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Preface

In the past century there have been very great progresses in understanding the world
around us by means of the celebrated quantum field theory, an extremely powerful
tool which allow us to understand a large amount of different physical phenomena,
from elementary particle physics to condensed matter physics. Our ability to ex-
tract results from a quantum field theory mostly relies on perturbation theory. In this
framework the physical observables are usually evaluated as an expansion in pow-
ers of the coupling constant, i.e. a dimensionless parameter, g, which measures the
departure from a free field theory.

However, in the last decades the physical community has realised that nature
can not be analysed always by means of perturbation theory. Some of the most
known examples include quantum chromodynamics (QCD). The asymptotically-
free nature of QCD makes perturbation theory reliable at high energy. On the other
hand, at low energies, QCD becomes strongly coupled so that relevant phenomena
such as confinement and chiral symmetry breaking are non-perturbative in nature.
In the condensed matter framework the prototypical example is that of the high-
Tc superconductors, where strong coupling causes the physical behaviour of these
materials to abruptly deviate from the standard paradigm according to which we
understand normal metals in nature, the Fermi liquid theory.

In this direction, in recent times a mathematical tools developed in string theory,
the so called AdS/CFT correspondence (or gauge/gravity duality), has acquired a
prominent role in understanding general properties of strongly coupled systems.
The gauge/gravity duality provides the closest connection to date between string
theory and the observable world. At the same time, it makes a rich playground for
enhancing our theoretical understanding of strongly-interacting quantum systems,
gravity, and ultimately string theory itself. Even though it was born out of string
theory, in the past few years this duality has started a life of its own as an effective
description of strongly-interacting quantum systems. Such an effective description
forgets about the stringy origin of the duality and focuses on some of its properties
that are believed to be universal to many other strongly-interacting systems with or
without a stringy origin. Within this context, the duality has been used extensively to
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x Preface

describe phenomena similar to the ones encountered in QCD and in superconducting
materials.

The aim of this thesis is to discuss how the AdS/CFT correspondence could help
in getting some insight in the understanding of strongly coupled condensed matter
systems. In particular, in this treatise the holographic correspondence is used to try
to understand the peculiar properties of the high-Tc superconductors.

Since this is a line of research where techniques from very different fields of
physics come together, in order for this treatise to be self-consistent and comprehen-
sible a very huge introductory part is necessary. Consequently, the thesis is organised
in three separate parts. The first two part are introductory while Part 3 contains the
original result of the thesis.

In Part 1 the basic features of the high Tc superconductors are described. At first
we will analyse the experimental properties of these peculiar materials, focussing
in particular on the in-plane thermo-electric transport properties. At each step, the
differences between the behaviour of the strange metals and the Fermi liquid pre-
diction is remarked. In the last chapter we will focus on some theoretical attempts
introduced in the past to explain the exotic behaviour of these materials, focussing
in particular on the idea of the existence of a quantum critical point in their phase
diagram.

In Part 2 the AdS/CFT correspondence is introduced. These Part is constructed
in order to introduce the holographic correspondence as a series of computational
rules, the so called holographic dictionary. The knowledge and the comprehension
of the holographic dictionary is a necessary step in order to understand the discus-
sion of Part 3.

Part 3 contains the original results of the thesis. In particular, the thermo-electric
transport properties of a strongly coupled bi-dimensional plasma in presence of an
extrinsic mechanism of momentum dissipation are deeply analysed using hologra-
phy. The holographic results are compared with the phenomenology of the strange
metals. In the last Chapter the conclusion of the thesis and the physical implications
of these holographic toy models are discussed in details.



Part I
Condensed matter background





Chapter 1
Preamble: transport coefficients definition

In this manuscript we will analyse the thermo-electric transport properties of two-
dimensional condensed matter systems. Then, in order to fix the notations in this
brief preamble we will define the transport coefficients for the case at hand.

We will consider a two-dimensional system living in the plane x−y and, in some
cases, we will analyse also the effects due to an external magnetic field B applied in
the direction perpendicular to the x− y plane, z (see Figure 1).

We are interested in the response of the electrical current J and the heat current
Q to an applied electric field E and a temperature gradient ∇T . The electric field
can be applied by allowing for a weak spatial dependence in the chemical potential
µ (which is then, formally, the electrochemical potential) with qE = ∇µ (where q
is the charge of the excitations), while the temperature gradient describes a similar
weak spatial dependence in T . The transport coefficients are defined by the relation(

J
Q

)
=

(
σ̂ α̂

T α̂ ˆ̄κ

)(
E
−∇T

)
. (1.1)

In the presence of an external magnetic field B in the z-direction (see Figure 1) the
transport coefficients σ̂ , α̂ and ˆ̄κ are matrices, which, due to Onsager reciprocity,
assume the following form:

3



4 1 Preamble: transport coefficients definition

σ̂ = σxx1̂+σxyε̂ , (1.2)

where 1̂ is the identity, and ε̂ is the antisymmetric tensor εi j = −ε ji. σxx and σxy
describe the longitudinal and Hall conductivity, respectively. The resistivity ρ̂ is
defined as the inverse of the conductivity matrix, namely ρ̂ = σ̂−1. An analogous
form holds for the thermo-electric conductivity α̂ , which determines the Seebeck
coefficient S, namely:

S =
αxx

σxx
, (1.3)

as well as for the matrix ˆ̄κ which governs thermal transport in the absence of electric
fields. The latter applies to samples connected to conducting leads, allowing for a
stationary current flow. In contrast, the thermal conductivity, κ̂ , is defined as the heat
current response to −∇T in the absence of an electric current (electrically isolated
boundaries). It is given by

κ̂ = ˆ̄κ−T α̂ · σ̂−1 · α̂ . (1.4)

Finally, the Nernst response is defined as the electric field induced by a thermal
gradient in the absence of an electric current, and is given in linear response by the
relation E =−θ̂∇T , with

θ̂ =−σ̂
−1 · α̂ . (1.5)

With these definitions at hand, we are now ready to start the analysis of the ex-
otic and exciting properties of the cuprates superconductors, starting by understand
how they differ from the Fermi Liquid theory, which is the theoretical framework
according by which we comprehend the behaviour of most of metals and insulators
existing in nature.



Chapter 2
Standard metals and the Fermi liquid

One of the milestones and great results of the 20th century is Landau’s Fermi liquid
theory, which underlines our present understanding of the majority of the known
states of matter, like normal metals, semi-conductors, superconductors and super-
fluids. To better understand the differences between the predictions of this great
theory and the behaviour of the cuprate superconductors, strange states of matter
discovered since the early 80s, it is necessary to recall its basic properties in this
Introduction referring the reader interested in the technical aspects to Appendix A
or to standard condensed matter textbook (e. g. [1, 2]).

