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The relationship between cohomology and the quantization of certain coupling 
constants iu physics is discussed, A brief discussion ia given about the rcla~ 
Lions hip between cohomology and the SchrOdinger wavefunction in field theories 
with quantized coupling constants. 

Introduction 

The relationship between charge quantization and topology goes back to Dirac llJ. In 
recent years, a flurry of research has gone into elucidating the relationsl1ips among geometry, 
topology and quantum field theory. In particular, physicists have discovered that homotopy 
arguments are very useful in understanding quantization conditions. It is also possible to use 
cohomology arguments to obtain the same quantization conditions. These ideas have been 
discussed in detail in a paper I2J. In this talk I present a brief introduction to the subject. 
I will also discuss the classification o£ SdarOdinger wavefunctions in a quantum field theory. 
This seems to he intimately related to the Cech cohomology ideas used in the topological 
quantization arguments. The bulk o£ the wavefunct.ion study is still unpublished I3J. 

'J'here are three very familiar quantization conditions in quantum field theory: rnagnetic 
charge quantization ltJ, quantization l<tJ of the Yang-Mills mass term !SJ and the quantiza
tion I6J u£ the coupling o£ the \Vcss-Zumino Lagrangian I7J. Part of the Lagrangian for each 
o£ these theories can be interpreted as a differential form. TliC Lagrangian will be written 
as the sum o£ two terms C. = lo + 7' where T is the term of topological signilicance and 
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Co includes the kinetic energy terms and interactions which will not coucern us. The three 
"topological" Lagrangians for each of the theories are schematically presented in the table. 
The Lagrangians have the following in common: 

l. f..o is globally defined. 

2. T has special propert.ies: 

(a) T may be interpreted as a differential form. 

(b) Under an appropriate transformation T changes by a tot.al derivative ... 

(c) 7' is not. globally defined. 

The common properties of the topological part of the Lagrangian, denoted by T, willlc~ad 
to the topological quantization conditions. 

2 Dirac's Quantization Condition Revisited 

In this section, the familiar Dirac quantization condition is derived in a manner illus
trating Ccch cohomological concepts. We will use a generalization nf some ideas of Wu and 
Yang IBJ. The methods of this section extend to higher dimensional cases. 

Consider the motion o£ a point particle on a two dimensional sphere with a magnetic 
monopole residing at the center of the sphere. The clal:lsical Lagrangian for tl1is system is 

L=! (dx)" + _!_F F~"+A ~~ 
2 dt 4e2 ~v ~ tlt 

The term of interest for us is the coupling o£ the vector potential to the velocity of th~~ 
particle. This is the only term o£ topological interest and [or the remaining part. of this 
section we will completely disregard the kinetic energy terms. We would likE'. to view this 
term as the line integral of the one form A= A1,dx1-1 along the trajectory r nf the partidl·: 

/..A 
This would be fine except for the fact Lhat it is impossible to find a.n everywhere uon
singular vector potential over the eutire aphcte. Wu and Yang IBJ pointed out how t.o 
~This ahould remind the re;,der of tbc daaslcal mechaulu theorem abm1t the equivalence of l,i,grangians 
tlJat differ by a total time derivative. 
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Figure 1: The world line of the particle which begins at I and ends ftt F traverses two 
distinct coordinate patches. The point P is in the intersection of the two patches 

modify the Lagrangian to take this into account. Cover the sphere with a col1ection of open 
set.s U = {Ucr}. On each open set choose a vector potential one form Acr. The subscript a 
on Aa is not a Lorentz index and refers to the open cover: A,. = AaJ'dx~'. Consider the 
situation depicted in Figure l where one has a trajectory r that goes through a non-empty 
overlap Ua n UfJ. Let P be a point in the intersection. Naively one would write the vector 
potential contribution tc the &ction 88 (remember that we are concentrating only on the 
term of possible topological interest) 

lr = 1: A .. + hr Ap 

The problem with this definition is that it depends on the choice of the point P. To see this, 
consider another point Q in the overlap, conshuct lq and compute the difference lq - lr: 

lq- [p = - ~q {A.- Ap) 

We require knowledge of the gauge transformation on the overlap to evaluate the above. 
On each overlap it is necessary to specify a gauge transformation 1/Jap satisfying 

do/>.p =A.- Ap 

Note that -1/Ja(J = "'f'a· Using the gauge transformation properties we see that: 

lq - lp = o/>.p(P}- o/>.p(Q) 

In particular the quantity 1 = lq + 1/J .. ,(Q) is independent of the choice of point Q. More 
explicitly, I is given by 

l = 1: A.+ v•.p(Q) + /,Q Ap 

This is tire correct. form of the action which was given by Wu and Yang. It seems to be a 
bit mysterious but its significance is more discernible by thinking about quantum mechanics. 

