x||y| ;

this follows immediately from the definition of ∆ and the description of restriction

along cofunctors in example 6.2.1. A particular instance of this is the category of

crossed G-sets, that was introduced by Freyd and Yetter to construct invariants

of knots [K, chapter XIV.5.2]. This is obtained from the double group (G,G)

arising from the left action of G on itself by conjugation. It is possible to construct

invariant of knots from more general double groups, and to explicitly describe all

possible braidings on their categories of representations.
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A related example. Let G be any group, and consider the category C = (Z ×

G × G,G, . . .) with source, target, composition and identities described by the

following pictures:

f

(n,g,f)

��

(m+n,hg,f)

99gfg−1

(m,h,gfg−1)

$$
hgfg−1h−1 f

(0,1,f)

��
.

There is a deltacategory structure on C as follows.

• ∆0 : G×G→ G and ǫ0 : I → G are the multiplication and unit maps of the

group G,

• ∆1 : (Z×G×G)×G (G×G)→ (Z×G×G)×(Z×G×G) is (n, x, fg, f, g) 7→

(n, x(fg)nf−n, f, n, x(fg)ng−n, g),

• ǫ1 : (Z×G×G)×G I → I is (n, g, 1, ∗) 7→ ∗.

Notice that the underlying category is a particular example of those considered

before (for the double group (Z × G,G) arising from the action of Z × G on

G where Z and G act on G trivially and by conjugation respectively), but the

deltacategory structure is different, so this is really a new example.

The verification of the deltacategory axioms is similar to the case of double

groups. For instance, ∆1 is a morphism of (left) G-graded sets because

target of∆1(n, x, fg, f, g) =
(
x(fg)nf−nffn(fg)−nx−1 , x(fg)ng−nggn(fg)−nx−1

)

which maps by ∆0 to

(
x(fg)nf−nffn(fg)−nx−1

)(
x(fg)ng−nggn(fg)−nx−1

)
= x(fg)nfg(fg)−nx−1

= xfgx−1 = target of (n, x, fg, f, g) .
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Let us check that ∆ preserves identities and compositions, but omit the verifica-

tion of the remaining conditions. Let us denote the arrow (n, g, f) by f
n,g
−→ gfg−1.

Thus the lift of fg
n,x
−−→ xfgx−1 to (f, g) via ∆ is

(f, g)
n,x(fg)nf−n,n,x(fg)ng−n

−−−−−−−−−−−−−−−→ (x(fg)nf(fg)−nx−1, x(fg)ng(fg)−nx−1) .

The identity of fg is fg
0,1
−→ fg, and its lift to (f, g) is

(f, g)
0,1(fg)0f−0,0,1(fg)0g−0

−−−−−−−−−−−−−−→ • = (f, g)
0,1,0,1
−−−→ (f, g) ,

which is the identity of the pair (f, g). The composition fg
n,x
−−→ xfgx−1 m,y

−−→ • is

fg
m+n,yx
−−−−→ •, and its lift to (f, g) is

(f, g)
m+n,yx(fg)m+nf−m−n,m+n,yx(fg)m+ng−m−n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ • .

On the other hand, the lift of fg
n,x
−−→ xfgx−1 to (f, g) is

(f, g)
n,x(fg)nf−n,n,x(fg)ng−n

−−−−−−−−−−−−−−−→ (x(fg)nf(fg)−nx−1, x(fg)ng(fg)−nx−1) ,

and the succesive lift of xfgx−1 m,y
−−→ • is

(x(fg)nf(fg)−nx−1,x(fg)ng(fg)−nx−1)
m,y(xfgx−1)mx(fg)nf−m(fg)−nx−1,m,y(xfgx−1)mx(fg)ng−m(fg)−nx−1

// •

The composition of these two lifts coincides with the lift of the composition com-

puted above, since

y(xfgx−1)mx(fg)nf−m(fg)−nx−1x(fg)nf−n = yx(fg)m+nf−m−n

and

y(xfgx−1)mx(fg)ng−m(fg)−nx−1x(fg)ng−n = yx(fg)m+ng−m−n .

This construction of a deltacategory is actually a particular case of a more

general one: it is possible to similarly associate a deltacategory to any double group

for which its category of representations is braided. The category of representations

of the new deltacategory is not only braided but balanced in a canonical way. The

case presented above corresponds to the double group (G,G) whose representations

are crossed G-sets.
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8.2 Torsion groups

Let G be the groupoid with objects Z+ and morphisms G(n,m) =





Z∗n if n = m,

∅ if n 6= m,

where Z∗n denotes the group of units in the ring Zn of integers modulo n. Let us

use [a]n ∈ Zn to denote the class modulo n of a ∈ Z. Thus G = (A,Z+, s̃, t̃, i,m)

where

• A =
∐

n∈Z+

Z∗n,

• s̃([a]n) = n = t̃([a]n),

• i(n) = [1]n ∈ Z∗n and m([a]n, [b]n) = [ab]n.

There is a deltacategory structure on G as follows.

• ∆0 : Z+ × Z+ → Z+ is (n,m) 7→ lcm(n,m), the least common multiple of n

and m,

• ǫ0 : I → Z+ is ∗ 7→ 1,

• ∆1 : A×Z
+

(Z+ × Z+)→ A× A is ([a]lcm(n,m), n,m) 7→ ([a]n, [a]m),

• ǫ1 : A×Z
+
I → I is [1]1 7→ ∗.

Notice that A×Z
+
I = Z1 = {[1]1}. Also, if gcd(a, lcm(n,m)) = 1 then gcd(a, n) =

gcd(a,m) = 1, so ∆1 is well-defined. The verification of the deltacategory axioms

is trivial in this case. For instance, the lift of [a]lcm(n,m,l) to (n,m, l) by either

(∆× id) ◦∆ or (id×∆) ◦∆ is ([a]n, [a]m, [a]l).

If G is a torsion group (that is, ∀g ∈ G ∃ n(g) ∈ Z+ such that gn(g) = 1), then

G can be equipped with a natural structure of G-representation, as follows:

• G → Z+ assigns to g ∈ G its (finite) order |g| ∈ Z+; this defines the left

Z+-comodule structure on G,
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• the action of [a]n ∈ Z∗n on g ∈ G with |g| = n is [a]n · g = ga.

Notice that ga is well-defined because |g| = n; this also implies, since gcd(a, n) =

1, that |ga| = |g|, which shows that the action above is a morphism of left

Z+-comodules. The other conditions (associativity and unitality) are clear. The

G-representation structure on G × H resulting from the deltacategory structure

on G is just the one corresponding to the direct product structure on the group

G × H , because |(g, h)| = lcm(|g|, |h|) and (g, h)a = (ga, ha). If G is abelian,

then it becomes a monoid in the monoidal category RepS(G), because in this case

|gh| = |g||h| and (gh)a = gaha, which means that the multiplication of G is a

morphism of G-representations.

8.3 Distributive lattices

Every distributive lattice with top element yields a deltacategory structure on

its underlying poset in a natural way. Before proceeding with the details of this

construction, let us recall the relevant definitions. The reference for this basic

material on lattices is [Grä, I.1 and I.4].

A lattice is a poset (L,≤) where every pair of elements x, y has a least upper

bound and a greatest lower bound, denoted x∨ y and x∧ y respectively. A lattice

is thus equipped with two binary operations ∨ and ∧ that satisfy the following

properties (idempotency, commutativity, associativity and absorption):

(1) x ∨ x = x = x ∧ x,

(2) x ∨ y = y ∨ x, x ∧ y = y ∧ x,

(3) (x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z),

(4) x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x.
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The partial order may recovered from either ∨ or ∧:

(5) x ≤ y ⇔ x ∨ y = y ⇔ x ∧ y = x.

A lattice satisfying any of the equivalent conditions below is called distributive

[Grä, lemma I.4.10]:

(6) (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ z ∀ x, y, z ∈ L,

(6’) (x ∧ z) ∨ (y ∧ z) = (x ∨ y) ∧ z ∀ x, y, z ∈ L.

Now assume for a moment that (L,≤) is an arbitrary poset. An element 1̂ ∈ L

is called a top element if x ≤ 1̂ ∀ x ∈ L. A poset possesses at most one top element.

Notice that it satisfies

(0) x ∨ 1̂ = 1̂ and x ∧ 1̂ = x ∀ x ∈ L .

A poset (L,≤) is viewed as a category L = (A,L, s̃, t̃, i,m) as follows:

• A = {(x, y) ∈ L× L / x ≤ y},

• s̃(x, y) = x and t̃(x, y) = y,

• i(x) = (x, x) and m((y, z), (x, y)) = (x, z).

Thus, L is a subcategory of the pair category L̂

ˇ
.

Now we are ready to describe the deltacategory structure announced above.

Assume that L is a distributive lattice with top element 1̂. Let us prove that L

admits a deltacategory structure, as follows.

• ∆0 : L× L→ L is (x, y) 7→ x ∧ y and ǫ0 : I → L is ∗ 7→ 1̂,

• ∆1 : A×L (L× L)→ A× A is ((x ∧ y, z), x, y) 7→ ((x, x ∨ z), (y, y ∨ z)),

• ǫ1 : A×L I → I is ((1̂, 1̂), ∗) 7→ ∗.
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The part of the diagram of L relevant to the definition of ∆1 is

x ∨ z

JJJ
JJ

J
z ∨ y

tt
tt

tt

z

x
JJ

JJJ
J y

tt
tt

tt

x ∧ y

First notice that ∆0 and ǫ0 equip L with a monoid structure by (3) and (0). ∆1 is

a morphism of left L-graded sets, since (x∨ z)∧ (y ∨ z)
(6)
= (x∧ y)∨ z

(5)
= z. And so

is ǫ1, because if ((x, y), ∗) ∈ A×L I then x = 1̂ and then, by definition of 1̂, y = 1̂.

∆1 preserves identities by (4) and (2):

∆1((x ∧ y, x ∧ y), x, y) = ((x, x ∨ (x ∧ y), (y, y ∨ (x ∧ y)) = ((x, x), (y, y)) .

Consider two composable arrows (x ∧ y, z) and (z, w), and their succesive lifts to

(x, y) in L× L, as illustrated below:

L× L (x, y)
!!

_

��

(x ∨ z, y ∨ z)
_

��

((
((x ∨ z) ∨ w, (y ∨ z) ∨ w)

_

��

(x, y)
""

_

��

(x ∨ w, y ∨ w)
_

��
L

∆

OO

x ∧ y
$$
z )) w

=

x ∧ y
%%
w

We see that the composite of the lifts coincides with the lift of the composite

because (x ∨ z) ∨ w = x ∨ w and (y ∨ z) ∨ w = y ∨ w by (3) and (5), since here

z ≤ w. Thus ∆1 preserves compositions.

It only remains to check coassociativity and counitality for ∆1 and ǫ1. Consider

the lift of an arrow (x ∧ y ∧ z, w) first by ∆ to (x ∧ y, z) in L × L and then by

87



∆× id to (x, y, z) in L× L× L, as illustrated below:

L× L× L (x, y, z)
,,

_

��

(x ∨ ((x ∧ y) ∨ w), y ∨ ((x ∧ y) ∨ w), z ∨ w)
_

��
L× L

∆×id

OO

(x ∧ y, z)
,,

_

��

((x ∧ y) ∨ w, z ∨ w)
_

��
L

∆

OO

x ∧ y ∧ z ** w

.

By (3) and (4) we have that x ∨ ((x ∧ y) ∨ w) = (x ∨ (x ∧ y)) ∨ w = x ∨ w and

(using also (2)) y ∨ ((x ∧ y) ∨ w) = (y ∨ (x ∧ y)) ∨ w = y ∨ w. Thus the lift in

question is ((x, x ∨ w), (y, y ∨ w), (z, z ∨ w)). By symmetry this must also be the

lift by (id×∆) ◦∆, proving coassociativity.

Finally, the lift by (ǫ× id) ◦∆ of the arrow (1̂ ∧ x, y) to (∗, x) in I× L is

I× L (∗, x)
))

_

��

(∗, x ∨ y)
_

��

L× L

ǫ×id

OO

(1̂, x)
))

_

��

(1̂ ∨ y, x ∨ y)
_

��
L

∆

OO

1̂ ∧ x
&& y

.

By (0), 1̂ ∧ x = x, hence x ≤ y, so x ∨ y = y by (5). This proves left counitality,

right counitality holds by the same reason.

This completes the verification of the deltacategory axioms for (L,∆, ǫ).

A related example. A poset may carry a deltacategory structure even if it is

not a lattice. For instance, the discrete category X̂ on a set X is a poset (but not

a lattice, unless X = {∗}), and a deltacategory as long as X is a monoid. For a

more interesting example, consider the category

C = 1
a
←− x

b
−→ y .

Notice that C is the poset X = {1, x, y} with x ≤ 1, x ≤ y. As such, it is not

a lattice: 1 ∨ y does not exist. However, C carries a deltacategory structure, as

follows.
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The monoid structure on X is

1 x y

1 1 x y

x x y y

y y y y

.

This is a submonoid of M3(N) via 1 =
[ 1 0 0

0 1 0
0 0 1

]
, x =

[ 1 0 0
0 0 1
0 0 0

]
, and y =

[ 1 0 0
0 0 0
0 0 0

]
.

The lifting ∆1 is described through the pictures

C× C (x, 1)

(a,id1)
&&

_

��

(1, 1)
_

��

(1, x)

(id1,a)
&&

_

��

(1, 1)
_

��
C

∆

OO

x

a
""
1 x

a
""
1

(x, 1)

(b,id1)
&&

_

��

(y, 1)
_

��

(1, x)

(id1,b)
&&

_

��

(1, y)
_

��
x

b
""
y x

b
""
y

Together with the condition that identities must be preserved, this completely

determines ∆1. ǫ1 is, as always, uniquely determined.

Coassociativity, counitality and preservation of compositions are in this case

straightforward.

8.4 Another example

There is a way to enlarge any given category in Sets to a deltacategory, that we

now describe. This construction is due to Chase.

For any set X, let F (X) =
∐

n≥0X
n denote the free monoid on X; Xn is the

cartesian product of X with itself n times, X0 = {∗}. If C = (A,X, s̃, t̃, i,m)

is a category in Sets , then F (C) = (F (A), F (X), F (s̃), F (t̃), F (i), F (m) ◦ τ) is a
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category in Monoids , where τ is the isomorphism of monoids

F (A)×F (X) F (A)
τ
−→ F (A×X A) ,

((a1, . . . , an), (b1, . . . , bn)) 7→ ((a1, b1), . . . , (an, bn)) .

(Notice that F (A)× F (A) ≇ F (A× A), though).

F (C) is also a category in Sets , and can be equipped with a structure of

deltacategory in Sets (not in Monoids ), as follows.

• ∆0 : F (X)× F (X)→ F (X) is the multiplication of F (X),

((x1, . . . , xp), (y1, . . . , yq)) 7→ (x1, . . . , xp, y1, . . . , yq),

• ǫ0 : I → F (X) is ∗ 7→ ∗ ∈ I = X0,

• ∆1 : F (A)×F (X) (F (X)× F (X))→ F (A)× F (A) is

((a1, . . . , ap+q), (x1, . . . , xp), (y1, . . . , yq)) 7→ ((a1, . . . , ap), (ap+1, . . . , ap+q)),

• ǫ1 : F (A)×F (X) I → I is (∗, ∗) 7→ ∗.

The verification of the deltacategory axioms is straightforward.

If A is a monoid then F (A

ˇ
) is not a one-object category, rather F (A

ˇ
) =

(F (A),N, . . .). On the other hand, F (X̂) = F̂(X), the deltacategory corresponding

to the bimonoid F (X).
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Part II

Applications to quantum groups
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Chapter 9

Categories in Vector Spaces
In this chapter we apply the theory of part I to study internal categories in the

monoidal category Veck of vector spaces over a field k. The connections to quantum

groups are as follows.

First, it will be shown that several basic objects in the theory of Hopf alge-

bras or quantum groups, like Hopf modules or Yetter-Drinfeld modules, naturally

appear as representations of internal categories in Veck (on the other hand, they

cannot always be seen just as modules over an algebra). Thus, as in the set-

theoretic case, representations of internal categories provide richer examples than

representations of monoids or algebras. Consideration of the underlying internal

categories often allows us to prove facts about their representations without dealing

with the representations themselves, as in the proof of the Fundamental Theorem

on Hopf modules below (corollary 9.7.1); instead, it is possible to compare the

internal categories directly, either by finding functors or cofunctors between them.

The second connection has to do with one of the main goals of the theory

of quantum groups; namely, the construction of monoidal categories and of bial-

gebras or Hopf algebras. Monoidal categories are obtained as representations of

deltacategories in Veck, and bialgebras as admissible sections of such. In fact, we

find that several important quantum groups, like Drinfeld’s double and Drinfeld’s

and Jimbo’s quantized enveloping algebras U+
q (g), are obtained as admissible sec-

tions of some very natural deltacategories. This culminates in section 9.8 with

the main construction of this thesis, a generalization of the construction of the

quantum groups of Drinfeld and Jimbo, involving the binomial braids introduced

in appendix B. In particular we believe that good evidence is provided to show

that the notion of a deltacategory in Veck is a natural and useful one.
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Let us describe the contents of the various sections in more detail. In section 9.1

we show that ordinary small linear categories are examples of internal categories

in Veck. Admissible sections and cofunctors are shown to extend notions already

present in the literature for linear categories. In section 9.2, those aspects of the

theory of internal categories that are particular to the case of vector spaces are

developed. In particular, it is shown that the monoid of admissible sections Γ(C)

of a deltacategory C in Veck carries a structure of k-bialgebra (as long as the base

coalgebra is finite-dimensional) and that there is a monoidal functor

RepkC→ ModΓ(C) .

Here, the results of appendix A will be used. In section 9.3, the first examples of

quantum groups are presented. It is shown that Sweedler’s four dimensional Hopf

algebra, as well as its generalization due to Taft, naturally appear as admissible

sections of deltacategories. For later examples, the general considerations on free

and quotient categories of section 9.4 are needed. In section 9.5 we return to the

line of examples, and construct Uq(sl2) via admissible sections. This is done for

Drinfeld’s double in section 9.6, where we also apply the general theory of internal

categories to deduce several properties of the double. In section 9.7, smash prod-

ucts are seen as admissible sections, and applications to Hopf modules and Hopf

bimodules are presented, along the lines suggested above. Finally, in section 9.8,

we describe a general procedure for constructing a quantum group U+
H (X) out of a

finite-dimensional Hopf algebra H and a Yetter-Drinfeld H-module, as admissible

sections of a certain deltacategory U+
H(X) in Veck. The quantum groups of Drin-

feld, Jimbo and Lusztig are obtained through this procedure from the simplest

choice of H : group algebras H = kG of cyclic groups G. In this procedure, the

action of the binomial braids (appendix B) b
(n)
i on the various tensor powers X⊗n

plays a crucial role.
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When dealing with bialgebras and comodules, Sweedler’s abbreviated notation

will be used, as explained in appendix A.

9.1 Linear categories as internal categories

For any set X, let kX be the group-like coalgebra on X, so that X is a k-basis for

kX, ∆(x) = x⊗x and ǫ(x) = 1 ∀ x ∈ X.

The main goal of this section is to show that a small k-linear category with

object set X is the same thing as a category in Veck with base coalgebra kX. This

important observation is due to Chase.

This is an elaboration on the following basic fact [Mon, example 1.6.7]: if (M, t)

is a left kX-comodule, then M = ⊕x∈XMx, where Mx = {m ∈M / t(m) = x⊗m}.

Similarly, if (M, s, t) is a kX-kY -bicomodule then

M =
⊕

x∈X, y∈Y

Mx,y where Mx,y = {m ∈M / t(m) = x⊗m and s(m) = m⊗y} .

An X-graded k-space is a collection {Mx}x∈X of k-spaces indexed by the elements

of X. A morphism of X-graded k-spaces is a collection of k-linear maps fx : Mx →

Nx. X-Y -bigraded k-spaces and their morphisms are defined similarly. The above

shows that there is an equivalence between the category of kX-kY -bicomodules

and that of X-Y -bigraded k-spaces,that to the bicomodule (M, s, t) assigns the

bigraded space with components Mx,y = {m ∈M / t(m) = x⊗m, s(m) = m⊗y}.

A small k-linear graph is an ordinary small graph (a graph in Sets ) where

each Hom-set carries a structure of k-vector space. Thus, a linear graph with

object set X is just an X-X-bigraded k-space, with components Mx,y = Hom(y, x)

for x, y ∈ X. Recall (definition 2.3.1) that an internal graph in Veck with base

coalgebra kX is just a kX-kX-bicomodule. It follows from the above that there

is an equivalence between the category GkX of graphs in Veck with base coalgebra
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kX and the category of small k-linear graphs with object set X.

Let M be a kX-kY -bicomodule and N a kY -kZ-one. Then, clearly, the com-

ponents of the kX-kZ-bicomodule M⊗
kYN are

(M⊗
kYN)x,z =

⊕

y∈Y

Mx,y⊗Ny,z .

Recall (definition 2.3.1) that an internal category in Veck with base coalgebra kX

is a monoid in GkX , with respect to ⊗
kX. It follows that such a category can be

equivalently described as a small linear graph with object set X, equipped with

a structure of ordinary category such that composition Hom(y, x)× Hom(z, y) →

Hom(z, x) is k-bilinear. This is precisely the definition of a small k-linear category

(as in chapter I.8 in [ML], for the case k = Z). This proves that there is an

equivalence

{ small k-linear categories with object set X } ∼= { categories in Veck over kX },

that sends the linear category C to the internal category (A,C, s, t, i,m) with

C = kX, A =
⊕

x,y

HomC(y, x),

s(a) = a⊗x and t(a) = y⊗a for a ∈ Hom(x, y),

i(x) = idx, the identity arrow of x in C, and

m(a⊗b) = a ◦ b for a ∈ Hom(y, z) and b ∈ Hom(x, y), where ◦ is composition in C.

The notion of representations for internal categories (definition 6.1.1) boils

down to the usual one for linear categories; namely, a representation of a k-linear

category C is just a k-linear functor C → Veck. In fact, if C = (A, kX, . . .) is

as above, then a representation of C is a left kX-comodule V , equipped with an

associative and unital action a : A⊗
kXV → V . In other words, V is an X-graded

k-space equipped with associative and unital maps HomC(y, x)⊗Vy → Vx. This
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is equivalent to giving a linear functor C → Veck that sends x to Vx and α ∈

HomC(y, x) to its action Vy → Vx.

Mitchell defines in [Mit, pages 33 and 51] the matrix ring [C] of a small k-linear

category C, which is in fact a k-algebra. Viewing C as a category in Veck, C =

(A, kX, . . .), we have defined the monoid of admissible sections Γ(C) of C, which

is in this case a k-algebra, since the monoid structure is compatible with the

underlying k-linear structure on Γ(C) = HomkX(kX,A). We claim that [C] is a

subalgebra of Γ(C), and that [C] = Γ(C) when the object set X is finite (this was

announced in section 5.2).

In fact, by definition, [C] is the k-space of matrices of the form

[αx,y]x,y∈X with αx,y ∈ HomC(y, x) = Ax,y

and such that each row and column has only finitely many non-zero entries. Thus,

as vector spaces,

[C] ∼=
⊕

x,y∈X

Ax,y = A .

Multiplication of matrices α = [αx,y] and β = [βx,y] is the matrix αβ with entries

(αβ)x,y =
∑

z∈X

αx,z ◦ βz,y,

where ◦ denotes composition in C:

y

βz,y

&&
z

αx,z

&&
x .

The algebra [C] does not have a unit element unless X is finite, in which case the

matrix δ with δx,y =





idx if x = y

0 if x 6= y

is the unit element.

On the other hand, from the definition of morphism of X-graded k-spaces we

have that

Γ(C) = HomkX(kX,A) =
∏

y∈X

Homk(k{y},
⊕

x∈X

Ax,y) ∼=
∏

y∈X

⊕

x∈X

Ax,y,
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which can be identified with the space of matrices of the form [αx,y]x,y∈X with

αx,y ∈ Ax,y and where each column “y” has finitely many non-zero entries (but

rows “x” may be infinite). Thus, there is a canonical k-linear embedding

[C] →֒ Γ(C) α 7→ uα

that views the matrix α ∈ [C] as the admissible section uα ∈ Γ(C) whose value on

y ∈ X is uα(y) =
∑

x∈X αx,y ∈ A. The image of this embedding consists of those

admissible sections of finite support, that is those u ∈ Γ(C) such that u(y) 6= 0 only

for finitely many y ∈ X. In particular, when X is finite this inclusion is surjective;

moreover, it preserves unit elements in this case. Let us check that, in general, it

preserves multiplications:

(uα ∗ uβ)(y) = m(uα⊗
kXidA)tuβ(y) = m(uα⊗

kXidA)t(
∑

z∈X

βz,y)

= m(uα⊗
kXidA)(

∑

z∈X

z⊗βz,y) = m(
∑

x,z∈X

αx,z⊗βz,y)

=
∑

x,z∈X

αx,z ◦ βz,y =
∑

x∈X

(αβ)x,y = uαβ(y) .

This completes the proof of the claim.

Mitchell’s matrix ring generalizes several other important constructions: the

path algebras of quivers of Gabriel [Gab], the generalized triangular matrix rings

of Chase [Cha2], and the incidence algebras of finite posets of Rota [Rot, GR] (see

[Mit] for more details on this). The functoriality of the construction of the matrix

ring of a linear category is addressed only partially in [Mit]: only functors that are

the identity on objects are considered, but the more general notion of cofunctor

is not discussed (such functors are particular cofunctors, see remark 4.2.1). The

functoriality of the construction of the incidence algebra of a poset is investigated

more carefully in [GR1, section 3.5], presumably for the reason that, for posets,

functors that are the identity on objects are not very frequent (there is such a

97



functor P → Q only if the Q-order is a refinement of the P -order). Goldman and

Rota show that there is a morphism between the incidence algebras of two posets

P and Q associated to the following data (called a proper map in [GR1]): a map

σ : P → Q such that

(a) σ is injective,

(b) if σ(p1) ≤ σ(p2) then p1 ≤ p2, and

(c) if σ(p1) ≤ q ≤ σ(p2) then there is a unique p ∈ P such that p1 ≤ p ≤ p2 and

σ(p) = q.

Let us view the poset P as a category P = (AP , P, . . .) as in section 8.3; we reserve

P for the underlying set, and AP = {(p1, p2) ∈ P × P / p1 ≤ p2}. From our point

of view, the above data is just a particular type of cofunctor ϕ : kQ→ kP between

the linearization of Q and P, and hence the existence of an associated morphism

Γ(ϕ) : Γ(kQ) → Γ(kP) from the incidence algebra of Q to that of P is explained

(proposition 5.3.1). In fact, consider the pair ϕ = (ϕ1, ϕ0) where ϕ0 : kP → kQ is

the linear extension of σ, ϕ0(p) = σ(p) ∀ p ∈ P , and ϕ1 : kAQ⊗
kQkP → kAP is the

linear extension of

ϕ1

(
(σ(p1), q)⊗p1

)
=





(p1, p2) if q = σ(p2) for some p2 ∈ P,

0 if q 6∈ Im(σ).

Conditions (a) and (b) ensure that ϕ1 is well-defined. ϕ preserves identities by (a)

and compositions by (c), so it is indeed a cofunctor.

Finally, let us consider general functors and cofunctors between linear cate-

gories. First notice that the functor Sets → Coalgk, X 7→ kX is full and faithful,

being left adjoint to the functor Coalgk → Sets that sends a k-coalgebra C to

the set {c ∈ C / ∆C(c) = c⊗c, ǫC(c) = 1} of its group-like elements.
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Let f = (f1, f0) : C→ D be a functor between linear categories C = (A, kX, . . .)

and D = (B, kY, . . .), in the sense of definition 4.1.1. It follows from the above that

the morphism of coalgebras f0 : kX → kY is necessarily the k-linear extension of a

map X → Y . Then, the morphism of kX-kX-bicomodules f1 : A→ f0Bf0 , must be

given by a family of k-linear maps fx,y : Ax,y = Hom(y, x)→ Hom(f0(y), f0(x)) =

Bf0(y),f0(x). Preservation of identities and compositions for f translate into the

obvious conditions for f0 and fx,y. Thus, a functor between linear categories in

the sense of section 4.1 is just a k-linear functor in the sense of [ML, chapter I.8];

in particular, it is an ordinary functor between the underlying categories in Sets ,

and therefore can be represented through pictures as in section 4.3.

The situation for cofunctors is different. Let ϕ = (ϕ1, ϕ0) : C → D be a

cofunctor between linear categories as above. As before, ϕ0 : kY → kX must be the

k-linear extension of a map Y → X. Then, the morphism of kX-kY -bicomodules

ϕ1 : A⊗
kXkY → ϕ0B must given by a family of k-linear maps

Ax′,ϕ0(y) →
⊕

y′∈ϕ−1
0 (x)

By′,y .

Therefore, ϕ need not be a cofunctor between the underlying categories in Sets ;

such a cofunctor would be given instead by a family of maps

Ax′,ϕ0(y) →
∐

y′∈ϕ−1
0 (x)

By′,y .

In other words, the “lift” of an arrow a : ϕ0(y) → x′ of C to the object y of

D provided by ϕ1 does not consist just of a single arrow y → y′ with ϕ0(y
′) =

x′; rather, it consists of a finite sum of such arrows (which may have different

targets, all mapping to x′ under ϕ0). With this modification, the interpretation of

cofunctors as liftings of section 4.3, and the associated pictorial description, can

still be used. Thus, the fact that

ϕ1(a⊗y) =

n∑

i=1

bi for some bi : y → y′i
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will be represented by a picture like

D y

Pn
i=1 bi

++
_

ϕ0

��

y′i_
ϕ0

��
C

ϕ

OO

ϕ0(y)
a

++
_

ϕ1

OO

x′

The usage and usefulness of this notation may become clearer after the examples of

later sections; for simplicity, we may omit some of the arrows from these pictures.

Preservation of compositions is easily expressed in these terms: given composable

arrows a1 and a2 as in the picture below, one lifts a1 to y

ϕ1(a1⊗y) =
∑

i

bi ,

and computes the targets y′i of the resulting arrows, then one lifts a2 to each of

these targets

ϕ1(a2⊗y
′
i) =

∑

j

bi,j ,

then the lift of a2 ◦ a1 must be the composition of the lifts

ϕ1

(
(a2 ◦ a1)⊗y

)
=

∑

i

(∑

j

bi,j

)
◦ bi .

D y

P
i bi

%%
_

��

y′i_

��

P
j bi,j

##
•_

��

y

P
i(

P
j bi,j)◦bi

$$
_

��

•_

��
C

ϕ

OO

ϕ0(y)

a1
%%
x′

a2
##
•

=

ϕ0(y)

a2◦a1

$$
•

.

Preservation of identities has the same meaning as in the set-theoretic case:

the lift of the identity of ϕ0(y) to y must be the identity of y. Compostion of

cofunctors ϕ : C → D and ψ : D → E can be described as follows: the lift of an

arrow a of C with source ϕ0ψ0(z) to the object z of E is obtained by first lifting a

to the object ψ0(y) of D by means of ϕ and then lifting all the obtained arrows to

z by means of ψ.
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9.2 Representations and admissible sections

Let C = (A,C, s, t, i,m) be a category in Veck. The monoid of admissible sections

Γ(C) = HomC(C,A) is a k-vector subspace of Homk(C,A), and with respect to

this structure, multiplication of admissible sections is k-bilinear, since it is given

by the formula (proposition 5.1.1)

u ∗ v = m(u⊗
CidA)tv, for u, v ∈ Γ(C) .

Therefore, Γ(C) is a k-algebra.

We will use RepkC to denote the category of representations of C (section 6.1),

instead of RepVeckC . In this section we will show that there is a canonical functor

RepkC→ ModΓ(C)

and discuss some conditions under which this functor is an equivalence. We will

also show that, if C is a deltacategory and C is finite-dimensional, then Γ(C) carries

a structure of k-bialgebra, and the functor above preserves the resulting monoidal

structures.

Since Γ(C) is a k-algebra, we can consider the one-object category Γ

ˇ
(C) (exam-

ples 2.4.1).

Proposition 9.2.1. There is a cofunctor ϕ : Γ

ˇ
(C) → C defined by ϕ = (e, ǫC),

where ǫC : C → k is the counit of C and e : Γ(C)⊗C → A is the evaluation map

u⊗c 7→ u(c).

Proof. We check the conditions in definition 4.2.1. The counit ǫC is a morphism

of coalgebras. The evaluation map e is a morphism of right C-comodules: for

u⊗c ∈ Γ(C)⊗C we have, since u is a morphism of right C-comodules,

se(u⊗c) = su(c) = (u⊗idC)∆C(c) = u(c1)⊗c2 = (e⊗idC)(u⊗c1⊗c2) = (e⊗idC)(id⊗∆C)(u⊗c),
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from where se = (e⊗idC)(id⊗∆C) as required.

The remaining conditions are preservation of identities and compositions, i.e.

the commutativity of the following diagrams:

Γ(C)⊗C
e // A

k⊗C

uΓ(C)⊗idC

OO

C

i

OO

∼=oo

Γ(C)⊗Γ(C)⊗C
id⊗e //

m⊗
C
idC

��

Γ(C)⊗A
id⊗t // Γ(C)⊗C⊗

CA
e⊗CidA // A⊗

CA

m

��
Γ(C)⊗C e

// A

.

Evaluating on u⊗v⊗c we see that the second diagram commutes precisely by defini-

tion of multiplication of admissible sections. In the first diagram, uΓ(C) denotes the

map that sends 1 ∈ k to the unit element of Γ(C), namely the admissible section

i; thus, it commutes trivially. This completes the proof.

Corollary 9.2.1. There is a functor RepkC → ModΓ(C), preserving the forgetful

functors to Veck.

Proof. This is the result of section 6.2, applied to the cofunctor ϕ.

Remark 9.2.1. By definition of restriction along cofunctors (section 6.2), the action

of Γ(C) on a representation (X, p, a) of C is

Γ(C)⊗X
id⊗p
−−→ Γ(C)⊗C⊗

CX
e⊗CidX−−−→ A⊗

CX
a
−→ X .

On the other hand, by proposition 6.4.1, for each representation X of C there is a

morphism of monoids

γX : Γ(C)→ EndS(X), such that γX(u) : X
p
−→ C⊗

CX
u⊗CidX−−−→ A⊗

CX
a
−→ X .

This endows X again with the same structure of Γ(C)-module.

We denote by
←−−
Catf the full subcategory of

←−−
CatVeck consisting of those categories

C = (A,C, . . .) in Veck whose underlying k-coalgebra C is finite-dimensional (but

A may be infinite-dimensional); we call these categories finite. A linear category

is finite precisely when it has finitely-many objects.
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The results of appendix A will be used for what follows. Let C be a finite-

dimensional k-coalgebra. Then, by lemma A.2.1, C∗ is a C-C-bicomodule.