Let us start by recalling the basic properties of a system of free fermions in
a box, where the Pauli exclusion principle controls everything. The ground state
of this system is given by filling all the single-particle states inside a sphere (in
case of rotational symmetry) in momentum space with radius kF determined by the
density of fermions, and with all the state outside the sphere empty. The boundary
of this sphere is called the Fermi surface. The low-energy excitations of the system
are given by either filling state slightly outside the Fermi surface or removing a
fermion from a filled state slightly inside the Fermi surface, and are called particles
and holes respectively. These excitations are gapless and have linear dispersion (for
k− kF � kF ):

ε(k) =
k2

2m
−µ =

kF

2m
(k− kF)≡ vF(k− kF), (2.1)

where m is the mass of the fermions, µ ≡ k2
F

2m is the chemical potential, the quantity
vF ≡ kF

m is called the Fermi velocity and particles and holes are distinguished by
the sign of k− kF . Rephrasing the previous statements in a more formal language,
the existence of these kind of excitations manifests itself as a pole in the complex
frequency plane of the retarded Green’ function GR(ω,k) of the electron operator
ψ(ωk):

G0
R(ω,k)≡ 〈ψ(ω,k)ψ(0,0)〉= 1

ω− ε(k)+ i0+
, (2.2)

which describes the causal response if we add an electron to the system. Fourier
transforming the propagator (2.2) back in time we see that it describes, as it should,

5



6 2 Standard metals and the Fermi liquid

the propagation of a free particle of energy ε(k) (2.1):

G0
R(t,k) = i

√
2πθ(t)e−iε(k)t . (2.3)

The situation becomes complicated when interactions are turned on, since the no-
tion of single-particle state no longer makes sense. Even though one can expect that
the qualitative picture of the non-interacting gas should remain valid if the interac-
tions are weak, it is in principle not evident what should happen at strong coupling.

The basic assumption from which the phenomenological Landau theory starts is
that the above qualitative picture for non-interacting Fermi gas in fact persist for a
generic interacting fermionic system, also when the interactions between fermions
are strong. Specifically, the basic Landau’s starting assumptions are:

• The ground state of an interacting fermionic system is characterised by a Fermi
surface in momentum space at k = kF , defined as the locus of point in momentum
space where G−1

R (0,kF) = 0.
• Despite the, possibly strong, interactions among fundamental fermions, the low

energy excitations near the Fermi surface nevertheless behave like weakly inter-
acting particles and holes, called collectively quasi-particles. They have the same
charge as fundamental fermions and satisfy Fermi statistics. The dispersion of a
quasi-particle resembles (2.1) in the free theory but with m→ m∗, where m∗ can
be considered as an effective mass of the quasi-particle and is in general differ-
ent from the original fermion mass m, due to re normalization by many-body
interactions.

Given these basic assumptions, one has to verify that the theory is stable, namely
that, when the interactions between quasi-particles are switched on, the quasi-
particles life-time is long enough such that an approximate particle picture still
applies. Eventually, it can be proven that (see Appendix A) that, given a generic
local interaction between quasi-particles, the decay rate of a quasi-particle obeys

Γ ∼ ε2

µ
� ε . (2.4)

Thus, the despite potentially strong interactions, there is a region sufficiently near
to the Fermi surface, where quasi-particles have long life-time and an approximate
particle pictures still applies.

This implies that, near the Fermi surface, the retarded Green’s function for the
fermion operator should have the form:

GR(ω,k) =
Z

ω− vF(k− kF)+Σ(ω,k)
, (2.5)

where Z < 1 is the quasi-particle weight, which can be interpreted as the overlap
between the approximate one-particle state generated by acting with the electron
operator on the vacuum, and Σ(ω,k) is called the free energy. Finally, according to
(2.1), the free energy Σ has the property:
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ℑΣ(ω,k) =
iΓ
2
∼ iω2 . (2.6)

The concept of quasi-particle is extremely powerful, and makes it possible to de-
velop a general low energy theory, independently of the precise microscopic details
of the system.

Starting from the basic assumptions previously outlined, it is possible, introduc-
ing some phenomenological prescriptions, to derive the behaviour of the thermody-
namical quantities like the specific heat CV and the chemical potential µ , the entropy
s and the thermo-electric transport coefficients (see Appendix A for more details).

Regarding the thermodynamical quantities, considering only the quasi-particle
contribution we obtain:

CV = T
(

∂ s
∂T

)
V
= s = π2

3 N(0)k2
BT , (2.7)

µ(n,T ) = µ(n,0)− π2

4 kB

(
1
3 +

n
m∗

∂m∗
∂n

)
T 2

TF
. (2.8)

where kB is the Boltzmann constant, N(0) is the density of carriers at the Fermi
surface, n is the total density of quasi-particles and TF = k2

F/(2m∗kB) is the Fermi
temperature.

Actually, when we have to compare the theoretical predictions with experiments,
we have to keep in mind that the experimental results provide us not only the elec-
tronic contribution of the thermodynamical quantities (2.7), but the total contribu-
tion, which takes into account also the effect of lattice vibrations, i. e. phonons, and
defects. Since, as we will see in the next Section, it is not always an easy task to ex-
trapolate the electronic contribution from the experimental data, in this manuscript
we will try, when it is possible, to specify how the external degrees of freedom like
lattice vibrations and impurities modifies the properties of the electronic plasma. As
an example, regarding the specific heat CV , it is known [1] that the phonons contri-
bution to this quantity can be expanded in series of odd powers of the temperature
T , namely:

Cph = BphT 3 +EphT 5 + ... . (2.9)

Then, the total specific heat in a normal metal should scale as:

CV = γT +Cph . (2.10)

As regards the thermo-electric transport coefficients (see Chapter 1 for their defini-
tion), the relevant quantities in experiments are the electric resistivity ρ , the thermal
conductivity κ and the Seebeck coefficient S, which measure the voltage generated
due to the presence of an applied external thermal gradient. Keeping into account
the presence of phonons and defects, we find for these quantities the following be-
haviour:

where d is the number of spatial dimensions in the system. In deriving the previ-
ous temperature scalings we have taken into account four different kind of scatter-
ing processes: the electron-impurity scattering (subscript imp), the electron-electron
scattering (subscript ee), the electron-phonon scattering (subscript e-ph) and the
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low T , (T � TD) high T , (T � TD)

ρ Aimp +Be,eT 2 +Ce,phT d+2 Ae,phT

S DT +EphdT d De,phT +Fphd
1
T

κ Hee
1
T +LimpT +Ge,phT d−1 He,ph

Table 2.1 Transport coefficients temperature dependence predicted by the Fermi liquid theory.

phonon-drag mechanism (subscript phd), namely the process according to which
the heat transfer in the metal causes a flux of phonons which carries the electron
with it. This mechanism is relevant only when one considers the Seebeck effect S
and can be neglected in the analysis of the electric and thermal transport. In normal
metals, the phonon-phonon scattering process is sub-dominant with respect to the
previously outlined scattering mechanism and can be neglected in the analysis of
the thermoelectric transport coefficients (see Appendix A).

We have divided the whole temperature range into two intervals separated by the
Debye temperature TD. The coefficients in front of the powers of the temperature T
in Table 2, are constant which depends on the specific parameters of the metal un-
der consideration. In the region T � TD the electron-phonon scattering mechanism
largely dominates the transport. In the opposite regime, at very low T the scattering
mechanisms are dominated by the effect of impurities. However, in the transition
region between T ∼ 0 and T ∼ TD, since the scattering rate of the electron-phonon
processes decrease faster than that of electron-electron processes as the temperature
is decreased, there may be a region in which the transport properties are dominated
by the electron-electron interactions. In this region the resistivity of the Fermi liquid
scales as T 2. The T 2 scaling of the resistivity is considered a standard evidence of
the presence of the Fermi liquid in the experimental measurements (see Chapter 3).