Figure 2: A third coordinate patch is introduced. The points P and R do not have to he 
in the triple intersection 

According to the Feynman path integral formulation of quantum mechanics j9J, the ciTed. 
of 1\ vector potential on propagation is to multiply the amplitudes Ly the exponential uf 
the above equation. ThiN is simply seen to be the amplitude for propagation in pnkh Up, 
followed by a gauge transformation and terminating with the amplitude l.o propagate in the 
new gauge in patch u ... 

We now depart from the diRcUsRion of Wu and Yang and we ask the question, "What. 
happens in a triple overlap?". The situRtion is depicted in Figure 2. Let us temporarily 
forget U1 . The action is given by the Wu· Yang prescription. Rcmemb{'r that Uw value 
of the action is independent of the location of Q. Let us rewrite this term in such a way 
that contribution to the line integral from the part of the trajectory betwee:n P and R 
is expressed in terms of A'Y only. By using the gauge transformation law for the vector 
potential the action may be rewritten as: 

l = 1: A.+ of>.,(R} + ~R A"+ V'"p(/'} +/,PAp 

+ ( v•.,(QJ + "''"!QJ + "'"·<QJ) 
(I) 

This equation is reminiscent of the Wu- Yang prescription. It is of t.hc form lirw inte~ral, 
gauge transformation,line integral, gauge transformation, line integral, and alert ovN pirrf'. 
IL is important to note tlrat t.he left over piece contains the only rdcrcnce to the point Q. 
The other pieces are just the Wu- Yang prescription for going from patc:lr lfp to patch U.., 
and ending in patch U ... We will see that the lert over piece cout.ains all the information 
required to obtain Dirac'A quantization condition. 

The first piece of information we need is that the gauge transfornrat.ions must sal.isfy a 



consistency condition on triple overlaps. Consider the following three equations: 

A,. ~ A~J = dt/J..-(J 

Ap- A,= d,Pp, 
A1 ~ A(ll = dljJ1(ll 

Add all three equations to obtain the result 

d(op.p + ,Pp, + .p,.) = 0 

To proceed further we need a special condition on the cover we chose for the sphere. It 
is possible to choose a cover such that each U6 is diffeomorphic to an open ball, and each 
non·empty finite multiple intersect.ion is also di£feomorphic to an open ballllOJ.This means 
that the Poincare lemma is valid in each multiple intersection. In particular, we reach the 
conclusion that on U,. n U ft n U'l one has 

t/Jili/J + 1/JiJ'J + 1/J'lo = Caft'J 

where c0ft'l is a constant over the entire triple overlap. Therefore equation (1) is independent 
of Q as required. 

There is an important lesson that this exercise teaches us. The classical action is am

biguous up to a constant. A priori, one could use the Wu-Yang prescription to write an 
expression involving patches U,. and U11 only, or write an expression involving patches U00 

Up, U'l. The di£ference between these two expressions is a constant which does not affect 
the classical equations of motion. 

This classical ambiguity leads to quantum mechanical inconsistencies unlesa certain 
conditions are imposed on the collection of all {c(llp..,}, The best way to see this is through 
path integral quantization. Consider the contribution of a trajectory r to the non-relativistic 
propagator: 

exp (; [ A) . K free(!') 

The only ambiguity arises in how one decides to evaluate the vector potential line integral. 

There is an ambiguous phase factor of exp(ic(llp1 }. Such a potential ambiguity exists at each 
non~empty triple intersection of patches on the sphere. The only way to avoid this mishap is 
to require that each phase factor be equal to one. In other words one has to choose all clll/h 
to be 211' x (integer). Later we will see that this statement contains topological information 
about the manifold. It states that if the manifold's second cohomology class contaius the 
integers then a consistent quantum theory requires an appropriat.e coupling constant to be 
quantized. In £act, the collection (caft-"1} defines a two cocycle. 

The Dirac flux quantization condition is related to the two cocycle { clll/h}. With 11 little 
work one can see that the total magnetic Dux is given by 

{ F = L: c.p, fs, v<>,l 

where the sum is over all triple overlaps with V0 p1 = U(ll n Up n u,., n S 2 . We conclude that 
the total Dux is given by 

f F=h L: n.p, 
fs, Yofll 

where the integer n is given by 

Cofh = 211" nlllp1 

This is Dirac's quantization condition. We shall see that this condition generalizes in higher 
dimensions. Note that the quantization arose because of consistency conditions on t.riple 
overlaps of the different coordinate patches. There is a connection between the ambiguit.y 
in the claa.<iical action and the total Rux through the sphere. In the case of a sphere, the 
construction given above is not necessary since one can cover •.he sphere with two coordinate 
patches, see Wu and Yang ISJ. The above construction is valid for any manifold. 