Proposition 9.2.2. Let C = (A,C, . . .) be a finite category in Veck. Then the

map

d : A⊗
CC∗ → Γ(C), d(

∑

i

ai⊗fi)(c) =
∑

i

fi(c)ai ,

is an isomorphism of C-C-bicomodules (with respect to the structures described in

section A.2).

Proof. This is a particular case of lemma A.2.3, since Γ(C) = Homr
C(C,A).

Remark 9.2.2. A finite-dimensional k-coalgebra is called co-Frobenius if the dual

k-algebra is Frobenius, or equivalently if C∗ is isomorphic to C as left C-comodules

[Doi1, section 2.1]. Any group-like coalgebra is co-Frobenius, and so is any finite-

dimensional Hopf algebra [Mon, 2.1.3]. If C is co-Frobenius then proposition 9.2.2

says that Γ(C) ∼= A. This was already observed for the case of group-like coalgebras

in section 9.1.

Recall from section 7.4 that the admissible sections functor

Γ :
←−−
CatVeck → Algk

together with the natural morphism of k-algebras

Γ(C)⊗Γ(D)→ Γ(C⊗D)

of section 7.2 (which is given simply by the tensor product of linear maps) define

a lax monoidal functor
←−−
CatVeck → Algk.

As an immediate consequence of the above proposition we obtain:

Proposition 9.2.3. The functor Γ :
←−−
Catf → Algk equipped with the natural trans-

formation Γ(C)⊗Γ(D)→ Γ(C⊗D) is a weak monoidal functor.
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Proof. We only need to show that Γ(C)⊗kΓ(D)→ Γ(C⊗D) is an isomorphism. This

follows from the commutativity of the following diagram:

Γ(C)⊗Γ(D) // Γ(C⊗D)

(A⊗
CC∗)⊗(B⊗

DD∗)
τ(A,C∗,B,D)//

∼=

OO

(A⊗B)⊗C⊗D(C∗⊗D∗) ,

∼=

OO

where the vertical isomorphisms are those of proposition 9.2.2 (we identify C∗⊗D∗ =

(C⊗D)∗) and the bottom map is the isomorphism of lemma 7.1.1. This diagram

indeed commutes because so does the following, clearly:

Homk(C,A)⊗Homk(D,B) // Homk(C⊗D,A⊗B)

(A⊗C∗)⊗(B⊗D∗)
idA⊗τC∗,B⊗idD∗

//

∼=

OO

(A⊗B)⊗(C∗⊗D∗) .

∼=

OO

It follows that Γ(C)⊗kΓ(D)→ Γ(C⊗D) is an isomorphism and the proof is complete.

Corollary 9.2.2. If C is a finite deltacategory, then Γ(C) is a k-bialgebra.

Proof. Comonoids are preserved under weak monoidal functors, so the result fol-

lows from proposition 9.2.3.

Notice that, moreover, the functor resϕ : RepkC → ModΓ(C) of corollary 9.2.1

preserves the monoidal structures on these categories. This is simply because the

cofunctor ϕ : Γ

ˇ
(C) → C preserves the deltacategory structures, as one may easily

check.

We turn back our attention to the functor RepkC → ModΓ(C), for the case of

finite categories. Flat comodules are defined in section A.1. Their relevance to the

notions we are discussing is explained by next result. In its proof we will make

use of the following fact: if A → B is a morphism of k-algebras and X is a left

B-module, then the action map B⊗X → X factors through B⊗AX → X, where X
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and B are viewed as A-modules by restriction along A → B. This is an obvious

consequence of the associativity of the action.

Proposition 9.2.4. If C = (A,C, . . .) is a finite deltacategory and A is flat as

right C-comodule, then the functor RepkC→ ModΓ(C) is an equivalence.

Proof. According to lemma A.2.1, we may identify ComodC = ModC∗op (left co-

modules and left modules). Thus, the isomorphism of C-C-bicomodules Γ(C) ∼=

A⊗
CC∗ of proposition 9.2.2 can also be seen as an isomorphism Γ(C) ∼= A⊗

CC∗op

of C∗op-C∗op-bimodules, and we have an isomorphism of functors ComodC →

ComodC as follows:

Γ(C)⊗C∗op(−) ∼= (A⊗
CC∗op)⊗C∗op(−) ∼= A⊗

C

(
C∗op⊗C∗op(−)

)
∼= A⊗

C(−) .

(The isomorphism in the middle is that of lemma A.2.4; here is where the flatness

assumption is used).

Recall (examples 4.1.1) that there is a functor (i, idC) : Ĉ→ C. By remark 4.2.1,

this can also be seen as a cofunctor. We know from section 5.2 that Γ(Ĉ) = C∗op.

Hence, by proposition 5.3.1, there is a corresponding morphism of k-algebras

C∗op = Γ(Ĉ)
i
−→ Γ(C) .

Explicitly, i sends f ∈ C∗ to (f⊗i)∆C ∈ Γ(C). Restriction along i allows us to

view left or right Γ(C)-modules as left or right C∗op-modules (or C-comodules). In

particular, one checks easily that the resulting structure of right C∗op-module on

Γ(C) is the same as the one previously considered, namely

u · f = (f⊗u)∆C ∀f ∈ C
∗op, u ∈ Γ(C) .

It follows that if X is a left Γ(C)-module, then it is also a left C∗op-module (or left

C-comodule) and that the structure map Γ(C)⊗X → X factors through

Γ(C)⊗C∗opX → X ,
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(according to the remark preceding the proposition). Together with the isomor-

phism of functors above, this allows us to endow X with an action A⊗
CX → X,

which will be associative and unital because so is the action of Γ(C). Thus X

becomes a left C-representation, and we have constructed a functor

ModΓ(C)→ RepkC .

Routine verifications show that this is the desired inverse.

Remark 9.2.3. The flatness hypothesis in proposition 9.2.4 can be substituted by

others. For instance, still assuming that C is finite-dimensional, but with no

assumptions on A, the functor RepkC → ModΓ(C) is an equivalence, provided

that one restricts attention to those C-representations and Γ(C)-modules whose

underlying C-comodule is flat as C∗op-module. In fact, the above proof works

in this case too, because lemma A.2.4 can still be applied under this alternative

hypothesis.

9.3 Sweedler’s algebra as admissible sections

Consider the following (small) graph in Sets

0e0 99

d0
!!
1

d1

aa
e1ee

Let k be a field, chark 6= 2. Linearizing the set of arrows we obtain a k-linear

graph with object set Z2 = {0, 1}. We define a k-linear category structure on this

graph by letting e0 and e1 be the identities, setting d0 ◦ d1 = d1 ◦ d0 = 0, and

extending composition linearly. As explained in section 9.1 this yields a category

C = (A,C, . . .) in Veck, where A = ke0⊕ke1⊕kd0⊕kd1 and C = kZ2 = k[c]/(c2−1).

It turns out that C is actually a deltacategory as follows:
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∆ : C→ C⊗C is the cofunctor ∆ = (∆1,∆0) given by

∆0 : C⊗C → C and ∆1 : A⊗
C(C⊗C) → A⊗A

ci⊗cj 7→ ci+j ei+j⊗(ci⊗cj) 7→ ei⊗ej

di+j⊗(ci⊗cj) 7→ di⊗ej + (−1)iei⊗dj

(where the indices i and j are taken modulo 2) and ǫ : C → I is the cofunctor

ǫ = (ǫ1, ǫ0) given by

ǫ0 : I → C and ǫ1 : A⊗
CI → I

1 7→ c0 e0 7→ 1

d0 7→ 0

(recall the description of tensor coproducts over group-like coalgebras from section

9.1). By construction, ∆ preserves identities. Let us check that ∆ preserves

compositions, but omit the verification of the other conditions in definition 7.4.1

of deltacategories. Compositions with identities are trivially preserved; the only

relevant composition to be considered is di+1 ◦ di = 0 for i = 0, 1 mod 2. We use

the terminology and notation explained in section 9.1. We need to show that the

lift of di+j+1⊗di+j to (i, j) by ∆ is equal to 0. We first compute the lift of di+j to

(i, j). This involves various arrows with different targets. We then compute the

lifts of di+j+1 to these targets, as below:

(i, j)
_

��

di⊗ej+

+(−1)iei⊗dj

(i+ 1, j)
(i, j + 1)_

��

di+1⊗ej + (−1)i+1ei+1⊗dj
di⊗ej+1 + (−1)iei⊗dj+1

i+ j di+j
_

OO

i+ j + 1 di+j+1

_

OO
.

Since ∆ preserves compositions, composing the top rows we find the lift of di+j+1 ◦

di+j to (i, j); it is

(di+1 ◦ di)⊗ej + (−1)i+1di⊗dj + (−1)i
(
di⊗dj + (−1)iei⊗(dj+1 ◦ dj

)
= 0 ,

as required.
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Since C is a finite deltacategory, Γ(C) is a k-bialgebra (corollary 9.2.2). Let

us describe it. A general admissible section u : C → A is of the form u(cj) =

ujej + u′jdj for some scalars uj, u
′
j ∈ k, for j = 0, 1 (a morphism of kZ2-comodules

is a morphism of Z2-graded spaces, see section 9.1). Following the definition in

proposition 5.1.1 we find that the multiplication in Γ(C) is described by

(u ∗ v)(cj) = ujvjej + (u′jvj + uj+1v
′
j)dj .

Let x : C → A be x(cj) = dj and g : C → A be g(cj) = (−1)jej for j = 0, 1. Recall

that identities are given by i(cj) = ej , j = 0, 1. It follows that {i = 1, x, g, xg} is

a k-basis for Γ(C) (here we use chark 6= 2) such that

x2 = 0, g2 = 1 and xg = −gx .

Let us compute Γ(∆)(u), for u = x, g, following the definition in section 5.3:

C⊗C
∆C⊗C// (C⊗C)⊗C(C⊗C)

∆0⊗
C
id// C⊗

C(C⊗C)
u⊗Cid // A⊗

C(C⊗C)
∆1 // A⊗A

ci⊗cj
� // ci⊗cj⊗ci⊗cj

� // ci+j⊗ci⊗cj
� x⊗Cid // di+j⊗c

i
⊗cj � // di⊗ej + (−1)iei⊗dj

= (x⊗1 + g⊗x)(ci⊗cj),

ci⊗cj
� // ci⊗cj⊗ci⊗cj

� // ci+j⊗ci⊗cj
�g⊗
C
id// (−1)i+jei+j⊗c

i
⊗cj � // (−1)i+jei⊗ej

= (g⊗g)(ci⊗cj).

Thus Γ(∆)(x) = x⊗1+g⊗x and Γ(∆)(g) = g⊗g. Similarly Γ(ǫ)(x) = 0 and Γ(ǫ)(g) =

1. Therefore, Γ(C) = H4, Sweedler’s 4-dimensional Hopf algebra, as described in

[Mon, 1.5.6].

There is a generalization of Sweedler’s example due to Taft; namely, for each

primitive n-th root of unity q the author defines in [Taf] a k-algebra Tn(q) with

generators x and y subject to the relations

xn = 0, yn = 1 and yx = qxy,
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and proves that it is a Hopf algebra with

∆(y) = y⊗y,∆(x) = x⊗1 + y⊗x, ǫ(y) = 1 and ǫ(x) = 0 .

Sweedler’s algebra is T2(−1). Again, Tn(q) can be obtained as admissible sections

of a naturally defined deltacategory in Veck, as follows. Consider the free k-linear

category on the cyclic graph on n vertices

2
d2 // 3

��:
:

:
:

:
:

:

1

d1

AA���������������
n− 2

dn−2

����
��

��
��

��
��

��

0

d0

]]:::::::::::::::

n− 1
dn−1

oo

modulo the relations

di+n−1 ◦ di+n−2 ◦ . . . ◦ di+1 ◦ di = 0 for i = 0, 1, . . . , n− 1 mod n.

Let Tn(q) = (A,C, . . .) denote the corresponding category in Veck, so that, in

particular, C = kZn = k[c]/(cn−1) and di, ei ∈ A, where ei denotes the identity of

the object i. Then Tn(q) carries a deltacategory structure defined on the generating

arrows as follows (this claim can be checked using the general considerations on

quotient categories in section 9.4 below; it also follows from the results of section

9.8, since Tn(q) is a particular binomial deltacategory, as explained in section 9.8.3):

∆0 : C⊗C → C and ∆1 : A⊗
C(C⊗C) → A⊗A

ci⊗cj 7→ ci+j ei+j⊗(ci⊗cj) 7→ ei⊗ej

di+j⊗(ci⊗cj) 7→ di⊗ej + qiei⊗dj
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and

ǫ0 : I → C and ǫ1 : A⊗
CI → I

1 7→ c0 e0 7→ 1

d0 7→ 0

.

Let us check in detail that Tn(q) ∼= Γ(Tn(q)) as bialgebras. First, consider the

admissible sections X : C → A, X(ci) = di and Y : C → A, Y (ci) = qiei. Then,

as in Sweedler’s example, one checks easily that

Xn = 0, Y n = 1 and Y X = qXY,

Γ(∆)(Y ) = Y ⊗Y,Γ(∆)(X) = X⊗1 + Y ⊗X,Γ(ǫ)(Y ) = 1 and Γ(ǫ)(X) = 0 .

Hence, there is a morphism of bialgebras Tn(q) → Γ(Tn(q)) sending x to X and

y to Y . The point is to show that this map is bijective. Notice that {xiyj / 0 ≤

i, j ≤ n − 1} is a k-basis for Tn(q), so dimTn(q) = n2. On the other hand, recall

from section 9.1 that Γ(Tn(q)) ∼= A as k-spaces, and

{ei, di, di+1 ◦ di, . . . , di+n−2 ◦ . . . ◦ di+1 ◦ di / i = 0, 1, . . . , n− 1 mod n}

is a k-basis for A, from where dim Γ(Tn(q)) = n2 as well. (The fact that this

is indeed a k-basis is clear from the definition of free k-linear category; for the

more general notion of free categories in Veck see section 9.4 below). Thus, it is

enough to prove that the map above is surjective. We will show that X and Y

generate the k-basis of Γ(Tn(q)) corresponding to the above basis of A. For each

i = 0, 1, . . . n− 1, consider the admissible section δi : C → A, δi(c
j) = δijei, where

δij is Kronecker’s delta. We have a system of equations




1 = δ0 + δ1 + . . .+ δn−1

Y = δ0 + qδ1 + . . .+ qn−1δn−1

...

Y n−1 = δ0 + qn−1δ1 + . . .+ q(n−1)(n−1)δn−1
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Since q is a primitive n-th root of unity, the Vandermonde matrix [qij]0≤i,j≤n−1 is

invertible. Therefore, each δi belongs to the subalgebra generated by Y . Notice

that δi is the basis element of Γ(Tn(q)) corresponding to ei ∈ A. The basis element

corresponding to di+j ◦ . . . ◦ di+1 ◦ di ∈ A is just Xj+1δi (computing the product

of these admissible sections we find that its value on ch is δihdi+j ◦ . . . ◦ di+1 ◦ di).

This completes the proof.

The Hopf algebra Tn(q) was also considered by Pareigis in [P2]. There it is

shown that the category of left Tn(q)-modules admits a nice simple description in

terms of cyclic complexes, as follows. Given a diagram of vector spaces

V2
d2 // V3

��:
:

:
:

:
:

:

V1

d1

BB�������������
Vn−2

dn−2

����
��

��
��

��
��

�

V0

d0

\\:::::::::::::

Vn−1dn−1

oo

such that

di+n−1 ◦ di+n−2 ◦ . . . ◦ di+1 ◦ di = 0 for i = 0, 1, . . . , n− 1 mod n,

the vector space V = ⊕n−1
i=0 Vi carries a left Tn(q)-module structure, where x ∈ Tn(q)

acts on Vi ⊆ V as the map di and y ∈ Tn(q) acts on Vi by multiplication by qi.

Conversely, every left Tn(q)-module arises in this way from a cyclic complex. This

description of ModTn(q) can be obtained immediately from proposition 9.2.4 (recall

that the flatness hypothesis are always satisfied in the case of linear categories):

RepkTn(q) ∼= ModΓ(Tn(q)) ∼= ModTn(q),

plus the description of representations of a linear category in section 9.1. The

deltacategory structure on Tn(q) (or the bialgebra structure on Tn(q)) induces a

111



monoidal structure on RepkTn(q). This is the natural tensor product of cyclic

complexes, as considered by Pareigis.

9.4 Free and quotient categories

In this section we construct the free category on a graph. A priori, “free” could

be understood in two different ways: with respect to functors or cofunctors. Sur-

prisingly, both universal problems have the same solution.

We also introduce the notion of ideal of a category and coideal of a deltacate-

gory, and discuss the corresponding quotient constructions.

First, let us mention that the notions of functor and cofunctor can be defined for

arbitrary graphs instead of categories, by omitting the associativity and unitality

conditions in definitions 4.1.1 and 4.2.1.

Let G = (M,C, s, t) be a graph in Veck, that is M is a C-C-bicomodule via t

and s. Consider the C-C-bicomodule

⊥C(M) = C ⊕M ⊕ (M⊗
CM)⊕ (M⊗

CM⊗
CM)⊕ . . .

(recall from section A.3 that the direct sum of bicomodules carries a natural struc-

ture of bicomodule, and that direct sums commute with tensor coproducts). Let

us abbreviate M⊗
C
n =





C if n = 0

M⊗
CM⊗

C
n−1 if n ≥ 1

, so that ⊥C(M) =
⊕∞

n=0M
⊗
C
n . Let

i : C → ⊥C(M) be the canonical inclusion and m : ⊥C(M)⊗C⊥C(M) → ⊥C(M)

be such that its component M⊗
C
n
⊗
CM⊗

C
m → ⊥C(M) is the inclusion M⊗

C
n
⊗
CM⊗

C
m =

M⊗
C
n+m ⊂ ⊥C(M). Then, obviously,

T(G) = (⊥C(M), C, s, t, i,m)

is a category in Veck. Moreover, there is a canonical functor
−→
j = (j, idC) : G →
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T(G), where j : M →֒ ⊥C(M) is the inclusion. This is the free category on the

graph G, in the sense that the following universal property holds.

Proposition 9.4.1. Given any category D and a functor (of graphs) f : G →

D, there is a unique functor (of categories) f̃ : T(G) → D making the following

diagram commutative

G

−→
j //

f !!C
CC

CC
CC

CC
T(G)

f̃
���
�
�

D

.

Proof. The proof is straightforward but we sketch the details. Let D = (B,D, . . .)

and f = (f1, f0). Thus f0 : C → D is a morphism of coalgebras and f1 : fMf → B

one ofD-D-bicomodules. Define the components of a morphism f̃1 : f⊥
C(M)f → B

inductively as

f̃1
(0)

: M
⊗
C
0 = C

f0
−→ D

i
−→ B and

f̃1
(p)

: M⊗
C
p = M⊗

CM⊗
C
p−1 →֒ Mf⊗

D
fM

⊗
C
p−1

f1⊗
Df̃1

(p−1)

−−−−−−→ B⊗
DB

m
−→ B .

Then f̃ = (f̃1, f0) : T(G) → D is the desired functor. For instance, the following

commutative diagram shows that f̃ preserves compositions.

M⊗
C
p
⊗
CM⊗

C
q

=

��

�

� //
M⊗

D
p
⊗
DM⊗

D
q

=

��

f
⊗
D
p

1
⊗
Df

⊗
D
q

1//
B⊗

D
p
⊗
DB⊗

D
q

=

��

mp⊗
Dmq// B⊗

DB

m

��
M⊗

C
p+q

�

� //
M⊗

D
p+q

f
⊗
D
p+q

1

//
B⊗

D
p+q mp+q

// B

.

(Here m1 = i, m2 = m and mp = m ◦ (idB⊗
Dmp−1) are the iterated compositions in

D).

Interestingly enough, T(G) is also free with respect to cofunctors. First notice

that, by remark 4.2.1, there is also a canonical cofunctor
←−
j : G→ T(G) defined by

idC and M⊗
CC ∼= M

j
−→ ⊥C(M). We thus have:
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Proposition 9.4.2. Given any category D and a cofunctor (of graphs) ϕ : G→ D,

there is a unique cofunctor (of categories) ϕ̃ : T(G) → D making the following

diagram commutative

G

←−
j //

ϕ
!!C

CC
CC

CC
CC

T(G)

ϕ̃

���
�
�

D

.

Proof. We are given a morphism of comonoids ϕ0 : D → C and one of C-D-bicomodules

ϕ1 : M⊗
C
ϕD → ϕB. This we extend to a morphism ϕ̃1 : ⊥C(M)⊗CϕD → ϕ⊥

C(M)

with components

ϕ̃1
(0) : C⊗

C
ϕD ∼= D

i
−→ B and

ϕ̃1
(p) : M

⊗
C
p
⊗
C
ϕD = M⊗

CM
⊗
C
p−1

⊗
C
ϕD

idM⊗
Cϕ̃1

(p−1)

−−−−−−−→M⊗
C
ϕB ∼= M⊗

C
ϕD⊗

DB
ϕ1⊗

D
idB−−−−→ B⊗

DB
m
−→ B .

Again, it is obvious that ϕ̃ is the desired cofunctor. For instance, preservation of

compositions for ϕ̃ is the commutativity of the following diagram, which follows

by induction.

M⊗
C
p
⊗
CM⊗

C
q
⊗
C
ϕD

idp⊗
Cϕ̃1

(q)

//

=

��

M⊗
C
p
⊗
CB ∼= M⊗

C
p
⊗
C
ϕD⊗

DB
ϕ̃1

(p)⊗DidB// B⊗
DB

m

��
M⊗

C
p+q⊗CϕD

ϕ̃1
(p+q)

// B

.

A representation of a graph G = (M,C) is, by definition, a triple (X, p, a)

where (X, p) is a left C-comodule and a : M⊗
CX → X is an arbitrary morphism

of left C-comodules. A morphism of representations is defined as for categories

(sectionS:defrepresentations). A representation (X, p, a) of graph G becomes a

representation (X, p, ã) of the free category T(G), by extending a : M⊗
CX → X to

ã : ⊥C(M)⊗CX → X so that unitality and associativity hold, as in the above proofs.

Conversely, a representation of T(G) defines a representation of G by restricting
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along
←−
j . These define an isomorphism of categories

RepkG ∼= RepkT(G) .

We next discuss ideals and quotients. Let C = (A,C, s, t, i,m) be a category in

Veck. A C-C-subbicomodule J of A is called an ideal of C if

m3(A⊗
CJ⊗

CA) ⊆ J ,

where m3 = m ◦ (m⊗
CidA) = m ◦ (idA⊗

Cm). By unitality this condition is equivalent

to

m(A⊗
CJ) ⊆ J and m(J⊗

CA) ⊆ J .

Let M be a C-C-subbicomodule of A. The ideal generated by M is

J(M) = m3(A⊗
CM⊗

CA) ⊆ A .

Since m is a morphism of C-C-bicomodules, J(M) is a C-C-subbicomodule. As-

sociativity of m then implies that J(M) is in fact an ideal, and unitality that

J(M) ⊇ M . Moreover, it is clear that J(M) is the smallest ideal of C containing

M .

The kernel of a functor f : C→ D is the space

Kerf={a ∈ A / f1(a) = 0}=
∑
{M ⊆ A / M is a C-C-subbicomod, f1(M) = 0}.

Since f preserves compositions, Kerf is an ideal of C. Hence, if f1(M) = 0 then

f1(J(M)) = 0.

The kernel of a cofunctor ϕ : C→ D is the space

Kerϕ =
∑
{M ⊆ A / M is a C-C-subbicomod and ϕ1(M⊗

CD) = 0 }.

Since ϕ preserves compositions, Kerϕ is an ideal of C. Hence, if ϕ1(M⊗
CD) = 0

then ϕ1(J(M)⊗CD) = 0.
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Technical difficulties arise when attempting to define the quotient of a category

modulo an ideal, due to the fact that the tensor coproduct of comodules need

not preserve epimorphisms. To get around this, one may restrict attention to

flat comodules, in view of the results of section A.1. In the applications to be

considered in later sections, these assumptions will be satisfied.

Let J be an ideal of a category C = (A,C, s, t, i,m). Assume that A and J

are flat as right C-comodules, and A/J is flat as left C-comodule. The quotient

of C modulo J is the category C/J = (A/J, C, s̄, t̄, ī, m̄), where (A/J, s̄, t̄) is the

quotient C-C-bicomodule of A modulo J , ī : C
i
−→ A→ A/J and

m̄ : (A/J)⊗C(A/J) ∼= A⊗
CA/(J⊗

CA + A⊗
CJ)→ A/J

is the morphism induced by A⊗
CA

m
−→ A → A/J . Above we have made use of the

canonical isomorphism of proposition A.1.1; this is where the flatness assumptions

are needed. The category axioms for C/J follow readily from those of C. In

addition, there is a canonical functor −→π = (π, idC) : C→ C/J , where π : A→ A/J

is the canonical projection.

To abbreviate, we will say that an ideal J of C is nice when the above assump-

tions (on J and A) hold.

Quotient categories satisfy the expected universal property.

Proposition 9.4.3. Let J be a nice ideal of a category C, and f : C → D a

functor such that f1(J) = 0. Then there is a unique functor f̃ : C/J → D making

the following diagram commutative

C
f //

−→π
��

D

C/J
f̃

=={
{

{
{

.

Proof. Since f1(J) = 0, there is an induced morphism of C-C-bicomodules f̃1 :

A/J → B. Then f̃ = (f̃1, f0) clearly satisfies the desired property.
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As in the case of free categories, quotient categories are also universal with

respect to cofunctors. By remark 4.2.1, there is a canonical cofunctor←−π : C→ C/J

defined by idC and A⊗
CC ∼= A

π
−→ A/J . We thus have:

Proposition 9.4.4. Let J be a nice ideal of a category C, and ϕ : C → D a

cofunctor such that ϕ1(J⊗
CD) = 0. Assume also that ϕD is flat as left C-comodule.

Then there is a unique cofunctor ϕ̃ : C/J → D making the following diagram

commutative

C
ϕ //

←−π
��

D

C/J
ϕ̃

=={
{

{
{

.

Proof. By assumption, (A/J)⊗CD ∼= A⊗
CD/J⊗

CD. Hence the morphism ϕ1 : A⊗
CD →

B of C-D-bicomodules induces another such ϕ̃1 : (A/J)⊗CD → B. Clearly,

ϕ̃ = (ϕ̃1, ϕ0) satisfies the desired property.

Let J be a nice ideal of a category C and (X, p, a) a representation of C such that

a(J⊗
CX) = 0. If the left C-comodule X is flat, then it becomes a representation of

C/J via

(A/J)⊗CX ∼= A⊗
CX/J⊗

CX
ã
−→ X,

where ã is the morphism of left C-comodules induced by a.

Now we consider tensor products of quotients. If Ji ⊆ Ai are vector spaces,

i = 1, 2, then there is a canonical isomorphism

(A1/J1)⊗(A2/J2) ∼= (A1⊗A2)/(J1⊗A2 + A1⊗J2) . (*)

Let Ci = (Ai, Ci, . . .) be categories in Veck and Ji a nice ideal of Ci, i = 1, 2.

We claim that then J1⊗A2 + A1⊗J2 is a nice ideal of C1⊗C2. In fact, by lemma

A.3.5, A1⊗A2, J1⊗A2 , A1⊗J2 and J1⊗J2 are flat as right C1⊗C2-comodules. Since

(J1⊗A2) ∩ (A1⊗J2) = J1⊗J2, lemma A.3.3 applies to conclude that J1⊗A2 + A1⊗J2
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is flat too. Finally, the isomorphism (∗) is one of C1⊗C2-C1⊗C2-bicomodules, so by

lemma A.3.5 (A1⊗A2)/(J1⊗A2 + A1⊗J2) is flat as left C1⊗C2-comodule.

Moreover, it is now clear that the pair consisting of the identity of C1⊗C2 and

the isomorphism (∗) yield a canonical isomorphism

(C1/J1)⊗(C2/J2) ∼= (C1⊗C2)/(J1⊗A2 + A1⊗J2) ,

(either in
−−→
CatVeck or

←−−
CatVeck , by remark 4.2.1).

We are interested in ideals of deltacategories for which the quotient category

will inherit the deltacategory structure. It is natural to consider first the case

of graphs. A deltagraph is a comonoid in the category of graphs and cofunctors,

that is a graph G equipped with coassociative and counital cofunctors (of graphs)

∆ : G → G⊗G and ǫ : G → I. Notice that in this case the base coalgebra C of G

becomes a bialgebra, with multiplication ∆0 : C⊗C → C and unit ǫ0 : k → C.

Let G = (M,C, s, t,∆, ǫ) be a deltagraph in Veck. A C-C-subbicomodule K of

M is called a coideal of G if

∆1(K⊗
C(C⊗C)) ⊆ K⊗M +M⊗K and ǫ1(K⊗

Ck) = 0.

A biideal of a deltacategory is an ideal of the underlying category that is at the

same time a coideal of the underlying deltagraph.

Lemma 9.4.1. Let K be a coideal of a deltacategory. Then J(K), the ideal gen-

erated by K, is a biideal.

Proof. Let J = J(K) = m3(A⊗
CK⊗

CA). We need to show that J is again a coideal.

First let K̄ = m(A⊗
CK). We have that ∆1(K̄⊗

C(C⊗C)) ⊆ J⊗A+A⊗J , as we see
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from the diagram below (which commutes since ∆ preserves compositions):

A⊗
CK⊗

C(C⊗C)
idA⊗

C∆1 //

m⊗
C
id

��

A⊗
C
(K⊗A

+
A⊗K

)
∼= A⊗

C(C⊗C)⊗C⊗C
(K⊗A

+
A⊗K

) ∆1⊗
C⊗C

id // (A⊗A)⊗
(K⊗A

+
A⊗K

)

∼=
��

(A⊗K)⊗(A⊗A)
+

(A⊗A)⊗(A⊗K)

m⊗m

��
K̄⊗

C(C⊗C)
∆1

//_____________________________ J⊗A + A⊗J

Similarly we now deduce that ∆1(J⊗
C(C⊗C)) ⊆ J⊗A + A⊗J , using that J =

m(K̄⊗
CA):

K̄⊗
CA⊗

C(C⊗C)
idK̄

⊗
C∆1//

m⊗
C
id

��

K̄⊗
C(A⊗A) ∼= K̄⊗

C(C⊗C)⊗C⊗C(A⊗A)
∆1⊗

C⊗C
id// (J⊗A+ A⊗J)⊗(A⊗A)

∼=
��

(J⊗A)⊗(A⊗A)+
+(A⊗A)⊗(J⊗A)

m⊗m

��
J⊗

C(C⊗C)
∆1

//__________________________ J⊗A+ A⊗J

The fact that ǫ1(J⊗
Ck) = 0 is proved in two steps as above, using that ǫ preserves

compositions.

We have now introduced all the terminology required for constructing quotient

deltacategories.

Proposition 9.4.5. Let (C,∆, ǫ) be a deltacategory in Veck and J a nice biideal

of C. Assume also that C⊗C is flat as left C-comodule by corestriction via ∆0 :

C⊗C → C. Then the quotient C/J inherites a deltacategory structure (∆̄, ǭ) for

which the canonical projection ←−π : C→ C/J is a morphism of deltacategories.

Proof. By definition of coideal and proposition 9.4.4, C
∆
−→ C⊗C → C⊗C/(J⊗A +

119



A⊗J) and C
ǫ
−→ I factor through J :

C
∆ //

←−π
��

C⊗C

←−π⊗
←−π
�� ))RRRRRRRRRRRRRR

C/J //___ C/J⊗C/J ∼=
// C⊗C/(J⊗A+ A⊗J)

C
ǫ //

←−π
��

I

C/J

ǭ

>>|
|

|
|

.

We let ∆̄ : C/J → C/J⊗C/J be the composite of the bottom row in the first dia-

gram, and ǭ : C→ C/J be as shown. Coassociativity and counitality for (C/J, ∆̄, ǭ)

follow from those for (C,∆, ǫ), plus uniqueness of quotient factorizations. By con-

struction, ←−π : C→ C/J preserves the deltacategory structures.

Remark 9.4.1. Let (C,∆, ǫ) be a deltacategory in Veck, with base coalgebra C.

Then (C,∆0, ǫ0) is a bialgebra. If in addition C happens to be a Hopf algebra,

then the hypothesis in proposition 9.4.5 that C⊗C be flat as left C-comodule is

automatically satisfied, according to examples A.1.1.

9.5 Uq(sl2) as admissible sections

Consider the following (small) graph G in Sets

−4

b−4

))
−2

a−2

ii

b−2

((
0

a0

hh

b0

''
2

a2

gg

b2

''
4

a4

gg

−3

b−3

))
−1

a−1

ii

b−1

''
1

a1

hh

b1

''
3

a3

gg

The set of objects is Z, and for each object i ∈ Z there are two arrows with source

i, bi and ai, with targets i+ 2 and i− 2 respectively.

Applying the linearization functor Sets → Veck, S 7→ kS, we obtain a k-linear

graph kG = (M,C) with C = kZ = k[c, c−1] and M = ⊕i∈Zkai ⊕ kbi. We are

viewing kG as a graph in Veck as explained in section 9.1. Consider the free

category T(kG) on this graph (section 9.4), T(kG) = (A,C, . . .). Let ei ∈ A denote

the identity of i in T(kG).
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Fix an arbitrary scalar q ∈ k. We claim that T(kG) is a deltacategory. We first

define cofunctors of graphs ∆ : kG→ T(kG)⊗T(kG) and ǫ : kG→ I as follows:

∆0 : C⊗C → C and ∆1 : M⊗
C(C⊗C) → A⊗A

ci⊗cj 7→ ci+j bi+j⊗(ci⊗cj) 7→ ei⊗bj + qjbi⊗ej

ai+j⊗(ci⊗cj) 7→ ai⊗ej + q−iei⊗aj

and

ǫ0 : k → C and ǫ1 : M⊗
Ck → k

1 7→ c0 b0 7→ 0

a0 7→ 0

.

Clearly, ∆ and ǫ are cofunctors of graphs (for instance, the targets of ei⊗bj and

qjbi⊗ej are (i, j + 2) and (i + 2, j), which map by ∆0 to i + j + 2, the target of

bi+j). By proposition 9.4.2, they extend to cofunctors (of categories) ∆ : T(kG)→

T(kG)⊗T(kG) and ǫ : T(kG) → I. By the uniqueness in proposition 9.4.2, it is

enough to check coassociativity and counitality for ∆ and ǫ on the generating

graph kG.

In order to do this, notice that we have

∆1(ei+j⊗(ci⊗cj)) = ei⊗ej and ǫ1(e0) = 1 ,

since by construction ∆ and ǫ preserve identities.