Finally, let us make some comments about the celebrated Wiedemann-Franz law.
This law states that in a Fermi liquid where only to elastic scattering processes
occur, the ratio κ/(σT ) is constant in temperature and assumes the value L0 =

π2

3e2 .
In the analysis of Table 2, the scattering processes considered are all elastic with the
exception of the electron-phonon interaction, under which a fraction of the energy
of the quasi-particles is transferred to the lattice. This is definitely true in the low-
T region where, as one can see from the table, the Wiedemann-Franz law is not
satisfied. However, in the high-T regime the fraction of energy transferred to the
lattice is very small and also the electron-phonon scattering can be considered as
elastic. In this region the Wiedemann-Franz law holds exactly.



Chapter 3
The Fermi liquid breakdown: high-Tc
superconductivity

The Fermi liquid theory we have outlined in the previous Section has been tremen-
dously successful in explaining almost all metallic states in nature. However, for-
tunately nature hides always great surprises. In fact the first big breakdown of the
Fermi liquid came in the early 80s, with the discovery of the phenomenon of high-
temperature superconductivity [3].

Whereas “ordinary” or metallic superconductors usually have transition temper-
atures Tc below 30 K (which is the maximum critical temperature predicted by BCS
theory [4]), high-Tc superconductors have been observed with transition tempera-
tures as high as 138 K.

Moreover, in these peculiar materials both the transport properties of the non-
superconducting phase and the superconducting pairing mechanism differ signif-
icantly from whose predicted by the Fermi liquid and BCS theory (see [4] for a
theoretical review on BCS).

Until 2008, only certain compounds of copper and oxygen (so-called ”cuprates”)
were believed to have high-Tc superconductors properties, and the term high-
temperature superconductor was used interchangeably with cuprate superconductor
for compounds such as bismuth strontium calcium copper oxide (BSCCO) [6] yt-
trium barium copper oxide (YBCO) [7], lanthanum strontium copper oxide (LSCO)
and the mercury barium calcium copper oxide (HgBa2Ca2Cu3Ox) [8]. However,
several iron-based compounds (the iron pnictides) are now known to be supercon-
ducting at high temperatures [9, 11, 10].

Although the theoretical effort in explaining the mechanisms which govern the
physics of these materials has been remarkable, at present there is still no an ac-
cepted theory which describes the whole set of their peculiar properties.

This chapter is devoted to describe the experimental properties of these materials,
focusing particularly on the way in which the normal phase transport properties
differ from the Fermi liquid paradigm. 1

1 This is done in light of the holographic analysis of the normal phase transport properties which
is the central part of the manuscript.

9



10 3 The Fermi liquid breakdown: high-Tc superconductivity

Since the iron pnictides superconductors have been discovered in very recent
times we will focus basically on the cuprates, which are the best known materials
from the experimental point of view.

To have in mind the experimental properties of these materials is extremely im-
portant. In fact in the lack of a solid theoretical model it is fundamental to face with
the experimental data in order to try to develop a serious theoretical starting point.

3.1 Cuprates: crystalline structure and electronic properties

In this Section we briefly outline the basic crystalline structure of cuprate supercon-
ductors. This is far to be comprehensive. The main purpose of this brief introduction
is to make the reader familiar with the microscopic composition of the most popu-
lar of these materials, focussing the attention of the common features of these large
class of compound. In what follows, some standard concepts of Structure of matter,
like tight binding and crystalline unite cells appear. We refer the reader not familiar
with these concepts to standard condensed matter textbooks (see e. g. [5]).

All high-Tc superconductors share the following two elements: the CuO2 planes
that form single-layer or multilayer conducting blocks per unit cell, and the “charge
reservoirs” in between the CuO2 planes that are responsible for contributing either
electrons or holes to the CuO2 planes. The more layers of CuO2 the higher Tc.
This structure causes a large anisotropy in normal conducting and superconducting
properties, since electrical currents are carried by holes or electrons induced in the
oxygen sites of the CuO2 sheets.

The first superconductor found with Tc > 77 K (liquid nitrogen boiling point) is
yttrium barium copper oxide (YBa2Cu3O6+δ ); the proportions of the three differ-
ent metals in the YBa2Cu3O7 superconductor are in the mole ratio of 1 to 2 to 3
for yttrium to barium to copper, respectively. Thus, this particular superconductor
is often referred to as the 123 superconductor. The unit cell of YBa2Cu3O7 (see
Figure 3.1) consists of three pseudo-cubic elementary perovskite unit cells. Each
perovskite unit cell contains a Y or Ba atom at the center: Ba in the bottom unit
cell, Y in the middle one, and Ba in the top unit cell. Thus, Y and Ba are stacked
in the sequence [Ba-Y-Ba] along the c-axis. All corner sites of the unit cell are
occupied by Cu, which has two different coordinations, Cu(1) and Cu(2), with re-
spect to oxygen. There are four possible crystallographic sites for oxygen: O(1),
O(2), O(3) and O(4) [14]. The coordination polyhedra of Y and Ba with respect to
oxygen are different. The tripling of the perovskite unit cell leads to nine oxygen
atoms, whereas YBa2Cu3O7 has seven oxygen atoms and, therefore, is referred to
as an oxygen-deficient perovskite structure. The structure has a stacking of differ-
ent layers: (CuO)(BaO)(CuO2)(Y)(CuO2)(BaO)(CuO). One of the key feature of
the unit cell of YBa2Cu3O6+δ (YBCO) is the presence of two layers of CuO2. The
role of the Y plane is to serve as a spacer between two CuO2 planes. In YBCO, the
Cu-O chains are known to play an important role for superconductivity. Tc is maxi-
mal near 92 K when δ ∼ 0.85 and the structure is orthorhombic. Superconductivity
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Fig. 3.1 Crystal structures of four hole-doped cuprates. (A) The unit cells (total number of atoms,
individual versus pairs of CuO2 sheets, c-axis dimensions, etc.). (B) The universal building block
of the high-Tc cuprates is the CuO2 sheet. The most important electronic orbitals, Cu dx2−y2 and
O pσ , are shown. After [12].

disappears at δ ∼ 0.4, where the structural transformation of YBCO occurs from
orthorhombic to tetragonal [15].

The crystal structures of Bi-, Tl-, Hg- and La-based high-Tc superconductors
are very similar (see Figure 3.1) [16]. Like YBCO, the perovskite-type feature and
the presence of CuO2 layers also exist in these superconductors. However, unlike
YBCO, Cu-O chains are not present in these superconductors. Moreover, contrary to
the YBCO superconductor which, as previously said, has an orthorhombic structure,
the other high-Tc superconductors have a tetragonal structure.