In this example, one finds that no further conditions are imposed by looking at quadruple! 
or higher overlaps. This is not true in two dimensional field theories as we wilt see in t.he 
next section. 

3 Cech Cohomology 

Cech cohomology is the correct language for formulating the examples prescuLed in the 
previous section. The machinery of Cech cohomology Jltovides a means of cataloguing the 
necessary information required to extract the physics. In this section we will explain the 
relationship of Cech cohomology to the topology of the manifold, and we will also explain 
the cataloguing procedure. We will not present Cech cohomology in its most abstract 
setting. 'fhe general theory will be stripped down to a level sufficient to attack and solve 
the problems addressed in this talk. We assume the reader is familiar with the elementary 
aspects of simplicial homology IHJ, ll2J. Namely, the concept of simplices, the existence 
of triangulations of a manifold, the notion of a chain (the formal sum of simplices), and 
the concept of the boundary of a chain. It is clear that the topology of the manifold will 
determine the allowed triangulations and that there are many possible triangulations. What 
is remarkable is that there are certain invariants which are independent of the triangulations. 
These invariants are the homology groups and their associated cohomology groups. 

We will formulate Cech homology in a way that the connection to simplicial homology 
will be explicit. In all the manifolds we will consider it is always possible to choose an 
open cover U = {Ua} such that each open set and each non-empty finite intersection is 
diffeomorphic to an open ball in R" llOJ. We will refer to these covers as good covers. 

At this stage we have already tailored Ccch theory to some specifics we require. A major 
benefit of a good cover is that on each intersection the Poincare lemma holds. 

On each non-empty finite intersection define objects U0 p1 U0 p-,, UafJ'"/6, etc. hy 

u ... tJ = u(llnup 

Uap"' = U(ll n Uft n U'l 

UaP'16 = Ua n Up n ll'l n U6 

We define a formal orientation by reqmnng that Uap = -Upa 1 and likewise for the other 
objects. This good cover of the manifold defines a simplicial triangulation of the mani£old. 
This is illustrated in l<'igure 3. In each open set U,. we choose a point in the interior, 
see Figure 3a . These points define the vertices of the triangulation. To each non-empty 
intersection we associate a one simplex, sec Figure 3b . To each non-empty triple intersection 
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Figure 3: a: an open set and its associated vertex. b: two intersecting open sets and the 
a..<~sociated segment. c: triply overlapping sets and the associated triangle. 

we a..ct.<~ociate a two simplex, see Figure 3c. It i9 clear that the comhinatorics of a good cover 
defines a simplicial triangulation of the manifold. 

Our main interest is not Cech homology theory but Cech cohomology theory, For our 
purposes, Cech cohomology provides a systematic way of cataloguing information and a 
systematic way of dealing with singular fields configurations by avoiding the singularities. 
We will sec how the ideas discussed in the previous sections may be discussed in the language 
of Cech cohomology. 

A p-cochain with valucs in q-forms is an 888ignment of a nonsingular q~furm to each 
p.chain. As an example consider the monopole. In that case we assigned to each open 
set Ua a vector potential A,.. The collection {A,.} is a zero cochain with values in one 
forms. We required that on Ua the vcdor potential Aa be nonsingular. A,. may be singular 
somewhere outside of Ua. This singularity is the famous Dirac string singularity. The 
collection of gauge transrormation { t/Ja,B} defines a one cochain with values in the zero 
forms. 

Let us try to answer the following question, "When does a zero cochain define a global 
differential form?" Consider a zero cochain (..\0 }. The zero cochain specifies a q-forrn on 
each open set in the cover. Assume U,.fJ f 0, then on the overlap Ufl,fl one must. have 
.\,. - ),,fl = 0. I£ not then .\0 will not extend to >..fl. One can define a global differential 
q-form )..flo&al if and only if{>..,. - Att} vanishes identically. In other words, P,,.} is a zero 
cocycle. This already gives us an inkling on what Cech theory will do for us. It will in 
certain situations allow us to piece local information into global information. We will see 
that Cech cohomology provides a systematic way for determining when local information 
can be pieced into less local information. 