Now, coassociativity for ∆ boils down (by definition of composition of cofunc-

tors in section 4.2) to associativity for the multiplication ∆0, which is clear, plus

equality between the following two maps M⊗
C(C⊗C⊗C)→ A⊗A⊗A

((∆⊗id) ◦∆)1 and ((id⊗∆) ◦∆)1 .

A k-basis for M⊗
C(C⊗C⊗C) is {bi+j+k⊗(ci⊗cj⊗ck), ai+j+k⊗(ci⊗cj⊗ck) / i, j, k ∈ Z}.

We will check that those maps agree on the first of these elements, the other case

is similar. According to the description of composition of cofunctors in section 9.1,
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the element ((∆⊗id) ◦∆)1(bi+j+k⊗(ci⊗cj⊗ck)) is called the lift of bi+j+k to (i, j, k) by

(∆⊗id) ◦ ∆, and it is computed by first lifting bi+j+k to (i + j, k) by ∆ and then

lifting the result to (i, j, k) by ∆⊗id, as done below

T⊗T⊗T (i, j, k)
_

��

ei⊗ej⊗bk + qk(ei⊗bj + qjbi⊗ej)⊗ek

T⊗T

∆⊗id

OO

(i+ j, k)
_

��

ei+j⊗bk + qkbi+j⊗ek
_

OO

T

∆

OO

i+ j + k bi+j+k
_

OO

.

Similarly, the lift of bi+j+k to (i, j, k) by (id⊗∆)◦∆, that is, the element ((id⊗∆)◦

∆)1(bi+j+k⊗(ci⊗cj⊗ck)), is

T⊗T⊗T (i, j, k)
_

��

ei⊗(ej⊗bk + qkbj⊗ek) + qj+kbi⊗ej⊗ek

T⊗T

id⊗∆

OO

(i, j + k)
_

��

ei⊗bj+k + qj+kbi⊗ej+k
_

OO

T

∆

OO

i+ j + k bi+j+k
_

OO

.

Thus, the two lifts give the same element ei⊗ej⊗bk + qkei⊗bj⊗ek + qj+kbi⊗ej⊗ek,

as needed. Counitality is checked similarly. This completes the proof of the claim

that (T(kG),∆, ǫ) is a deltacategory. We further claim that, if q2 6= 1, the relations

bi−2 ◦ ai − ai+2 ◦ bi = (i)qei, for each i ∈ Z , (*)

where (i)q =
qi − q−i

q − q−1
, define a nice biideal of T(kG). More precisely, consider the

k-subspace R of A linearly spanned by the elements ri := bi−2 ◦ai−ai+2 ◦bi− (i)qei

for i ∈ Z. Since each ri is a linear combination of arrows with the same source

and target i, R is a C-C-subbicomodule of A. Hence, the ideal J(R) generated by

R is defined (section 9.4). It is a nice ideal because, over a group-like coalgebra

like C = kZ, every comodule is flat (section A.1). To check that J(R) is a biideal

of T(kG), it suffices to show that R is a coideal, by lemma 9.4.1. To see this, we
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need to compute the lift of ri+j to (i, j). The lift of bi+j−2 ◦ ai+j is computed as

follows. We first compute the lift of ai+j to (i, j). This involves various arrows with

different targets. We then compute the lifts of bi+j−2 to these targets, as below:

(i, j)
_

��

ai⊗ej
+q−iei⊗aj

(i− 2, j)
(i, j − 2)_

��

ei−2⊗bj + qjbi−2⊗ej
ei⊗bj−2 + qj−2bi⊗ej−2

i+ j ai+j
_

OO

i+ j − 2 bi+j−2

_

OO
.

Since ∆ preserves compositions, composing the top rows we find the lift of bi+j−2 ◦

ai+j to (i, j); it is

ai⊗bj + qj(bi−2 ◦ ai)⊗ej + q−iei⊗(bj−2 ◦ aj) + qj−i−2bi⊗aj .

Similarly, the lifts of ai+j+2 ◦ bi+j and (i+ j)qei+j to (i, j) are respectively

ai⊗bj + q−iei⊗(aj+2 ◦ bj) + qj(ai+2 ◦ bi)⊗ej + qj−i−2bi⊗aj and (i+ j)qei⊗ej .

Hence the lift of ri+j to (i, j) is

ai⊗bj + qj(bi−2 ◦ ai)⊗ej + q−iei⊗(bj−2 ◦ aj) + qj−i−2bi⊗aj

− ai⊗bj − q
−iei⊗(aj+2 ◦ bj)− q

j(ai+2 ◦ bi)⊗ej − q
j−i−2bi⊗aj

− (i+ j)qei⊗ej

Using the well-known identity (i+ j)q = qj(i)q + q−i(j)q, this element becomes

= qj
(
bi−2 ◦ ai − ai+2 ◦ bi − (i)qei

)
⊗ej + q−iei⊗

(
bj−2 ◦ aj − aj+2 ◦ bj − (j)qei

)

= qjri⊗ej + q−iei⊗rj ∈ R⊗A+ A⊗R .

This proves that ∆1(R⊗
C(C⊗C)) ⊆ R⊗A+A⊗R. Similarly one shows that ǫ1(R⊗

Ck) =

0. This completes the proof of the claim that J(R) is a nice biideal.

It follows now from proposition 9.4.5 that the quotient C = T(kG)/J(R) carries

a structure of deltacategory.
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Now consider the following admissible sections of C:

K : C → A, E : C → A and F : C → A

ci 7→ qiei ci 7→ bi ci 7→ ai

One checks immediately that

(1) K is invertible, with K−1(ci) = q−iei,

(2) KE = q2EK and KF = q−2FK, and

(3) EF − FE =
K −K−1

q − q−1
.

For instance:

(K ∗ E)(ci) = m(K⊗
Cid)tE(ci) = m(K⊗

Cid)(ci+2
⊗bi) = qi+2m(ei+2⊗bi) = qi+2bi

while

(E ∗K)(ci) = m(E⊗
Cid)tK(ci) = m(E⊗

Cid)(qici⊗ei) = qim(bi⊗ei) = qibi

from where KE = q2EK. Similarly for the other half of (2). Also,

(E ∗ F )(ci) = m(E⊗
Cid)tF (ci) = m(E⊗

Cid)(ci−2
⊗ai) = m(bi−2⊗ai) = bi−2 ◦ ai

and

(F ∗E)(ci) = m(F⊗
Cid)tE(ci) = m(F⊗

Cid)(ci+2
⊗bi) = m(ai+2⊗bi) = ai+2 ◦ bi,

hence

(EF − FE)(ci) = bi−2 ◦ ai − ai+2 ◦ bi
(∗)
= (i)qei =

qi − q−i

q − q−1
ei =

K −K−1

q − q−1
(ci),

which proves (3).

Let Γ0(C) denote the k-subalgebra of Γ(C) generated by K, E and F . The

above shows that there is an epimorphism of k-algebras

Uq(sl2) ։ Γ0(C) ,
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since Uq(sl2) is defined by generators K, E and F subject precisely to relations

(1)-(3) [K, VI.1.1]. We claim that, if q is not a root of unity, then this map is an

isomorphism. We will return to the proof of this claim at the end of the section.

Even though C is not finite, it turns out that Γ(∆) : Γ0(C) → Γ(C⊗C) has its

image in the subalgebra Γ0(C)⊗Γ0(C) of Γ(C⊗C). For instance, let us find Γ(∆)(E),

following the definition in section 5.3:

C⊗C
∆C⊗C−−−→ (C⊗C)⊗C(C⊗C)

∆0⊗
C
id

−−−→ C⊗
C(C⊗C)

E⊗
C
id

−−−→ A⊗
C(C⊗C)

∆1−→ A⊗A ;

ci⊗cj 7→ ci⊗cj⊗ci⊗cj 7→ ci+j⊗ci⊗cj 7→ bi+j⊗c
i
⊗cj 7→

ei⊗bj
+

qjbi⊗ej

thus, Γ(∆)(E)(ci⊗cj) = ei⊗bj + qjbi⊗ej = (1⊗E + E⊗K)(ci⊗cj); hence Γ(∆)(E) =

1⊗E + E⊗K ∈ Γ0(C)⊗Γ0(C). Also,

Γ(ǫ)(E) : I
∆I−→ I⊗

CI
ǫ0⊗

C
idI−−−→ C⊗

CI
E⊗

C
idI−−−→ A⊗

CI
ǫ1−→ I

1 7→ 1⊗1 7→ c0⊗1 7→ b0⊗1 7→ 0

hence Γ(ǫ)(E) = 0. Similarly,

Γ(∆)(F ) = K−1
⊗F + F⊗1 Γ(ǫ)(F ) = 0

Γ(∆)(K) = K⊗K Γ(ǫ)(K) = 1

which proves that the map Uq(sl2) ։ Γ0(C) is a morphism of k-coalgebras too [K,

VII.1.1].

Before proving that this map is actually an isomorphism, we define an action of

Γ(C) (and hence also of Γ0(C)) on the quantum plane kq[x, y] = k〈x, y〉/(xy = qyx)

[K, IV.1]. By corollary 9.2.1, it is enough to show that kq[x, y] is a representation

of C; in turn, in view of the remarks about representations of free and quotient

categories in section 9.4, it is enough to define a representation of the graph G for

which relations (∗) are preserved. This is as follows

p : kq[x, y] → C⊗kq[x, y] a : M⊗
Ckq[x, y] → kq[x, y]

xmyn 7→ cm−n⊗xmyn bm−n⊗
Cxmyn 7→ (n)qx

m+1yn−1

am−n⊗
Cxmyn 7→ (m)qx

m−1yn+1
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The fact that relations (∗) are preserved by a boils down to the well-known identity

(n+ 1)q(m)q − (n)q(m+ 1)q = (m− n)q .

The resulting action of Γ0(C) on kq[x, y] is:

K · xmyn = qm−nxmyn

E · xmyn = (n)qx
m+1yn−1

F · xmyn = (m)qx
m−1yn+1

For instance the action of E is, according to remark 9.2.1,

kq[x, y] :
p
−→ C⊗

Ckq[x, y]
E⊗

C
id

−−−→ A⊗
Ckq[x, y]

a
−→ kq[x, y]

xmyn 7→ cm−n⊗xmyn 7→ bm−n⊗xmyn 7→ (n)qx
m+1yn−1

as claimed.

This means that there is a commutative diagram

Uq(sl2) // //
�
v

))SSSSSSS
Γ0(C)

��
Endk(kq[x, y]) ,

where Uq(sl2) → Endk(kq[x, y]) is the canonical action on the quantum plane [K,

VII.3.3]. Now, it is well-known that this map is injective when q is not a root of

unity. (We provide a proof for completeness. By, theorems VII.2.2, VII.3.3.b and

VI.3.5 in [K], if u ∈ Uq(sl2) is in the kernel of this map, then it annihilates any

finite-dimensional Uq(sl2)-module of type 1 [Jan, 5.2]. But then u = 0 by [Jan,

5.11 and 5.4] .) It follows from the commutativity of the diagram that the map

Uq(sl2)→ Γ0(C)

is an isomorphism.

The above construction of Uq(sl2) resembles that of Cibils and Rosso [CR].

There Uq(sl2) is obtained as a quotient of the path algebra of the graph we started
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with; here we introduce all the relevant structure at the more basic level of the

category (the relations and the comonoid structure) and then pass to the associ-

ated algebra. We will proceed in the same way for Drinfeld’s double below; here

consideration of general internal categories in Veck is essential, for the category in

question is not linear.

9.6 Drinfeld’s double as admissible sections

Let H be a finite dimensional Hopf algebra with antipode λ. Drinfeld’s double is

D(H) = H⊲⊳(H∗)op with multiplication

(a⊲⊳f) · (b⊲⊳g) = f1(b1)(ab2 ⊲⊳gf2)f3(λb3)

where the product of g and f2 and the diagonalization of f are both in the bialgebra

H∗. (This form of Drinfeld’s double is sometimes called the right handed version

[Maj, 7,1,1], to distinguish it from the more common left handed version of [K,

IX.4.1] and [Maj, 7.1.2]).

We define a category DH = (H⊗H,H, s, t, i,m) in Veck as follows:

s : H⊗H → (H⊗H)⊗H, a⊗b 7→ a⊗b1⊗b2

t : H⊗H → H⊗(H⊗H), a⊗b 7→ a1b1λ(a3)⊗a2⊗b2

i : H → H⊗H, a 7→ 1⊗a

m : (H⊗H)⊗H(H⊗H) → H⊗H, a⊗b⊗c⊗d 7→ ǫ(b)ac⊗d

The category axioms (definition 2.3.1) are easily checked. Notice that DH is defined

for any Hopf algebra H . We claim that if H is finite dimensional, so that D(H) is

defined, then Γ(DH) = D(H).

To see this, recall from remark 3.0.1 that if V is a k-space, V ⊗C is viewed as

right C-comodule via idV ⊗∆C , and (U, p) is a right C-comodule, then

HomC(U, V ⊗C) ∼= Homk(U, V )
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under the maps

u : U → V ⊗C 7→ ũ : U
u
−→ V ⊗C

idV⊗ǫC−−−→ V and ũ : U → V 7→ U
p
−→ U⊗C

ũ⊗idC−−−→ V ⊗C

It follows from this and the definition of s that, as k-spaces,

Γ(DH) = HomH(H,H⊗H) ∼= Homk(H,H) ∼= H⊗H∗ = D(H) .

We need to check that this is an isomorphism of k-algebras. Let u and v in Γ(DH)

be the images of a⊲⊳f and b⊲⊳g in D(H). Thus, ∀ h ∈ H ,

u(h) = ũ(h1)⊗h2 = f(h1)a⊗h2 and v(h) = ṽ(h1)⊗h2 = g(h1)b⊗h2 .

We compute:

(u ∗ v)(h) = m(u⊗
Hid)tv(h) = m(u⊗

Hid)t(g(h1)b⊗h2) = m(u⊗
Hid)(g(h1)b1h2λb3⊗b2⊗h3)

= m(g(h1)f(b1h2λb5)a⊗b2h3λb4⊗b3⊗h4) = g(h1)f(b1h2λb5)ǫ(b2h3λb4)ab3⊗h4

= g(h1)f(b1h2λb3)ab2⊗h3 .

On the other hand, let w ∈ Γ(DH) be the image of

(a⊲⊳f) · (b⊲⊳g) = f1(b1)f3(λb3)(ab2 ⊲⊳gf2) .

Then,

w(h) = f1(b1)f3(λb3)(gf2)(h1)ab2⊗h2 = f1(b1)f3(λb3)g(h1)f2(h2)ab2⊗h3 =

= g(h1)f(b1h2λb3)ab2⊗h3 = (u ∗ v)(h);

thus, (u ∗ v) = w.

Also, 1 ⊲⊳ ǫ ∈ D(H) clearly maps to i ∈ Γ(DH). Thus Γ(DH) ∼= D(H) as

k-algebras.

The coalgebra structure on D(H) (the usual structure on the tensor prod-

uct of the coalgebras H and H∗) can also be recovered from the category; one
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easily checks that it comes from the following deltacategory structure on DH :

∆ : DH → DH⊗DH is the cofunctor ∆ = (∆1,∆0) given by ∆0 : H⊗H
µH−→ H and

∆1 : (H⊗H)⊗H(H⊗H)
id⊗ǫH⊗id⊗id
−−−−−−→

∼=
H⊗(H⊗H)

∆H⊗id
−−−→ (H⊗H)⊗(H⊗H)

and ǫ : DH → I is the cofunctor ǫ = (ǫ1, ǫ0) given by

ǫ0 : k
uH−→ H and ǫ1 : (H⊗H)⊗Hk

id⊗ǫH−−−→
∼=

H
ǫH−→ k .

The description of D(H) as admissible sections of the category DH can be used

to derive many of its properties, some familiar, some new. We list some next.

1. Subalgebras of the double. A morphism f : H → K of Hopf algebras in-

duces a functor (f⊗f, f) : DH → DK ; hence also, by corollary 5.4.1, an order-

preserving correspondence

f−1 : ℘(D(K))→ ℘(D(H))

where ℘(D(H)) denotes either the lattice of subsets, subspaces or subalgebras

of D(H). This result seems to be new.

2. The square of the antipode. Consider the functors id = (idH⊗H , idH) : DH →

DH and g = (λ2H⊗λ2H , λ
2
H) : DH → DH . When H is finite dimensional, both

idH and λ2H are isomorphisms, so id and g can be seen as cofunctors DH → DH

(remark 4.2.1). The induced morphisms D(H)→ D(H) are the identity and

the square of the antipode of D(H) respectively.

Now, one checks easily that there is a natural isomorphism α : id⇒ g defined

by α : H → H⊗H , α(h) = λh1⊗h2. This can be seen as a natural coisomor-

phism between the corresponding cofunctors. This implies, by proposition

5.3.2, that the square of the antipode of D(H) is given by conjugation by

α ∈ Γ(DH) = D(H). One can then obtain the same conclusion for any finite
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dimensional quasitriangular Hopf algebra in place of D(H), since any such

is a quotient of its double. (A direct proof of this result can be found in [K,

VIII.4.1]).

3. Yetter-Drinfeld modules. The well-known description of (left) D(H)-modules

in terms of (left) Yetter-Drinfeld modules [Mon, 10.6.16] is an immediate

consequence of the description of D(H) as admissible sections, plus propo-

sition 9.2.4 (notice that H⊗H is free as right H-comodule, in particular

flat, so this proposition applies). In fact, writing down the definition of left

DH-representations one finds that it becomes precisely that of left Yetter-

Drinfeld modules. Let us provide the details of this claim.

A left Yetter-Drinfeld H-module (sometimes called a crossed H-bimodule) is

a k-space X equipped with a left H-module structure χ : H⊗X → X and a

left H-comodule structure p : X → H⊗X, such that

H⊗H⊗H⊗X
idH⊗τH,H⊗idX // H⊗H⊗H⊗X

µH⊗χ

''PPPPPPPPPPPP

H⊗X

∆H⊗p
77nnnnnnnnnnnn

∆H⊗idX

��

H⊗X

H⊗H⊗X

idH⊗τH,X ''PPPPPPPPPPPP H⊗H⊗X

µH⊗idX

OO

H⊗X⊗H
χ⊗idH

// X⊗H
p⊗idH

// H⊗X⊗H
idH⊗τX,H

77nnnnnnnnnnnn

commutes. Writing χ(h⊗x) = h·x and p(x) = x−1⊗x0, this condition becomes

(h1 · x)−1h2⊗(h1 · x)0 = h1x−1⊗h2 · x0 . (YD)

Now, by definition 6.1.1, a representation of DH is a k-space X equipped

with a left H-comodule structure p : X → H⊗X and a morphism of left
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H-comodules a : (H⊗H)⊗HX → X such that diagrams below commute

(H⊗H)⊗HX
a // X

∼=pssH⊗
HX

i⊗HidX

OO
(1)

(H⊗H)⊗H(H⊗H)⊗HX
idH⊗H

⊗
Ha//

m⊗
H
idX

��

(H⊗H)⊗HX

a

��
(H⊗H)⊗HX a

//X

(2)

.

By propositions 2.2.2 and 2.2.3 and the definition of s, H⊗X
idH⊗p
−−−→ (H⊗H)⊗HX

is an isomorphism, with inverse (H⊗H)⊗HX
idH⊗ǫ⊗idX−−−−−→ H⊗X. Let χ = a(idH⊗p) :

H⊗X → X, so that a = χ(idH⊗ǫ⊗idX) : (H⊗H)⊗HX → X.

Let us reformulate the conditions on a in terms of χ, writing p(x) = x−1⊗x0

and χ(h⊗x) = h · x. First,

(1)⇔ a(1⊗x−1⊗x0) = x⇔ χ
(
ǫ(x−1)1⊗x0

)
= x⇔ 1 · x = x ∀ x ∈ X .

As for (2) notice that, by the same reasons above, there is an isomorphism

H⊗H⊗X
∼=
−→ (H⊗H)⊗H(H⊗H)⊗HX, h⊗k⊗x 7→ h⊗k1x−2λ(k3)⊗k2⊗x−1⊗x0 .

Therefore, (2) holds if and only if, ∀ h⊗k⊗x ∈ H⊗H⊗X,

a(m⊗
HidX)(h⊗k1x−2λ(k3)⊗k2⊗x−1⊗x0) = a(idH⊗H⊗

Ha)(h⊗k1x−2λ(k3)⊗k2⊗x−1⊗x0)

⇔ a
(
ǫ(k1x−2λ(k3))hk2⊗x−1⊗x0

)
= a

(
h⊗k1x−2λk3⊗χ(ǫ(x−1)k2⊗x0)

)

⇔ a(hk⊗x−1⊗x0) = a(h⊗k1x−1λk3⊗k2 · x0)

⇔ χ
(
ǫ(x−1)hk⊗x0

)
= χ

(
ǫ(k1x−1λk3)h⊗k2 · x0

)

⇔ hk · x = h · k · x .

Thus these conditions simply say that (X,χ) is a left H-module. Finally, the

fact that a should be a morphism of left H-comodules rewrites as

pa = (idH⊗a)(t⊗Hidx)⇔ pa(idH⊗p) = (idH⊗a)(t⊗Hidx)(idH⊗p)

⇔ pχ = (idH⊗χ)(idH⊗idH⊗ǫ⊗idX)(t⊗idX)(idH⊗p)
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⇔ p(h · x) = (idH⊗χ)(idH⊗idH⊗ǫ⊗idX)(t(h⊗x−1)⊗x0) ∀ h⊗x ∈ H⊗X

⇔ (h · x)−1⊗(h · x)0 = (idH⊗χ)(idH⊗idH⊗ǫ⊗idX)(h1x−2λ(h3)⊗h2⊗x−1⊗x0)

⇔ (h · x)−1⊗(h · x)0 = (idH⊗χ)(h1x−1λ(h3)⊗h2⊗x0)

⇔ (h · x)−1⊗(h · x)0 = h1x−1λ(h3)⊗h2 · x0 ∀ h ∈ H, x ∈ X .

Now, this condition is equivalent to the Yetter-Drinfeld condition (YD): to

imply (YD), tensor both sides with k ∈ H , then replace h⊗k by ∆(h) = h1⊗h2,

multiply the third and first coordinates and use the definition of antipode;

to deduce it from (YD), tensor both sides of (YD) with k ∈ H , then replace

h⊗k by ∆(h), apply λ to the third coordinate, multiply it to the first and use

the definition of antipode.

Thus, a DH -representation (X, p, a) is the same thing as a left Yetter-Drinfeld

module (X, p, χ).

4. D(kG)-modules. Notice that the definition of DH makes sense for any Hopf

monoid H in a symmetric monoidal category S. In particular if G is a group

then there is defined a category DG in Sets , which can be described in terms

of pictures:

g

(h,g)

��

(kh,g)

99hgh−1

(k,hgh−1)

$$
khgh−1k−1 g

(1,g)

��
.

This is the deltacategory arising from the double group corresponding to the

action ofG on itself by conjugation (section 8.1). In particular, RepSets (DG)

is the category of crossed G-sets (a crossed G-set is a G-set X equipped with

a map | | : X → G such that |g · x| = g|x|g−1). This is the set-theoretic

analog of the description of Repk(DH) as Yetter-Drinfeld modules.
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Now, DG is an ordinary groupoid. Any small groupoid G is equivalent to the

following disjoint union of groups (viewed as a groupoid)

∐

x∈π0(G)

AutG(x) ,

where π0(G) is the set of connected components of G and AutG(x) is the

automorphism group in G of (any) one object in the component x. For the

groupoid in question this gives an equivalence

DG ∼
∐

x∈π0(G)

ZG(x)

where π0(G) is the set of conjugacy classes of G and ZG(x) is the centralizer of

any element in the class x. Applying the linearization functor Sets → Veck

we obtain an equivalence

DkG ∼
∐

x∈π0(G)

kZG(x)

between linear categories. Passing to representations we obtain an equiva-

lence

{ left Yetter-Drinfeld kG-modules } ∼
∏

x∈π0(G)

{ kZG(x)-modules } .

A different proof of this result can be found in [CR1, proposition 3.7].

9.7 Internal categories and Hopf algebras

9.7.1 Smash products and biproducts

Let H be a k-bialgebra and A be a left H-comodule algebra. In other words, A

is a monoid in the monoidal category ComodH , or more explicitly, (A, µA, uA) is a

k-algebra, (A, pA) is a left H-comodule and

µA : A⊗A→ A and uA : k → A are morphisms of H-comodules,
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(where A⊗A and k are H-comodules by corestriction via µH and ǫH respectively),

or equivalently,

pA : A→ H⊗A is a morphism of k-algebras .

Write pA(a) = a−1⊗a0. Then there is a category A

ˇ
⋊Ĥ = (A⊗H,H, s, t, i,m), as

follows:

s : A⊗H → (A⊗H)⊗H, a⊗h 7→ a⊗h1⊗h2

t : A⊗H → H⊗(A⊗H), a⊗h 7→ a−1h1⊗a0⊗h2

i : H → A⊗H, h 7→ 1⊗h

m : (A⊗H)⊗H(A⊗H) → A⊗H, a⊗h⊗b⊗k 7→ ǫ(h)ab⊗k

The category axioms (definition 2.3.1) are easily checked.

Since A is a monoid in ComodH , the category ModComodHA is defined. An object

of this category is a left H-comodule M which is also a left A-module in such a way

that the action map A⊗M → M is a morphism of left H-comodules (here A⊗M is

viewed as left H-comodule by using the monoidal structure of ComodH , that is, by

corestriction via µH). These objects are sometimes called left Hopf (H,A)-modules

[Mon, 8.5.1].

We claim that Repk(A

ˇ
⋊Ĥ) = ModComodHA. In fact, a A

ˇ
⋊Ĥ-representation

is, by definition 6.1.1, a left H-comodule M , equipped with a morphism of left

H-comodules a : (A⊗H)⊗HM → M , which is associative and unital. Here, A⊗H is

viewed as left H-comodule by means of t. Notice that this is precisely the structure

obtained by corestriction via µH from its canonical left H⊗H-comodule structure.

Now, by propositions 2.2.2 and 2.2.3 and the definition of s, (A⊗H)⊗HM ∼= A⊗M .

Moreover, it is easy to check that this is an isomorphism of left H-comodules, when

both A⊗H and A⊗M are viewed as leftH-comodules by corestriction via µH . There-

fore, to give a morphism of left H-comodules a : (A⊗H)⊗HM → M is equivalent to

giving a morphism of left H-comodules ã : A⊗M → M . Clearly, associativity and
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unitality for a correspond to those for ã. Thus, a A

ˇ
⋊Ĥ-representation (M, p, a) is

the same thing as an object (M, p, ã) of ModComodHA.

The algebra of admissible sections of A

ˇ
⋊Ĥ is just a smash product in disguise.

More precisely, it follows from remark 3.0.1 and the definition of s that, as k-spaces,

Γ(A

ˇ
⋊Ĥ) = HomH(H,A⊗H) ∼= Homk(H,A) .

If H is finite-dimensional, then

Γ(A

ˇ
⋊Ĥ) ∼= Homk(H,A) ∼= A⊗H∗ .

Now, in this case, H∗ is also a k-bialgebra, and A is a left H∗op-module algebra;

hence, the smash product A#H∗op is defined [Mon, 4.1.3]. It is easy to see that

the above is an isomorphism of k-algebras

Γ(A

ˇ
⋊Ĥ) ∼= A#H∗op .

For arbitrary H , the canonical inclusion

A#H◦op →֒ Homk(H,A) ∼= Γ(A

ˇ
⋊Ĥ)

is a morphism of k-algebras, where H◦ is the finite dual of H , as in [Mon, 1.2.3

and 9.1.1].

The question of when A

ˇ
⋊Ĥ may be a deltacategory naturally arises. It is easy

to see that this is the case if, in addition to being a left H-comodule algebra, A is

also a left H-module coalgebra, and these structures are compatible in the sense

that A is a left Yetter-Drinfeld H-module (section 9.6) and moreover a bimonoid

in this category (bimonoids are defined in any braided monoidal category). In this

case the deltacategory structure on A

ˇ
⋊Ĥ is given by ∆0 = µH : H⊗H → H and

∆1 : (A⊗H)⊗H(H⊗H)→ (A⊗H)⊗(A⊗H), (a⊗hk)⊗(h⊗k) 7→ (a1
⊗h2)⊗(λ−1

H h1 · a
2
⊗k) ,
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and ǫ0 = uH : k → H and

ǫ1 : (A⊗H)⊗Hk → k, a⊗1 7→ ǫA(a) ,

where ∆A(a) = a1
⊗a2 and ǫA are the comultiplication and counit of the coalgebra

A. If H is finite-dimensional one then obtains a bialgebra structure on Γ(A

ˇ
⋊Ĥ) ∼=

A#H∗op. This is non-other than the biproduct of [Mon, 10.6.5 or 10.6.15], or the

bosonization of [Maj, 9.4.12]. For arbitrary H , A#H◦op becomes a bialgebra under

the restriction of

Γ(A

ˇ
⋊Ĥ)

Γ(∆)
−−−→ Γ(A

ˇ
⋊Ĥ⊗A

ˇ
⋊Ĥ) .

9.7.2 Hopf modules

Let H be a k-bialgebra. There is a category MH = (H⊗H,H, s, t, i,m) in Veck as

follows:

s : H⊗H → (H⊗H)⊗H, a⊗b 7→ a⊗b1⊗b2

t : H⊗H → H⊗(H⊗H), a⊗b 7→ a1b1⊗a2⊗b2

i : H → H⊗H, a 7→ 1⊗a

m : (H⊗H)⊗H(H⊗H) → H⊗H, a⊗b⊗c⊗d 7→ ǫ(b)ac⊗d

In fact, MH = H

ˇ
⋊Ĥ, the category described in section 9.7.1, where H is viewed

as left H-comodule algebra via ∆H . In particular, it follows that RepkMH =

ModComodHH . An object of this category is a left H-comodule M , which is also a

left H-module in such a way that the action map H⊗M →M is a morphism of left

H-comodules, or equivalently, that the coaction map H → M⊗H is a morphism of

left H-modules (here H⊗M is viewed as left H-comodule and H-module by using

the monoidal structures of ComodH and ModH respectively). This is precisely the

definition of a left Hopf H-module [Mon, 1.9.1]. Thus

RepkMH = { left Hopf H-modules } .
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We know from the general considerations for A

ˇ
⋊Ĥ of section 9.7.1 that, whenH

is finite-dimensional, Γ(MH) ∼= H#(H∗)op, whereH is viewed as left (H∗)op-module

algebra via f ·a = f(a1)a2 for f ∈ H∗ and a ∈ H . This algebra is sometimes called

the Heisenberg double of H (for a slightly different version, see [Mon, 4.1.10]).

We will now present a new proof of the Fundamental Theorem on Hopf modules

[Mon, 1.9.4]. The usual proof deals with the modules themselves. Instead, we will

prove that there is an equivalence of internal categories MH
∼= Ĥ

ˇ
∼ I. Passing to

representations we then obtain the theorem.

We first consider representations of the pair category Ĥ

ˇ
(examples 2.4.1). Recall

that the one-arrow category I = (k, k, . . .) is such that RepkI = Veck.

Since
−−→
CatS is a 2-category, the notion of equivalence of internal categories is

defined. Explicitly, two internal categories C and D are equivalent if there are

functors f : C → D and g : D → C, and natural isomorphisms α : gf ⇒ idC and

β : fg ⇒ idD. A natural isomorphism is a natural transformation that is invertible

with respect to vertical composition. For the relevant definitions see section 4.1.

Lemma 9.7.1. For any k-bialgebra H, Ĥ

ˇ
and I are equivalent as internal cate-

gories in Veck.

Proof. Consider the functors −→ǫ = (ǫH⊗ǫH , ǫH) : Ĥ

ˇ
→ I and −→u = (uH⊗uH , uH) :

I → Ĥ

ˇ
. We have −→ǫ −→u = idI. On the other hand, one checks easily that the map

uH⊗idH : H → H⊗H defines a natural isomorphism α : −→u−→ǫ ⇒ idcH

ˇ
, with inverse

α−1 : idcH

ˇ
⇒ −→u−→ǫ defined by the map idH⊗uH : H → H⊗H .

As explained in section 6.2, passage to representations defines a 2-functor

−−→
CatS → LCat , C 7→ RepSC. Since equivalences are preserved under 2-functors,
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it follows that, for any k-bialgebra H , there is an equivalence of large categories

res−→ǫ : Veck → RepkĤ

ˇ
.

Side remark: notice that the proof of the lemma remains valid for any coaug-

mented k-coalgebra in place of H , that is a k-coalgebra C equipped with a mor-

phism of coalgebras u : k → C. Notice that if C possesses no coaugmentation,

then there is no functor I→ Ĉ

ˇ
. However, one can show that res−→ǫ : Veck ∼ RepkĈ

ˇ
is still an equivalence for any k-coalgebra C. We omit the proof of this fact. If C

is a finite-dimensional k-coalgebra, then we have, from section 5.2 and proposition

9.2.4 ,

Mod(EndkC) = ModΓ(Ĉ

ˇ
) ∼= RepkĈ

ˇ
∼ Veck ;

this simply says that the matrix ring Endk(C) is Morita-equivalent to k.

Proposition 9.7.1. For any Hopf k-algebra H, Ĥ

ˇ
and MH are isomorphic as

internal categories in Veck.

Proof. Consider the functors f : MH → Ĥ

ˇ
defined by f0 = idH : H → H and f1 :

H⊗H → H⊗H , f1(a⊗b) = ab1⊗b2, and g : Ĥ

ˇ
→ MH defined by g0 = idH : H → H

and g1 : H → H , g1(a⊗b) = aλb1⊗b2, where λ is the antipode of H . Then f and g

are inverse functors. The verification of these assertions only amounts to routine

use of the Hopf algebra axioms for H .

As a corollary we obtain the Fundamental Theorem on Hopf modules:

Corollary 9.7.1. For any Hopf k-algebra H, the functor

Veck → {left Hopf H-modules}, V 7→ H⊗V ,

is an equivalence. Here H⊗V is viewed as left H-comodule via ∆H⊗idV and as left

H-module via µH⊗idV .
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Proof. Composing the isomorphism f : MH

∼=
−→ Ĥ

ˇ
with the equivalence −→ǫ : Ĥ

ˇ
∼
−→ I

we obtain an equivalence −→ǫ f : MH
∼
−→ I. Passing to representations we obtain an

equivalence

res−→ǫ f : Veck
∼
−→ RepVeck(MH) ,

which by definition of restriction along functors (section 6.2) has the announced

form V → H⊗V .

We also obtain for free the result of corollary 9.4.3 in [Mon]:

Corollary 9.7.2. For any finite-dimensional Hopf k-algebra H,

H#(H∗)op ∼= EndkH

as k-algebras.

Proof. The isomorphism f : MH → Ĥ

ˇ
can be seen as a cofunctor by remark 4.2.1.