The cuprates previously discussed are all hole-doped, namely the “charge reser-
voirs” in between the CuO2 contributes in adding holes to the CuO2 planes.
Although the majority of high-Tc superconductors are hole-doped compounds,
there are a small number that can be doped with electrons (see [13] for a re-
view on the topic). Along with the mostly commonly investigated compound
Nd2−xCexCuO4 (NCCO), most members of this material class have the chemical
formula RE2−xMxCuO4 where the lanthanide rare earth (RE) substitution is Pr, Nd,
Sm or Eu and M is Ce or Th. These are single-layer compounds which, unlike
their other brethren 214 hole-doped systems (for instance the T crystal structured
La2−xSrxCuO4±δ ), have a T 0 crystal structure that is characterized by a lack of
oxygen in the apical position (see Figure 3.2 left). 2

2 In what follow we will concentrate on the properties of the hole-doped cuprates.
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RE2-xCexCuO4 La2-xSrxCuO4
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Fig. 3.2 A comparison of the crystal structures of the electron-doped cuprate RE2xCexCuO4 and
of its closest hole-doped counterpart La2xSrxCuO4. Here RE is one of a number of rare earth
ions, including Nd, Pr, Sm, or Eu. One should note the different directions for the in-plane lattice
parameters with respect to the Cu-O bonds. After [13].

As already mentioned, the common feature of all this compound is the presence
of CuO2 planes in their crystalline structure (hence the name cuprates). Then, even
though no firm evidence has been provided, it is commonly believed that the su-
perconductivity phenomenon and all the peculiar properties of these materials are
due to the presence of these perovskite planes. The electronic structure of these
perovskite planes is sketched in Figure 3.3. Its highest partially-filled band has pre-
dominantly 3dx2−y2 and O2px,y character. The resulting planar energy dispersion can
be expressed in tight-binding representation as

ε(k) = ε0−2t (coskx + cosky)+4t ′ (coskx cosky)+4t ′′ (cos2kx + cos2ky) . (3.1)

At half-filling, with only nearest-neighbour (t) hopping, a diamond-like Fermi sur-
face is expected. Inclusion of next-nearest-neighbour (t) hopping leads to a more
rounded topology. The ratio t ′/t has been observed to be proportional to the crit-
ical temperature Tc in a large number of cuprates [18]. Low Tc cuprates like
La2xSrxCuO4 and Bi2Sr2xLaxCuO6 have a relatively low t ′/t, whilst those with
higher Tc values, such as Bi2Sr2CaCu2O8+δ , YBa2Cu3O6+δ and Tl2Ba2CuO6+δ ,
have much more rounded Fermi surface geometries characteristic of the higher t ′/t
values.
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Fig. 3.3 a) Schematic figure of the CuO2 plane showing the spin alignments of the Cu spins at half-
filling within the basal lane and the three principal hopping parameters t, t ′ and t ′′. b) Schematic
2D projection of the Fermi surface in La2xSrxCuO4 for doping level p=0.15 (t ′/t = 0.15) and 0.30
(t ′/t = 0.12). c) Similar projections for Tl2Ba2CuO6+δ for p = 0.15 (t ′/t = 0.22) and 0.30 (t ′/t =
0.22). In all cases, t ′′/t ′ = -0.5. After [17].

3.2 Cuprates: phase diagram

Since, as we have outlined in the previous Section, all the peculiar properties of the
cuprates superconductors are believed to be caused by the presence of the perovkite
planes, let us now analyse the in-plane phase diagram of these compounds. Basi-
cally, all the cuprates superconductors share the main features of the in-plane phase
diagram. In this Section we will review schematically these properties, postponing
a more precise characterization to the next Section, where the in-plane transport
properties will be analysed.

The phase diagram of the cuprates is extremely reach and depends essentially on
the temperature T and the doping concentration p (for hole-doped cuprates) or n
(for electron-doped cuprates).

In Figure 3.4 the schematic phase diagram for both electron and hole-doped
cuprate superconductor is plotted as a function of temperature and doping con-
centration. At zero doping, the electronic state of the parent compound is an anti-
ferromagnetic Mott insulating state for both the n-type (electron-doped) and the
p-type (hole-doped) cuprates. Strictly speaking however, the Hohenberg-Mermin-
Wagner theorem (see e.g. [5]) asserts that an ideal two-dimensional (2D) mag-
netic system with isotropic anti-ferromagnetic Heisenberg couplings would re-
main magnetically disordered at finite temperature. The finding of long-range anti-
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Fig. 3.4 Simplified doping dependent phase diagram of cuprate superconductors for both electron
(n) and hole (p) doping. The phases shown are the anti-ferromagnetic (AF) phase close to zero
doping, the superconducting phase (SC) around optimal doping, and the pseudo-gap phase. Doping
ranges possible for some common compounds are also shown. After [19].

ferromagnetic ordering in real systems can be reconciled with theory by relaxing
the strict 2D picture and incorporating three-dimensional (3D) anisotropic effects
[20, 21, 22, 23].

As holes are introduced to the CuO2 planes, the Néel temperature of the system
decreases rapidly upon doping and the commensurate anti-ferromagnetic (AFM)
long-range order disappears completely at around p ∼ 0.02. Above this doping
level, various types of spin fluctuations replace the original commensurate AFM or-
der and continue to survive in the superconducting phase. In La2−xSrxCuO4 (x = p
for the one-layer systems), static incommensurate spin fluctuations develop beyond
the Néel state and persist in the superconducting state, while in other compounds,
such as YBa2Cu3O6+δ , commensurate magnetic resonance modes and significant
dynamic spin fluctuations coexist with superconductivity in the under-doped and
optimally doped region. When hole-doping is further increased, superconductivity
sets in at p ∼ 0.05 and lasts up to p ∼ 0.25. Generally, the superconducting tran-
sition temperature Tc for copper-oxide superconductors has a parabolic dependence
on the concentration of charge carriers p with a maximum at an optimal doping popt
[24]. A universal formula for Tc(p) can be proposed:

Tc(p) = Tc,max
[
1−β (p− popt)

2] , (3.2)

where the parameters β and popt have the constant values, β = 82.6, popt =0.16 for
a large number of compounds [25].

There is general consensus that the pairing symmetry of the superconducting
order parameter of hole-doped cuprates is predominantly dx2−y2 -like in the under-
doped and optimally doped region [26, 27]. In the heavily over-doped limit, on the
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other hand, a significant s-wave component in addition to the dx2−y2 component
has been revealed [28]. In the normal state of the under-doped cuprates, various
phenomena associated with a partially suppressed density of states around the Fermi
level and an opening of the spectral gap in the spin and charge fluctuations have been
observed [29]. This state is termed as the pseudo-gap phase.

Near the optimal doping, the pseudo-gap phase crosses over to an anomalous
non-Fermi liquid region where the transport properties differ significantly from the
Fermi liquid paradigm (see the following Section). As we further increase the dop-
ing to the over-doped range, some aspects of conventional Fermi liquid physics are
eventually recovered.

Finally, let us make some comments on the phase-diagram of the electron doped
cuprates. Even though, as we have noted previously, the low doping region is char-
acterized by a Néel state as in the hole-doped compound, the phase diagram of the
electron-doped cuprates is not simply the specular reflection of the hole-doped one
(see Figure 3.4). Also about zero doping only an approximate symmetry exists be-
tween p- and n-type, as the anti-ferromagnetic phase is much more robust in the
electron-doped material and persists to much higher doping levels (see Figure 3.4).
Superconductivity occurs in a doping range that is almost five times narrower. In
addition, these two ground states occur in much closer proximity to each other and
may even coincide unlike in the hole-doped materials. Additionally, in contrast to
many p-type cuprates, it is found that in doped compounds spin fluctuations remain
commensurate. This asymmetry has tremendous consequences also in the transport
properties. In what follows we will concentrate on the properties of the hole-doped
cuprates referring to the literature for the electron-doped cuprates [13].