The coboundary operator 6 is an operation between p-chains and (p+l)-chains. It is 

deli ned as follows for small values of p: 

6{A.) = {Aa- Ap) 

6{Bap) ~{Hap+ Bp" + D".} 

li{C,.,R..,} = {Ca/h + Cp..,6 + C..,6a -1- C6a.fl} 

The generalization to larger vnlucs of p is straighHorward. One can show t.hal. the cobonnd
ary operator satisfies f)l = 0. The nilpol.ency of 6 allows us to deliue a mhomology Lhenry. 
We define the p-cocycles as those p-cochains that. are annihilated hy fi. A p-cocych! z is said 
to be exact if one can lind a (p-1)-cochain y such that z = liy. 'fhc p-coboundarics arc t.he 
image of the (p-J )-enchains under fi. Since 6 is nilpotent, it follows that t.he p-cohoundnri('s 
are a subset of the p-cochains. Therefore it is possible to define coho111ology c.la~""'es by 
taking the quotient of the cocyclcs by the coboundaries. Since a cocycle is defined hy the 
condition liz = 0, the existence of non~trivial cohomology classes boils down to the ()HCstion 
of whether every cocycle is exact. The answer is provided by the existence of a l'oincarC 
lemma for the li operator. This lemma states that if p > 0 then the equation liz= 0 for a 
p-chain z can always be "solved"- Namely, there existB a (p-1)-cochnin y such Umt z ::.: l!y. 
This seems to say that the cohomology cla.'~ses arc trivial. This is true except for a nweat 
which is related to the construction of yin the proof of the Poincare lemma. Tl1is cav('at will 
be used to consl.uct nontrivial cohomology ciMses called Cech cohomology clm;sf's. We will 
pot'ltpone the caveat untill&.ter. The p=O ca..<~e is the statement that a dosed zero cochnin 
defines a global differential form. 

The final piece offonmlliam we need is the tic-tac·toe box !toJ. We will he studying the 
so called dou6lt chain t:omplexu. These ideas are beAt explained by looking al. our mngneti<' 
monopole example. It will not be necessary to l:lSSUme that the electrically charg('d particle 
moves on the surface of a sphere. The configuration space for the trajectory of the parl.id£> 
may be any compact manifold without boundary. In the box below we have iucludcd the 
vector potentials and the transition functions. 

n' 
n' 
n' 1 {A.} 
1!"---L_ ____ {'tap_} ~~---
d 
6 -· c• c' c2 c3 

The rows corre!!pond to the degree of the dirfcrcntial form. The notation 0'1 stauds for tile 
q~forms. The columns correspond to the degree of the cochain. The no~.nt.iun CP Al.nucls for 
the p-cochains. The d operator moves us vertically a.nd the ~operator moves us horiwnl.nlly. 
Let us apply the d and the 6 operations to the Plcments in the above box. We can op('rate 
again with d and 6 and get zmo since these operators are nilpotent. Notice that one or the 
entries is Uw gauge transfonnntion law. Also, the operators d and 6 commute. 



n' 
n' 
n• 
n• 
-d 
5 ~ 

0 

{dA.) 
{A.} 

c• 

0 

6{A) = {dif>) 
{if>.~} 

c• 

0 

5{V>.~L_Q_ 

C' c• 

Define quantities Fa by Fa= dAa, and Cap1 by S{!Jia,B} = {cap"l}. The above box thus 
becomes: 

n• 
n' 
n• 
n• 
T-f 
5 ~ 

0 
{F.} 
{A.} 

c• 

0 
5{A)= {dif>} 

{if>.~} 

c• 

0 
{c.p,) 

c' 

0 

c• 

We immediately learn that the F.-. is d~closed and it is also a zero S-cocycle. The means 
that Fa defines a closed global differential form F, the electromagnetic field strength two 
form. 

The other piece of information we learn from the tic-tac-toe box involves the {cap'l'}. 
These objects are d-closed and they define a two cocycle. Since locally closed zero form is 
given by a constant, the {cap'l'} must define a two cocycle. All this information is shown in 
the box below. 

n' 0 0 

n' F {F.} 0 

n• {A.} 5{A) = {dif>) 0 

n• {'/',cl_____ _ _jc.p1}~~o~ 
d I {c.~,) 0 
5 -· co c• c• c• 

The main conclusion is that given a collection of vector potentials { Aa} and transition 
functions {,Po:rp}, the gauge transformation law SA= ,P, one can construct a closed global 
two form F and a locally constant two cocycle {c.-.p'l'}. Since F is closed and global, it is a 
representative of the second DeRham cohomology class. Note that we wrote F "outside" 
the tic-tac-toe box. The reason is that even though F is closed, the Poincare lemma is in 
general not valid globally. If something is outside the box then one has to be careful about 
applying Ll1e Poincare lemma. We are not allowing singular vector potentials as acceptable 
solutions. 