Hence, by proposition 5.3.1, there is a corresponding isomorphism of k-algebras

H#(H∗)op = Γ(MH)
∼=
−→ Γ(Ĥ

ˇ
) = Endk(H) .

9.7.3 Categories associated to a Hopf algebra

Let H be a Hopf k-algebra. As we have seen, there are several categories in Veck

naturally associated to H . We summarize them in table 9.1.

The category H

ˇ
⊗Ĥ is a special case of that one discussed in example 7.2.1. It is

also the category A

ˇ
⋊Ĥ of section 9.7.1, for the special case when A = H viewed

as trivial H-comodule k-algebra (i.e. via uH⊗idA : H → H⊗A).
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Table 9.1: Categories associated to a Hopf algebra H

Category Representations Admissible sections
... (if H is finite
... dimensional)

Ĥ left H-comodules (H∗)op
...

H

ˇ
left H-modules H

...

Ĥ

ˇ
equivalent to Veck Endk(H)

...

under V 7→ H⊗V under composition
...

H

ˇ
⊗Ĥ Endk(H)

... H⊗(H∗)op

under convolution
... (usual tensor product)

MH left Hopf
... H#(H∗)op

H-modules
... (Heisenberg double)

DH left Yetter-Drinfeld
... D(H)

H-modules
... (Drinfeld’s double)

BH Hopf H-bimodules
... see below
...

140



The only category that remains to be discussed is BH . Its definition is as

follows: BH = (H⊗H⊗H⊗H,H⊗H, s, t, i,m), where

s : H⊗4 → (H⊗4)⊗(H⊗2), g⊗h⊗a⊗b 7→ g⊗h⊗a1⊗b1⊗a2⊗b2

t : H⊗4 → (H⊗2)⊗(H⊗4), g⊗h⊗a⊗b 7→ g1a1h1⊗g2b1h2⊗g3⊗h3⊗a2⊗b2

i : H⊗2 → H⊗4, a⊗b 7→ 1⊗1⊗a⊗b

m : (H⊗4)⊗H
⊗2

(H⊗4)→ H⊗4, (f⊗k⊗c⊗d)⊗(g⊗h⊗a⊗b) 7→ ǫ(cd)fg⊗hk⊗a⊗b .

The set-theoretic analog of BH in table 9.2 may be helpful in order to grasp this

definition.

One checks easily that RepkBH is the category of Hopf H-bimodules, as in

[CR1] or [Ros]. Rosso proves in [Ros] that this category is equivalent to that of

Yetter-Drinfeld modules, by arguing directly with the modules themselves. As in

the case of the Fundamental Theorem on Hopf modules, it is possible to make use

of the notion of internal categories to obtain an alternative proof. Namely, there

is an isomorphism of internal categories BH
∼= DH⊗MH defined by the functors

f : BH → DH⊗MH and g : DH⊗MH → BH given by

f0 : H⊗H → H⊗H, a⊗b 7→ aλ(b1)⊗b2

f1 : H⊗H⊗H⊗H → (H⊗H)⊗(H⊗H), g⊗h⊗a⊗b 7→ g1⊗aλ(b1)⊗g2b2hλ(b3)⊗b4

g0 : H⊗H → H⊗H, a⊗b 7→ ab1⊗b2

g1 : (H⊗H)⊗(H⊗H) → H⊗H⊗H⊗H, g⊗a⊗h⊗b 7→ g1⊗λ(b1)λ(g2)hb2⊗ab3⊗b4

The verification of the relevant axioms is lengthy but straightforward.

Together with the equivalence MH ∼ I of section 9.7.2, we obtain an equiva-

lence BH ∼ DH . Passing to representations yields the announced result.

Cibils and Rosso have constructed, for any finite-dimensional Hopf algebra H ,

an algebra X such that ModX is the category of Hopf H-bimodules [CR2]. From

our point of view this requires no additional work: X = Γ(BH) has this property,

by proposition 9.2.4 (it applies since H⊗4 is free as right H⊗2-comodule, hence flat).
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Moreover, since BH
∼= DH⊗MH , we also have that X ∼= D(H)⊗(H#(H∗)op). This

result is obtained by other means in [CR2].

The definition of all the categories in table 9.1 makes sense in any symmetric

monoidal category S in place of Veck. In particular they make sense in S = Sets ,

replacing the Hopf k-algebra H for a group G. In this case those categories can be

described by means of pictures, as in table 9.2.

These pictures serve as good guides when finding relationships among the var-

ious categories. For instance, the functors f : MH → Ĥ

ˇ
and g : Ĥ

ˇ
→ MH of

proposition 9.7.1 can be described in the set-theoretic case through the pictures

MH

f
��

b

(a,b)
++
ab

Ĥ

ˇ b

(ab,b)
++

_

��

ab

MH b

(ab−1,b)
** a

Ĥ

ˇ

g

OO

b

(a,b)
**

_

OO

a

.

These set-theoretic analogies are seldom available when one ignores internal

categories and restricts attention to algebras of admissible sections, because of the

lack of duality in Sets . For instance, the set-theoretic analog of MH is MG, but

the Heisenberg double H#(H∗)op has no good set-theoretic analog.

9.8 Binomial braids, U+
q (g) as admissible sections

In this section we describe a general procedure for constructing a quantum group

U+
H (X) out of a Hopf algebra H and a Yetter-Drinfeld H-module, as admissible

sections of a certain deltacategory U+
H(X) in Veck. The quantum groups of Drin-

feld, Jimbo and Lusztig are obtained through this procedure from the simplest

choice of H : group algebras H = kG of cyclic groups G. In this procedure, the

action of the binomial braids (appendix B) b
(n)
i on the various tensor powers X⊗n

plays a crucial role.
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Table 9.2: Categories associated to a group G

Category Composition Identities

Ĝ (only identities) a

a

��

G

ˇ
∗

b

��

ab

AA∗

a

��
∗ ∗

1

��

Ĝ

ˇ
c

(b,c)

��

(a,c)

BBb

(a,b)

��
a a

(a,a)

��

G

ˇ
× Ĝ b

(c,b)

��

(ac,b)

AAb

(a,b)

��
b a

(1,a)

��

MG d

(c,d)

��

(ac,d)

??cd

(a,cd)

��
acd a

(1,a)

��

DG d

(c,d)

��

(ac,d)

::cdc−1

(a,cdc−1)

##
acdc−1a−1 a

(1,a)

��

BG (a, b)

(g,h,a,b)

##

(fg,hk,a,b)

66
(gah, gbh)

(f,k,gah,gbh)

&&
(fgahk, fgbhk) (a, b)

(1,1,a,b)
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9.8.1 Preliminaries on braids

The braid groups Bn and the braid category B are defined in appendix B. The

definitions of the first three sections of this appendix are needed for all that follows.

Results from later sections will be quoted as used. In particular, in section B.2.5 it

is explained how Yang-Baxter operators yield monoidal representations of the braid

category B. In appendix B only one-dimensional representations are considered,

corresponding to the Yang-Baxter operator that simply multiplies by q.

An equivalent way to describe monoidal representations of the braid category

is by means of the following fact: B is the free braided monoidal strict category

on one object (the object 1 ∈ N) [K, XIII.3.8]. This says that given any object

X of a braided monoidal category K, there is a unique functor F : B → K that

preserves the monoidal structures and the braidings and such that F (1) = X. If K

carries in addition a k-linear structure (compatible with the rest of the structure),

then F extends to the linearization of B, F : kB → K. Usually K consists of

vector k-spaces with some additional structure, and thus F : kB → K yields

linear representations of the various braid groups.

A family of examples arises from the categories K = RepkDkG of Yetter-Drinfeld

kG-modules (section 9.6) for any group G. An object of this category is a k-space

X equipped with a linear action of G and a decomposition X = ⊕g∈GXg into

subspaces, such that the action of h ∈ G carries Xg to Xhgh−1. In this context,

one usually writes |x| = g when x ∈ Xg, so that the condition just mentioned

becomes |h · x| = h|x|h−1. Since DkG is a deltacategory, RepkDkG is monoidal.

Explicitly, the tensor product X⊗Y of two representations is equipped with the

G-action g · (x, y) = (g · x, g · y) and the G-grading |(x, y)| = |x||y|. Moreover, this

category is braided, with braiding

βY,X : Y ⊗X → X⊗Y, βY,X(y⊗x) = x⊗|x|−1 · y .
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(This braiding will be more convenient for us than the more usual x⊗y 7→ (|x|·y)⊗x).

In particular, for each n ≥ 0, X⊗n is again a Yetter-Drinfeld KG-module, with

|x1⊗ . . .⊗xn| = |x1| . . . |xn| and g · (x1⊗ . . . xn) = (g · x1)⊗ . . . (g · xn) ;

the braid group Bn acts on X⊗n by morphisms of left Yetter-Drinfeld kG-modules,

and in such a way that ∀ x ∈ X⊗n, y ∈ X⊗m, s ∈ Bn and t ∈ Bm,

(s⊗t)(x⊗y) = (sx)⊗(ty) and βm,n : X
⊗m

⊗X
⊗n → X

⊗n
⊗X

⊗m is βm,n(y⊗x) = x⊗|x|−1·y ,

where βm,n ∈ Bm+n is the braiding of appendix B.

Some results about the actions of the binomial braids b
(n)
i on the tensor powers

X⊗n will be obtained in section 9.8.5. Recall from the appendix that if X is one-

dimensional, and s
(2)
1 acts on X⊗X by multiplication by q, then b

(n)
i acts on X⊗n

by multiplication by the q-binomial coefficient
[
n
i

]
q
.

9.8.2 Binomial deltacategories

Let G be a group and X a left Yetter-Drinfeld kG-module, with G-grading | | :

X → G and G-action (g, x) 7→ g · x.

Consider the linear graph GG(X) with objectsG and set of arrows
(∐

g∈GXg

)
×

G, where (x, g) is an arrow from g to |x|g:

g

(x,g)

((
|x|g

As a graph in Veck, GG(X) = (X⊗kG, kG). Let TG(X) be the free category on

this graph, as in section 9.4. Thus TG(X) = (A, kG, s, t, i,m) where

A = ⊥kG(X⊗kG) = kG⊕ (X⊗kG)⊕
(
(X⊗kG)⊗kG(X⊗kG)

)
⊕ . . .

∼= kG⊕ (X⊗kG)⊕ (X⊗X⊗kG)⊕ . . . = T (X)⊗kG,
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where T (X) is the usual tensor k-algebra of the space X (we have used proposition

2.2.3), and

s : A → A⊗kG, x⊗g 7→ x⊗g⊗g

t : A → kG⊗A, x⊗g 7→ |x|g⊗x⊗g

i : kG → A, g 7→ 1⊗g

m : A⊗
kGA → A, (y⊗|x|g)⊗(x⊗g) 7→ y⊗x⊗g;

or, in pictures,

g

x⊗g

��

yx⊗g

;;
|x|g

y⊗|x|g

  
|y||x|g g

1⊗g

��
.

Notice that the G-grading on the tensor powers of X described above endows T (X)

with a structure of left kG-comodule algebra, and that TG(X) is non-other than

the category T

ˇ
⋊Ĥ of section 9.7.1 (for T = T (X), H = kG).

We claim that TG(X) is a deltacategory. There are two ways to proceed at

this point. We could show that T (X) is indeed a bimonoid in the category of

left Yetter-Drinfeld kG-modules, and appeal to the remark about deltacategory

structures on categories of the form T

ˇ
⋊Ĥ in section 9.7.1. Instead, we choose to

proceed directly, as follows.

We first define cofunctors of graphs ∆ : GG(X) → TG(X)⊗TG(X) and ǫ :

GG(X)→ I, by

∆0 : kG⊗kG → kG and ∆1 : (X⊗kG)⊗kG(kG⊗kG) → A⊗A

g⊗h 7→ gh (x⊗gh)⊗(g⊗h) 7→ (x⊗g)⊗(1⊗h)

+(1⊗g)⊗(g−1 · x⊗h)

and

ǫ0 : k → kG and ǫ1 : (X⊗kG)⊗kGk → k

1 7→ 1 x⊗1 7→ 0
.
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Here, and below, g−1 · x⊗h means (g−1 · x)⊗h; also, we sometimes identify k(G ×

G) ∼= kG⊗kG via (g, h) 7→ g⊗h. Notice that the target of (1⊗g)⊗(g−1 · x⊗h) is

(|1|g, |g−1 · x|h) = (g, g−1|x|gh) (by definition of Yetter-Drinfeld module), which

maps by ∆0 to |x|gh, the target of x⊗gh, so ∆ preserves targets as required in the

definition of cofunctor.

By proposition 9.4.2, ∆ and ǫ extend to cofunctors (of categories) ∆ : TG(X)→

TG(X)⊗TG(X) and ǫ : TG(X) → I. By the uniqueness in proposition 9.4.2, it is

enough to check coassociativity and counitality for ∆ and ǫ on the generating graph

GG(X). Arguing along the same lines as in section 9.5, to obtain coassociativity

we need to show the equality between the two lifts of an arrow x⊗ghk to (g, h, k),

via (∆⊗id) ◦∆ and (id⊗∆) ◦∆. In order to do this, notice that we have

∆1

(
(1⊗gh)⊗(g⊗h)

)
= (1⊗g)⊗(1⊗h) and ǫ1(1⊗1) = 1 ,

since by construction ∆ and ǫ preserve identities. Now the lifts in question are:

T⊗T⊗T (g, h, k)
_

��

(
(x⊗g)⊗(1⊗h) + (1⊗g)⊗(g−1 · x⊗h)

)
⊗(1⊗k)+

+(1⊗g)⊗(1⊗h)⊗(h−1g−1 · x⊗k)

T⊗T

∆⊗id

OO

(gh, k)
_

��

(x⊗gh)⊗(1⊗k) + (1⊗gh)⊗(h−1g−1 · x⊗k)
_

OO

T

∆

OO

ghk x⊗ghk
_

OO

T⊗T⊗T (g, h, k)
_

��

(x⊗g)⊗(1⊗h)⊗(1⊗k)+

+(1⊗g)⊗
(
(g−1 · x⊗h)⊗(1⊗k) + (1⊗h)⊗(h−1g−1 · x⊗k)

)

T⊗T

id⊗∆

OO

(g, hk)
_

��

(x⊗g)⊗(1⊗hk) + (1⊗g)⊗(g−1 · x⊗hk)
_

OO

T

∆

OO

ghk x⊗ghk
_

OO

.

Thus, the two lifts agree as required. Counitality can be checked similarly. This

completes the proof of the claim that TG(X) is a deltacategory.
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Before introducing some relations in TG(X), we need to describe the cofunctor

∆ explicitly. Recall from section 9.8.1 that, for each n ≥ 0, the braid group Bn

acts on X⊗n in such a way that, ∀ x ∈ X⊗n, y ∈ X⊗m, s ∈ Bn and t ∈ Bm,

(s⊗t)(x⊗y) = (sx)⊗(ty) and βm,n : X⊗m
⊗X⊗n → X⊗n

⊗X⊗m is βm,n(y⊗x) = x⊗|x|−1·y ,

where βm,n ∈ Bm+n is the braiding of appendix B. Moreover, the action of Bn on

X⊗n is by morphisms of left Yetter-Drinfeld modules, that is, it commutes with

the G-grading and the G-action on X⊗n.

We claim that, for any x ∈ X⊗n and g, h ∈ G,

∆1

(
(x⊗gh)⊗(g⊗h)

)
=

=
n∑

i=0

(
(b

(n)
i x)(i)

⊗g
)

⊗

(
g−1 · (b(n)

i x)(i)′
⊗h

)
∈

n⊕

i=0

(X⊗i
⊗kG)⊗(X⊗(n−i)

⊗kG) ⊆ A⊗A .

Here b
(n)
i is the binomial braid of appendix B; we have also used the notation

y = y(i)
⊗y(i)′ for the canonical identification X⊗n ∼= X⊗i

⊗X⊗(n−i).

We will prove this claim by induction on n. For n = 0 it boils down to

∆1

(
1⊗gh⊗(g⊗h)

)
= (1⊗g)⊗(1⊗h), which holds as already mentioned. For n = 1

it reduces to the definition of ∆1 on the generating arrows:

∆1

(
(x⊗gh)⊗(g⊗h)

)
= (1⊗g)⊗(g−1 · x⊗h) + (x⊗g)⊗(1⊗h) .

Thus, it is enough to prove that if the claim holds for x ∈ X and y ∈ X⊗n with

n ≥ 1, then it does for y⊗x ∈ X⊗(n+1) too. Now, by definition of composition in

TG(X), y⊗x⊗gh is the composite of x⊗gh and y⊗|x|gh. Since by construction ∆

preserves compositions, we can compute ∆1

(
(y⊗x⊗gh)⊗(g⊗h)

)
by first lifting x⊗gh

to (g, h), then lifting y⊗|x|gh to the targets of these arrows, and composing.

The lift of x⊗gh is (1⊗g)⊗(g−1 · x⊗h) + (x⊗g)⊗(1⊗h). The targets of these two

arrows of TG(X)⊗TG(X) are (g, g−1|x|gh) and (|x|g, h). The lifts of y⊗|x|gh to
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these targets are, by induction hypothesis,

n∑

j=0

(
(b

(n)
j y)(j)

⊗g
)

⊗

(
g−1 · (b

(n)
j y)(j)′

⊗g−1|x|gh
)

and
n∑

j=0

(
(b

(n)
j y)(j)

⊗|x|g
)

⊗

(
g−1|x|−1 · (b

(n)
j y)(j)′

⊗h
)
.

Composing appropiately we find the lift of y⊗x⊗gh, it is

n∑

j=0

(
(b

(n)
j y)(j)

⊗g
)

⊗

(
g−1 · (b(n)

j y)(j)′
⊗g−1 · x⊗h

)
+

+

n∑

j=0

(
(b

(n)
j y)(j)

⊗x⊗g
)

⊗

(
g−1|x|−1 · (b

(n)
j y)(j)′

⊗h
)

= (1⊗g)⊗(g−1 · y⊗g−1 · x⊗h) +
n∑

j=1

(
(b

(n)
j y)(j)

⊗g
)

⊗

(
g−1 · (b(n)

j y)(j)′
⊗g−1 · x⊗h

)
+

+
n−1∑

j=0

(
(b

(n)
j y)(j)

⊗x⊗g
)

⊗

(
g−1|x|−1 · (b

(n)
j y)(j)′

⊗h
)

+ (y⊗x⊗g)⊗(1⊗h) ,

(since b
(n)
0 = b

(n)
n = id ). On the other hand, we want to show that this lift is equal

to

n+1∑

i=0

(
(b

(n+1)
i (y⊗x))(i)

⊗g
)

⊗

(
g−1 · (b

(n+1)
i (y⊗x))(i)′

⊗h
)

= (1⊗g)⊗
(
g−1 · (y⊗x)

)
⊗h+

+

n∑

i=1

(
(b

(n+1)
i (y⊗x))(i)

⊗g
)

⊗

(
g−1 · (b

(n+1)
i (y⊗x))(i)′

⊗h
)

+ (y⊗x⊗g)⊗(1⊗h) .

Comparing these two expressions we see that it is enough to prove the following

equality between elements of X⊗(n+1):

n∑

i=1

(b
(n+1)
i (y⊗x))(i)

⊗(b
(n+1)
i (y⊗x))(i)′ (?)=

n∑

j=1

(b
(n)
j y)(j)

⊗(b
(n)
j y)(j)′

⊗x+

+
n−1∑

j=0

(b
(n)
j y)(j)

⊗x⊗|x|−1 · (b
(n)
j y)(j)′ .

149



Recalling the expression for the action of the braid β, we see that this is in turn

equivalent to

n∑

i=1

b
(n+1)
i (y⊗x)

(?)
=

n∑

j=1

(b
(n)
j y)⊗x+

n−1∑

j=0

(b
(n)
j y)(j)

⊗βn−j,1

(
(b

(n)
j y)(j)′

⊗x
)

=
n∑

j=1

(b
(n)
j

⊗1)(y⊗x) +
n−1∑

j=0

(1(j)
⊗βn−j,1)(b

(n)
j

⊗1)(y⊗x) .

Since

1(j)
⊗βn−j,1 = 1(j)

⊗s(n−j+1)(1, n− j + 1) = s(n+1)(j + 1, n+ 1)

(by equations 12 and 3 in appendix B), the equality in question is implied by

n∑

i=1

b
(n+1)
i =

n∑

j=1

b
(n)
j ⊗1 +

n−1∑

j=0

s(n+1)(j + 1, n+ 1)(b
(n)
j ⊗1) ,

which indeed holds by Pascal’s identity (equation 14 in appendix B). This com-

pletes the proof of the claim.

Now we are ready to introduce some canonical relations in the deltacategory

TG(X). Let K(0) = K(1) = 0 and, for each n ≥ 2,

K(n) =
n−1⋂

i=1

Ker(b
(n)
i : X⊗n → X⊗n) and K =

∞⊕

n=0

K(n) ⊆ T (X) .

Then K⊗kG is a kG-kG-subbicomodule of A = T (X)⊗kG, because each K(n) is a

left kG-subcomodule of X⊗n, since each b
(n)
i : X⊗n → X⊗n is a morphism of left

Yetter-Drinfeld kG-modules, and hence, in particular, one of left kG-comodules.

It follows immediately from the above expression for ∆ that K⊗kG is a coideal of

TG(X). In fact, if x ∈ K(n) and g, h ∈ G then

∆1

(
(x⊗gh)⊗(g⊗h)

)
=

n∑

i=0

(
(b

(n)
i x)(i)

⊗g
)

⊗

(
g−1 · (b

(n)
i x)(i)′

⊗h
)

= (1⊗g)⊗(g−1 · x⊗h) + (x⊗g)⊗(1⊗h) ∈ A⊗(K⊗kG) + (K⊗kG)⊗A,

(K is invariant under G because each b
(n)
i is a morphism of kG-modules); also, by

definition of ǫ (and since it preserves compositions) we have ǫ1

(
(X⊗n

⊗kG)⊗kGk
)

= 0

∀ n ≥ 1, and since K(0) = 0, we have ǫ1

(
(K⊗kG)⊗kGk

)
= 0.
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Let J be the ideal of TG(X) generated by K⊗kG. By lemma 9.4.1, J is a

biideal. It is nice, in the sense of section 9.4, because over a group-like coalgebra

every comodule is flat (appendix A). Therefore the quotient category

U+
G(X) := TG(X)/J

is defined, and carries a natural structure of deltacategory, by proposition 9.4.5. We

call it the binomial deltacategory associated to the left Yetter-Drinfeld kG-module

X.

9.8.3 Examples

1. The simplest non-trivial example is obtained when G = {1} and X = kx

is a one-dimensional k-space. In this case each X⊗n is also one-dimensional

and b
(n)
i acts on it by multiplication by

(
n
i

)
(this is the case q = 1 of the

action considered throughout appendix B). Therefore, if chark = 0, there

are no relations and U+
G(X) is just the deltacategory Ĥ corresponding to the

bialgebra H = k[x] of polyonomials in one variable, where

∆(xn) =
n∑

i=0

(
n

i

)
xi⊗xn−i .

This is called the binomial bialgebra. This example explains how one may

see the binomial deltacategory U+
G(X) as a generalization of the binomial

bialgebra k[x].

More generally, if G = {1} and X is any k-space, then U+
G(X) is the deltacat-

egory Ĥ corresponding to the bialgebra H = S(X) (the symmetric algebra

on X).

2. Let G = Zn and X = kx a one-dimensional k-space, viewed as Yetter-

Drinfeld kZn-module via |x| = 1 ∈ Zn and 1 · x = q−1x ∈ X, where q ∈ k

151



is a fixed root of unity of order n. Notice that in this case GG(X) is the

linearization of the following graph in Sets

2
x⊗2 // 3

��:
:

:
:

:
:

:

1

x⊗1

AA���������������
n− 2

x⊗n−2

����
��

��
��

��
��

��

0

x⊗0

]]:::::::::::::::

n− 1
x⊗n−1

oo

.

Again each X⊗m is one-dimensional, but b
(m)
i now acts by multiplication by

the q-binomial coefficient
[
m
i

]
, since the action of s

(2)
1 = β1,1 is

X⊗X → X⊗X, x⊗x 7→ x⊗|x|−1 · x = qx⊗x,

(see appendix B for the explanation of the relation between the actions of

s
(2)
1 and b

(m)
i ). Since

[
m
i

]
= 0 for i = 1, . . . , m − 1 if and only if qm = 1, it

follows that

K(m) =





X⊗m if n | m,

0 otherwise,

from where we see that the relations defining U+
G(X) are generated by the

relations x⊗n
⊗i ∈ K(n)

⊗kZn for i ∈ Zn. Therefore, U+
G(X) coincides with the

category Tn(q) of section 9.3, under

x⊗i 7→ di, 1⊗i 7→ ei .

Moreover, the deltacategory structures agree as well, since the deltacategory

structure on U+
G(X) is given by

∆1(x⊗(i+ j)⊗i⊗j) = (1⊗i)⊗((−i) · x⊗j) + (x⊗i)⊗(1⊗j)

= qi(1⊗i)⊗(x⊗j) + (x⊗i)⊗(1⊗j) .
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In particular, Γ(U+
G(X)) = Tn(q), Taft’s Hopf algebra.

3. As before, let G = Zn and X = kx, but now viewed as Yetter-Drinfeld

kZn-module via |x| = 2 and 1 · x = q−1x, where q is a fixed root of unity of

order n. Let e ∈ Z+ be defined by

e =





n if n is odd,

n/2 if n is even.

In this case b
(m)
i acts by multiplication by the q2-binomial coefficient

[
m
i

]
,

from where it follows that the relations defining U+
G(X) are generated by

x⊗e
⊗i ∈ K(e)

⊗kZn for i ∈ Zn. Along the same lines as for Taft’s Hopf algebra,

it follows easily that Γ(U+
G(X)) is generated by the admissible sections K

and E, K(i) = qi(1⊗i) and E(i) = x⊗i, subject only to the relations

KE = q2EK Kn = 1 and Ee = 0 .

Since U+
G(X)) is a finite deltacategory, Γ(U+

G(X)) is a bialgebra, and one

computes

Γ(∆)(K) = K⊗K and Γ(∆)(E) = 1⊗E + E⊗K .

Thus, U+
G(X) = Ū+

q (sl2), the finite-dimensional quotient of U+
q (sl2) intro-

duced by Lusztig.

4. Let G = Z and X = kx a one-dimensional k-space, viewed as Yetter-Drinfeld

kZ-module via |x| = 2 ∈ Z and 1 · x = q−1x ∈ X, where q ∈ k∗ is a fixed

scalar. Notice that in this case GG(X) is the linearization of the following

graph in Sets

−4

x⊗(−4)

((
−2

x⊗(−2)

((
0

x⊗0

''
2

x⊗2

''
4

−3

x⊗(−3)

((
−1

x⊗(−1)

''
1

x⊗1

''
3

153



EachX⊗n is one-dimensional, and b
(n)
i acts by multiplication by the q2-binomial

coefficient
[
n
i

]
. It follows that if q is not a root of unity then there are no

relations, and U+
G(X) = T+

G(X) = (k[x]⊗kZ, kZ, . . .). Again, the algebra of

admissible sections Γ(U+
G(X)) contains two canonical sections

K : kZ→ k[x]⊗kZ, i 7→ qi(1⊗i) and E : kZ→ k[x]⊗kZ, i 7→ x⊗i ∀ i ∈ Z .

As in section 9.5 or as in the above example, one checks immediately that

KE = q2EK ,Γ(∆)(K) = K⊗K and Γ(∆)(E) = 1⊗E + E⊗K .

This means that there is an epimorphism of bialgebras from U+
q (sl2) onto the

subalgebra of Γ(U+
G(X)) generated by K and E. Moreover, we claim that

this map is an isomorphism. To see this, recall from section 9.7.1 that

Γ(U+
G(X)) = HomkZ(kZ, k[x]⊗kZ) ∼= Homk(kZ, k[x])

contains the smash product k[x]#kZ as a subalgebra, since after all U+
G(X) =

T+
G(X) is the category B

ˇ
⋊Ĥ for B = k[x] and H = kZ. On the other hand,

consider the morphism of algebras θ : kZ → kZ that sends the generator

1 ∈ Z to the function f : Z → k, i 7→ qi. The linear extension f : kZ → k

is a morphism of algebras, hence it belongs to the finite dual (kZ)◦, and

moreover, it is a group-like of this bialgebra [Mon, 1.3.5]. The powers of f

are all distinct group-likes, because q is not a root of unity; hence, they are

linearly independent [Swe, proposition 3.2.1]. It follows that θ maps into

(kZ)◦, and that θ : kZ → (kZ)◦ is an injective morphism of Hopf algebras.

This allows us to view k[x] as a kZ-module algebra by restriction via θ from its

(kZ)◦-module algebra structure (dual to its kZ-comodule algebra structure).

Recall from section 9.7.1 that the canonical inclusion

k[x]#(kZ)◦ →֒ Γ(U+
G(X))
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is a morphism of algebras. Thus, we have a morphism of algebras

k[x]#kZ →֒ k[x]#(kZ)◦ →֒ Γ(U+
G(X)) .

One checks immediately that this composite sends x to E and 1 ∈ Z to K.

Since it is well-known that this map is an isomorphism

k[x]#kZ ∼= U+
q (sl2),

the claim is proved.

The considerations of this example will be treated in greater generality later;

we have included them here for motivation.

9.8.4 Binomial bialgebras

Let G be a group, X a left Yetter-Drinfeld kG-module and U+
G(X) the correspond-

ing binomial deltacategory. If G is finite, then

U+
G (X) := Γ(U+

G(X))

is a k-bialgebra, by corollary 9.2.2. We call it the binomial bialgebra associated

to G and X. In view of the examples of section 9.8.3, these include symmetric

algebras, Taft’s Hopf algebra and Ū+
q (sl2).

If G is infinite, Γ(U+
G(X)) fails to be a bialgebra, but there may be canonical

subalgebras which become bialgebras under the restriction of

Γ(∆) : Γ(U+
G(X))→ Γ

(
U+
G(X)⊗U+

G(X)
)
.

For instance, there is such a canonical choice associated to a bicharacter

θ : G×G→ k∗ .

Such a map is supposed to verify the following two conditions:
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(1) θ(gh, k) = θ(g, k)θ(h, k) and

(2) θ(g, hk) = θ(g, h)θ(g, k) ∀ g, h, k ∈ G.

For example, if G = Z, a bicharacter is necessarily of the form θ(i, j) = qij for

some fixed q ∈ k∗.

A bicharacter yields, by (1), a morphism of algebras kG → (kG)∗, g 7→ θg =

θ(g,−); moreover, if µ denotes the multiplication kG⊗kG → kG, then µ∗(θg) =

θg⊗θg ∈ (kG)∗⊗(kG)∗ by (2). Thus, θg ∈ (kG)◦ by [Mon, 9.1.1], and we have a

morphism of Hopf algebras

kG→ (kG)◦, g 7→ θg = θ(g,−) .

This can be used to define a bialgebra of admissible sections as follows. Recall

from section 9.8.2 that

U+
G(X) = TG(X)/J = (A/J, kG, . . .)

where A = T (X)⊗kG and J is the ideal of TG(X) generated by K⊗kG, that is,

J = m3

(
(T (X)⊗kG)⊗kG(K⊗kG)⊗kG(T (X)⊗kG)

)
.

It follows from the definition of composition m in TG(X) that J = F⊗kG, where

F is the ideal of the algebra T (X) generated by K. Recall also that the category

TG(X) is of the form T

ˇ
⋊Ĥ for T = T (X), H = kG. It follows that the quotient

U+
G(X) is of this form too, for T = T (X)/F and H = kG. Therefore (section

9.7.1), the subalgebra (T (X)/F )#(kG)◦ of Γ(U+
G(X)) becomes a bialgebra under

the restriction of Γ(∆). However, this is not yet the bialgebra we are interested in

defining, as suggested by the case of U+
q (sl2) (example 4 in section 9.8.3). Instead,

we define a bialgebra U+
G,θ(X) as the image of the map

(T (X)/F )#kG
id⊗θ
−−→ (T (X)/F )#(kG)◦ .
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We call U+
G,θ(X) the binomial bialgebra associated to G, θ and X.

Notice that when G = Z, θ(i, j) = qij and X is the Yetter-Drinfeld kZ-module

of example 4 in section 9.8.3, this construction reproduces the one given there, and

thus we have

U+
G,θ(X) ∼= U+

q (sl2)

when q is not a root of unity. More generally, the quantum groups U+
q (g) of

Drinfeld and Jimbo will also be obtained through this construction, see section

9.8.5.

The construction of binomial deltacategories and binomial bialgebras can in

fact be carried out for any Hopf algebra H (with bijective antipode) in place of

kG. We now briefly describe this more general setting, pointing out the relevant

differences with the case already discussed when they arise.

Let H be a Hopf k-algebra with bijective antipode λ and (X, p, χ) a left Yetter-

Drinfeld H-module, as in section 9.6. Write p(x) = x−1⊗x0 ∈ H⊗X and χ(h⊗x) =

h · x ∈ H . As before, the category of left Yetter-Drinfeld H-modules is braided

monoidal, with braiding

βY,X : Y ⊗X → X⊗Y, βY,X(y⊗x) = x0⊗λ
−1x−1 · y .

Hence, Bn acts on the tensor powersX⊗n by morphisms of Yetter-Drinfeld modules.

First of all, one defines a graph in Veck GH(X) = (X⊗H,H, s, t), with

s :X⊗H → (X⊗H)⊗H, x⊗h 7→ x⊗h1⊗h2, t :X⊗H → H⊗(X⊗H), x⊗h 7→ x−1h1⊗x0⊗h2.

Let TH(X) = T(GH(X)) be the free category on this graph, as in section 9.4. As

before, TH(X) = (A,H, . . .) where A = T (X)⊗H and T (X) is the tensor k-algebra

of X. Again T (X) inherites a structure of left H-comodule from X, and as such

becomes a left H-comodule k-algebra. Moreover, TH(X) = T

ˇ
⋊Ĥ for T = T (X)

as in section 9.7.1.
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In order to endow TH(X) with a deltacategory structure, we first define co-

functors of graphs ∆ : GH(X)→ TH(X)⊗TH(X) and ǫ : GH(X)→ I by

∆0 : H⊗H → H and ∆1 : (X⊗H)⊗H(H⊗H) → A⊗A

h⊗k 7→ hk (x⊗h1k1)⊗(h2⊗k2) 7→ (1⊗h2)⊗(λ−1h1 · x⊗k)+

+(x⊗h)⊗(1⊗k)

and

ǫ0 : k → H and ǫ1 : (X⊗H)⊗Hk → k

1 7→ 1 (x⊗1)⊗1 7→ 0
.

(In the definition of ∆1 we have used the fact that

X⊗H⊗H → (X⊗H)⊗H(H⊗H), x⊗h⊗k 7→ (x⊗h1k1)⊗(h2⊗k2)

is an isomorphism, which holds by definition of s and proposition 2.2.3).