3.3 Cuprates: in-plane transport properties in the
non-superconducting phase

We have noted in the previous sections that the typical order of magnitude of the
critical temperature Tc of the superconducting phase transition is too high to be
explained with the standard BCS theory. This is the first hint that the microscopic
mechanisms that govern the behaviour of these materials must be different from that
described for the Fermi Liquid in Chapter 2. In this Section, we will analyse care-
fully the transport properties in the non-superconducting phase, the so called strange
metal phase. We will note that, even though the known thermodynamical properties
in this phase are still Fermi liquid-like [54, 55, 56], the transport properties devi-
ates significantly from the Fermi liquid prediction. Since it is commonly believed
that a comprehension of the transport properties in the non-superconducting phase
is mandatory in order to understand the pairing mechanism which generates super-
conductivity, from now on we will focus mainly on the strange properties of these
phase.

In particular, also the basic assumption of the Fermi liquid theory, namely the
existence of stable quasi-particles, has to be questioned in these materials. This can
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be seen by the analysis of the spectral electric conductivity σxx(ω). In the standard
Fermi liquid theory (see Appendix A), at low frequency this quantity has to follow
a Drude-like behaviour, namely:

σ(ω)' N(0)e2τ

m∗
1

1− iωτ
, (3.3)

where τ quasi-particle life-time which in the Fermi liquid scales as 1/T 2. As noted
in 2 this temperature scaling ensure the stability of the quasi-particle near the Fermi
surface and leads to the T 2 resistivity scaling which is characteristic of the Fermi
liquid.

Optical conductivity data extending to temperatures up to and beyond 300 K have
by now been collected on most cuprates (see [57, 58] for a review) and a generic
and rather striking behaviour seems to be emerging. This is illustrated in Figure
3.5 where σxx(ω) data for under-doped La1.9Sr0.1CuO4 are reproduced (without the
phonon peaks).

Fig. 3.5 Spectral conductivity σxx(ω) data for under-doped La1.9Sr0.1CuO4 at various temperature
T without the phonon peak. After [59].

At low T , σxx(ω) is dominated by a large Drude-like peak. As T increases, the
low-frequency feature initially broadens and σ(0) drops, thereby signalling an in-
crease in the quasi-particle scattering rate plus in some cases, a redistribution of the
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spectral weight. At a critical temperature Tcrit (' 400 K for La1.9Sr0.1CuO4) a sub-
tle but fundamental change in the charge dynamics is heralded by the flattening out
of σ(ω) in the low frequency limit at a corresponding value σcrit(0). Above Tcrit ,
the plateau in σ(ω) evolves into a dip in the far infra-red limit, the low-frequency
spectral weight being transferred to energies ω >W (' 1 eV).

The falloff of σxx(ω) in the Drude-like regime is significantly slower than is
prescribed by the Drude formula (3.3). As discussed in detail in [60], it is impossible
to fit the conductivity of the optimally doped cuprates with a simple Drude equation.
If the scattering rate in the Drude equation is set at a low value to reproduce the shape
of the low-frequency peak in σxx(ω), then the fit is completely wrong at higher
frequencies. If the width of the Drude peak is chosen to be anomalously broad in
accord with the behaviour of the conductivity at ω ' 600 cm−1, then the model
yields the wrong magnitude of low ω behaviour and reveals strong disagreement
with the DC conductivity.

The lack of a well defined Drude peak has led the physical community to think
that the quasi-particle picture breaks down in these material (see Chapter 4 for more
details). This fact is reflected in the other DC transport properties, which have a
singular behaviour which strongly deviates from the Fermi Liquid picture, as we
will illustrate in what follow.

3.3.1 Resistivity and Hall angle

In this Section we will review the basic known properties of the in-plane resistivity
ρxx(T ) (see Chapter 1) and the Hall angle cotθH defined as the ratio between the
electric conductivity and the Hall conductivity, namely cotθH ≡ σxx

σxy
.

Let us start from the resistivity. The temperature dependence of ρxx(T ) can be
very carefully characterized in terms of the doping level, as sketched in Figure 3.6.
In particular, as the reader will see by comparing the temperature dependence of
ρxx(T ) with those described for the Fermi liquid in Table 2, the T 2 scaling, which
is commonly considered as a distinguish feature of a Fermi liquid behaviour, is
recovered only in specific regions of the phase diagram.

In particular, in Figure 3.6 the solid lines are the phase boundaries between the
normal state and the superconducting or anti-ferromagnetic ground state, whilst the
dashed lines indicate crossover in the ρxx(T ) behaviours which can not be uniquely
associated with a fundamental change in the nature of the electronic states (no real
phase transitions). The optimal doping level is indicated by the vertical dotted line
corresponding to the pinnacle in the superconducting dome and the areas to the left
(right) of this lines are the under-doped (over-doped) regions of the phase diagram
respectively. In the under-doped regime, ρxx(T ) varies approximatively linear in
temperature at high T , but as the temperature is lowered it deviates downward from
linearity. This change of slope in ρ(T ) was initially interpreted as a “kink” in ρ(T )
at T = T ∗ (marked on the Figure) [30, 31]. Plots of the derivative dρ/dT showed
however that ρ(T ) in fact first deviates from linearity at a much higher T [32].



18 3 The Fermi liquid breakdown: high-Tc superconductivity

Fig. 3.6 Phase diagrams of the hole-doped cuprates. The different “phases” are mapped in terms
of the different temperature behaviours of the in-plane resistivity. After [17].

Moreover, in the vicinity of T , there is no additional feature in dρ/dT ; the change
of slope is a very gradual, continuous process with no clear evidence of a phase
transition below T ∗. In the more anisotropic cuprates such as LSCO [33] and Bi-
2212 [34], it has proven difficult to distinguish between deviations from linearity
due to genuine pseudo-gap effects and those due to para-conductivity fluctuations
near Tc. The dashed line depicting T in Figure 3.6 reflects this ill-defined nature.

At sufficiently low temperatures, ρ(T ) of under-doped cuprates develops an up-
turn, suggestive of some form of (as yet unidentified) electronic localization. This
upturn is characterized by a marked log(1/T ) dependence [35]. The critical doping
level pcrit at which these upturns occur differs amongst the various cuprate families
[36, 37].

Optimally-doped cuprates are characterized by a T -linear resistivity that survives
for all T > Tc. Despite the large variations in (optimal) Tc and in the crystallography
of individual cuprate families, T -linear resistivity is a universal feature at optimal
doping, confirming that it is intrinsic to the CuO2 planes. Moreover, the value of
ρxx at T = 300K normalized to a single CuO2 plane is largely independent of the
chemical composition of the charge transfer layers.