A similar thing bappens with the Poincare lemma for the {j operator. Note that the 
locally constant cocyde {cap'l'} is exact. It is the h of {.Pap}. In general the ,P's will not be 
constant. The question is whether on can find a solution to the equation Sc = 0 given by 
c = 5b where the {b.-.p} are constants. In general, such a solution does not exist. This is the 
caveat we previously mentioned. There is no Poincare lemma for the {j operator if one only 

uses locally constant enchains. This is analogous to not allowing singular differential forms 
in the Poincare lemma for the d operator. In analogy to the previous case we write the c 

cocycle "outside,. the box. One has to be careful in applying the Poincare lemma outside 
the box. The Cech cohomology classes arc defined by looking at locally constant cocycles 
and asking whether they are exact within the class of locally constant cocycles. The two 
cocycle c is a representative of the second Cech cohomology class of the manifold. There is 
an isomorphism between the DeRham cln:~ses aud the Cech classcs!toj. 

Remember that the total magnetic flux through the manifold was determined by Lhe 
{c,.p1 }. There several notes of interest. The total magnetic flux through the sphere was de
termined by conditions on triple overlaps. Quantum mechanics imposes a furt.her condition 
on the cocycle {cap'l'}. The c's must be 21f X (integer). This imposes a severe restrict.ion 
on the cohomology classes. The integers Z are a subset of the real numbers R. One can 
define objects {nap'l'} to be integer valued cochains instead of real valued cochains. Since 
the S Poincare lemma does not apply to real valued cochains then it certainly docs not 
apply to the integer valued cochains. Therefore, there will be non~trivial integer valued 
cohomology. These cohomology classes are called Ctch cohomology classes with iuteger c(l
efficients and they will be denoted by JJ~(M, Z). Quantum mechanics requires that the 
cocycle (cap--rf(2K)} must be integral. The existence of such a cocycle is determined by 
whether or not the manifold in question admits integral cocycles in its second Cech coho

mology class, i.e., Z c JJb(M, Z). The existence of such integral cocycles is determined hy 
the topology of the manifold. The magnetic flux will be quantized if the manifold admits a 
second cohomology class with integer coefficients that contains the integerc:. 

The situation becomes more intere~~ting when one looks at a two dimensional example. 
Assume one has a two dimensional non-linear sigma model given as a map ~ from a two 
dimensional spacetime S to a manifold M. For simplicity we takeS to be It x S 1 . Assume 
that part of the Lagrangian can be interpreted as the pull back of a two form on M. We 
will neglect completely the rest of the Lagrangian. Lagrangian will be taken to refer only 
to the term of possible topological significance. In analogy to the monopole example, the 
Lagrangian 1' might not be globally defined. Assume that there is a collection of locally 
defined two-forms {1'.:.}, one two-form for each open set in a good cover of M. Assume that 
on a non-empty intersection Ua n Up the respective Lagrangians differ by the differential of 
a one form JafJ: 

To:r- Tfl = dJap . 

Note that the collection or I~agrangians defines a. zero cocyde and the transition functions 
define a one cocycle. In the tic-tac-toe box below we have included the Lagrangian arul its 
gauge transformation proJlerties. 

n• 
O' 
n' I {T.) 
n• 
n• 
d-~~-' 

5 ~ co 

5{1~) = {dJ.~) 
{J.~) 

c• C2 cs C4 



First we record the consequence of multiple d and 6 opt>rationR. This is shown in the box 
below: 

n• 0 
n' {dT.) 0 
n' {T.) 6{T.) = {dJ.~) 0 
n' (.T.p) 6{J) 0 
n• 
d 
6 ~ I C" c' c' cs c4 

One of the pieces of information we have is that 6.1 is closed, d6J = 0. This follows from 
the commutativity of the two operations. The tic-tac-toe box automatically takes this into 
account. Since 6J is closed and since the cohomology i:<~ trivial, there must exist a two 
cochain K such that J is its differential. This is iiJUI'Itrated in the box below 

n• 0 
n' {dT.) 0 
n' {T.) 6(T.) = {dJ.p) 0 
n' {J.p) 6{J) 0 
n• {K) 

--;I 1 
6 ~ C" c' C' c• c• 

Applying the d and 6 information to the box above we find: 

n• 0 
n' {dT.) 0 
n' {T.) 6{T.) = (dJ.p) 0 
n' {J.p) 6(J) 0 
n• {K) 6{K) 0 
d 1 
6 ~ c• c' c' c' c• 

We learn that 6 K is a closed three-cocycle. This cocyde is represented by constant cocycle 
{en-p,6} = 61(. The other piece of information we need to know is that {d7'a} defines a 
dosed global differential form g. This is all depicted in the box below. 

n4 o 
n' 9 
n' 
n' 
n• 
d 
6 ~ 

0 
{d1'.) 
{T.) 