These extend uniquely to cofunctors ∆ : TH(X) → TH(X)⊗TH(X) and ǫ :

TH(X)→ I, which turn out to be coassociative and counital as before. Explicitly,

∆ is given by

∆1

(
(x⊗h1k1)⊗(h2⊗k2)

)
=

=

n∑

i=0

(
(b

(n)
i x)(i)

⊗h2

)
⊗

(
λ−1h1 ·(b

(n)
i x)(i)′

⊗k
)
∈

n⊕

i=0

(X
⊗i

⊗H)⊗(X
⊗(n−i)

⊗H) ⊆ A⊗A .

Thus, letting as before

K(n) =

n−1⋂

i=1

Ker(b
(n)
i : X

⊗n → X
⊗n) and K =

∞⊕

n=0

K(n) ⊆ T (X) ,

we have that K⊗H is a a coideal of TH(X). Let F be the ideal of T (X) generated

by K and J the ideal of TH(X) generated by K⊗H . By lemma 9.4.1, J is a

biideal. Moreoever, by the same reason as before, J = F⊗H . But since TH(X)

is not a linear category, we have to worry about flatness: we claim that J is a

nice biideal. In fact, by definition of s, A = T (X)⊗H and J = F⊗H are free as
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right H-comodules, hence flat (section A.1); also, A/J ∼=
(
T (X)/F

)
⊗H , which is

flat as left H-comodule by one of the examples A.1.1 (here we use again that λ is

bijective). By the same reason, H⊗H is flat as left H-comodule. Thus the quotient

category

U+
H(X) := TH(X)/J

is defined, and carries a natural structure of deltacategory by proposition 9.4.5. We

call it the binomial deltacategory associated to the left Yetter-Drinfeld H-module

X.

The definition of binomial bialgebras can also be extended to this context. If

the Hopf algebra H is a finite-dimensional Hopf algebra, then U+
H(X) is a finite

deltacategory, so by corollary 9.2.2

U+
H (X) := Γ(U+

H(X))

is a k-bialgebra, which we call the binomial bialgebra associated toH andX (notice

that in this case the antipode of H is necessarily bijective, by [Mon, 2.1.3]).

If H is infinite-dimensional (with bijective antipode), we can still construct a

bialgebra of admissible sections provided that a bicharacter

θ : H⊗H → k∗

is given. Such a map is supposed to verify the following two conditions:

(1) θ(hk⊗l) = θ(h, l2)θ(k, l1) and

(2) θ(h⊗kl) = θ(h1⊗k)θ(h2⊗l) ∀ h, k, l ∈ H .

(In particular, a coquasitriangular Hopf algebra is, by definition, equipped with

such a bicharacter [Mon, 10.2.1]). For the case of group algebras H = kG, this

recovers the previous notion.
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A bicharacter yields, as before, a morphism of Hopf algebras

H → H◦op, h 7→ θ
(
h⊗(−)

)
,

and we may define a bialgebra U+
H,θ(X) as the image of the map

(T (X)/F )#H
id⊗θ
−−→ (T (X)/F )#H◦op →֒ Γ(U+

H(X)) ,

which we call the binomial bialgebra associated to H , θ and X.

9.8.5 U+
q (g) as admissible sections

In this section we associate a binomial deltacategory and bialgebra to any integer

square matrix A. Drinfeld and Jimbo’s quantized enveloping algebra associated

to a symmetrizable generalized Cartan matrix C arises from this construction by

choosing A as the symmetrization of C, as will be explained.

Let A = [ahk] ∈Mr(Z) be an integer square matrix of size r and q ∈ k∗ a fixed

scalar, not a root of unity. Assume that chark = 0.

Let G = Zr, the free abelian group of rank r, and X the vector space with

basis {x1, . . . , xr}, viewed as left Yetter-Drinfeld kG-module with

|xk| = (a1k, . . . , ark) ∈ Zr, (n1, . . . , nr) · xh = q−nhxh ∀ (n1, . . . , nr) ∈ Zr .

To this data there is associated, by the constructions of section 9.8.2, a binomial

deltacategory

U+
q (A) := U+

G(X) .

Consider the bicharacter

θ : Zr × Zr → k∗,
(
(n1, . . . , nr), (m1, . . . , mr)

)
7→ q

Pr
i=1 nimi .

By means of the constructions of section 9.8.4, we may define a binomial bialgebra

of admissible sections as

U+
q (A) = U+

G,θ(X) →֒ Γ(U+
q (A)) .
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If A = [2] ∈ M1(Z), then X and θ coincide with those of example 4 in sec-

tion 9.8.3; therefore, U+
q (A) = U+

q (sl2). More generally, we will show below that

if A is the symmetrization of symmetrizable generalized Cartan matrix C, then

U+
q (A) = U+

q (g(C)), the quantum enveloping algebra associated to the Kac-Moody

Lie algebra defined by C.

According to the construction of section 9.8.4, U+
q (A) =

(
T (X)/F

)
#kZr,

where F is the ideal of T (X) generated by K = ⊕∞n=2K
(n), and

K(n) =

n−1⋂

i=1

Ker(b
(n)
i : X⊗n → X⊗n) .

The explicit description of the relations F seems to be a hard problem. We are

able to obtain a complete answer only for the case of Cartan matrices, and this is

based on a non-trivial result of Lusztig (the description of U+
q (g(C)) by means of

“abstract” quantum Serre relations).

We approach this problem now. We will derive a few results about the the

actions of the binomial braids b
(n)
i on the tensor powers X⊗n. Some of them

hold in greater generality (as will be clear from the proofs), but for simplicity we

restrict from the beginning to the case where X is defined from A as above. At

the end, we will specialize even further to the case of Cartan matrices. Until then,

deltacategories and bialgebras will stand aside from the discussion.

Recall that the braid group Bn acts onX⊗n by morphisms of left Yetter-Drinfeld

kG-modules, and in such a way that ∀ x ∈ X⊗n, y ∈ X⊗m, s ∈ Bn and t ∈ Bm,

(s⊗t)(x⊗y) = (sx)⊗(ty) and βm,n(y⊗x) = x⊗|x|−1 · y .

The action of s
(2)
1 = β1,1 ∈ B2 on X⊗X is then given in this case by

xh⊗xk 7→ qahkxk⊗xh .

It follows that the action of s
(n)
i = 1(i−1)

⊗s
(2)
1 ⊗1(n−1) ∈ Bn on X⊗n is given by

xh1
⊗ . . .⊗xhn 7→ qahi,hi+1xh1

⊗ . . .⊗xhi+1
⊗xhi⊗ . . .⊗xhn ;
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hence the action of s(n)(1, i) = s
(n)
1 . . . s

(n)
i−1 ∈ Bn on X⊗n is

xh1
⊗ . . .⊗xhn 7→ q

Pi−1
j=1 ahj ,hixhi⊗xhi−1

⊗ . . .⊗xh1
⊗xhi+1

⊗xhi+2
⊗ . . .⊗xhn .

Recall the definition of the Möbius braid µ(n) ∈ kBn from section B.6.2. The

first observation, which is independent of the particular form of the action of Bn,

is:

Lemma 9.8.1. K(n) ⊆ Ker(µ(n) + 1).

Proof. This is an immediate consequence of Cauchy’s identity 26 in appendix B

n∑

k=0

µ(k)
⊗1(n−k) · b

(n)
k = 0 ,

since b
(n)
0 = b

(n)
n = 1.

From appendix B we know that, on the one-dimensional subspace k{x⊗n
i } of

X⊗n, b
(n)
i acts by multiplication by the binomial coefficient

[
n
i

]
qaii

. Since q is not

a root of unity, this element is non-zero.

For fixed i and j, we will consider in particular the (n+ 1)-dimensional subspace

Xn+1
ij of X⊗(n+1) spanned by x⊗n

i ⊗xj and its permutations, which is clearly invariant

under Bn. We abbreviate xk := x⊗k
i ⊗xj⊗x

⊗(n−k)
i ∈ Xn+1

ij . The elements xk for

k = 0, 1, . . . , n for a k-basis of Xn+1
ij . It follows from the above that for each

h = 1, . . . , n+ 1, the action of s(n+1)(1, h) on Xn+1
ij is

xk 7→





q(h−2)aii+ajixk+1 if 0 ≤ k ≤ h− 2

qkaijx0 if k = h− 1

q(h−1)aiixk if h ≤ k ≤ n .

Let

K
(n+1)
ij = K(n+1) ∩Xn+1

ij =

n⋂

h=1

Ker(b
(n+1)
h : Xn+1

ij → Xn+1
ij ) .
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Lemma 9.8.2. The action of µ(n+1) on Xn+1
ij diagonalizes, as follows. For each

k = 0, . . . , n let

αk =

(
n

2

)
aii + kaij + (n− k)aji .

If n = 2m+ 1 is odd, there are m+ 1 eigenvectors of the form

qαn−k/2xk + qαk/2xn−k with eigenvalues q(αk+αn−k)/2, for k = 0, . . . , m

and other m+ 1 eigenvectors of the form

qαn−k/2xk − q
αk/2xn−k with eigenvalues − q(αk+αn−k)/2, for k = 0, . . . , m .

If n = 2m is even, there are m eigenvectors of the form

qαn−k/2xk + qαk/2xn−k with eigenvalues − q(αk+αn−k)/2, for k = 0, . . . , m− 1 ,

other m eigenvectors of the form

qαn−k/2xk − q
αk/2xn−k with eigenvalues q(αk+αn−k)/2, for k = 0, . . . , m− 1 ,

plus the eigenvector

xm with eigenvalue − qαm .

Proof. By definition, µ(n+1) = (−1)n+1s(n+1)(1, n + 1)s(n+1)(1, n) . . . s(n+1)(1, 1).

The action of s(n+1)(1, h) on the basis elements xk of Xn+1
ij was described above.

It follows that, for each k = 0, . . . , n,

µ(n+1) · xk = (−1)n+1qαkxn−k .

Therefore, each subspace spanned by {xk,xn−k} is invariant under µ(n+1). If n =

2m and k = m, this space is one-dimensional, spanned by the eigenvector xm

with eigenvalue −qαm . Otherwise, this subspace is two-dimensional, and it follows

readily that

{qαn−k/2xk + qαk/2xn−k, q
αn−k/2xk − q

αk/2xn−k}
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form a basis of eigenvectors, with eigenvalues as indicated according to the parity

of n.

Corollary 9.8.1. If (n− 1)aii + aij + aji 6= 0, then K
(n+1)
ij = 0.

Proof. By lemma 9.8.1, K
(n+1)
ij = 0 if −1 is not an eigenvalue of µ(n+1) in Xn+1

ij .

By lemma 9.8.2, −1 is an eigenvalue of µ(n+1) if and only if αk+αn−k = 0 for some

k = 0, . . . , n. By definition of αk this is equivalent to (n− 1)aii + aij + aji 6= 0.

Lemma 9.8.3. If for each h = 1, . . . , n the braid [h] ∈ Bh is injective on Xh
ij,

then,

Ker
(
b
(n+1)
h |Xn+1

ij

)
= K

(n+1)
ij ∀ h = 1, . . . , n .

Proof. Recall the factorial formulas 22 and 16

f (h)
⊗f (n+1−h) · b

(n+1)
h = f (n+1) = 1(n)

⊗[1] · 1(n−1)
⊗[2] · . . . · 1⊗[n] · [n+ 1] .

We claim that 1⊗[n] is injective on the space Xn+1
ij . In fact, this space splits as the

direct sum of the one-dimensional space spanned by x0 and the space k{xi}⊗X
n
ij ,

and both of these are invariant under 1⊗[n]. On the first, 1⊗[n] acts by multi-

plication by the q-analog [n]qaii , which is non-zero since q is not a root of unity,

while on the second it is injective by hypothesis. Similarly, all the lower factors

1(i)
⊗[n + 1 − i] are injective on Xn+1

ij , for i = 1, . . . , n. It follows that f (h) and

f (n+1−h) are injective on Xn+1
ij , for h = 1, . . . , n, and from here that

Ker
(
b
(n+1)
h |Xn+1

ij

)
= Ker

(
[n+ 1]|Xn+1

ij

)
for h = 1, . . . , n .

Since K
(n+1)
ij is the intersection of these kernels, the result follows.

The following result is the first one that uses in an essential way the particular

form of the action of Bn on X⊗n in terms of the matrix A. Below, qaii will be

abbreviated by qi, q
aij by qij , [n]i will denote the qi-analog of the natural number
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n and
[
n
h

]
i

the qi-analog of the binomial coefficient
(
n
h

)
(the definitions of these

analogs can be found in appendix B). The subindices i and j remain fixed.

Proposition 9.8.1. For each k = 0, . . . , n, let

λk = (−1)k
[
n
k

]
i
qkaji+(k2)aii and x =

n∑

k=0

λkxk .

Assume that aii 6= 0. Then

Ker
(
b
(n+1)
1 |Xn+1

ij

)
=





k{x} if −
aij+aji
aii

∈ {0, 1, 2, . . . , n− 1}

0 otherwise .

Proof. By definition, b
(n+1)
1 =

∑n+1
h=1 s

(n+1)(1, h). The action of s(n+1)(1, h) on

the basis elements xk of Xn+1
ij was described above. It follows that, for each

k = 0, . . . , n,

b
(n+1)
1 · xk =

(
q(1−1)aii + q(2−1)aii + . . .+ q(k−1)aii

)
xk + qkaijx0+

+
(
q(k+2−2)aii+aji + q(k+3−2)aii+aji + . . .+ q(n+1−2)aii+aji

)
xk+1

= [k]ixk + qkijx0 + qjiq
k
i [n− k]ixk+1 .

Let y =
∑n

k=0 µk be an element of Xn+1
ij , where µk ∈ k are arbitrary scalars. Then

b
(n+1)
1 · y =

n∑

k=0

µk[k]ixk +

n∑

k=0

µkq
k
ijx0 +

n∑

k=0

µkqjiq
k
i [n− k]ixk+1

=
n∑

k=1

(
µk[k]i + µk−1qjiq

k−1
i [n− k + 1]i

)
xk+

( n∑

k=0

µkq
k
ij

)
x0 .

It follows that y ∈ Ker
(
b
(n+1)
1 |Xn+1

ij

)
if and only if

0 = µk[k]i + µk−1qjiq
k−1
i [n− k + 1]i for each k = 1, . . . , n and (1)

0 =

n∑

k=0

µkq
k
ij . (2)
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Equation (1) determines µk in terms of µ0, for k = 1, . . . , n:

µ1 = −µ0qji[n]i

µ2 = −µ1qjiqi
[n− 1]i

[2]i
= µ0q

2
jiqi

[n]i[n− 1]i
[2]i

= µ0q
2
jiqi

[
n
2

]
i

µ3 = −µ2qjiq
2
i

[n− 2]i
[3]i

= −µ0q
3
jiq

3
i

[
n
2

]
i
[n− 2]i

[3]i
= −µ0q

3
jiq

3
i

[
n
3

]
i

and in general, for k = 1, . . . , n

µk = (−1)kµ0q
k
jiq

(k2)
i

[
n
k

]
i
= µ0λk .

Thus, there are two possibilities for the kernel. If the λk satisfy equation (2) in

place of µk, then the kernel is one-dimensional spanned by x, if not, the kernel is

zero. So it only remains to show that equation (2) holds for λk if and only if

−a ∈ {0, 1, 2, . . . , n− 1} where a =
aij + aji
aii

.

To this end, consider the polynomial

f(x) =

n∑

k=0

(−1)kq
(k2)
i

[
n
k

]
i
xn−k .

By one of Cauchy’s identities for q-binomials (section B.6.2), f(x) factors as follows:

f(x) = (x− 1)(x− qi) . . . (x− q
n−1
i ) . (*)

Now, when we subsitute µk for λk in the right hand side of (2) we get

n∑

k=0

qkijλk =

n∑

k=0

qkij(−1)kqkjiq
(k2)
i

[
n
k

]
i

=

n∑

k=0

qaki (−1)kq
(k2)
i

[
n
k

]
i
=
f(x)

xn
|x=q−ai

(∗)
=

(q−a − 1)(q−a − qi) . . . (q
−a − qn−1

i )

q−an
,

which is zero if and only if −a ∈ {0, 1, 2, . . . , n− 1}.
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Corollary 9.8.2. Assume that aii 6= 0 and let x be as before. Then

K
(n+1)
ij =





k{x} if −
aij+aji
aii

= n− 1

0 otherwise .

Proof. If −aij+aji
aii

6= n − 1 then K
(n+1)
ij = 0 by corollary 9.8.1. Suppose that

−
aij+aji
aii

= n− 1. Then, in particular,

−
aij + aji
aii

/∈ {0, 1, . . . , k − 2} ∀ k = 1, . . . , n .

Therefore, by proposition 9.8.1, b
(k)
1 is injective on Xk

ij for k = 1, . . . , n. But then

lemma 9.8.3 applies, to conclude in particular that

K
(n+1)
ij = Ker

(
b
(n+1)
1 |Xn+1

ij

)
= k{x} ;

the last equality by proposition 9.8.1 again.

Recall that F denotes the ideal generated by K in T (X). Let

F̄ (n) = Ker(f (n) : X
⊗n → X

⊗n) and F̄ =

∞⊕

n=0

F̄ (n) .

Our last result in this general setup is:

Lemma 9.8.4. F̄ is an ideal of T (X), and F̄ ⊇ F .

Proof. The factorial formula 22

f (i)
⊗f (n−i) · b

(n)
i = f (n)

shows that Kerb
(n)
i ⊆ Kerf (n) ∀ i; in particular, K(n) ⊆ F̄ (n), so K ⊆ F̄ . On the

other hand, applying the horizontal symmetry ∗ (section B.2.3) to the formula

above yields, by formulas 7 and 18 in appendix B,

b
(n)
i

∗
· (f (i)

⊗f (n−i)) = f (n) .

This implies that F̄ is an ideal of T (X). Since it contains K, it must also contain

F .
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Now we go back to consideration of the bialgebra

U+
q (A) =

(
T (X)/F

)
#kZr →֒ Γ(U+

q (A))

This algebra is generated by the following elements, for i = 1, . . . , r

Ei = xi⊗(0, . . . , 0) and Ki = 1⊗(0, . . . , 0, 1, 0, . . . , 0) ,

(where the 1 appears in the i-th coordinate). When viewed as admissible sections,

we have

Ei(n1, . . . , nr) = xi⊗(n1, . . . , nr) and Ki(n1, . . . , nr) = qni1⊗(n1, . . . , nr) .

It follows easily from the definition of smash product, or by computing the

product of admissible sections directly, that

KiKj = KjKi (1)

and

KiEj = qaijEjKi . (2)

For general A, the only additional conclusion we have obtained is that
n∑

k=0

(−1)k
[
n
k

]
i
qkaji+(k2)aiiEk

i EjE
n−k
i = 0

whenever aii 6= 0 and (n− 1)aii + aij + aji = 0

(3)

In fact, this is just a reformulation of corollary 9.8.2.

In general, there is no reason why these relations should generate all relations

F in U+
q (A). However, this turns out to be the case in the special case of Cartan

matrices, that we now consider.

Let C = [cij ] ∈Mr(Z) be a generalized Cartan matrix. This means that

cii = 2 ∀ i = 1, . . . , r

cij ≤ 0 for i 6= j

if cij = 0 then cji = 0 .
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Suppose in addition that C is symmetrizable. This means that there is an invertible

diagonal matrix D ∈Mr(Z) such that DC is symmetric. In this case, D is unique

up to a constant factor, and all its entries have the same sign. The canonical

symmetrization of C,

A := DC,

is the one corresponding to the choice of D with minimum positive integer entries.

A generalized Cartan matrix is of finite type if it is positive-definite. Such

Cartan matrices are always symmetrizable. Finite-dimensional semisimple Lie al-

gebras over C are in one-to-one correspondence with symmetrizable generalized

Cartan matrices of finite type. For instance, the Cartan matrix of slr+1(C) is




2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0

...
...

0 . . . 0 −1 2




(a square matrix of size r). For more details on Cartan matrices the reader is

referred to [Kac, chapters 1,2 and 4].

Associated to any symmetrizable generalized Cartan matrix C there is Lie

algebra g(C), called a Kac-Moody Lie algebra, and a quantum group (bialgebra)

Uq(g(C)), defined by means of generators and relations [Jan, 4.3]. These were first

defined by Drinfeld [Dri1] and Jimbo [Jim]. We shall concentrate on the subalgebra

U+
q (g(C)), which is defined by generators Ki and Ei, for i = 1, . . . , r subject to

the relations that each Ki be invertible,

KiKj = KjKi (1’)

KiEj = qdicijEjKi (2’)
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and

n∑

k=0

(−1)k
(
n

k

)

qdi

Ek
i EjE

n−k
i = 0 whenever cij = 1− n . (3’)

Here, cij are the entries of C, di are the (diagonal) entries of D and the q-binomial

coefficient
(
n
k

)
q

is that of [K, VI.1.6] (warning: the notation for binomials in this

work is precisely the opposite of [K]). In terms of the q-binomials
[
n
k

]
q

of appendix

B and the present section, these other binomials are [K, VI.1.8]

(
n

k

)

q

= q−k(n−k)
[
n
k

]
q2
.

Let us compare relations (1’)-(3’) with those obtained for U+
q (A) above. The

entries of A, C and D are related by aij = dicij; cii = 2 and aij = aji. Thus

relation (2’) corresponds to (2), and obviously (1’) to (1). One checks easily that

(n− 1)aii + aij + aji = 0⇔ cij = 1− n ,

and that in this case

(−1)k
[
n
k

]
qaii
qkaji+(k2)aii = (−1)k

(
n

k

)

qdi

,

so that (3’) corresponds to (3) too. This means that there is a well-defined epi-

morphism of algebras

U+
q (g(C)) ։ U+

q (A) .

One checks easily that this is also a morphism of bialgebras, where the coalgebra

structure on U+
q (g(C)) is

∆(Ki) = Ki⊗Ki, ∆(Ei) = Ei⊗1 +Ki⊗Ei, ǫ(Ki) = 1 and ǫ(Ei) = 0 .

We claim that this is actually an isomorphism.

Recall that U+
q (A) =

(
T (X)/F

)
#kZr, where F is the ideal of T (X) generated

by K.
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Let S be the ideal of T (X) generated by the quantum Serre relations

Snij :=

n∑

k=0

(−1)k
(
n

k

)

q2di

x
⊗k
i ⊗xj⊗x

⊗(n−k)
i ∈ T (X) ,

for those i, j and n for which cij = 1− n.

The element Snij is precisely the element x of proposition 9.8.1, after changing

notation as indicated above. Therefore, by corollary 9.8.2, Snij ∈ K. Together with

lemma 9.8.4, this gives

S ⊆ F ⊆ F̄ ,

where F̄ is the direct sum of the kernels of the factorial braids f (n) as above.

On the other hand, Lusztig’s result [Lus, 33.1.5] shows that F̄ is generated by

the quantum Serre relations. [In Lusztig’s book, T (X) is denoted by f, and F̄ is

defined as the radical of certain bilinear form on f [Lus, 1.2.4, 3.1.1]. Schauenburg

has noted that this coincides with F̄ as defined here [Sch, 3.1].]

Therefore, S = F = F̄ . Thus, we have obtained

U+
q (A) =

(
T (X)/S

)
#kZr .

But this is the well-known smash product presentation of U+
q (g(C)), as in [Sch,

4.2]. Therefore, U+
q (A) ∼= U+

q (g(C)) as claimed.

Summarizing: to each integer matrix A there is canonically associated a bialge-

bra U+
q (A), either as certain admissible sections of a deltacategory or as a certain

biproduct. If A is the symmetrization of a Cartan matrix C, then U+
q (A) =

U+
q (g(C)), the quantum groups of Drinfeld and Jimbo.
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Chapter 10

Categories in Algebras
In this chapter we study categories internal to a category of monoids S = MonSo

in a given monoidal category So. We present some results that extend well-known

facts about categories in Groups , which is the particular case So = Sets . We are

mainly interested in the case So = Veck, S = Algk, but the results hold in this

more general setting of arbitrary monoidal categories.

Let us describe the contents of this chapter in more detail.

It is well-known that the concept of a category in Groups is equivalent to that

of a cat1-group and to that of a crossed module of groups [Lod1]. We review these

equivalences in section 10.1, pointing out that they hold true for cat1-monoids for

which the base monoid is a group. This slightly more general setting is more

natural from the point of view of internal categories, as it permits generalization

to the case when So is arbitrary, instead of So = Sets . In this section we also

describe the monoid of admissible sections of a category in Groups , and show that

it coincides with Whitehead’s monoid of derivations of the corresponding crossed

module.

Section 10.2 deals with the generalization mentioned above. Namely, cat1-monoids

in So are defined, and the equivalence with categories in MonSo is obtained, when

the base monoid is actually a Hopf monoid. Results of this type are known, not

only for the case of cat1-groups mentioned above, but more generally for internal

categories to lex categories So (as in examples 2.3.1) [CPP]. The result presented

here goes one step further, in the sense that arbitrary monoidal categories So are

considered, instead of only lex ones. These results are sometimes known as the

generalized Eckmann-Hilton argument, for the reason that the one-object case of

the equivalence between categories in MonSo and cat1-monoids in So simply says that

172



a monoid in MonSo is precisely a commutative monoid in So.

Finally, these considerations are applied in section 10.3 to associate a cat1-algebra

to any finite-dimensional quasitriangular Hopf algebra H . A morphism of quasitri-

angular Hopf algebras induces a cofunctor between the corresponding categories in

Algk. Therefore, composing with the admissible sections functor (section 5.3), one

obtains a monoid (or a group, if only invertible admissible sections are considered),

which is an invariant of finite-dimensional quasitriangular Hopf algebras. Further

study of this invariant is not pursued in this work.

The observation that Drinfeld’s double of a quasitriangular Hopf algebra was

part of a structure somewhat analogous to a cat1-group, was what first led us to

consideration of the general notion of internal categories.

For lack of time and space, the results of this chapter will be stated without

proofs. These will we provided in a separate work.

10.1 Cat1-groups

Cat1-groups were introduced by Loday [Lod1] as algebraic models of homotopy

2-types, along with analogous higher dimensional notions.

Definition 10.1.1. A cat1-group is a diagram of groups G
s //
t
//N

i //G such that

si = ti = idN and [Kers,Kert] = 1 (that is, Kers and Kert commute elementwise).

Crossed modules were introduced by Whitehead [W].

Definition 10.1.2. A crossed module of groups consists of a morphism of groups

∂ : K → N , together with a left action of N on K by automorphisms, such that

1. ∂(n · k) = n∂(k)n−1

2. ∂(n) ·m = nmn−1
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The following result is well-known [Lod1, lemma 2.2].

Proposition 10.1.1. The following data are equivalent:

1. a cat1-group G
s //
t
//N ,

2. a crossed module of groups ∂ : K → N ,

3. a category in Groups (G,N, s, t, i,m).

Proof. (Sketch). The crossed module is obtained from the cat1-group by setting

K = Kers, letting ∂ be the restriction of t and making N act on K by restriction

along i : N → G from the conjugation action of G on K. From the crossed module

one obtains a category in Groups with G = K ⋊ N (semidirect product with

respect to the given action of N on K), and

s : G → N, (k, n) 7→ n

t : G → N, (k, n) 7→ ∂(k)n

i : N → G, n 7→ (1, n)

m : G×N G → G, (h, ∂(k)n, k, n) 7→ (hk, n) .

From the category in Groups one obtains a cat1-group simply by forgetting the

additional structure m.

The Whitehead’s monoid of derivations Der(N,K) of a crossed module ∂ :

K → N was introduced in [W]; this terminology and notation is taken from [N].

Explicitly,

Der(N,K) = {D : N → K / D(nm) = (Dn)(n ·Dm) ∀ n,m ∈ N} ;

with multiplication

(D1 ∗D2)(n) = D1

(
(∂D2n)n

)
D2(n)

and unit element D0 : N → K, D0(n) = 1 ∀ n ∈ N .
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The following result was already announced in section 5.2. Its proof is straight-

forward.

Proposition 10.1.2. The monoid of admissible sections of a category in Groups

coincides with Whitehead’s monoid of derivations of the corresponding crossed mod-

ule of groups.

The results of proposition 10.1.1 can be slightly generalized, as follows. One

can define cat1-monoids, simply by replacing the word group by the word monoid

in definition 10.1.1. One can also relax the requirements in definition 10.1.2 of

crossed modules, by letting K be any monoid (while retaining that N be a group).

With these conventions, we have

Proposition 10.1.3. Let N be a group. The following data are equivalent:

1. a cat1-monoid G
s //
t
//N ,

2. a crossed module of monoids ∂ : K → N ,

3. a category in Monoids (G,N, s, t, i,m).

This setting is more natural from the point of view of internal categories, as

we explain in the next section.

10.2 Cat1-algebras

Let So be a symmetric regular monoidal category and S = MonSo the (symmetric,

regular) monoidal category of monoids in So (proposition 2.1.1). Let (A,H, s, t)

be a graph in S; according to definition 2.3.1, this means that H is a bimonoid

in So and A an H-bicomodule monoid in So. Let I be the unit object of So and

uH : I → H and uA : I → A the unit maps of the monoids H and A. We define

Kr(s) := A⊗HI = EqSo
( A

s //

idA⊗uH

//A⊗H ) and Kl(t) := I⊗HA = EqSo
( A

t //

uH⊗idA

//H⊗A ) .
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When So = Sets , s is necessarly of the form s(a) = (a, s̃(a)) for some map

s̃ : A→ H , and hence Kr(s) = {a ∈ A / s̃(a) = 1 } = Kers̃. Similarly Kl(t) = Kert̃.

When So = Veck, Kr(s) and Kl(t) are the spaces of right and left coinvariants of

the H-H-bicomodule A [Mon, 1.7.1.2]

Definition 10.2.1. Let So be a symmetric regular monoidal category. A cat1-monoid

in So consists of a 5-tuple (A,H, s, t, i) where

• H is a bimonoid in So,

• (A, s, t) is an H-H-bicomodule monoid,

• i : H → A is a morphism of H-H-bicomodule monoids, and

• Kr(s) and Kl(t) commute inside the monoid A.

It is clear that, in the case So = Sets , this definition recovers the notion of

cat1-monoids discussed in section 10.1. To obtain a description of categories in S in

terms of cat1-monoids in So we need to make some assumptions on H , that replace

the assumption that H be a group in the case So = Sets . The natural option is

to assume that H is a Hopf monoid in So. Let λH : H → H denote the antipode

of H (a morphism in So). Let (A, s, t) be an H-H-bicomodule and i : H → A

a morphism of H-H-bicomodule monoids. Then i is convolution-invertible in the

(ordinary) monoid HomSo(H,A) with convolution-inverse i = i ◦ λH : H → A. We

define the right and left traces of A over H with respect to i as

tr : A
s
−→ A⊗H

idA⊗i
−−−→ A⊗A

µA−→ A and tl : A
t
−→ H⊗A

i⊗idA−−−→ A⊗A
µA−→ A .

Maps of these sort have been considered in the literature for the Hopf algebra case

[Rad], sometimes under the name of total integrals [Doi2].

Proposition 10.2.1. Let So and S be as before. Let H be a Hopf monoid in So.

Then, given a category (A,H, s, t, i,m) in S, (A,H, s, t, i) is a cat1-monoid in So,
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and conversely, any cat1-monoid (A,H, s, t, i) in So carries a unique structure of

category in S, with composition m given by any of the following

m : A⊗
HA

can
−−→ A⊗A

tr⊗idA−−−→ A⊗A
µA−→ A or m : A⊗

HA
can
−−→ A⊗A

idA⊗tl−−−→ A⊗A
µA−→ A .

It is also possible to obtain a description of cat1-monoids in terms of inter-

nal crossed modules, extending the description of cat1-groups in terms of crossed

modules of groups of section 10.1. More generally, one can associate a simplicial

object to any augmented internal category (a category equipped with a functor

to the one-arrow category), called its nerve, and define, when S = MonSo , a Moore

functor from simplicial objects in S to complexes of monoids in So, extending the

corresponding theory for simplicial groups.

10.3 Drinfeld’s double as a cat1-algebra

Let H be a quasitriangular Hopf algebra with R-matrix R [Mon, 10.1.5] or [K,

VIII.2.2]. It is well-known that there is a corresponding morphism of Hopf algebras

ϕR : D(H)→ H, ϕR(f ⊲⊳h) = f(Ri)R
′
ih ,

where D(H) is Drinfeld’s double (in the left handed version of [K, IX.4.1], not as

in section 9.6). Since R̃ = τ(R)−1 is another R-matrix for H , there is another

morphism of Hopf algebras D(H)
ϕ
R̃−→ H . It turns out that the pair D(H)

ϕR//
ϕ
R̃

//H

satisfies some properties formally similar to those defining a cat1-group (definition

10.1.1 above). More precisely, there is a cat1-algebra of the form (D(H), H, . . .),

where D(H) is viewed as H-H-bicomodule algebra by corestriction along ϕR and

ϕR̃:

Proposition 10.3.1. Let H be a finite-dimensional quasitriangular Hopf algebra

with R-matrix R =
∑

iRi⊗R
′
i. Then there is a cat1-monoid in So = Veck of the

form (D(H), H, s, t, i) where
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• D(H) = (H∗)cop⊲⊳H is Drinfeld’s double of H, as above,

• i : H → D(H) is the canonical inclusion i(h) = 1⊗h,

• s : D(H)→ D(H)⊗H is s(f ⊲⊳h) =
∑

i f1(Ri)(f2 ⊲⊳h1)⊗R
′
ih2, and

• t : D(H)→ H⊗D(H) is t(f ⊲⊳h) =
∑

j f2(Sj)S
′
jh1⊗(f1 ⊲⊳h2),

where S = τ(R)−1 =
∑

j Sj⊗S
′
j.

Let CR be the category in Algk corresponding to a finite-dimensional quasitri-

angular Hopf algebra (H,R), by means of propositions 10.3.1 and 10.2.1.

A morphism between quasitriangular Hopf algebras (H,R) and (K,S) is a

morphism of Hopf algebras ϕ : H → K such that (ϕ⊗ϕ)(R) = S. Let Qthk denote

the category of finite-dimensional quasitriangular Hopf k-algebras. The relevance

of cofunctors is once again made clear, by the following result.

Proposition 10.3.2. A morphism of finite-dimensional quasitriangular Hopf al-

gebras ϕ0 : H → K induces a cofunctor ϕ : CR → CS. This gives a functor

Qthk →
←−−
CatAlgk .

By composing with the admissible sections functor Γ :
←−−
CatAlgk → Monoids

(section 5.3), we get a functor

Qthk → Monoids ,

an invariant of finite-dimensional quasitriangular Hopf algebras.
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Appendix A

On comodules over a coalgebra
In this appendix we discuss various properties of the category of comodules over

a k-coalgebra that are used in the main body of this thesis. In section A.1 we

recall the definition of flat comodules and other related notions. In section A.2 we

collect a series of basic facts about comodules and modules over the dual algebra.