On the over-doped side, ρxx(T ) contains a significant supra-linear contribution
that can be interpreted either as a sum of two components, one T -linear, the other
quadratic, or a single power law T n where n varies smoothly from 1 at optimal
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doping to 2 at the superconducting transition boundary on the over-doped side
[38, 39, 40]. At sufficiently high T however, ρ(T ) becomes T -linear once more.
This crossover temperature [40] is marked in Figure 3.6 as a coherence temperature
Tcoh, in line with the suggestion from the ARPES community that the onset of T -
linear resistivity coincides with the loss of the quasi-particles (coherence) peak in
the energy dispersion curves [41].

The crossover to purely quadratic ρxx(T ), characteristic of a correlated Fermi
liquid, is only observed beyond the superconducting dome. The dashed line marked
TFL represents this crossover to strictly T 2 resistivity. However, in this region the
phenomenon of quantum oscillations [2], which is considered one of the fundamen-
tal evidence of a Fermi liquid behaviour, has never been measured.

Fig. 3.7 Left: The temperature dependence of the in-plane YBCO resistivity of single-crystal
doped with Zn. Right: Temperature dependence of the Hall angle cotθH vs T 2 for a series of
Zn-doped YBCO crystals. After [42].

In systems immersed in an external magnetic field, which is the common situ-
ation in measurements in cuprates, important physical quantities are the transverse
transport coefficients (see Chapter 1).

In all hole-type cuprates near optimal doping, the Hall resistivity ρxy, which mea-
sure the transverse electrical response to an external applied voltage, displays a
strong and complicated temperature dependence that persists to temperatures (T) as
high as 500 K [42, 43, 44, 45]. An important clue to the origin of this anomaly was
obtained by analysing the Hall angle cotθH rather than ρxy or the Hall conductivity
σxy. An investigation performed in [42] of how cotθH varies with T and (concen-
tration of Zn impurities cZn) in YBa2Cu3−xZnxO7−δ revealed that the complicated
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dependences of ρH on T and cZn simplify to the relationship

cotθH = αT 2 +βcZn . (3.4)

The Hall angle has been studied in La2SrCuO4 doped with 3d elements [43],
as well as in the two-chain superconductor YBa2CuO4 [44]. These studies confirm
that the cotθH vs T relationship is valid (up to 500 K in some cases). In some
cases, deviations from the T behaviour become significant in the under-doped or
over-doped regimes [45].

Finally, whilst the T 2 dependence of cotθH holds for a wide range of doping in
most cuprates, it is not the case for the Bi-based cuprates Bi2212 and Bi2201. In
these systems, the power exponent of cotθH is closer to 1.75 than 2 [46].

3.3.2 Magneto-resistance and the Koheler’s rule

According to Boltzmann transport theory (see Appendix A), the orbital transverse
magneto-resistance of a metal ∆ρ/ρ is proportional to the cyclotron frequency ωc =
eB/m∗ and to the quasi-particles life-time τ , namely

∆ρ/ρ ≡ ρxx(T,B)−ρxx(T,0)
ρ(T,0)

∝ (ωcτ) ∝ (Bτ)2 , (3.5)

If the only effect of a change in temperature or of a change in the purity of
the metal is to alter τ(k) to λτ(k) where λ is not a function of the momentum
k, then ∆ρ/ρ is unchanged if the magnetic field B is changed to B/λ . Thus the
product ∆ρρ (= ∆ρ/ρρ2

xx) is independent of τ and a plot of ∆ρ/ρ versus (B/ρ)2

is expected to fall on a straight line with a slope that is independent of T (provided
the carrier concentration remains constant).

This relation, known as Kohler’s rule, is obeyed in a large number of standard
metals, including those with two types of carriers, provided that changes in tem-
perature or purity simply alter τ by the same factor. In HTC however, conventional
Kohler’s rule is strongly violated; instead of the data collapsing onto a single curve,
there is a marked increase in the slope with decreasing temperature, as illustrated in
the left panel of Figure 3.8 for YBa2Cu3O6.6 [47].

Some progresses in the understanding of this violation were made in [47], where
the authors studied the temperature behaviour for the Hall angle cotθH and the
orbital magneto-resistance ∆ρ/ρ for YBCO and LSCO at different doping lev-
els. Specifically, they found the following temperature behaviour for the magneto-
resistance:

∆ρ

ρ Y BCO
∝

B2

T 4 ,
∆ρ

ρ LSCO
∝

B2

(A+CT 2)2 , (3.6)

where A and C are constants.
Moreover, for the Hall angle they found:
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Fig. 3.8 a): Kohler plot for under-doped YBa2Cu3O6.6 at intermediate (main) and high (in-
set) temperatures . b) Temperature dependence of the orbital part of the magneto-resistance in
YBa2Cu3O6.6, optimally doped YBa2Cu3O7 and La1.85Sr0.15CuO4. The inset shows the inverse
Hall angle cotθH vs T 2 in optimally doped LSCO. Figures from [47].

cotθH Y BCO ∝ T 4 , cotθH LSCO ∝ D+ET 2 , (3.7)

where D and E are also constants. These behaviours allow them to introduce the
following phenomenological modified Koheler’s rule:

∆ρ

ρ
∝ tan2

θH , (3.8)

which seems to be satisfied (at least in the under-doped and optimally doped re-
gion of the phase diagram) as as one can see in Figure 3.8. Intriguingly, only in
over-doped non-superconducting LSCO is conventional Kohler’s scaling seemingly
recovered [48].

As a final remark, we want to stress that in analysing the normal state orbital
magneto-resistance, one must not overlook contributions to the orbital magneto-
resistance from para-conductivity terms which can influence the in-plane magneto-
transport over a wide temperature range in HTC due to their small superconducting
coherence length and strong two-dimensionality (see e.g. [49] for a comprehensive
review on the topic).

3.3.3 Thermal transport

The thermal transport properties, namely the thermo-electric (Seebeck) coefficient S
and of the thermal conductivity matrix κ̂ has been less studied than the electric trans-
port properties previously described. This is firstly due to the difficulty of perform-
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ing accurate measurements, and secondly, the problem of interpreting the ensuing
results. Their interpretation is compounded of course by the additional contribution
to κ̂ from heat carrying phonons and the effect of the phonon drag mechanism on
S (See also Appendix A). However, in recent time the developments of techniques
for measurements at high magnetic field allowed the study of the Hall thermal prop-
erties. The latter are not substantially affected by phonons effects and can be used
to get insight the electronic structure of the strange metals. In this brief Section we
will review some of these results.

3.3.3.1 Seebeck coefficient

According to the simple Boltzmann picture (see Appendix A), the Seebeck coeffi-
cient S is governed both by the transport scattering rate (via its energy dependence)
and the thermodynamic mass. Separating the effects of these two contributions can
prove difficult and it is common practice to apply certain simplifying assumptions
that may obscure some of the intrinsic physics especially in relation to the pseudo-
gap. Whilst the interpretation of S may be difficult, its systematic behaviour in the
strange metals has been well documented. In particular, a remarkable universal cor-
relation was found early on between the room temperature value of S and the doping
level [50]. This has been used subsequently to determine the doping concentration
in a wide range of materials where determination of the hole concentration is am-
biguous. Whilst this relation is not found to hold in Bi2 Sr2−x Lax CuO6+δ [51], its
applicability to other HTC appears robust.