C" 

0 
6(T.) = {dJ.p) 

{J.p) 

c' 

0 
6{J) 
{K) 

c' 

0 
6(K) o 
rc~p;.s_J_o 

c 3 c• 

Figure 4: The evolution of R manifold with its npatial topology being a drde. The world 
sheet lies in two difltinct patches. It is subdivided into regions R<M and u, with thf' edge 
being EnP· 

Just as in the electromagnetk CMe, t.he LRgrangian and itR gauge trarmformntinn law 
determines a closed global differential form and a locally conRt.ant cocycle. IR there any 
significance to the K and c cochains in the above? What is the meaning of t.he global 
differential form 91 To see the meaning of these quantities on ha.'~ !.o go back an R('e w}mt 
is the analogue of the Wu- Yang prescription in the two dimensional c.a.<!C. 

It is possible to generalize the Wu- Yang construction to this situation. For simplicity, 
let us assume that the image of spacetime tP(S) lies entirely in the patches ffa and Uf! as 
depicted in Figure 4. By mimicking the Wu- Yang construction one can show that 

f. T.- f. J.p +f. 7~ 
R.. E,.fl Rfl 

is independent of where one chooses the boundary E01p. This prcscript.ion is actually in~ 
complete. We will have to do a further modification to reach a satisfactory nroswcr within 
the domain of classical field theory. 

We have to worry about what happenl'l in triple overlaps. The situation is dcpkt<'d in 
Figure 5. One has to see whether the introduction of the triple overlap introduces some Eafl 

dependence and a modification of the above is required. The modification is obtained by 
applying the ideas of Wu and Yang one more time. Dy using tire conditions on the ovcrhtps 
one can rewrite the previous equation M 

f. T.- f. 
R~ E,q 

la-,+1,, 1'-,- /, J"lfJ+ /,, 1~ 
R~ E~fl Rfl 

-f. {J.p + Jp, + J7.) 
En /I 

The form of the above is reminiscent of equation {1). Thc1·e is an ambiguity in the cla~<Jical 
action when one looks at triple overlaps. The above appears to depend on EctP· Previously 
we found that the ambiguity was a mnstant. Tn t.he present cMe we will have to work a 
little harder. 



Figure 5: The generalization of Figure 2 to one higher dimension. Note that Ra and RtJ 
have been subdivided into regions R~, R~ and n;. Also note the new edges. 

According to the tic-tac-toe box, on the triple overlaps there exist distinct functions 
K afJ'Y such that 

dKafh = Ja{J + Jp, + J'la 

The term involving EafJ may be rewritten as 

I dKafh = { KafJ'l = 0 
Eofl JaE.,tJ 

This vanishes since EafJ is boundary less. 

The triple overlaps introduce no ambiguiticR into the two dimensional field theory. This 
is unlike the electromagnetic example of Wu and Yang. We will see that a more careful 
analysis of triple overlaps requires some modifications of the Wu- Yang procedure. We 
must analyze a new feature of two dimensional field theories which is not present in the 
one dimensional example. A suitable modification of the Wu- Yang procedure will lead to 
conditions on quadruple overlaps. 

The new feature of the two dimensional field theory is the existence of Y junctions when 
one subdivides the image of S, sec Figure 6. The Wu- Yang prescription can be generalized 
in a simple manner to incorporate the physics o[ the Y junctions. The correct way to deflnc 
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Figure 6: The appearance of Y-junctions when one subdivides a two dimensional integration 
region into three distinct non-overlapping sets. 

the action in the case of Y junctions is 

I r.- I J., 
R,. E.,JJ 

+I Tp-· I 1
'' RJI EfJ'T 

+I 1;- I J,. 
Rl ET .. 

- K.p7 (P) 

We have used the notation of Figure 6. One can verify that a small movement of the Y 
junction leaves the value of the action invariant. This is the modification of the Wu- Yang 
prescription that is required. 

l..ct us now see what happens when one introduces a fourth patch, U5, as in Figure 7 
The above may be rewritten as 

I r. +I r, +I r, +I r, 
R!_ n~ R~ n& 

-I Ja5- I JfJ5 -I J,, 
E,., EJ!& ET& 

- K.-,(Qt) - K.p,(Q,)- Kp76(Q,) 

- (K.p,(P) + Kp7,(1') + K7,.(P) + K,.,(l')) 
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Figure 7: Introduction of a fourth coordinate patd1 into Figure 6. The R regions have been 
subdivided into R' regions. 