Finally, in section A.3 we construct products and coproducts in the category of

comodules. Most of these results are straightforward or can be found scattered

through the literature. The main references are [Doi1] and [T1, appendix 2].

We will use the abbreviated Sweedler’s notation: comultiplications ∆C : C →

C⊗C and comodule structure maps t : M → C⊗M and s : M →M⊗C are denoted

∆C(c) = c1⊗c2, t(m) = m−1⊗m0 and s(m) = m0⊗m1

respectively. Notice that the subindex 0 in comodule structure maps is reserved for

the component that belongs to M , in agreement with [Mon, 1.6.2], but summation

signs are omitted whenever possible. Negative subindices encode coassociativity

as follows:

(idC⊗t)t(m) = m−2⊗m−1⊗m0 = (∆C⊗idM)t(m) .

The categories of left and right C-comodules over a k-coalgebra C will be denoted

respectively by ComodlC and ComodrC. k will be a field. Homl
C and Homr

C will

stand for homomorphisms of left and right C-comodules respectively.

A.1 Flatness

The tensor coproductM1⊗
CM2 of a right C-comodule (M1, s) with a left C-comodule

(M2, t) is the equalizer of the pair M1⊗M2

s⊗id2 //

id1⊗t
//M1⊗C⊗M2 . It was defined in the
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more general context of regular monoidal categories in section 2.2, where some of

its basic properties were proved.

A left C-comodule M is called flat if the functor

(−)⊗CM : ComodrC → Veck

is exact, and injective if the functor

Homl
C(−,M) : ComodlC → Veck

is exact. These two notions are actually equivalent: by [T1, proposition A.2.1],

M is flat if and only if it is injective. Moreover, this is the case if and only if the

functor (−)⊗CM preserves epimorphisms. In fact, we know from remark 2.2.1 that

the tensor coproduct always preserves monomorphisms.

Let V be a vector k-space. Then C⊗V is a left C-comodule with structure

map ∆C⊗idV (in the terminology of chapter 3, this comodule is obtained from the

vector space V by coinduction along ǫC). A left C-comodule M is called free if it

is isomorphic to a left C-comodule C⊗V as above. By [Doi1, corollary 1], every

free comodule is flat. (This is an immediate consequence of propositions 2.2.2 and

2.2.3). This result will be complemented with that of lemma A.3.4 below.

Examples A.1.1.

Let X be a set and C = kX the group-like coalgebra on X: ∆C(x) = x⊗x

and ǫC(x) = 1 ∀ x ∈ X. Then every left C-comodule is flat. In fact, as already

mentioned in section 9.1, a left C-comodule (M, t) decomposes as

M = ⊕x∈XMx where Mx = {m ∈M / t(m) = x⊗m},

and similarly for right C-comodules. Consequently, there are equivalences of cat-

egories

ComodrC ∼=
∐

x∈X

Veck
∼= ComodlC ,
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preserving the additive structure. The functors

(−)⊗CM : ComodrC → Veck and
∐

x∈X

(−)⊗Mx :
∐

x∈X

Veck → Veck

correspond to each other under these equivalences. Since the latter is clearly exact,

so is the former.

Let H be a Hopf algebra. We claim that H⊗H , viewed as left H-comodule via

H⊗H → H⊗(H⊗H), h⊗k 7→ h1k1⊗h2⊗k2 ,

is flat. Indeed, H⊗H is a left Hopf H-module (section 9.7.2 or [Mon, 1.9.1]) when

equipped with the left H-module structure

H⊗(H⊗H)→ H⊗H, h⊗(f⊗g) 7→ hf⊗g .

Hence, by the fundamental theorem on Hopf modules (corollary 9.7.1 or [Mon,

1.9.4]), H⊗H is free as left H-comodule, in particular flat.

However, if H is only a bialgebra, H⊗H may fail to be flat as left H-comodule.

To see this, consider the bialgebra

B = k[x]/(x2 − x3) with ∆(x) = x⊗x and ǫ(x) = 1 .

LetM = kα be a one-dimensional space, turned into a (left) B-module via x·α = 0.

Then M is not projective as B-module, because the surjection

p : B →M, p(1) = x− x2, p(x) = p(x2) = 0,

does not split, since the only morphisms of B-modules M → B are

j : M → B, j(α) = x− x2 and its linear multiples

(since x−x2 and its linear multiples are the only elements of B annihilated by x),

and we have pj = 0. On the other hand, view B⊗B as B-module by restriction via

∆. Then M is a direct summand of B⊗B, since

B⊗B = k{x⊗1− x2
⊗1} ⊕ k{x⊗1 + x2

⊗1, 1⊗1, x⊗x, x⊗x2, x2
⊗x, x2

⊗x2, 1⊗x, 1⊗x2},
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is a direct decomposition of B⊗B into B-modules (assuming chark 6= 2), and

M ∼= k{x⊗1− x2
⊗1} via α 7→ x⊗1− x2

⊗1 .

Therefore, B⊗B is not projective as B-module. Let H = B∗. It follows that

H⊗H = (B⊗B)∗ is not injective as B-module, or equivalently as H-comodule

(by proposition 1.1.4 in [Doi1]). As already mentioned, injective=flat for comod-

ules, so we have an example of a bialgebra H for which H⊗H is not flat as (left)

H-comodule. The author thanks Warren Nichols for showing him this example.

The final example is a variant on the result above about the flatness of H⊗H .

Let H be a Hopf k-algebra with bijective antipode and X a left H-comodule, via

x 7→ x−1⊗x0. View X⊗H as left H-comodule via

x⊗h 7→ x−1h1⊗x0⊗h2 .

Then X⊗H is flat as left H-comodule; in fact, it is free, by the fundamental theorem

on Hopf modules in its version for left comodules and right modules (as in the

remarks following 1.9.4 in [Mon]; this uses the assumption on the antipode), since

it is trivial to verify that it becomes a Hopf module when equipped with the right

H-module structure

(X⊗H)⊗H → X⊗H, (x⊗h)⊗k 7→ x⊗hk .

A subspace M of a left C-comodule (A, t) is called a (left) subcomodule if

t(M) ⊆ C⊗M .

Lemma A.1.1. Let C be a k-coalgebra, A1 a right C-comodule and A2 a left one.

Let M1 and N1 be right C-subcomodules of A1 and M2 and N2 left C-subcomodules

of A2. Then

(M1⊗
CM2) ∩ (N1⊗

CN2) = (M1 ∩N1)⊗C(M2 ∩N2)

as subspaces of A1⊗A2.
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Proof. First notice that for any pair of maps A // //B and subspace N of A, we

have

Eqk( A
////B ) ∩N = Eqk(A ∩N →֒ A ////B ) .

Therefore, since (M1⊗M2) ∩ (N1⊗N2) = (M1 ∩N1)⊗(M2 ∩N2), we have

Eqk( M1⊗M2
// //M1⊗C⊗M2 ) ∩ (N1⊗N2) =

= Eqk

(
(M1⊗M2) ∩ (N1⊗N2) →֒ M1⊗M2

////M1⊗C⊗M2

)

= Eqk

(
(M1 ∩N1)⊗(M2 ∩N2)

////(M1 ∩N1)⊗C⊗(M2 ∩N2)
)

= (M1 ∩N1)⊗C(M2 ∩N2),

thus

(M1⊗
CM2) ∩ (N1⊗N2) = (M1 ∩N1)⊗C(M2 ∩N2).

Hence, by symmetry,

(M1⊗M2) ∩ (N1⊗
CN2) = (M1 ∩N1)⊗C(M2 ∩N2).

But then also

(M1 ∩N1)⊗C(M2 ∩N2) = (M1⊗
CM2) ∩ (N1⊗N2) ∩ (M1⊗M2) ∩ (N1⊗

CN2)

= (M1⊗
CM2) ∩ (N1⊗

CN2).

Side remark: an alternative proof of this result can be based on the fact that

pull-backs commute with equalizers (by the result on page 227 of [ML]), since the

intersection of two subspaces can be seen as a pull-back.

We next consider quotient comodules. If N is a left C-subcomodule of a left

C-comodule B, then the quotient space B/N inherites a left C-comodule structure
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as below

B //

��

C⊗B

��
B/N //___ (C⊗B)/(C⊗N)

∼= // C⊗(B/N)

,

and 0→ N → B → B/N → 0 is an exact sequence of comodules.

Proposition A.1.1. Let C be a k-coalgebra, A a right C-comodule and B a left

one. Let M be a left C-subcomodule of A and N a right C-subcomodule of B,

such that all A, M and B/N are flat as C-comodules. Then there is a canonical

isomorphism

(A/M)⊗C(B/N) ∼= (A⊗
CB)/(M⊗

CB + A⊗
CN) .

Proof. First, since B/N is flat,

(A/M)⊗C(B/N) ∼=
A⊗

C(B/N)

M⊗
C(B/N)

. (*)

Now, since A is flat,

A⊗
C(B/N) ∼= (A⊗

CB)/(A⊗
CN) , (**)

and since M is flat

M⊗
C(B/N) ∼= (M⊗

CB)/(M⊗
CN) .

But according to lemma A.1.1, M⊗
CN = (M⊗

CB) ∩ (A⊗
CN). Hence

M⊗
C(B/N) ∼= (M⊗

CB)/
(
(M⊗

CB) ∩ (A⊗
CN)

)
∼= (M⊗

CB + A⊗
CN)/(A⊗

CN) . (***)

From (*), (**) and (***) it follows that

(A/M)⊗C(B/N) ∼=
(A⊗

CB)/(A⊗
CN)

(M⊗
CB + A⊗

CN)/(A⊗
CN)
∼= (A⊗

CB)/(M⊗
CB + A⊗

CN) .
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A.2 Assorted lemmas

If C is a k-coalgebra, then its dual C∗ = Homk(C, k) becomes a k-algebra with

multiplication determined by

(f · g)(c) = f(c1)g(c2) ∀ f, g ∈ C
∗, c ∈ C, where ∆C(c) = c1⊗c2,

and with unit element ǫC ∈ C
∗.

Lemma A.2.1. Let C be a k-coalgebra and (M, s) a right C-comodule. Then M

becomes a left C∗-module under

f ·m = f(m1)m0 where s(m) = m0⊗m1 ∈M⊗C, ∀ f ∈ C∗, m ∈M .

This defines a fully-faithful functor ComodrC → ModlC∗, which is an equivalence

if C is finite-dimensional.

Proof. See [Mon, lemma 1.6.4] or [Swe, section 2.1].

Replacing C by Ccop one obtains a version of lemma A.2.1 dealing with the

functor ComodlC → ModrC∗. There is also a more general version for bicomodules.

We will refer to these variants (of this and other results) later in this section or in

the main body of this thesis, even though they will not always be explicitly stated.

Remark A.2.1. If R, S and T are k-algebras, U a R-S-bimodule and V a R-T -one,

then Homk(U, V ) carries a structure of S-T -bimodule, via

(s · f)(u) = f(u · s) and (f · t)(u) = f(u) · t

∀ f ∈ Homk(U, V ), s ∈ S, t ∈ T and u ∈ U .

Moreover, Homl
R(U, V ) is an S-T -subbimodule of Homk(U, V ).

The analogous construction for bicomodules can be performed with the aid of

lemma A.2.1, under some finite-dimensionality assumptions:
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Lemma A.2.2. Let C, D and E be k-coalgebras, U a C-D-bicomodule and V a

E-D-one. If C and E are finite-dimensional, then Homk(U, V ) carries a natural

structure of E-C-bicomodule. Moreover, Homr
D(U, V ) is a E-C-subbicomodule of

Homk(U, V ).

Proof. The result follows trivially from remark A.2.1 and lemma A.2.1.

Remark A.2.2. Assume the same hypothesis as in remark A.2.1. Then the dual

space U∗ is an S-R-bimodule via

(s · f)(u) = f(u · s) and (f · r)(u) = f(r · u) ∀ f ∈ U∗, s ∈ S, r ∈ R and u ∈ U .

Moreover, the canonical map

d : U∗⊗V →֒ Homk(U, V ) defined by d(f⊗v)(u) = f(u)v

is a morphism of S-T -bimodules.

Lemma A.2.3. In addition to the hypothesis of lemma A.2.2, assume that D is

finite-dimensional. Then U∗ is a D-C-bicomodule, the canonical map

d : V ⊗U∗ →֒ Homk(U, V )

is a morphism of E-C-bicomodules, and d restricts to a morphism of E-C-bicomodules

V ⊗
DU∗ →֒ Homr

D(U, V ) ,

which is an isomorphism if U is finite-dimensional.

Proof. We endow U∗ with a structure of D-C-bicomodule by using the previous

results as illustrated below:

CUD lemma A.2.1
−−−−−−−→ D∗UC∗

remark A.2.2
−−−−−−−→ C∗(U∗)D∗

lemma A.2.1
−−−−−−−→ D(U∗)C .
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Explicitly, t : U∗ → D⊗U∗, t(f) = f−1⊗f0 and s : U → U⊗D, s(u) = u0⊗u1 are

related by

f(u0)u1 = f0(u)f−1 ∈ D . (*)

By remark A.2.2 and lemma A.2.1, d : V ⊗U∗ →֒ Homk(U, V ) is a morphism of

S-T -bicomodules. This map is an isomorphism when U is finite-dimensional.

Thus,the proof will be complete when we show that, for any α ∈ V ⊗U∗,

α ∈ V ⊗
DU∗ ⇔ d(α) ∈ Homr

D(U, V ) .

Write α = v⊗f (we really mean
∑

i vi⊗fi, but this abuse of notation is harmless).

We have

α ∈ V ⊗
DU∗ ⇔ s(v)⊗f = v⊗t(f)

⇔ s(v)⊗f = v⊗f−1⊗f0 ⇔ ∀ u ∈ U, f(u)s(v) = f0(u)v⊗f−1

(∗)
⇔ ∀ u ∈ U, f(u)s(v) = f(u0)v⊗u1 .

On the other hand,

d(α) ∈ Homr
D(U, V )⇔ ∀ u ∈ U, (d(α)⊗idD)s(u) = sd(α)(u)

⇔ ∀ u ∈ U, (d(α)⊗idD)(u0⊗u1) = s(f(u)v)⇔ ∀ u ∈ U, f(u0)v⊗u1 = f(u)s(v) ,

which is the same condition. Thus α ∈ V ⊗
DU∗ ⇔ d(α) ∈ Homr

D(U, V ) and the

proof is complete.

Finally, we discuss iterated tensor coproducts and tensor products. Assume

that C and D are k-coalgebras and, changing notation slightly, U is a right

C-comodule, V a C-D-bicomodule and W a left D-module. In view of lemma

A.2.1, V and W are also right and left D∗op-modules respectively. By the same

lemma, U⊗
CV is a rightD∗op-submodule of U⊗V (since it is a rightD-subcomodule).
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Also, V ⊗D∗opW is a quotient left C-comodule of V ⊗W (since it is a quotient left

C∗op-module). Hence, the following k-spaces are defined

(U⊗
CV )⊗D∗opW and U⊗

C(V ⊗D∗opW ) .

By general reasons [ML, IX.2] there is always a canonical map

(U⊗
CV )⊗D∗opW → U⊗

C(V ⊗D∗opW ) .

Explicitly, this map exists because

U⊗
C(V ⊗D∗opW ) = Eqk

(
U⊗(V ⊗D∗opW )

sU⊗id //

idU⊗(tV⊗idW )
//U⊗C⊗(V ⊗D∗opW )

)

= Eqk

(
(U⊗V )⊗D∗opW

(sU⊗idV )⊗idW//

(idU⊗t)⊗idW

//(U⊗C⊗V )⊗D∗opW )
)

and

(U⊗
CV )⊗D∗opW

can⊗idW−−−−→ (U⊗V )⊗D∗opW

maps into this equalizer by functoriality.

Lemma A.2.4. In the above situation, if either U is flat as right C-comodule or

W is flat as left D∗op-module, then the canonical map

(U⊗
CV )⊗D∗opW → U⊗

C(V ⊗D∗opW ) .

is an isomorphism.

Proof. If U is flat as right C-comodule then U⊗
C(−) preserves the coequalizer

V ⊗D∗opW = Coeqk( V ⊗D∗op⊗W //
//V ⊗W )

so

U⊗
C(V ⊗D∗opW ) = Coeqk( U⊗

C(V ⊗D∗op⊗W ) // //U⊗
C(V ⊗W ) )

= Coeqk( (U⊗
CV )⊗D∗op⊗W ) // //(U⊗

CV )⊗W ) )

= (U⊗
CV )⊗D∗opW .

The proof is similar if W is flat as left D∗op-module.
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Notice also that if U is a C ′-C-bicomodule and W a D-D′-bicomodule, then

the canonical map above is a morphism of C ′-D′-bicomodules.

A.3 Products and coproducts of comodules

Arbitrary products in the category of left comodules over a k-coalgebra C exist.

They are described in terms of products of the corresponding modules over C∗ in

the final note to [T2]. A more direct description is as follows.

Proposition A.3.1. Let C be a k-coalgebra and {(Mi, ti)}i∈I an arbitrary family

of left C-comodules. Then the product
∏C

i∈IMi in the category ComodlC exists and

is

∏C

i∈I
Mi =

{
m = {mi} ∈

∏

i∈I

Mi /
there is a finite dimensional subcoalgebra

Cm of C such that ti(mi) ∈ Cm⊗Mi ∀ i ∈ I

}
,

where
∏

i∈IMi is the product in the category Veck.

Proof. First we show that M =
∏C

i∈IMi is in fact a left C-comodule, as follows.

Given m = {mi} ∈ M , let {cj}j∈J be a (finite) k-basis of Cm, and write, for each

i ∈ I,

ti(mi) =
∑

j∈J

cj⊗mij with mij ∈Mi ∀ j ∈ J.

Coassociativity for each ti implies that, for each j ∈ J , the element {mij}i∈I

belongs to M . Thus we can define t : M → C⊗M by setting

t(m) =
∑

j∈J

cj⊗{mij}i∈I .

This definition is clearly independent of the subcoalgebra Cm chosen. Coassocia-

tivity and counitality for t follow from those for ti.

Let pi : M → Mi denote the restriction of the canonical projection
∏

i∈IMi →

Mi. By construction, pi is a morphism of left C-comodules. Let us check the

189



universal property of the product for (M, pi). Let (N, t) be a left C-comodule and

fi : N →Mi morphisms of left C-comodules for each i ∈ I. Let f : N →
∏

i∈IMi,

f(n) = {fi(n)}, be the corresponding map into the product in Veck. We claim that

f(n) ∈ M . To see this, write t(n) =
∑

k ck⊗nk for some (finitely-many) ck ∈ C.

Let Cn be the finite-dimensional subcoalgebra of C spanned by the ck’s (this is

possible by the finiteness theorem [Mon, 5.1.1.2]). Then, for each i ∈ I,

ti(fi(n)) = (idC⊗fi)t(n) =
∑

k

ck⊗fi(nk) ∈ Cn⊗Mi,

which shows that f(n) ∈M . This thus defines a linear map f : N → M such that

pif = fi ∀ i ∈ I. This latter property clearly determines f uniquely. Moreover, by

definition of t : M → C⊗M , we have

t(f(n)) =
∑

k

ck⊗{fi(nk)} =
∑

k

ck⊗f(nk) = (idC⊗f)t(n),

i.e. f is a morphism of left C-comodules. This completes the proof.

The following consequence of the above result was quoted in section 6.3.

Corollary A.3.1. Let C be a k-coalgebra. Then the forgetful functor ComodlC →

Veck has a left adjoint if and only if C is finite-dimensional.

Proof. If C is finite-dimensional, then there is an equivalence ComodlC ∼= ModrC∗

(lemma A.2.1), which preserves the forgetful functors to Veck. But for any k-algebra

A, the forgetful functor ModrA → Veck has a left adjoint, namely the functor

(−)⊗A : Veck → ModrA.

Conversely, assume that ComodlC → Veck has a left adjoint. Then, by theorem

V.5.1 in [ML], this functor preserves all products. Let {ci}i∈I be a k-basis of C.

We will show that it is finite by considering products indexed by I. In fact, for

each i ∈ I let Mi = C with its usual left C-comodule structure, and consider M =
∏C

i∈IMi. By assumption, there is a linear isomorphism M ∼=
∏

i∈IMi preserving
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the canonical projections. It follows that this isomorphism must be the canonical

inclusion M →֒
∏

i∈IMi. In particular, {ci} ∈ M . This means that there is a

finite-dimensional subcoalgebra C0 of C such that

∆C(ci) ∈ C0⊗C ∀ i ∈ I .

But then

ci = (idC⊗ǫC)∆C(ci) ∈ C0 ∀ i ∈ I,

from where C = C0, i.e. C is finite-dimensional.

Similarly, the forgetful functor {X-graded sets} → Sets has a left adjoint if

and only if X = {∗}, since the product of two X-graded sets M and N is simply

their tensor coproduct M ×X N , which is not preserved by the forgetful functor

unless X = {∗}.

Notice that by proposition 3.0.1, the forgetful functor ComodlC → Veck always

has a right adjoint, namely the coinduction functor C⊗(−) : Veck → ComodlC.

Next, we discuss coproducts of comodules. Let {(Mi, ti)}i∈I be an arbitrary

family of left comodules over a k-coalgebra C. Let M = ⊕i∈IMi. Given m =

{mi} ∈M , write for each i ∈ I,

ti(mi) =
∑

j∈J

cj⊗mij with mij ∈Mi ∀ j ∈ J.

For each j ∈ J , the family {mij}i∈I is finite, since so is the family {mi}i∈I . Thus

we can define t : M → C⊗M by setting

t(m) =
∑

j∈J

cj⊗{mij}i∈I .

It is clear that (M, t) is then a left C-comodule, and that together with the canon-

ical inclusions Mi →֒ M it becomes the coproduct of the family {Mi} in ComodlC.

There are linear inclusions

⊕

i∈I

Mi →֒
∏C

i∈I
Mi →֒

∏

i∈I

Mi .
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The coproduct M is also called the direct sum of the comodules {Mi}.

Finally, we discuss direct sums in relation to flatness.

Lemma A.3.1. Let M be the direct sum of a family {Mi} of left C-comodules.

Then M is flat if and only if Mi is flat ∀ i ∈ I.

Proof. If N is a right C-comodule, then

N⊗
C

(⊕

i∈I

Mi

)
∼=

⊕

i∈I

(N⊗
CMi) .

Thus, there is an isomorphism of functors (−)⊗CM ∼=
⊕

i∈I

(
(−)⊗CMi

)
, from where

the result follows.

Lemma A.3.2. Let

0→ J → A→ A/J → 0

be an exact sequence of left C-comodules, where J is flat. Then A is flat if and

only if A/J is flat.

Proof. Since J is flat=injective, the sequence splits. Thus, A ∼= J ⊕ A/J as left

C-comodules. The result now follows from lemma A.3.1.

Lemma A.3.3. Let M1 and M2 be subcomodules of a left C-comodule M . Suppose

that M1, M2 and M1 ∩M2 are flat. Then so is M1 +M2.

Proof. By lemma A.3.1, M1⊕M2 is flat. The result now follows from lemma A.3.2,

applied to the exact sequence

0→M1 ∩M2 → M1 ⊕M2 →M1 +M2 → 0 .

Lemma A.3.4. A left comodule is flat if and only if it is a direct summand of a

free left comodule.
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Proof. Let (M, t) be a flat left C-comodule. Then t : M → C⊗M is a morphism

of left C-comodules, where we view C⊗M as left C-comodule via ∆C⊗idM (thus,

C⊗M is free by definition). The map t is injective since it is split by the k-linear

map ǫC⊗idM : C⊗M → M . Since M is flat=injective, t also admits a splitting of

left C-comodules. Therefore M is a direct summand of C⊗M .

The converse implication follows from lemma A.3.1, since free comodules are

flat, as explained in section A.1.

For the following result, recall the definition of tensor product of comodules

from section 7.1.

Lemma A.3.5. Let A be a flat left C-comodule and B a flat left D-comodule.

Then A⊗B is flat as left C⊗D-comodule.

Proof. By lemma A.3.4, A is a direct summand of some C⊗V , and B a direct

summand of some D⊗W . It follows that A⊗B is a direct summand of C⊗D⊗V ⊗W ,

hence flat.
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Appendix B

Braids and q-binomials

B.1 Introduction

The classical identities between the q-binomial coefficients and factorials can be

generalized to a context where numbers are replaced by braids, or more precisely,

elements of the braid group algebras kBn. Thus, for every pair i, n of natural

numbers there is defined an element b
(n)
i ∈ kBn (section B.3), and these satisfy

analogs of the classical identities for the binomial coefficients (sections B.4 through

B.8). Moreover, by choosing representations of the braid groups one obtains con-

crete realizations of these identities; the simplest such choices yield the identities

for the classical and q-binomial coefficients, other choices yield new identities that

involve matrices rather than numbers.

Table B.1 describes the action of the braids introduced in this appendix when

X is certain one-dimensional representation defined by q ∈ k∗ (section B.2.5). The

definition of the q-analogs will be reviewed before each corresponding braid analog

is introduced.

These binomial braids b
(n)
i play a crucial role in the generalization of the defi-

nition of the quantum group U+
q (C) of Drinfeld [Dr1] and Jimbo [Jim] presented

in section 9.8 of the main body of this thesis. In this appendix we concentrate on

their combinatorial properties.

At the level of braids, the proofs of the combinatorial identities follow a con-

stant pattern: first there is the set-theoretic part, which involves dealing with the

same bijections that are used for the case of the classical (q = 1) identities, then

there is the geometric part that consists in proving that two braids, labeled by

corresponding elements under the bijection considered, are in fact equal.
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Table B.1: Combinatorial braids and q-analogs

Braid name defined in section action

s
(n)
i generator B.2.1 q

s(n)(i, j) B.2.1 qj−i

c(n) twistor B.2.2 q(
n
2)

βm,n braiding B.2.4 qmn

s
(n)
I B.3 q‖I‖

b
(n)
i binomial B.3

[
n
i

]

[n] natural B.5 [n]

s
(n)
σ B.5 qinv(σ)

f (n) factorial B.5 [n]!

s
(n)
f B.7.1 qinv(f)

m(η) multinomial B.7.1
[
n
η

]

µ(n) Möbius B.6.2 (−1)nq(
n
2)

C(n) Catalan B.8 Cn
G(n) Galois B.8 Gn

F (n) Fibonacci B.8 Fn

The classical q-identities that we generalize are taken mostly from papers by

Goldman and Rota [GR]; in particular these include Pascal’s, Vandermonde’s and

Cauchy’s identities, the factorial formula, Rota’s binomial theorem, Möbius inver-

sion, several identities involving multinomial braids and definitions and formulas

for the Galois, Fibonacci and Catalan braids.

It is also possible to define the braid analog of a partition of a set, and then

Stirling and Bell braids. These will be studied elsewhere.

This appendix reproduces [A].
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B.2 Braid groups and the braid category

B.2.1 Basics

The group Bn of braids in n strands has generators s
(n)
1 , . . . , s

(n)
n−1 subject to the

relations

s
(n)
i s

(n)
j = s

(n)
j s

(n)
i if |i− j| ≥ 2, (A1)

s
(n)
i s

(n)
i+1s

(n)
i = s

(n)
i+1s

(n)
i s

(n)
i+1 if 1 ≤ i ≤ n− 2. (A2)

The generator s
(n)
i is represented by the following picture, and the product st

of two braids s and t in Bn is obtained by putting the picture of s on top of that

of t. The identity of Bn is represented by the picture with n vertical strands; the

inverse of s is obtained by reflecting its picture across a horizontal line, without

leaving the plane of the picture.

1 2 i

//
//

//
//

i+ 1

��
��
��
��
��

n

s
(n)
i = · · · · · ·

1 2 i i+ 1 n

The collection B =
∐

n≥0Bn of all braid groups forms a category, where the

objects are the natural numbers, Bn is the set of endomorphisms of n, and there

are no morphisms between distinct objects. This category is monoidal; the tensor

product s⊗t ∈ Bn+m of two braids s ∈ Bn and t ∈ Bm is obtained by putting t to

the right of s, i.e. s
(n)
i ⊗s

(m)
j = s

(n+m)
i s

(n+m)
n+j . Moreover, this monoidal category is

braided, in the sense that there is a natural map βn,m : n⊗m → m⊗n, i.e. a braid

βn,m ∈ Bn+m, satisfying some axioms (B.2.4 below). For more details on this, the

reader is referred to [K], X.6 and XIII.2.
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We develop some basic notation. For each pair (i, j) with 1 ≤ i ≤ j ≤ n, define

s(n)(i, j) =





1 if i = j,

s
(n)
i s

(n)
i+1 · · · s

(n)
j−1 if i < j.

We provide a first set of lemmas.

Lemma.

s(n)(i, k) = s(n)(i, j)s(n)(j, k) when 1 ≤ i ≤ j ≤ k ≤ n (1)

s
(m+n)
i = s

(m)
i ⊗1(n) when 1 ≤ i ≤ m− 1, n ≥ 0 (2)

s(m+n)(i, j) = s(m)(i, j)⊗1(n) when 1 ≤ i ≤ j ≤ m, n ≥ 0

s
(m+n)
i+n = 1(n)

⊗s
(m)
i when 1 ≤ i ≤ m− 1, n ≥ 0 (3)

s(m+n)(i+ n, j + n) = 1(n)
⊗s(m)(i, j) when 1 ≤ i ≤ j ≤ m, n ≥ 0

s
(m+n)
i+l = 1(l)

⊗s
(m)
i

⊗1(n−l) when 1 ≤ i ≤ m− 1, 0 ≤ l ≤ n

(4)

s(m+n)(i+ l, j + l) = 1(l)
⊗s(m)(i, j)⊗1(n−l) when 1 ≤ i ≤ j ≤ m, 0 ≤ l ≤ n

s(n)(i, j)s
(n)
h = s

(n)
h+1s

(n)(i, j) when 1 ≤ i ≤ h ≤ j − 2 (5)

s(n)(i, j)s(n)(h, k) = s(n)(h+ 1, k + 1)s(n)(i, j) when 1 ≤ i ≤ h ≤ k ≤ j − 1 .

Proof. Equation (1) is a direct consequence of the notation, the first parts of (2)

and (3) hold simply by definition of the tensor product, and the second parts follow

by repeated use of the first ones. Now,

s
(m+n)
i+l

(2)
= s

(m+l)
i+l

⊗1(n−l) (3)
= 1(l)

⊗s
(m)
i ⊗1(n−l) ,

proving the first part of (4). Similarly the second part follows from the second

parts of (2) and (3).
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Finally, if 1 ≤ i ≤ h ≤ j − 2, we can write

s(n)(i, j)s
(n)
h

(1)
= s(n)(i, h)s

(n)
h s

(n)
h+1s

(n)(h+ 2, j)s
(n)
h

(A1)
=

s(n)(i, h)s
(n)
h s

(n)
h+1s

(n)
h s(n)(h + 2, j)

(A2)
=

s(n)(i, h)s
(n)
h+1s

(n)
h s

(n)
h+1s

(n)(h+ 2, j)
(A1)
=

s
(n)
h+1s

(n)(i, h)s
(n)
h s

(n)
h+1s

(n)(h+ 2, j)
(1)
= s

(n)
h+1s

(n)(i, j) ,

which proves the first part of (5); now for the second notice that if k = h then

there is nothing to prove; otherwise j > k > h so it follows by repeated use of the

first.

B.2.2 Vertical symmetry

There is an involution ˜ : Bn → Bn defined by s̃
(n)
i = s

(n)
n−i. The picture for s̃

is obtained by rotating in 3-space that of s 180 degrees around a vertical line.

Consider the twistor braid,

c(n) = s(n)(1, n)s(n)(1, n− 1) · · · s(n)(1, 2)s(n)(1, 1) .

For instance

1
NNNNN

NN
NN

NNNNNNNNNN

2

33
33

33
3

3

��
��
��
�

��

4

ppppppppppppppppppppp

c(4) =

1 2 3 4

Repeated use of (A1) and (5) shows that c(n)s
(n)
i = s

(n)
n−ic

(n), hence˜ is the inner

automorphism defined by conjugation by c(n). It follows that c(n)2 is in the center

of the braid group, since ˜̃s = s for any s. Moreover, it can be shown that c(n)2

generates Z(Bn); we won’t make use of this fact.
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Let us prove that, for any s ∈ Bn and t ∈ Bm,

s̃⊗t = t̃⊗s̃ . (6)

Proof. Notice that if the statement holds for s⊗t and s′⊗t′, then so it does for ss′⊗tt′.

Hence it suffices to prove it for s = s
(n)
i and t = s

(m)
j . Now,

s
(n)
i ⊗s

(m)
j

(2), (3)
= s

(n+m)
i s

(n+m)
n+j ⇒

˜
s
(n)
i ⊗s

(m)
j = s

(n+m)
n+m−is

(n+m)
n+m−(n+j) = s

(n+m)
n+m−is

(n+m)
m−j

(A1)
= (since n+m− i ≥ m+ 1)

s
(n+m)
m−j s

(n+m)
n+m−i

(2), (3)
= s

(m)
m−j⊗s

(n)
n−i = s̃

(m)
j ⊗s̃

(n)
i .

B.2.3 Horizontal symmetry

There is a map ∗ : Bn → Bn defined by the conditions that s
(n)
i

∗
= s

(n)
i and

(st)∗ = t∗s∗. The picture for s∗ is obtained by rotating that of s in 3-space 180

degrees around a horizontal line.

It is clear that the three operators ∗, ,̃ −1 : Bn → Bn commute pairwise, and

also that

s∗∗ = s ∀ s ∈ Bn,

(s⊗t)∗ = s∗⊗t∗ ∀ s ∈ Bn, t ∈ Bm, (7)

˜s(n)(i, j)∗ = s(n)(n+ 1− j, n + 1− i) ∀ i, j, n, (8)

c(n)∗ = c(n) ∀ n. (9)

From (9) it follows easily that

c(n) = s(n)(n, n)s(n)(n− 1, n) . . . s(n)(2, n)s(n)(1, n)

and from here that

c(n)2 = s(n)(1, n)n.
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B.2.4 Properties of the braiding

The braiding βm,n is most easily defined in terms of its picture:

1

RRRRRRRRRRRRRRRRRRRR

RRRR

RRRRRRRRRRRRRRR

2

RRRRRRRRRRRRRR

RRRR

RRRRRRRRRRRRRRR

RRRRRR

n RRRR

RRRR

RRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRR

n+ 1

ooooooooooooooooooooooooooooooooooo
n+ 2

ooooooooooooooooooooooooooooooooooo
n+m

ooooooooooooooooooooooooooooooooooo

1 2 m m+ 1 m+ 2 m+ n

It is viewed as a natural map βm,n : m⊗n → n⊗m in the category B of braids,

and as such it satisfies some important properties. We will list some of them below

without proof, since we won’t use them, although they are very easily obtained

through the use of pictures, see [K] XIII.2. However, it will be convenient for us

to have an explicit description of βm,n in terms of the canonical generators. For

this, we first define some special “powers” for braids as follows.