In under-doped cuprates, S has a large positive value and traces out a broad maxi-
mum whose peak temperature decreases with increasing doping. At optimal doping,
S(T ) remains positive but has a negative linear slope, i.e.,

SOD(T ) = β −αT . (3.9)

As doping increases further, β continues to decrease whilst α remains relatively
doping independent. Thus in the most over-doped samples, S(T ) is negative at all
T > Tc.

3.3.3.2 Thermal conductivity and Lorentz ratio

The normal state in-plane thermal conductivity κxx of high-Tc superconductors is
dominated by the phonon contribution. Typical estimates of the electronic contribu-
tion are of order 10-20 % of the total near T = Tc. Due to a lack of a solid theoretical
model to compare it is almost impossible to subtract the phonon contribution and to
analyse the pure electronic part; then the study of this quantity is not very helpful in
understanding the electronic properties of the strange metals.

A more interesting quantity is the thermal Hall conductivity κxy which measure
the transverse response to an applied longitudinal thermal gradient when the system
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is immersed in an external magnetic field perpendicular to the plane. As all the
transverse contribution, κxy is almost unaffected by phonons and allows to deduce
some feature of the electronic structure of the strange metals.

The thermal Hall conductivity κxy was studied for the optimally doped YBCO in
[52, 58]. In both the papers the authors found the following temperature dependence:

κxy ∝
1
T

, (3.10)

and the two measurements agree also in the order of magnitude.
The two papers however disagree in the prediction of the Hall Lorentz ratio Lxy ≡

κxy
σxyT . This is an extremely interesting quantity since it has to be of the same order of
magnitude of the Lorentz ration L= κxx

σxxT and consequently it can provide an indirect
measurement of the Wiedemann-Franz law which is an indicator of how much the
system deviates from the Fermi liquid behaviour.

In [52] the authors found an Hall Lorentz ratio which varies approximatively lin-
ear in temperature and passes through several order of magnitude between 100 K
and 300 K. On the over hand, the authors of [58] found a Hall Lorentz ratio ap-
proximatively constant in temperature and higher than the Fermi liquid prediction

L0 =
π2k2

B
3e2 . The discrepancy between the two results is not yet fully understood but

it could be due to the fact that the authors of [52] measured the Hall conductivity
σxy and the Hall thermal conductivity κxy in a different samples, while in [58] both
σxy and κxy were measured in the same sample. However both the papers agrees in
saying that the Wiedemann-Franz law seems to be strongly violated in these mate-
rials.





Chapter 4
Theoretical attempts

The experimental scenario described in the previous sections strongly suggest that
the standard Fermi liquid paradigm is not valid for hight-Tc superconductors. Sev-
eral attempts to explain the experimental observations within some modified Fermi
liquid framework had always provided unsatisfactory results (see [17] for a detailed
review on the topic).

Given this reliance on detail, other more exotic models, based on non-Fermi liq-
uid physics, have gained prominence within the community; in this review we will
concentrate on two model which provide inspiration also for the holographic treat-
ment of Part 3. These are the two-lifetime picture of Anderson [61] and the Marginal
Fermi liquid phenomenology of Varma and co-workers [62].

4.1 Anderson’s model

In the two-lifetime approach, scattering processes involving momentum transfer
perpendicular and parallel to the Fermi surface are governed by independent trans-
port and Hall scattering rates 1/τtr (∝ T ) and 1/τH(∝ T 2). In the usual Fermi liquid
τtr = τH . To achieve different behaviours of the two scattering time, an effective
Landau interaction between up and down spins is introduced (see [61] for more
details). The effect of this interaction is not innocuous, and leads to separate Fermi
velocities for charge- and spin-waves which, as a consequence, generate the unusual
independence between τtr and τH .

Allowing τH to be independent of τtr, the inverse Hall angle can now be written
as

cotθH =
σxx

σxy
∝ 1/τH . (4.1)

Thus the different behaviour of ρxx(T ) and cotθH(T ) reflects the different T depen-
dencies of 1/τtr and 1/τH .

Whilst the two lifetime model of Anderson has been successful in reproducing
the experimental situation in optimally doped cuprates, it does not appear to be
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consistent with ARPES results and is does not explain the evolution of the transport
phenomena across the full cuprates phase diagram.

4.2 Phenomenological marginal Fermi liquid

The phenomenological marginal Fermi liquid developed by Varma and co-workers
has acquired great relevance with mounting evidence for a Fermi surface accumu-
lating from photoemission experiments.

In particular, we have learned in the previous sections that the correct theory
has to keep into account for the existence of a Fermi surface but with no sharp
defined quasi-particles. This gave support to the idea of a “marginal” Fermi liquid.
Essentially, this is a theory that yields a Fermi surface in the weakest possible sense
of the definition but otherwise does not make the same predictions as Fermi liquid
theory.

To underline the differences between Fermi liquid theory and the marginal Fermi
liquid let us recall briefly what we have outlined in Chapter 2 for the Fermi liquid.

In the presence of interactions the quasi-particles propagator acquires corrections
due to the self-energy Σ(ω,k), namely:

G(ω,k) =
1

ω− εk−Σ(ω,k)
, (4.2)

where εk is the quasi-particle energy. The Fermi surface is defined as the locus in
momentum space where G−1(0,kF) vanishes (kF is called the Fermi momentum).
In the vicinity of the Fermi surface one can safely expand in series the denominator,
obtaining:

G−1(ω,k)' ω

(
1− ∂ℜΣ

∂ω

∣∣∣∣
ω=0

)
− [εk +ℜΣ(ω,k)]− iℑΣ(ω,k) . (4.3)

The quantity z−1
k (ω)≡ 1− ∂ℜΣ

∂ω
is called the quasi-particle residue and measure the

amplitude of the jump in the quasi-particle distribution at the Fermi surface k = kF ,
while ℑΣ takes measures the decay rate of quasi-particles. In the standard Fermi
liquid theory one finds:

ℜΣ ∝ ω , ℑΣ ∝ ω
2 . (4.4)

Then, in the Fermi liquid theory the quasi-particle residue, which for free fermions
is exactly equal to 1, assumes the following form

zk(ω = 0) =
1

1+λ
< 1 , (4.5)

where λ measure the strength of the interactions. As we have proven in Appendix
A, for d ≥ 2 spatial dimensions, the quasi-particle residue does not vanish indepen-
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dently of the strength of the interactions. This implies that the Fermi surface is well
defined.

As we have previously said, we want to modify the Fermi liquid theory in order
to still have a Fermi surface, but defined in a very weak sense. In order to do this,
we phenomenologically modify the real part of the self-energy Σ as follow:

ℜΣ(ω,k) ∝ ω log
∣∣∣∣ ω

ωc

∣∣∣∣ , (4.6)

where ωc is a high energy cut-off. Consequently, the quasi-particle residue is given
by:

zk(ω) =
1

log
∣∣ωc

ω

∣∣ . (4.7)

Now, in order to compute the quasi-particle residue on the Fermi surface we need
to send ω to zero. In this limit we obtain zk → 0. Hence, the jump in the quasi-
particle distribution tends to zero, but in a very weak way (i.e. logarithmically), and
thus a Fermi surface just barely remains in the weakest sense. However, from the
self-energy (4.6), all the other properties of the theory have a non-Fermi liquid like
behaviour. This is one way to define the marginal Fermi liquid.