The b.st line is a constant (independent of P) since d6{K} = 0. We learn that just as in 
the electromagnetic case the cla.<Jsical action is defined up to an additive constant. A path 
integral quantization immediately tell us that a consistent quantum theory is only possible 
;r 

K.p,(P) + Kp,&(P) + K,,.(P) + K,.,(P) = 2<n.,,, 
where then's arc integers. ConditionR have to be imposed on quadruple overlAps. Namely, 
one has to be able to choose a collection of integers nafhl on any good cover of the manifold. 
The three cocycle {nap.,} is a representative of the third Cech cohomology class of the 
configurations space: H&(M, Z). 

Finally, we mention that there is an analogue of the magnetic field in this problem 
given by the closed global three form g. Thia three form is a representative of the third 
DeRham cohomology class of the manifold. If one calculates tl~e 'Hux' by integrating 9 over 
a boundaryless three dimensional region then one discovers that the total Hux is given by 
the sum of 2"1fnap..,6 over the patches that intersect the region of interest. 

These ideM generalize to higher dimensional lield theories. If the dimension of spaCI!time 
is d then the possibility of a topological Lagrangian with a quantized coupling is determined 
by whether or not the (d + 1) DeRham cohomology cla.<Js is non·hivial. Remember that 
thNe is an isomorphism between the DeRham classes and the Cech da..'lses. It is true that 
i£ the (d + 1) DeRham cohomology class vanishes then there is no topological quantization. 
The precise requirements for topological quantization of the Lagrangian require a ca.qe by 
case study. For example, if spacetime is the two sphere S 2 and if the configuration space 
M = 5 1 

X S 1 X S 1 then there is no quantization condition. The reason is subtle.(; TJ.e 
cohomology of M is the product of the cohomology of the respective circles. Therefore the 
third cohomology class of M is the product of the one class for each circle. The pullback of 

~I would Ilk.- to thank P. Glnsparg and E. Witten for diecuRalon!l on tllia point. 

each of these one classcs to ~pncetime 5 1 is 6 trivial form. For ~xnmplc, one would read1 a 
differ"'nt conclusion if spacetime is 8 1 X 8 1. 

4 Classification of Wavefunctions 

The classification of wavefunct.ions in a quantum field theory is not a well 11/lliNsl.ood 
subject. The problem is completely understood in quantum nlC!chanics. I believe that. one 
of the underlying difficulties involves the issue of locality in a quantum field thcor}'. Thi!! is 
inl.irnatdy related to the notion o( local cohomology. We use the standard physics couvenLion 
of writing the dimension of spacetime as (n + 1) where n is the spatial dim<'nsionality. 

The flpace of field configurations Cis given by: 

C = {It>: E -• M) , 

where E is the spatial manifold and M is the tlpace where the fields reside, i.e., t.he target 
space for the map. In the c.ase of quantum mechanics, a (0-1-1) dimensional fi£'ld theory, the 
space of field configurations is the same as M, the space where the fields reside. Naively, 
a SchrOdinger wavefunction 9i is a map that a.<~signs to each element tp(x) in C a complex 
number 9i I'P(x)J . More precisely, a wavefundion is a local section of aline bundle over the 
field configurations C. Since quantum mechanics requires a Hilbert space type of structure, 
the structure group of the liue bundle reduces to U(t.). There is a theorem IJOJ that states 
that over a sufficiently nice space the line bundlcs are ciMsificd by llf..(C,Z). ThiR may be 
seen by the following simple argument. Let {rio} be a cover for C. !,et {cxp(i~ap)} he the 
transitions functions6 that define the bundle: 

11'01 = exp(i€r.tp) ifln, 

where 'I' a and 'lip are local coordinates on the bundle over the corresponding roordinal.e 
patches. Consider what happens 8R one changes coordinates rrom pnkhes Ua to Ufl to U-, 
and back to Ua: 

o~>. = exp(ie.,) olip 

= exp(ie.p) exp(iep,) o~>, 
= exp(ie.,) exp(iep,) exp(ie,.J q,,.. 