Let m ≥ 1. For s ∈ Bm and n ≥ 0, define

s〈n〉 =





1 if n = 0,

s if n = 1,

1(n−1)
⊗s · 1(n−2)

⊗s⊗1 · . . . · 1⊗s⊗1(n−2) · s⊗1(n−1) if n ≥ 2.

(10)

Thus s〈n〉 ∈ Bm+n−1 ∀ m ≥ 1, n ≥ 0 (and it is not defined if m = 0). Notice that

s〈n+1〉 = 1⊗s〈n〉 · s⊗1, from here it follows easily by induction that

s〈p+q〉 = 1(q)
⊗s〈p〉 · s〈q〉⊗1(p) ∀ p, q ≥ 0,

1(k)
⊗s〈n〉⊗1(h) =

[
1(k)

⊗s⊗1(h)
]〈n〉

∀ n, k, h ≥ 0 . (11)

We then define

βm,n = s(m+1)(1, m+ 1)〈n〉 ∈ Bm+n . (12)
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It is easy to see that this corresponds to the picture above. These are some of the

properties that β satisfies:

βm,n · s⊗t = t⊗s · βm,n ∀ s ∈ Bm, t ∈ Bn, (naturality of the braiding),

c(n+m) = c(n)
⊗c(m) · βm,n ∀ m,n ≥ 0,

β̃m,n = βn,m = β∗m,n ∀ m,n ≥ 0,

βp,q+r = 1(q)
⊗βp,r · βp,q⊗1(r) ∀ p, q, r ≥ 0,

βp+q,r = βp+q,r⊗1(q) · 1(p)
⊗βq,r ∀ p, q, r ≥ 0.

B.2.5 Representations

Throughout the appendix k will denote a fixed field (although any commutative

ring would do just as well).

The identities we will obtain between elements of the braid group algebras

kBn can be converted into matrix or numerical identities by choosing k-linear

representations of the braid groups Bn.

More precisely we will be interested in monoidal representations of the braid

category B, that is a vector space X, such that the braid group Bn acts on the

tensor power X⊗n, with the property that

s⊗t · x⊗y = (s · x)⊗(t · y) ∀ s ∈ Bn, t ∈ Bm, x ∈ X
⊗n, y ∈ X⊗m .

Since s
(n)
i = 1(i−1)

⊗s
(2)
1 ⊗1(n−i+1), this condition implies that the action of Bn on

X⊗n is uniquely determined by the action of s
(2)
1 on X⊗X. Moreover, a linear

operator R : X⊗X → X⊗X defines a monoidal representation of B if and only if

it is invertible and satisfies the Yang-Baxter equation:

(R⊗idX) ◦ (idX⊗R) ◦ (R⊗idX) = (idX⊗R) ◦ (R⊗idX) ◦ (idX⊗R) .

This is a consequence of (A2).
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If X is one-dimensional, then any invertible operator R : X → X satisfies this

equation. R is necessarily given by multiplication by some non-zero scalar q ∈ k.

Hence, in this case, s
(n)
i acts by multiplication by q for every n ≥ 2, 1 ≤ i ≤ n−1. It

is this simplest choice that will produce the classical q-identities from the identities

for braids. In particular the trivial one-dimensional representation yields the case

q = 1. Higher dimensional representations are are discussed in sections 9.8 and

B.9. In this regard we should add that Majid began the study of combinatorial

identities between operators on tensor powers of a vector space X corresponding

to a Yang-Baxter operator on X⊗X: in thm. 10.4.12 of [Maj] the case i = 1 of

(21) is obtained.

The chart in section B.1 describes the action of the braids introduced in this

appendix when X is the one-dimensional representation defined by q ∈ k∗ as above.

Let us also remark that since the non-commutativity of the braid groups nec-

essarily disappears when acting on a one-dimensional representation, the actions

of s, s̃ and s∗ coincide for any braid s in this case.

B.3 Binomial braids

For each pair (n, i) with i ≤ n let Si(n) denote the set of subsets of {1, 2, . . . , n}

with cardinality i.

Recall that the q-binomial coefficients can be defined as

[
n
i

]
=

∑

I∈Si(n)

q‖I‖ where ‖I‖ =
∑

j∈I

j −
i∑

j=1

j .

The braid analog of this definition is as follows.

First, for each I ∈ Si(n), write I = {j1, j2, . . . , ji} with j1 < j2 < . . . < ji, then

define s
(n)
I ∈ Bn as

s
(n)
I = s(n)(i, ji) · · · s

(n)(2, j2)s
(n)(1, j1) ;
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if i = 0 we let s
(n)
∅ = 1.

For instance if I = {m+ 1, m+ 2, . . . , m+n} ∈ Sn(m+n) then s
(m+n)
I = βm,n.

Then the binomial braid b
(n)
i ∈ kBn is defined as

b
(n)
i =

∑

I∈Si(n)

s
(n)
I .

Thus b
(n)
0 = b

(n)
n = 1 ∀ n, while for instance

b
(2)
1 = 1 + s

(2)
1 , b

(3)
1 = 1 + s

(3)
1 + s

(3)
1 s

(3)
2 , b

(3)
2 = 1 + s

(3)
2 + s

(3)
2 s

(3)
1 .

We see that b
(n)
i 6= b

(n)
n−i in general. However:

Proposition. For all n ≥ i ≥ 0,

b̃
(n)
i = b

(n)
n−i. (13)

Proof. Consider the bijection Si(n) → Sn−i(n) that sends I to Ĩc, where Ĩ =

{n+ 1− i / i ∈ I}. It is enough to show that, for every I ∈ Si(n),

s̃
(n)
I = s

(n)

Ĩc
. (*)

First, we show that if (*) holds when n ∈ I, then it holds for every I. In fact,

given I ∈ Si(n), let m = max I, and let I ′ be the same set I but viewed as en

element of Si(m). Then we have that

s
(n)
I

(2)
= s

(m)
I′

⊗1(n−m),

hence, by (6), and assuming (*) for I ′,

s̃
(n)
I = 1(n−m)

⊗s̃
(m)
I′

(∗)
= 1(n−m)

⊗s
(m)

Ĩ′
c = 1(n−m)

⊗s
(m)
m+1−I′c

(3)
= s

(n)
n+1−Ic = s

(n)

Ĩc
,

so (*) holds for I as well.

To finish the proof we show (*) by induction on i. For i = 0 it is clear. Assume

i ≥ 1. As just explained, we can also assume that n ∈ I. Therefore, we can
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decompose I = I1 ∪ {n} with I1 ∈ Si−1(n − 1); then we have Ĩ = Ĩ1 ∪ {1} and

Ĩ1
c
= Ĩc ∪ {1}.

Write Ĩc = {h1 < h2 < . . . < hn−i}, so that Ĩ1
c
= {1 < h1 < h2 < . . . < hn−i}.

We have

s
(n)
I = s(n)(i, n)s

(n)
I1

= s
(n)
i s

(n)
i+1 . . . s

(n)
n−1s

(n)
I1
,

hence, by induction hypothesis,

s̃
(n)
I = s

(n)
n−is

(n)
n−i−1 . . . s

(n)
1 s

(n)
eI1
c

= s
(n)
n−is

(n)
n−i−1 . . . s

(n)
1 s(n)(n− i+ 1, hn−i) . . . s

(n)(3, h2)s
(n)(2, h1)s

(n)(1, 1) .

Now using (A1), s(n)(n− i+ 1, hn−i), can be moved to the left past all the factors

s
(n)
1 ,. . . ,s

(n)
n−i−1. Then, it combines with s

(n)
n−i to form s(n)(n− i, hn−i). Similarly the

other factors of the form s(n)(k + 1, hk) can be moved to the left until they reach

s
(n)
k to form s(n)(k, hk). At the end of the process we have

s̃
(n)
I = s(n)(n− i, hn−i) . . . s

(n)(2, h2)s
(n)(1, h1) = s

(n)

Ĩc
.

This finishes the induction and the proof.

B.4 Identities of Pascal and Vandermonde

For the q-binomial coefficients Pascal’s identity says that

[
n
i

]
= qn−i

[
n−1
i−1

]
+

[
n−1
i

]
=

[
n−1
i−1

]
+ qi

[
n−1
i

]
.

Its generalization to braids is as follows.

Proposition. For any i = 1, . . . , n− 1,

b
(n)
i = s(n)(i, n) · b

(n−1)
i−1 ⊗1 + b

(n−1)
i ⊗1 = 1⊗b

(n−1)
i−1 + ˜s(n)(n− i, n) · 1⊗b

(n−1)
i . (14)
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Proof. Consider the bijection Si−1(n − 1) ∪ Si(n − 1) → Si(n) that sends I ∈

Si−1(n − 1) to I ∪ {n} ∈ Si(n) and J ∈ Si(n− 1) to J ∈ Si(n). From (2) and the

definition of sI we see that

s
(n)
J = s

(n−1)
J

⊗1 and s
(n)
I∪{n} = s(n)(i, n) · s

(n−1)
I

⊗1 ;

summing over all such I and J we obtain the first equality. The other one follows

by applying ,̃ using (6) and replacing n− i by i.

Vandermonde’s identity says that

[
m+n
p

]
=

p∑

k=0

q(m−k)(p−k)
[
m
k

][ n
p−k

]
.

Its generalization to braids reads:

Proposition. For any m,n, p with 0 ≤ p ≤ m,n,

b(m+n)
p =

p∑

k=0

1(k)
⊗βm−k,p−k⊗1(n−p+k) · b

(m)
k

⊗b
(n)
p−k . (15)

Proof. Consider the bijection

p⋃

k=0

Sk(m)× Sp−k(n)→ Sp(m+ n) , (I, J) 7→ I ∪ (m+ J) .

It suffices to show that, for each I ∈ Sk(m) and J ∈ Sp−k(n),

s
(m+n)
I∪(m+J) = 1(k)

⊗βm−k,p−k⊗1(n−p+k) · s
(m)
I

⊗s
(n)
J . (*)

Let h = p− k. If h = 0 then (*) reduces to s
(m+n)
I = s

(m)
I

⊗1(n), which holds by (2).

Assume h ≥ 1. Write I = {i1 < . . . < ik} and J = {j1 < . . . < jh} so that
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I ∪ (m+ J) = {i1 < . . . < ik < m+ j1 < . . . < m+ jh}. Then

s
(m+n)
I∪(m+J) = s(m+n)(k + h,m+ jh)s

(m+n)(k + h− 1, m+ jh−1) . . . s
(m+n)(k + 1, m+ j1) ·

· s(m+n)(k, ik)s
(m+n)(k − 1, ik−1) . . . s

(m+n)(1, i1)

(1), (2)
=

[
s(m+n)(k + h,m+ h)s(m+n)(m+ h,m+ jh)

]
·

·
[
s(m+n)(k + h− 1, m+ h− 1)s(m+n)(m+ h− 1, m+ jh−1)

]
· · ·

· · ·
[
s(m+n)(k + 1, m+ 1)s(m+n)(m+ 1, m+ j1)

]
·

·
[
s(m)(k, ik)⊗1(n)

][
s(m)(k − 1, ik−1)⊗1(n)

]
· · ·

[
s(m)(1, i1)⊗1(n)

]

Now notice that each of the factors

s(m+n)(k+h− 1, m+h− 1), s(m+n)(k+ h− 2, m+ h− 2), . . . , s(m+n)(k+1, m+1)

can be moved to the left past all the factors

s(m+n)(m+ h,m+ jh), s
(m+n)(m+ h− 1, m+ jh−1), . . . , s

(m+n)(m+ 2, m+ j2),

simply because of (A1): s(m+n)(k+h−1, m+h−1) only involves strands m+h−1

and lower, while s(m+n)(m + h,m + jh) only involves strands m + h and higher;
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similarly for the others. After performing this commutation we get that

s
(m+n)
I∪(m+J) =s

(m+n)(k + h,m+ h)s(m+n)(k + h− 1, m+ h− 1) . . . s(m+n)(k + 1, m+ 1)·

·s(m+n)(m+ h,m+ jh)s
(m+n)(m+ h− 1, m+ jh−1) . . . s

(m+n)(m+ 1, m+ j1)·

·s
(m)
I

⊗1(n)

(2), (3)
=

[
1(h−1)

⊗s(m+n−h+1)(k + 1, m+ 1)
][

1(h−2)
⊗s(m+n−h+1)(k + 1, m+ 1)⊗1

]
· · ·

· · ·
[
s(m+n−h+1)(k + 1, m+ 1)⊗1(h−1)

]
·

·
[
1(m)

⊗s(n)(h, jh)
][

1(m)
⊗s(n)(h− 1, jh−1)

]
· · ·

[
1(m)

⊗s(n)(1, j1)
]
· s

(m)
I

⊗1(n)

(10)
= s(m+n−h+1)(k + 1, m+ 1)〈h〉 · 1(m)

⊗s
(n)
J · s

(m)
I

⊗1(n)

(2), (3)
=

[
1(k)

⊗s(m−k+1)(1, m− k + 1)⊗1(n−h)
]〈h〉
· s

(m)
I

⊗s
(n)
J

(11)
= 1(k)

⊗s(m−k+1)(1, m− k + 1)〈h〉⊗1(n−h) · s
(m)
I

⊗s
(n)
J

(12)
= 1(k)

⊗βm−k,h⊗1(n−h) · s
(m)
I

⊗s
(n)
J .

Thus (*) holds and the proof is complete.

B.5 Natural and factorial braids

B.5.1 Definition

The q-analog of a natural number n is

[n] = 1 + q + q2 + . . .+ qn−1 .

For n ≥ 1, the natural braid [n] ∈ kBn is defined as

[n] =
n∑

i=1

s(n)(1, i) = 1 + s
(n)
1 + s

(n)
1 s

(n)
2 + . . .+ s

(n)
1 s

(n)
2 . . . s

(n)
n−1 ;

we also set [0] = 0 ∈ kB0.
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Notice that [n] = b
(n)
1 . Hence, as a particular case of Vandermonde’s formula

(15) we have:

[m+ n] = [m]⊗1(n) + s(m+n)(1, m+ 1) · 1(m)
⊗[n] ;

since βm,1 = s(m+1)(1, m+ 1).

While [1] = [̃1] = [1]∗ and [2] = [̃2] = [2]∗, we have

[3] = 1 + s
(3)
1 + s

(3)
1 s

(3)
2 , [̃3] = 1 + s

(3)
2 + s

(3)
2 s

(3)
1 and [3]∗ = 1 + s

(3)
1 + s

(3)
2 s

(3)
1 ;

thus b
(n)
i

∗
is not another binomial braid in general. However, it will turn out (18)

that the factorial braids are symmetric with respect to both ˜ and ∗.

The q-analog of the factorial number n! is

[n]! =
∑

σ∈Sn

qinv(σ) ;

where the inversion index of a permutation σ ∈ Sn is defined as

inv(σ) = #{(i, j) / i < j but σ(i) > σ(j)}.

The braid analog of this definition is as follows. First, for any σ ∈ Sn and

i = 1, . . . , n let

ri(σ) = #{j > i / σ(j) < σ(i)}.

Thus,

inv(σ) =
n∑

i=1

ri(σ) .

Notice that σ(i)− i ≤ ri(σ) ≤ σ(i)− 1 ∀ i, hence it makes sense to define a braid

s
(n)
σ ∈ Bn as

s(n)
σ = s(n)(σ(n)− rn(σ), n) · . . . · s(n)(σ(2)− r2(σ), 2) · s(n)(σ(1)− r1(σ), 1) .
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For instance if σ =
(

1 2 3 4
4 2 1 3

)
then

1

;;
;;

;;
;;

;

;;
;;

;;
;

2 3
--

-

--
--

--
--

--
--

4

wwwwwwwwwwwwwwwwwwwwwwww

s
(4)
σ =

1 2 3 4

------------

---

The picture of s
(n)
σ is obtained by drawing a straight line from 1 in the bottom to

σ(1) in the top, then under that a straight line from 2 to σ(2), etc.

In section B.5.3, other expressions for s
(n)
σ will be given.

Now, for every n ≥ 1 we define the factorial braid f (n) ∈ kBn as

f (n) =
∑

σ∈Sn

s(n)
σ ;

we also set f (0) = 1 ∈ kB0.

We next show that the factorial and natural braids are related by means of a

product formula, generalizing [n]! = [n][n − 1] · · · [2][1] for q-numbers. Variations

of this will follow after we study the effect of ˜ and ∗ on the s
(n)
σ ’s.

Proposition. For every n ≥ 1,

f (n) = 1(n−1)
⊗[1] · 1(n−2)

⊗[2] · . . . · 1⊗[n− 1] · [n] . (16)

Proof. We need to show that f (n) = 1⊗f (n−1) · [n] ∀ n ≥ 1.

Consider the bijection Sn−1 × {1, 2, . . . , n} → Sn, (σ, i) 7→ (1⊗σ)(1, 2, . . . , i).

(From τ := (1⊗σ)(1, 2, . . . , i) we recover i as τ−1(1) and then 1⊗σ as τ ·(1, 2, . . . , i)−1;

here 1⊗σ is such that (1⊗σ)(j) = σ(j − 1) + 1.) It suffices to show that

s(n)
τ = 1⊗s(n−1)

σ · s(n)(1, i) .
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Since τ =
(

1 ... i−1 i i+1 ... n
σ(1)+1 ... σ(i−1)+1 1 σ(i)+1 ... σ(n−1)+1

)
, we have that

rj(τ) =





rj−1(σ) if j = i+ 1, . . . , n,

0 if j = i,

rj(σ) + 1 if j = 1, . . . , i− 1.

.

Hence

s(n)
τ = s(n)(τ(n)− rn(τ), n) · . . . · s(n)(τ(i+ 1)− ri+1(τ), i+ 1) · s(n)(τ(i)− ri(τ), i)·

· s(n)(τ(i− 1)− ri−1(τ), i− 1) · . . . · s(n)(τ(1)− r1(τ), 1)

= s(n)(σ(n− 1) + 1− rn−1(σ), n) · . . . · s(n)(σ(i) + 1− ri(σ), i+ 1) · s(n)(1, i)·

· s(n)(σ(i− 1) + 1− ri−1(σ)− 1, i− 1) · . . . · s(n)(σ(1) + 1− r1(σ)− 1, 1)

(5)
= s(n)(σ(n− 1)− rn−1(σ) + 1, n− 1 + 1) · . . . · s(n)(σ(i)− ri(σ) + 1, i+ 1)·

· s(n)(σ(i− 1)− ri−1(σ) + 1, i− 1 + 1) · . . . · s(n)(σ(1)− r1(σ) + 1, 1 + 1)·

· s(n)(1, i)
(3)
= 1⊗s(n−1)

σ · s(n)(1, i)

and the proof is complete.

B.5.2 Symmetries of the factorial braids

To obtain the announced symmetry of the f (n)’s, we first describe a multiplicativity

property of the map ξ : Sn → Bn, σ 7→ s
(n)
σ . From its definition it is clear that ξ

is a section of the canonical projection Bn → Sn, and that ξ((i, i+ 1)) = s
(n)
i .1

Lemma. Let σ = σi1 · . . . · σil ∈ Sn be a reduced expression for σ as a product of

elementary transpositions σij = (ij, ij + 1). Then s
(n)
σ = s

(n)
i1
· . . . · s

(n)
il

.

1Lusztig [Lus,2.1.2] has considered sections of this sort for arbitrary Weyl groups W . From
lemma (B.5.2) it follows that ξ coincides with Lusztig’s section for W = Sn.

210



Proof. We are given that length(σ) = l, where the length of a permutation is the

minimum number of elementary transpositions required to write it as a product of

such. We will make use of the well-known fact that inv = length.

Clearly, it suffices to show that if σ = τ · (i, i+1) and length(σ) = length(τ)+1

then s
(n)
σ = s

(n)
τ ·s

(n)
i . In this case, σ =

(
1 ... i−1 i i+1 i+2 ... n

τ(1) ... τ(i−1) τ(i+1) τ(i) τ(i+2) ... τ(n)

)
. Hence

rj(σ) = rj(τ) ∀ j 6= i, i + 1. We claim that τ(i) < τ(i + 1). For if not, we would

have ri(σ) = ri+1(τ) and ri+1(σ) = ri(τ) − 1, from where length(σ) = inv(σ) =

∑n
j=1 rj(σ) = length(τ)−1, against our hypothesis. Thus τ(i) < τ(i+1), and then

ri(σ) = ri+1(τ) + 1 and ri+1(σ) = ri(τ). Hence,

s(n)
σ = s(n)(σ(n)− rn(σ), n) · . . . · s(n)(σ(1)− r1(σ), 1)

= s(n)(τ(n)− rn(τ), n) · . . . · s(n)(τ(i+ 2)− ri+2(τ), i+ 2)·

s(n)(τ(i)− ri(τ), i+ 1) · s(n)(τ(i+ 1)− ri+1(τ)− 1, i)·

s(n)(τ(i− 1)− ri−1(τ), i− 1) · . . . · s(n)(τ(1)− r1(τ), 1)

(5)
= s(n)(τ(n)− rn(τ), n) · . . . · s(n)(τ(i+ 2)− ri+2(τ), i+ 2)·

s(n)(τ(i+ 1)− ri+1(τ), i+ 1) · s(n)(τ(i)− ri(τ), i) · s
(n)
i ·

· s(n)(τ(i− 1)− ri−1(τ), i− 1) · . . . · s(n)(τ(1)− r1(τ), 1)

(A1)
= s(n)(τ(n)− rn(τ), n) · . . . · s(n)(τ(1)− r1(τ), 1) · s

(n)
i = s(n)

τ · s
(n)
i

and the proof is complete.
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Corollary.

s̃
(n)
σ = s

(n)
eσ , s(n)

σ

∗
= s

(n)
σ−1 , where σ̃(j) = n+ 1− σ(n+ 1− j) (17)

f (n) = f̃ (n) = f (n)∗ (18)

f (n) = 1(n−1)
⊗[1] · 1(n−2)

⊗[2] · . . . · 1⊗[n− 1] · [n] (19)

= [̃1]⊗1(n−1) · [̃2]⊗1(n−2) · . . . · ˜[n− 1]⊗1 · [̃n]

= [n]∗ · 1⊗[n− 1]∗ · . . . · 1(n−2)
⊗[2]∗ · 1(n−1)

⊗[1]∗

= [̃n]
∗
· ˜[n− 1]

∗
⊗1 · . . . · [̃2]

∗
⊗1(n−2) · [̃1]

∗
⊗1(n−1) .

Proof. To prove (17), it suffices by the lemma to check these equalities on the

elementary transpositions, since both˜and −1 preserve the length of a permutation.

But in this case they hold by definition of ˜ and ∗ for braids. Then (18) follows

by summing over all σ ∈ Sn, and the product formulas (19) follow from (16) and

(18).

B.5.3 Other expressions for s
(n)
σ .

For any σ ∈ Sn and i = 1, . . . , n let

ei(σ) = #{j ≤ i / σ(j) ≤ σ(i)}.

There is a simpler expression for s
(n)
σ in terms of the ei’s.

Proposition. For any σ ∈ Sn and i = 1, . . . , n, σ(i) = ri(σ) + ei(σ). Hence

s(n)
σ = s(n)(en(σ), n) · . . . · s(n)(e2(σ), 2) · s(n)(e1(σ), 1) . (20)
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Proof.

ri(σ) + ei(σ) = #{j > i / σ(j) < σ(i)} + #{j ≤ i / σ(j) ≤ σ(i)}

= #{j > i / σ(j) ≤ σ(i)}+ #{j ≤ i / σ(j) ≤ σ(i)}

= #{j/ σ(j) ≤ σ(i)} = #{j / σ(j) ∈ {1, 2, . . . , σ(i)} }

= σ(i) .

For completeness, we provide another expression for s
(n)
σ , this time in terms of

some partial inversion indices that are obtained by reading σ from right to left.

For any i = 1, . . . , n let

li(σ) = #{j < i / σ(j) > σ(i)}.

Proposition. For any σ ∈ Sn, s
(n)
σ =

s(n)(n, σ−1(n) + ln(σ
−1)) · . . . · s(n)(2, σ−1(2) + l2(σ

−1)) · s(n)(1, σ−1(1) + l1(σ
−1)).

Proof. Notice that ri(σ) = ln+1−i(σ̃) ∀ i = 1, . . . , n. Hence

s(n)
σ = s(n)(σ(n)− rn(σ), n) · . . . · s(n)(σ(1)− r1(σ), 1)

= s(n)(σ(n)− l1(σ̃), n) · . . . · s(n)(σ(1)− ln(σ̃), 1)

⇒ s̃
(n)
σ

∗

= ˜s(n)(σ(1)− ln(σ̃), 1)∗ · . . . · ˜s(n)(σ(n)− l1(σ̃), n)∗

(8)
= s(n)(n, n+ 1− σ(1) + ln(σ̃)) · . . . · s(n)(1, n+ 1− σ(n) + l1(σ̃))

= s(n)(n, σ̃(n) + ln(σ̃)) · . . . · s(n)(1, σ̃(1) + l1(σ̃))

(17)
⇒ s

(n)

eσ−1 = s(n)(n, σ̃(n) + ln(σ̃)) · . . . · s(n)(1, σ̃(1) + l1(σ̃)) .

Replacing σ by σ̃−1 yields the result.
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B.5.4 Factorial formulas for the binomial coefficients

Next, we present the analog of the well-known formula
[
n−i
j−i

][
n
i

]
=

[
j
i

][
n
j

]
for q-

binomials, from which the factorial formula will be deduced. We choose to provide

a bijective proof, even though a proof based on Pascal’s identity is possible and

shorter, in particular because it yields the stronger result (*) below.

Proposition. Whenever 0 ≤ i ≤ j ≤ n,

1(i)
⊗b

(n−i)
j−i · b

(n)
i = b

(j)
i ⊗1(n−j) · b

(n)
j (21)

Proof. Consider the map Sj(n)×Si(j)→ Sj−i(n− i)×Si(n), (A,B) 7→ (X, Y ), de-

fined as follows. First consider the unique order-preserving bijection k : {1, . . . , j} →

A and let Y = k(B) ∈ Si(n), then consider the unique order-preserving bijection

f : {1, . . . , n} \ Y → {1, . . . , n− i} and let X := f(A \ Y ) ∈ Sj−i(n− i).

Given (X, Y ) ∈ Sj−i(n − i) × Si(n) one recovers A = Y ∪ f−1(X) and B =

k−1(Y ); thus, (A,B) → (X, Y ) is a bijection, so to obtain the result it suffices to

prove that

1(i)
⊗s

(n−i)
X · s

(n)
Y = s

(j)
B

⊗1(n−j) · s
(n)
A . (*)

We start by examining the right hand side. Write A = {k1 < . . . < kj} ⊆

{1, . . . , n} and B = {h1 < . . . < hj} ⊆ {1, . . . , j}. Notice that then Y :=

{kh1, . . . , khi} ⊆ {1, . . . , n}.

For each r = 0, . . . , i let s
(n)
Ar

:=
∏

hr<z<hr+1
s(n)(z, kz). (This and all products

below are taken in the decreasing order: the index z decreases from left to right.

If the interval (hr, hr+1) is empty then we take s
(n)
Ar

= 1; also, we set h0 = 0 and

hi+1 = j + 1.) Then, by definition,

s
(n)
A =

∏

0<z<j+1

s(n)(z, kz) =

= s
(n)
Ai
· s(n)(hi, khi) · . . . · s

(n)
A2
· s(n)(h2, kh2) · s

(n)
A1
· s(n)(h1, kh1) · s

(n)
A0

.
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Hence

s
(j)
B

⊗1(n−j) · s
(n)
A = s

(n)
B s

(n)
A

= s(n)(i, hi) · . . . · s
(n)(2, h2) · s

(n)(1, h1)·

· s
(n)
Ai
· s(n)(hi, khi) · . . . · s

(n)
A2
· s(n)(h2, kh2) · s

(n)
A1
· s(n)(h1, kh1) · s

(n)
A0

.

In this expression, s(n)(1, h1) commutes with all the factors to its right until s
(n)
A1

,

including it, since these only involve strands h1+1 and higher. When placed there,

it joins s(n)(h1, kh1) to form s(n)(1, kh1), by (1). Similarly s(n)(2, h2) commutes past

s
(n)
A2

where it joins s(n)(h2, kh2) to become s(n)(2, kh2), and finally s(n)(i, hi) and

s(n)(hi, khi) become s(n)(i, khi). After this transformation we get

s
(j)
B

⊗1(n−j) · s
(n)
A = s

(n)
Ai
· s(n)(i, khi) · . . . · s

(n)
A2
· s(n)(2, kh2) · s

(n)
A1
· s(n)(1, kh1) · s

(n)
A0

.

Now notice that each factor in s
(n)
A0

is of the form s(n)(z, kz) with 1 ≤ z < h1, hence

by (5) and (3)

s(n)(1, kh1) · s
(n)
A0

= 1⊗s
(n−1)
A0

· s(n)(1, kh1) .

Similarly we can now commute s
(n)
A1
· 1⊗s

(n−1)
A0

past s(n)(2, kh2), using (5) and (3);

this factor becomes 1⊗s
(n)
A1
· 1(2)

⊗s
(n−1)
A0

when placed to the left of s(n)(2, kh2). After

doing this for each r = 0, . . . , i− 1 we get

s
(j)
B

⊗1(n−j) · s(n)
A = s

(n)
Ai
· 1⊗s

(n−1)
Ai−1

· . . . · 1(i−2)
⊗s

(n)
A2
· 1(i−1)

⊗s
(n)
A1
· 1(i)

⊗s
(n)
A0
·

· s(n)(i, khi) · . . . · s
(n)(2, kh2) · s

(n)(1, kh1)

=

i∏

r=0

1(i−r)
⊗s

(n−i+r)
Ar

· s
(n)
Y .

Thus, to obtain (*), we need to show that

1(i)
⊗s

(n−i)
X =

i∏

r=0

1(i−r)
⊗s

(n−i+r)
Ar

(**)

To this end, we describe f and X explicitly. By definition, f : {1, . . . , n} \

{kh1, . . . khi} → {1, . . . , n−i} is translation by −r on each open interval (khr , khr+1),
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for r = 0, . . . , i (where we set k0 = 0 and kj+1 = n+ 1). Then, since

A \ Y = k({1, . . . , j} \ {h1, . . . , hi}) =
i⋃

r=0

k((hr, hr+1)) ,

we have that

X = f(A \ Y ) =

i⋃

r=0

k((hr, hr+1))− r .

Thus, letting s
(n−i)
Xr

:=
∏

hr<z<hr+1
s(n−i)(z − r, kz − r), we have that s

(n−i)
X =

∏i
r=0 s

(n−i)
Xr

. But notice that

1(i)
⊗s

(n−i)
Xr

=
∏

hr<z<hr+1

1(i)
⊗s(n−i)(z − r, kz − r)

(3)
=

∏

hr<z<hr+1

s(n)(z + i− r, kz + i− r)

(3)
= 1(i−r)

⊗

∏

hr<z<hr+1

s(n−i+r)(z, kz) = 1(i−r)
⊗s

(n−i+r)
Ar

,

hence

1(i)
⊗s

(n−i)
X =

i∏

r=0

1(i)
⊗s

(n−i)
Xr

=
i∏

r=0

1(i−r)
⊗s

(n−i+r)
Ar

so (**) holds and the proof is complete.

We can now derive the braid analog of the usual expression for the binomial

coefficients in terms of factorials.

Corollary. Whenever 0 ≤ j ≤ n,

f (j)
⊗f (n−j) · b

(n)
j = f (n) . (22)

Proof. Formula (21) with i = 1 says

1⊗b
(n−1)
j−1 · [n] = [j]⊗1(n−j) · b

(n)
j .

Repeated use of this yields

1(j−1)
⊗[n− j + 1] · 1(j−2)

⊗[n− j + 2] · . . . · 1⊗[n− 1] · [n]

= 1(j−1)
⊗[1]⊗1(n−j) · 1(j−2)

⊗[2]⊗1(n−j) · . . . · 1⊗[j − 1]⊗1(n−j) · [j]⊗1(n−j) · b
(n)
j

(16)
= f (j)

⊗1(n−j) · b
(n)
j
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Multiplying both sides by 1(j)
⊗f (n−j) and using (16) we get the result.

It seems that in the course of the proof of (22) we obtained a stronger “simpli-

fied” formula; in fact this is equivalent to (22) since the braid group algebras do

not possess zero divisors 2.

Recall that the natural braids [j] are not -̃symmetric. However, an amusing

consequence of (21) is this (choosing n = j + 1, i = 1):

1⊗[̃j] · [j + 1] = [j]⊗1 · [̃j + 1] .

Thus this element is fixed by .̃

B.6 Rota’s binomial theorem, Cauchy’s identities and Möbius

inversion

B.6.1 The binomial theorem

The following remarkable q-binomial theorem is proven in [GR1]: if Pk(x,y) =

(x− y)(x− qy) . . . (x− qk−1y) then

Pn(x, z) =

n∑

k=0

[
n
k

]
Pk(x,y)Pn−k(y, z) ,

this is an identity in the ordinary polynomial ring k[x,y, z]. When q = 1 this

reduces to the familiar

(x− z)n =

n∑

k=0

[
n
k

]
(x− y)k(y − z)n−k .

We will generalize this result to the context of braids, and derive from it the

other results of the section.

2In fact, Bn is right-ordered by a recent result of Dehornoy [Deh], hence kBn does not possess
zero divisors nor non-trivial units by the results in chapter 13.1 of Passman’s book [Pas]. We
thank Dale Rolfsen for making us aware of this.
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We consider ordinary polynomial rings kBn[x1, . . . ,xr] over the non-commutative

ring kBn; thus, the variables commute among themselves and with the coefficients.

The embeddings

Bk → Bn, s 7→ s⊗1(n−k) and Bn−k → Bn, t 7→ 1(k)
⊗t

extend to embeddings

kBk[x1, . . . ,xr] → kBn[x1, . . . ,xr] and kBn−k[x1, . . . ,xr] → kBn[x1, . . . ,xr],

p 7→ p⊗1(n−k) q 7→ 1(k)
⊗q

where xi is sent to xi in both cases. The images of these maps commute elementwise

inside kBn[x1, . . . ,xr], so there is an induced map

kBk[x1, . . . ,xr]⊗kBn−k[x1, . . . ,xr]→ kBn[x1, . . . ,xr], p⊗q 7→ p⊗1(n−k) · 1(k)
⊗q .

We will write p⊗q for p⊗1(n−k) · 1(k)
⊗q.