One immediately concludes that 

€ap + ~,, + e.fl = 211"ttap., ' 

where then's arc integers. In fact, tfiC {nap.,) define n two cocycle. Jn condusiou 7 the tran
sition functions for the line bundle lead to a representative in the second Cech cnl1mnology 
class 1/f.(C,Z). Ir one puts a connection A on a line bundle over C then the M::cociat.ed 
magnetic field 8 =· dA when integrated over a two cyclr. will have a quantized flux which i'~ 
related to collection or int.egcrs in the Cech two cocycle.8 

~------~-~-~~---·-

6( will rl'fer to both e and lh exponential exp(ie) aa lhn tramlilion [unction. 

TThl!l ia valid only lr the !!pace C Ia auflldently nice. 
8M:•tlu•mallcally, the above may be aound bnt It might not hflce&~ar\ly have anything l<> do wil.h phy1<ic8. 



For example, in the (0 -t 1) dimensional case, the space C is the same as the target 
space M. Line bundles in quantum mechanics are characterized by lll:(M,Z). The associ
ated integral Cech cocyles represent the quantization of ordinary magnetic flux. 

The situation becomes much more interesting in the true field theory case. Note that the 
transition functions exp(i!ap) are completely arbitrary. They can be non-local functionals 
of the fields. From a physical standpoint, this seems to be too strong a requirement. For 
example, reasonable local changes of variables do nOt affect the S-matrix but nothing is 
guaranteed by a non-local change of variables. It is not clear to me whether such non-local 
transition functions are allowed by nature. This means that Jil:(C, Z) might not be the 
relevant object in the classification of the physical wavefunctions !3J. 

The notion of locality in cohomology theory has arisen in several different ways. There 
appear to be ways to define local colwmology rigorously It 3J. We will not worry about these 
technical details but just discuss the main ideas. Consider an abelian gauge theory in {3+ 1) 
dimensions with a left handed Weyl fermion. This theory ha.'i the standard chiral anomaly. 
Since 1r()(U(t)) = 0, there is no topological obstruction to defining the fermion determinant. 
There is a physical obstruction that is imposed by locality. Namely, the anomaly cannot be 
eliminated by the addition of local counter terms to the Lagrangian. A non-local counter 
term can be used to eliminate the abelian anomaly. 

Similar ideas enter in the discussion of the classification of wavefunctions. The relevant 
object for the claasification problem is probably not lll:(C,Z) but a "local" version of 
the second cohomology group. I conject.ure that in the type of theories discussed in this 
paper, the relevant local cohomology is closely related to H~~2(M, Z) where n is the spatial 
dimensionality. My argument is based on an analysis of the gauge transformation properties 
of the path integral. The path integral is a representation of the time evolution operator 
exp( ~it !f) where 11 is the Hamiltonian. For simplicity, I will discuss a (1 + 1) dimensional 
theory of the type discussed in Section 3. One begins with the initial wave function and 
one evolves it forward in time by using the path integral to compute the evolution kernel. 
The discussion of Section 3 explains how to write the the action in such a way that things 
are well defined. Consider a history where one begins in patch U{J with a wave function 
lfl,s. At timet, one goes to a patch Ua with wave function 'I' a, analogous to the situation 
depicted in Figure 8. The discussion of Section 3 may be interpreted as saying that at time 
t 1 we arc required to make a gauge transformation given by 

'~<a= exp (-; /. J.~) 'I<~, E.p 
where EafJ is a constant time surface. This situation is is very similar to the quantum 
mechanical example of Section 2. The only difference ha.<J to do with the transiLion function. 
In the quantum mechanics case the transition function tPafJ was a function oft and x only. 
In this case the transition function !a.8 is a local functional: 

!. J.~ . E.p 
This suggests that one has a line bundle over C with local tram1it.ion functions. The situation 
becomes more interesting when one looks at the Y junction case depicted in Figure 9. In 
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Figure 8; A gauge transformation from one patch to a second patch at time t 1 . The solid 
line denotes an equal time surface. 
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1.-'igure 9: Going from a single pa.Lch to a double patch at time t 1 • The equal time surface 
is the solid line. The two "fnture" patches arc separated by the dashed line. 

this case the correct transition function at Lime t 1 is given by: 

"'•+~ = exp ( -·; JE.p ]0~) cxp ( -;K.~, (P)) cxp (-;IE,, Jp,) "'~ , 

where '11,..+/J reflects the fact that the wavefunction for t > t 1 has to be specified in t.wo 
coordinate patches. Note that the above is local. If one now looks at sequential changes of 
patches one discovers the constraint on the third cohomology class of M. 

The following interesting question arises. One is constructing a line bundle over C using 
local transit.ion functions. What is a connection on this line bundle? My guess is that. the 
answer is related to the recent work of Wu and Zce ll4J. These authors point out that there 
is some type of abelian structure in certain intrinsically non-abelian problems. 
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