For any k ≥ 1 let

Pk(x,y) = [x− s(k)(1, k)y] · [x− s(k)(1, k− 1)y] · . . . · [x− s(k)(1, 1)y] ∈ kBk[x,y] ;

and set P0(x,y) = 1 ∈ kB0.

Then, with the above convention, the binomial theorem is the following identity

in kBn[x,y, z]:

Proposition. For any n ≥ 0,

Pn(x, z) =

n∑

k=0

Pk(y, z)⊗Pn−k(x,y) · b
(n)
k . (23)

Proof. We do induction on n. For n = 0, 1 the statement is trivial. Assuming it
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true for n− 1 with n ≥ 2, we have

Pn(x, z) = [x− s(n)(1, n)z] · [Pn−1(x, z)⊗1]

= [x− s(n)(1, n)z] ·
n−1∑

k=0

[Pk(y, z)⊗Pn−1−k(x,y)⊗1] · [b
(n−1)
k

⊗1]

=

n−1∑

k=0

[x−s(n)(k+1, n)y+s(n)(k+1, n)y−s(n)(1, n)z] · [Pk(y, z)⊗Pn−1−k(x,y)⊗1]·

· [b
(n−1)
k

⊗1]

(A1), (1)
=

n−1∑

k=0

[Pk(y, z)⊗1(n−k)] · [x− s(n)(k + 1, n)y] · [1(k)
⊗Pn−1−k(x,y)⊗1]·

· [b
(n−1)
k

⊗1]+

+

n−1∑

k=0

[y− s(n)(1, k + 1)z] · [Pk(y, z)⊗1(n−k)] · s(n)(k + 1, n) · [1(k)
⊗Pn−1−k(x,y)⊗1]·

· [b
(n−1)
k

⊗1]

(3)
=

n−1∑

k=0

[Pk(y, z)⊗1(n−k)] ·
[
1(k)

⊗[x− s(n)(1, n− k)y][Pn−1−k(x,y)⊗1]
]
· [b

(n−1)
k

⊗1]+

+
n−1∑

k=0

[
[y − s(k+1)(1, k + 1)z]⊗1(n−k−1)

]
· [Pk(y, z)⊗1(n−k)] · s(n)(k + 1, n)·

· [1(k)
⊗Pn−1−k(x,y)⊗1] · [b

(n−1)
k

⊗1]

=

n−1∑

k=0

[Pk(y, z)⊗1(n−k)] · [1(k)
⊗Pn−k(x,y)] · [b

(n−1)
k

⊗1]+

+
n−1∑

k=0

[Pk+1(y, z)⊗1(n−k−1)] · s(n)(k + 1, n) · [1(k)
⊗Pn−1−k(x,y)⊗1] · [b(n−1)

k
⊗1] .
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Now we use (5) to commute s(n)(k + 1, n) past Pn−1−k(x,y) as follows:

s(n)(k + 1, n) · [1(k)
⊗Pn−1−k(x,y)⊗1]

= s(n)(k + 1, n) ·
[
1(k)

⊗[x− s(n−1−k)(1, n− 1− k)y] · . . . · [x− s(n−1−k)(1, 1)y]⊗1
]

(2), (3)
= s(n)(k + 1, n) · [x− s(n)(k + 1, n− 1)y] · . . . · [x− s(n)(k + 1, k + 1)y]

(5)
= [x− s(n)(k + 2, n)y] · . . . · [x− s(n)(k + 2, k + 2)y] · s(n)(k + 1, n)

(3)
=

[
1(k+1)

⊗[x− s(n−1−k)(1, n− k − 1)y] · . . . · [x− s(n−k−1)(1, 1)y]
]
· s(n)(k + 1, n)

= [1(k+1)
⊗Pn−k−1(x,y)] · s(n)(k + 1, n) .

Substituting this in the above expression for Pn we get

Pn(x, z) =

=

n−1∑

k=0

[Pk(y, z)⊗1(n−k)] · [1(k)
⊗Pn−k(x,y)] · [b

(n−1)
k

⊗1]+

+

n−1∑

k=0

[Pk+1(y, z)⊗1(n−k−1)] · [1(k+1)
⊗Pn−1−k(x,y)] · s(n)(k + 1, n) · [b

(n−1)
k

⊗1]

=

n−1∑

k=0

[Pk(y, z)⊗Pn−k(x,y)] · [b
(n−1)
k

⊗1]+

+

n∑

k=1

[Pk(y, z)⊗Pn−k(x,y)] · s(n)(k + 1, n) · [b
(n−1)
k

⊗1]

=
n∑

k=0

[Pk(y, z)⊗Pn−k(x,y)] · [b(n−1)
k

⊗1 + s(n)(k + 1, n) · b(n−1)
k

⊗1]

(14)
=

n∑

k=0

[Pk(y, z)⊗Pn−k(x,y)] · b
(n)
k .

B.6.2 Cauchy’s identities

These identities are attributed to Cauchy in [GR1]:

(x− 1)(x− q) . . . (x− qn−1) =
n∑

k=0

[
n
k

]
(−1)kq(

k
2)xn−k ,
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xn =
n∑

k=0

[
n
k

]
(x− 1)(x− q) . . . (x− qk−1) .

Just as in the q-case, its generalizations to braids are easily obtained from the

binomial theorem. In this context, it is natural to introduce the Möbius braid

µ(k) ∈ kBk as

µ(k) = (−1)kc(k)

where c(k) = s(k)(1, k)s(k)(1, k−1) . . . s(k)(1, 1) ∈ kBk is the twistor braid of section

B.2.2.

Corollary. For any n ≥ 0,

[x− s(n)(1, n)] · [x− s(n)(1, n− 1)] · . . . · [x− s(n)(1, 1)] =

n∑

k=0

µ(k)
⊗1(n−k) · b

(n)
k · x

n−k

(24)

xn=
n∑

k=0

[x− s(n)(k + 1, n)] · [x− s(n)(k + 1, n− 1)] · . . . · [x− s(n)(k + 1, k + 1)] · b
(n)
k .

(25)

Proof. Setting y = 0 and z = 1 in (23) we obtain (24); setting y = 1 and z = 0

we obtain (25). These evaluations are well-defined morphisms of algebras because

the evaluating points commute with the coefficients.

Möbius inversion formula will we deduced from the following two consequences

of Cauchy’s identities. Setting x = 1 in (24) we obtain

n∑

k=0

µ(k)
⊗1(n−k) · b

(n)
k = 0 ∀ n > 0, (26)

and setting x = 0 in (25) (or applying ˜ to (26))

n∑

k=0

1(k)
⊗µ(n−k) · b

(n)
k = 0 ∀ n > 0. (27)

Both of these reduce in the q-case to the well-known

n∑

k=0

(−1)kq(
k
2)

[
n
k

]
= 0 ∀ n > 0.
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Some other interesting consequences of Cauchy’s identities are obtained through

other evaluations; these all reduce to the same identity in the q-case, but are

distinct at the level of braids. To briefly discuss this situation, consider the poly-

nomial ring B[x] over a non-commutative ring B. For each b ∈ B there are two

natural evaluation maps B[x]→ B, according to whether we write the variable to

the right or left of the coefficients. More precisely, these are defined as

ǫrb : B[x]→ B, anx
n + . . .+ a1x + a0 7→ anb

n + . . .+ a1b+ a0

and

ǫlb : B[x]→ B, anx
n + . . .+ a1x + a0 7→ bnan + . . .+ ba1 + a0 .

These maps are not multiplicative in general; however, if h, f and g are polynomials

such that h = fg and b commutes with the coefficients of g, then ǫrb(h) = ǫrb(f)ǫrb(g).

Similarly, if b commutes with the coefficients of f then ǫlb(h) = ǫlb(f)ǫlb(g).

Consider B = kBn, f(x) = [x−s(n)(1, n)] · [x−s(n)(1, n−1)] · . . . · [x−s(n)(1, 3)]

and g(x) = [x− s(n)(1, 2)][x− s(n)(1, 1)]. Writing x to the right of the coefficients

and evaluating (24) at b = s(n)(1, 2) = s
(n)
1 we obtain

n∑

k=0

µ(k)
⊗1(n−k) · b(n)

k · (s
(n)
1 )n−k = 0 .

Similarly, letting f(x) = x−s(n)(1, n), g(x) = [x−s(n)(1, n−1)] · . . .· [x−s(n)(1, 1)],

writing x to the left and evaluating (24) at b = s(n)(1, n) we obtain
n∑

k=0

[
s(n)(1, n)

]n−k
· µ(k)

⊗1(n−k) · b
(n)
k = 0 .

B.6.3 Möbius inversion

A particular case of the general theory of Möbius inversion [Rot] is the following

q-numerical inversion formula: for any scalars a0, . . . , am, b0, . . . , bm,

bi =

i∑

j=0

[
i
j

]
ai−j ∀ i = 0, . . . , m ⇐⇒ ai =

i∑

j=0

(−1)jq(
j
2)

[
i
j

]
bi−j ∀ i = 0, . . . , m .

222



Its generalization is:

Proposition. Let x(i) and y(i) ∈ kBi be given braids for i = 0, . . . , m. Then

x(i) =

i∑

j=0

1(j)
⊗y(i−j) · b

(i)
j ∀ i = 0 . . .m ⇐⇒ y(i) =

i∑

j=0

µ(j)
⊗x(i−j) · b

(i)
j ∀ i = 0 . . .m .

(28)

Proof. (⇒)

i∑

j=0

µ(j)
⊗x(i−j) · b

(i)
j

(hyp.)
=

i∑

j=0

µ(j)
⊗

[ i−j∑

h=0

1(h)
⊗y(i−j−h) · b

(i−j)
h

]
· b

(i)
j

=
i∑

j=0

i−j∑

h=0

[
µ(j)

⊗1(h)
⊗y(i−j−h)

]
·
[
1(j)

⊗b
(i−j)
h

]
· b

(i)
j

(21)
=

i∑

j=0

i−j∑

h=0

[
µ(j)

⊗1(h)
⊗y(i−j−h)

]
·
[
b
(h+j)
j ⊗1(i−j−h)

]
· b

(i)
h+j

=

i∑

j=0

i−j∑

h=0

[
µ(j)

⊗1(i−j)
]
·
[
b
(h+j)
j ⊗y(i−j−h)

]
· b

(i)
h+j

(k := h+ j)
=

i∑

k=0

k∑

j=0

[
µ(j)

⊗1(i−j)
]
·
[
b
(k)
j ⊗y(i−k)

]
· b

(i)
k = y(i),

since by (24) all terms corresponding to k 6= 0 in the above sum vanish.

(⇐)

i∑

j=0

1(j)
⊗y(i−j) · b

(i)
j

(hyp.)
=

i∑

j=0

1(j)
⊗

[ i−j∑

h=0

µ(h)
⊗x(i−j−h) · b

(i−j)
h

]
· b

(i)
j

=

i∑

j=0

i−j∑

h=0

[
1(j)

⊗µ(h)
⊗x(i−j−h)

]
·
[
1(j)

⊗b
(i−j)
h

]
· b

(i)
j

(21)
=

i∑

j=0

i−j∑

h=0

[
1(j)

⊗µ(h)
⊗x(i−j−h)

]
·
[
b
(h+j)
j ⊗1(i−j−h)

]
· b

(i)
h+j

=
i∑

j=0

i−j∑

h=0

[[
1(j)

⊗µ(h)
]
· b

(h+j)
j

⊗x(i−j−h)

]
· b

(i)
h+j

(k := h+ j)
=

i∑

k=0

[ k∑

j=0

[
1(j)

⊗µ(k−j) · b(k)j

]
⊗x(i−k)

]
· b(i)k = x(i),

since by (25) all terms corresponding to k 6= 0 in the above sum vanish.
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B.7 Multinomial braids

B.7.1 Definition

For each n and r ∈ N let F(n, r) denote the set of all functions {1, . . . , n} →

{1, . . . , r}, and C(n, r) = {(η1, . . . , ηr) ∈ Nr / η1 + . . . + ηr = n}. A sequence

η ∈ C(n, r) is sometimes called a weak composition of n into r parts. For any

η ∈ C(n, r) let

S(η) = {f ∈ F(n, r) / #f−1(1) = η1,#f
−1(2) = η2, . . . ,#f

−1(r) = ηr}.

We usually write f =
(

1 2 3 4 5
2 1 1 3 2

)
to abbreviate that f : {1, 2, 3, 4, 5} → {1, 2, 3} is

f(1) = f(5) = 2, f(2) = f(3) = 1, f(4) = 3. One may think of the elements of

S(η) as permutations of the elements of {1, 2, . . . , r} with repetitions as specified

by η. For this reason the elements of S(η) are called permutations of the multiset

{1η1 , 2η2, . . . , rηr}.

There are canonical identifications S(1, 1, . . . , 1) = Sr (r ones) and (when r = 2)

S(i, n− i) = Si(n), f 7→ {j ∈ {1, 2, . . . , n} / f(j) = 1}.

Given η ∈ C(n, r), the corresponding q-multinomial coefficient is defined as

[
n
η

]
=

∑

f∈S(η)

qinv(f) ,

where the inversion index inv(f) is

inv(f) = #{(i, j) / 1 ≤ i < j ≤ n, f(i) > f(j)} .

To define its braid analog we proceed as follows. First, for any f ∈ F(n, r) and

i ∈ {1, 2, . . . , n}, set

ei(f) = #{j ≤ i / f(j) ≤ f(i)} .

Next, define s
(n)
f ∈ Bn as

s
(n)
f = s(n)(en(f), n) · . . . · s(n)(e2(f), 2) · s(n)(e1(f), 1) .
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Then, for any η ∈ C(n, r), define the multinomial braid m(η) ∈ kBn as

m(η) =
∑

f∈S(η)

s
(n)
f ;

and m(0,...,0) = 1 ∈ kB0.

A few remarks are in order. First, notice that for σ ∈ Sr = S(1, 1, . . . , 1) (r

ones), the definition of s
(n)
σ given here coincides with that of section B.5, because

of equation (20). Hence m(1,1,...,1) = f (r), the factorial braid.

Second, suppose r = 2, and let I ∈ Si(n) correspond to f ∈ S(i, n − i)

under the bijection described above: if I = {j1 < j2 < . . . < ji} then f =
(

1 ... j1 ... j2 ... ji ... n
2 ... 2 1 2 ... 2 1 2 ... 2 1 2 ... 2

)
.

Thus, ej(f) =





j if j /∈ I,

h if j = jh ∈ I

, from where s
(n)
f = s(n)(i, ji) · . . . · s

(n)(2, j2) ·

s(n)(1, j1) = s
(n)
I , and hence m(i,n−i) = b

(n)
i . Thus multinomial braids reduce to

binomial braids when r = 2.

Finally, let us check that in the one-dimensional representation defined by q

(section B.2.5), s
(n)
f acts as multiplication by qinv(f), and hence m(η) as

[
n
η

]
.

To this end, we introduce the η-shuffle σf ∈ Sn corresponding to f ∈ S(η) as

follows: on f−1(1), σf is the unique increasing bijection onto {1, . . . , η1}, similarly

on f−1(2) onto {η1 + 1, . . . , η1 + η2}, . . . , and on f−1(r) onto {η1 + . . . + ηr−1 +

1, . . . , η1 + . . .+ ηr}.

We also introduce the partial inversion index ri(f) = #{j > i / f(j) < f(i)},

extending the one already defined for permutations in section B.5. Notice that

inv(f) =
∑n

i=1 ri(f).

Lemma. For any f ∈ S(η) and i ∈ {1, 2, . . . , n}, ei(f) = ei(σf ) and ri(f) = ri(σf ).

Proof. From the definition of σf we see that:

For j ≤ i, σf (j) ≤ σf (i)⇔ f(j) ≤ f(i). From here, ei(f) = ei(σf).
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For j > i, σf (j) < σf (i)⇔ f(j) < f(i). From here, ri(f) = ri(σf ).

Now we can show that s
(n)
f acts as qinv(f), i.e. that the number of elementary

generators in s(n)(en(f), n)·. . .·s(n)(e2(f), 2)·s(n)(e1(f), 1) is inv(f). Recall (section

B.5.3) that for any σ ∈ Sn we have σ(i) = ri(σ) + ei(σ). Hence, σf (i) = ri(σf ) +

ei(σf ) = ri(f) + ei(f), from where

#generators in s
(n)
f =

n∑

i=1

i− ei(f) =

n∑

i=1

σf (i)− ei(f) =

n∑

i=1

ri(f) = inv(f),

as needed.

From the lemma we also deduce that s
(n)
f = s

(n)
σf , just comparing their defini-

tions. This shows that our multinomial braids coincide with those braids already

considered by Schauenburg in [Sch, definition 2.6]. Some of the identities we prove

here ((14), (22), and a particular case of (30)) are stated in that paper, altough

the connection to combinatorics is not pointed out.

B.7.2 Symmetry of the multinomial braids

Here we generalize the facts (13) and (18) that b̃
(n)
i = b

(n)
n−i and f̃ (n) = f (n). For

any η = (η1, η2, . . . , ηr), let η̃ = (ηr, . . . , η2, η1).

Proposition. For any η ∈ C(n, r), m̃(η) = m(η̃).

Proof. Consider the bijection F(n, r) → F(n, r), f → f̃ , where f̃(i) = r + 1 −

f(n + 1 − i). This clearly restricts to a bijection S(η) → S(η̃), so it is enough to

show that

s̃
(n)
f = s

(n)

f̃
∀ f ∈ S(η)

to obtain the result.

We have that

f̃−1(h) = n + 1− f−1(r + 1− h), ∀ h = 1, . . . , r,
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from where

σf̃ (i) = n + 1− σf (n+ 1− i) = σ̃f (i) ∀ i = 1, . . . , n,

and thus

s̃
(n)
f = s̃

(n)
σf

(17)
= s

(n)
fσf = s(n)

σ
f̃

= s
(n)

f̃

as needed.

B.7.3 Pascal’s identity for multinomial braids

Let C+(n, r) denote the set of strict compositions of n into r parts, i.e. those

sequences (η1, . . . , ηr) such that η1 + . . .+ ηr = n and ηi ∈ Z+ ∀ i = 1, . . . , r.

Pascal’s identity (14) is actually a particular case of the following identity for

multinomial braids.

Proposition. For any η ∈ C+(n, r),

m(η1,η2,...,ηr) = s(n)(η1, n) ·m(η1−1,η2,...,ηr)
⊗1 + s(n)(η1 + η2, n) ·m(η1,η2−1,...,ηr)

⊗1 + . . .

. . .+ s(n)(η1 + η2 + . . .+ ηr, n) ·m(η1,η2,...,ηr−1)
⊗1. (29)

Proof. Consider the bijection

r∐

i=1

S(η1, . . . , ηi − 1, . . . , ηr)→ S(η1, η2, . . . , ηr)

that sends f ∈ S(η1, . . . , ηi − 1, . . . , ηr) to g ∈ S(η1, η2, . . . , ηr) defined by

g(j) =





f(j) if j ∈ {1, 2, . . . , n− 1},

i if j = n.
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Clearly,

ej(g) =





ej(f) if j ∈ {1, 2, . . . , n− 1},

η1 + . . .+ ηi if j = n.

Hence s
(n)
g = s(n)(η1 + η2 + . . .+ ηi, n) · s

(f)
n−1⊗1. The result follows by summing over

all such f ′s.

B.7.4 Multinomials in terms of binomials and factorials

In this section we relate the multinomial braids to the binomials and factorials,

obtaining identities that generalize (21) and (22).

Proposition. Let (η1, . . . , ηr) ∈ C(n, r), s ≤ r, and n1 = η1 + . . . + ηs, n2 =

ηs+1 + . . .+ ηr. Then

m(η1,...,ηr) = m(η1,...,ηs)
⊗m(ηs+1,...,ηr) ·m(n1,n2) . (30)

Proof. Consider the bijection

S(η1, . . . , ηr)→ S(η1, . . . , ηs)× S(ηs+1, . . . , ηr)× S(n1, n2)

f 7→ (f1, f2, I)

defined as follows:

I = {j ∈ {1, . . . , n} / f(j) ≤ s} = {j1 < j2 < . . . < jn1} ∈ Sn1(n),

Ic = {k ∈ {1, . . . , n} / f(k) > s} = {k1 < k2 < . . . < kn2} ∈ Sn2(n),

f1 =
( 1 2 ... n1

f(j1) f(j2) ... f(jn1 )

)
∈ S(η1, . . . , ηs),

f2 =
( 1 2 ... n2

f(k1)−s f(k2)−s ... f(kn2 )−s

)
∈ S(ηs+1, . . . , ηr).

(Informally, f1 = f |I , f2 = f |Ic .)

It is enough to show that

s
(n)
f = s(f1)

n1
⊗s(f2)

n2
· s

(n)
I .
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We start by noting that for any j ∈ {1, . . . , n},

ej(f) = #{h ∈ {1, . . . , n} / h ≤ j and f(h) ≤ f(j)}

= #{h ∈ I / h ≤ j and f(h) ≤ f(j)}+ #{h ∈ Ic / h ≤ j and f(h) ≤ f(j)}.

Thus, if j = ji ∈ I,

ej(f) = #{h ∈ I / h ≤ j and f(h) ≤ f(j)} = ei(f1), (*)

while if j = ki ∈ I
c,

ej(f) = #{h ∈ I / h ≤ j}+ #{h ∈ Ic / h ≤ j and f(h) ≤ f(j)}

= #{1, 2, . . . , ki} −#{h ∈ Ic / h ≤ ki}+ ei(f2)

= ki − i+ ei(f2). (**)

Now,

s(f1)
n1

⊗s(f2)
n2
· s

(n)
I = 1(n1)

⊗s(f2)
n2
· s(f1)

n1
⊗1(n2) · s

(n)
I =

(2)
= 1(n1)

⊗s(f2)
n2
· s(n)(en1(f1), n1) · . . . · s

(n)(e2(f1), 2) · s(n)(e1(f1), 1)·

· s(n)(n1, jn1) · . . . · s
(n)(2, j2) · s

(n)(1, j1)

(A1), (1)
= 1(n1)

⊗s(f2)
n2
· s(n)(en1(f1), jn1) · . . . · s

(n)(e2(f1), j2) · s
(n)(e1(f1), j1)

(3)
= s(n)(n1 + en2(f2), n1 + n2) · s

(n)(n1 + e2(f2), n1 + 2) · s(n)(n1 + e1(f2), n1 + 1)·

· s(n)(en1(f1), jn1) · . . . · s
(n)(e2(f1), j2) · s

(n)(e1(f1), j1).

At this point there are two cases to distinguish, according to whether k1 = n1 + 1

or k1 ≤ n1 (notice that necessarily k1 ≤ n1 + 1, since k1 is the first element of Ic).

If k1 = n1 + 1 then necessarily ji = i and ki = n1 + i ∀ i, so

s(n)(n1 + ei(f2), n1 + i) = s(n)(ki − i+ ei(f2), n1 + i)
(∗∗)
=

= s(n)(eki(f), n1 + i) = s(n)(en1+i(f), n1 + i)
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and

s(n)(ei(f1), ji)
(∗)
= s(n)(eji(f1), ji) = s(n)(ei(f), i) .

Thus, in this case, all the factors in the above expression for s
(f1)
n1

⊗s
(f2)
n2 · s

(n)
I are

already in the “right order”:

s(f1)
n1

⊗s(f2)
n2
· s

(n)
I =

= s(n)(en1+n2(f), n1 + n2) · . . . · s
(n)(en1+1(f), n1 + 1)·

· s(n)(en1(f), n1) · . . . · s
(n)(e1(f), 1) = s

(n)
f ,

as needed.

The other case occurs when k1 ≤ n1. In this case jk1 is well-defined. We will

move s(n)(n1 + e1(f2), n1 + 1) to its right past the factors xi := s(n)(ei(f1), ji) from

i = n1 down to i = k1, using (5). We illustrate this process as follows:

s(n)(n1 + e1(f2), n1 + 1)
past xn1−−−−−→ s(n)(n1 − 1 + e1(f2), n1)

past xn1−1
−−−−−−→ . . .

past xi+1
−−−−−→

s(n)(i+ e1(f2), i+ 1)
past xi
−−−−→ s(n)(i− 1 + e1(f2), i)

past xi−1
−−−−−→ . . .

. . .
past xk1−−−−→ s(n)(k1 − 1 + e1(f2), k1)

(∗∗)
= s(n)(ek1(f), k1).

Before proceeding, we must check that the hypothesis of (5) hold, in order to

validate this commutation. In this situation those hypothesis are

ei(f1) ≤ i− 1 + e1(f2) and i ≤ ji − 1, ∀ i ∈ {k1, . . . , n1}.

The first inequality holds because, for any f and g, ei(f) ≤ i and e1(g) ≥ 1.

And the second one does too, for if not, we would have that ji ≤ i and hence

{j1, j2, . . . , ji} = {1, 2, . . . , i}. But since k1 ≤ i, this would imply that k1 ∈ I, a

contradiction. Thus the commutation process described above is valid.

Returning to the main argument, we next proceed similarly with the remaining

factors s(n)(n1 + e2(f2), n1 + 2), . . . , s(n)(n1 + en2(f2), n1 +n2), moving them to the
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right until they become s(n)(ek2(f), k2),. . . ,s
(n)(ekn2

(f), kn2). After this has been

done we are left with all the factors in the “right order”:

s(f1)
n1

⊗s(f2)
n2
· s

(n)
I =

= s(n)(en1+n2(f), n1 + n2) · . . . · s
(n)(en1+1(f), n1 + 1)·

· s(n)(en1(f), n1) · . . . · s
(n)(e1(f), 1) = s

(n)
f .

This completes the proof.

From (30) we can easily deduce expressions for the multinomial braids in terms

of binomials or factorials, that generalize well-known q-formulas.

Corollary.

m(η1,...,ηr) = (31)

= 1(η1+...+ηr−1)
⊗b(ηr)ηr · 1

(η1+...+ηr−2)
⊗b(ηr−1+ηr)
ηr−1

· . . . · 1(η1)
⊗b(η2+...+ηr)
η2

· b(η1+...+ηr)
η1

m(η1,...,ηr) = (32)

= b
(η1)
0 ⊗1(η2+...+ηr) · b(η1+η2)

η1
⊗1(η3+...+ηr) · . . . · b

(η1+...+ηr−1)
η1+...+ηr−2

⊗1(ηr) · b
(η1+...+ηr)
η1+...+ηr−1

f (η1)
⊗ . . .⊗f (ηr) ·m(η1,...,ηr) = f (η1+...+ηr) (33)

Proof. Choosing s = 1 in equation (30) we get

m(η1,...,ηr) = 1(η1)
⊗m(η2,...,ηr) · b(η1+...+ηr)

η1
.

From here (31) follows immediately by induction on r.

Similarly, (32) follows by induction on r from

m(η1,...,ηr) = m(η1,...,ηr−1)
⊗1(ηr) · b

(η1+...+ηr)
η1+...+ηr−1

,

which is the case s = r − 1 of (30).
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The remaining identity can also be obtained by induction on r, as follows:

f (η1)
⊗ . . .⊗f (ηr) ·m(η1,...,ηr)

(30)
=

=
[
f (η1)

⊗ . . .⊗f (ηs) ·m(η1,...,ηs)
]
⊗

[
f (ηs+1)

⊗ . . .⊗f (ηr) ·m(ηs+1,...,ηr)
]
·m(n1,n2)

(ind.hyp.)
=

= f (n1)
⊗f (n2) ·m(n1,n2)

(22)
= f (n).

B.7.5 Witt’s identity

The following identity for q-multinomials is a particular case of an identity that

holds for all finite reflection groups, sometimes known as Witt’s identity:

n∑

r=0

(−1)r
∑

η∈C+(n,r)

[
n
η

]
= (−1)nq(

n
2)

(this is [H, proposition 1.11] for the case of the reflection group Sn).

Recall that C+(n, r) denotes the set of strict compositions of n into r parts.

We should agree that C+(n, 0) =





∅ if n > 0,

{0} if n = 0

, and that m(0) = 1 ∈ B0.

Witt’s identity can be generalized to braids as follows.

Proposition. For every n ≥ 0,

n∑

r=0

(−1)r
∑

η∈C+(n,r)

m(η) = µ(n) . (34)

Proof. We do induction on n. For n = 0 the statement is obvious. Assume n ≥ 1.

Consider the decomposition

n−1∐

k=0

C+(k, r − 1)
∼=
−→ C+(n, r), (η1, . . . , ηr−1) 7→ (η1, . . . , ηr−1, n− k).

Recall that, by (32), for any η ∈ C+(k, r − 1) we have

m(η,n−k) = m(η)
⊗1(n−k) · b

(n)
k .
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Hence

∑

η∈C+(n,r)

m(η) =

n−1∑

k=0

∑

η∈C+(k,r−1)

m(η,n−k) =

n−1∑

k=0

∑

η∈C+(k,r−1)

m(η)
⊗1(n−k) · b

(n)
k . (*)

Thus,

n∑

r=0

(−1)r
∑

η∈C+(n,r)

m(η) (n > 0)
=

=
n∑

r=1

(−1)r
∑

η∈C+(n,r)

m(η) (∗)=
n−1∑

k=0

[
n∑

r=1

(−1)r
∑

η∈C+(k,r−1)

m(η)

]
⊗1(n−k) · b

(n)
k

= −
n−1∑

k=0

[
n−1∑

s=0

(−1)s
∑

η∈C+(k,r−1)

m(η)

]
⊗1(n−k) · b

(n)
k

(ind.hyp.)
= −

n−1∑

k=0

µ(k)
⊗1(n−k) · b

(n)
k

(26)
= µ(n) .

B.8 Galois, Fibonacci and Catalan braids

The q-numbers

Gn =

n∑

k=0

[
n
k

]

are studied in [GR2], where they are called the Galois numbers. They satisfy the

following recurrence, that when q = 1 simply says that Gn = 2n:

Gn+1 = 2Gn + (qn − 1)Gn−1 .

One may define Galois braids G(n) ∈ kBn as

G(n) =

n∑

k=0

b
(n)
k ;

then one easily obtains the following generalization of the recurrence above:

G(n+1) = G(n)
⊗1 + 1⊗G(n)+

+

n∑

k=0

s(n+1)(1, k + 1)∗s(n+1)(k + 1, n+ 1) · 1⊗b
(k−1)
n−1 ⊗1− 1⊗G(n−1)

⊗1 .
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Alternatively, one can define Galois braids g(n) ∈ kBn as follows:

g(n) =

n∑

k=0

c(k)⊗1(n−k) · b
(n)
k ;

these braids satisfy the simpler formula:

g(n) = [1 + s(n)(1, n)] · [1 + s(n)(1, n− 1)] · . . . · [1 + s(n)(1, 2)] · [1 + s(n)(1, 1)] ,

in fact, this is just the binomial theorem (23) at x = 1, y = 0, z = −1.

These Galois braids g(n) specialize to Galois numbers

gn =
n∑

k=0

q(
k
2)

[
n
k

]

and the formula above becomes

gn = (1 + qn−1) · (1 + qn−2) · . . . · (1 + q) · (1 + 1) .

The Fibonacci numbers Fn count the number of subsets of {1, 2, . . . , n} without

consecutive elements; one has Fn = Fn−1 + Fn−2. It is easy to obtain q-versions of

these numbers. More general braid analogs can be defined as follows. Let F(n, k)

denote the set of subsets of {1, 2, . . . , n} with k elements no two of which are

consecutive, and set

F
(n)
k =

∑

I∈F(n,k)

s
(n)
I ∈ kBn.

As for the Galois braids, we have two options for defining the Fibonacci braids

in terms of the F
(n)
k , according to whether we weight by the twistors c(k) or not.

As before, weighting leads to simpler identities. So we define the Fibonacci braids

F (n) ∈ kBn as

F (n) =
n∑

k=0

c(k)⊗1(n−k) · F
(n)
k .

The same bijection considered in the proof of Pascal’s identity (14) shows that

F
(n)
k = F

(n−1)
k

⊗1 + s(n)(k, n) · F
(n−2)
k−1

⊗1(2);
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from here it follows easily that

F (n) = F (n−1)
⊗1 + s(n)(1, n) · F (n−2)

⊗1(2) .

Thus these braids specialize to q-numbers Fn that satisfy

Fn = Fn−1 + qn−1Fn−2 .

The Catalan numbers Cn count the number of subsets I of {1, 2, . . . , 2n} sat-

isfying the following two conditions:

#I = n and for every j = 1, 2, . . . , 2n, #I ∩ {1, 2, . . . , j} ≥ #Ic ∩ {1, 2, . . . , j} .

Let C(n) denote the family of those subsets, and set

C(n) =
∑

I∈C(n)

s
(2n)
I ∈ kB2n.

It is easy to see from (*) in the proof of (13) that

C(n) = C̃(n) .

Similarly, from (*) in the proof of (15) one deduces that

C(n+1) =

n∑

k=0

1(k+1)
⊗βk+1,n−k⊗1(n−k) · 1⊗C(k)

⊗1⊗C(n−k) .

Thus these braids specialize to q-numbers Cn that satisfy

Cn+1 =
n∑

k=0

q(k+1)(n−k)CkCn−k .

These are the q-Catalan numbers of Carlitz and Riordan [CR].

B.9 Additional remarks

Further interesting combinatorial phenomena arises from the study of the behavior

of the various braid analogs on higher dimensional representations X of the braid
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groups. In particular, the determinants of b
(n)
i and f (n) on X⊗n seem to factor

in some rather remarkable ways, intimately related to the combinatorics of the

braid arrangement Ar−1 = {Hhk / 1 ≤ h < k ≤ r}, where Hhk = {(x1, . . . , xr) ∈

Rr / xh = xk}.

For instance, consider the representation constructed from a symmetric matrix

A = [ahk] of size r as in section 9.8 of the main body of the thesis. Thus, Bn

acts on X⊗n ∀ n ≥ 0, where X is a vector space with basis {x1, . . . , xr}. The

subspace Xr of X⊗r spanned by those tensors of the form xσ(1)⊗xσ(2)⊗ . . .⊗xσ(r),

where σ runs over Sr, is invariant under the action of Br. The matrix of f (r) :

Xr → Xr with respect to this basis turns out to be the same matrix that Varchenko

associates to the weighted hyperplane arrangement Ar−1 (weighted by the ahk’s)

[V]. A factorization formula for the determinant of the matrix of an arbitrary

weighted real hyperplane arrangement is obtained in that work. For the special

case of the braid arrangement, further factorization formulas seem to hold, not

only for the determinant of the factorial braid, but also for the binomials, and on

other invariant subspaces of X⊗n as well.

In particular, on the subspace Xh,k of X⊗(n+1) spanned by xh⊗x
⊗n
k and its per-

mutations, one can show that

det
(
b
(n+1)
1 |Xh,k

)
= (qahk+akh ; qakk)n[n]!qakk ,

where

(x; q)n = (1− x)(1− qx)(1− q2x) · · · (1− qn−1x) .

These questions will be the subject of future work.
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