In order to completely characterize the phenomenology of the marginal Fermi
liquid one has to find a consistent behaviour also for ℑΣ . To take into account the
experimentally measured T -linear and ω-linear scattering rate τk, one has to guess:

1
2τk

= ℑΣ ∝ x , (4.8)

where x = max{T, |ω|}. Using the Drude result to roughly estimate the resistivity,
namely ρxx = (ωpτk)

−1 (where ωp is the plasma frequency), the linear in tempera-
ture behaviour of the resistivity is recovered.

Having defined the basic ideas which yield the correct phenomenology we need
to incorporate them in a consistent theory. Even though the attempt to construct a
consistent microscopic theory with the marginal Fermi liquid phenomenology were
numerous (see [68] for further details), a complete consistent way to microscopi-
cally reproduce the marginal Fermi liquid has not yet been discovered.

Fig. 4.1 Relevant diagrams for the self-energy computation in marginal Fermi liquid. After [68].
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Rather to take the microscopic approach, another possibility is to assume a phe-
nomenological model and should it work, then one would search for a microscopic
description of the phenomenology after the fact. This was the approach followed by
the authors of [62], where it was postulated that in the copper-oxide system there are
charge and spin density fluctuations of the electrons which lead to a polarizability of
the electron medium that would renormalize the electron propagator trough the self-
energy. Such a polarizability is drawn in terms of the Feynmann diagrams in Figure
4.1. This is simply analogous to the electron-phonon interaction with the phonon
line being replaced by the polarizability. Their proposal for the polarizability is as
follows:

ℑP(ω,k) =

{
−N(0)ω

T , f or |ω|< T ,

−N(0)signω f or |ω|> T ,
(4.9)

where N(0) is the single particle density of states at the Fermi energy. The form of
this polarizability is postulated to come from the vertex correction in the particle-
hole susceptibility shown in Figure 4.1.

The self-energy that arises from applying the Feynmann rules to the diagrams in
Figure 4.1 is given by:

Σ(ω,k)' g2N2(0)
(

ω log
x

ωc
− i

π

2
x
)

, (4.10)

which is consistent with that discussed previously and gives the correct phenomenol-
ogy for the Fermi surface, the DC resistivity and also for the spectral conductivity
(see [62] for further details on this quantity).

The basic marginal Fermi liquid assumption does not provide the correct be-
haviour for the magneto-transport. To get the correct prediction for the Hall an-
gle and the magneto-resistance, the authors of [63] introduced anisotropy into their
marginal Fermi liquid phenomenology via the elastic (impurity) scattering rate by
assuming small angle scattering off impurities located away from the CuO2 plane.

In other words, they phenomenologically modify the imaginary part of the self
energy Σ as follows:

ℑΣ(T,k) = Γ0(k)+λT . (4.11)

The anisotropic elastic part Γ0(k) has been ascribed to small-angle scattering from
dopant impurities lying between the CuO2 planes, an assumption supported by
ARPES measurements [69]. Referring for the technical details to [63], with the phe-
nomenological assumption (4.11) it is possible to reproduce the correct temperature
behaviour for the Hall angle and the magneto-resistance.

Whilst this hypothesis seems consistent with certain ARPES measurements [64]
and transport measurements [99], the legitimacy of the expansion in small scatter-
ing angle used in [65] has been subsequently challenged [66, 67]. In particular, it
has been argued that the conditions that lead to a separation in lifetimes do not re-
produce the violation of Kohlers rule [67]. Moreover, although the predictions of
marginal Fermi liquid theory appear compatible with the empirical situation in op-
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timally doped cuprates, their applicability to the rest of the cuprate phase diagram
is less evident.

4.3 Quantum Criticality

Although a tremendous effort has been made to understand the strange metal better
and beyond the phenomenology of the marginal Fermi liquid, only in one qualita-
tive aspect has progress been made. In particular, in recent times the idea that the
phenomenon of Quantum Criticality could be the responsible of the Fermi liquid
break down in the strange metals has assumed growing importance. This is the crit-
ical universal behaviour that occurs in the vicinity of a Quantum Phase transition
(see [71] for a review), which is a second order quantum phase transition. By defini-
tion, a quantum phase transition is a transition which occurs at zero temperature, as
a result of varying some non-thermal control parameter, such as applied magnetic
field or pressure. Since classically the entropy at zero temperature has to vanish, a
quantum phase transition can not be caused by the competition between energy and
entropy, like its finite-temperature counterpart. Rather, it is a result of competition
between different terms in the Hamiltonian describing the system.

Disordered 
state

Fig. 4.2 Left: schematic typical phase diagram in the vicinity of a Quantum Critical point as a
function of the temperature T and a generic tunable parameter p. Right: approximative phase
diagram of the cuprates as a function of the temperature T and the doping.

Now, the relevant aspect is that, if this phase transition is second order, the ab-
sence of a scale at the critical point (due to the diverging correlation length) means
that the quantum field theory describing this point must be a conformal field the-
ory (See Part 2 for more details). The special aspect of a quantum critical theory
compared to a classical critical theory is that one now raises the temperature in the
conformal field theory, the conformal constraints resonate through in the finite tem-
perature physics. A CFT at finite T is still very special in that all its dynamics are
still controlled by the T = 0 conformal symmetry and in general the only aspect
that changes is that all dimension-full quantities are now given in terms of the only
present scale T. To get non-conformal (generic) behaviour one needs at least two



30 4 Theoretical attempts

scales. This means that the phase diagram near a quantum critical point looks as in
the left panel of Figure 4.3.

As one can see from the Figure, a common type of phase diagrams with a Quan-
tum Critical point has a line of finite-temperature critical points where the transition
temperature is depressed to zero by varying a coupling constant. Around this finite-
temperature critical line, the system can be described by a classical field theory, even
though the transition temperature may be very low. This is due to the fact that close
to a critical point, the length scale above which the behaviour changes qualitatively
is very large. Around any non-zero temperature critical point, therefore, one has
kBT ≥ ω̃ where ω̃ is some typical energy scale above which the behaviour of the
system changes (for example an energy gap). This reasoning clearly breaks down
for a quantum phase transition, where the temperature is strictly zero. The behaviour
at a Quantum Critical point is expected to be characterized by competition between
low-lying states. This quantum critical behaviour is different from typical low en-
ergy behaviour, which can be understood in terms of quasi-particles on a ground
state. This competition effect tends to break down away from the Quantum Critical
point on the zero temperature line, as an energy gap forms and the system chooses
a ground state. However, if the temperature is increased such that this gap may be
overcome the interplay between the different energy levels again becomes the dom-
inant behaviour. The finite temperature region of the phase diagram in which this
quantum critical behaviour is important is called the quantum critical regime.

Comparing the typical Quantum Critical point phase diagram with those of the
cuprates (right panel of Figure 4.3), it is very tempting to assume that the optimal
doping region at T = 0 is associated with a quantum phase transition. Although
the idea that the physics underlying the strange metal is a finite T conformal field
theory, in detail it is not so simple. In particular scale-invariance is only observed in
terms of energy-temperature scaling. In spatial directions one still notes a distinct
Fermi surface with ARPES data and we have learned in the previous Section that the
idea of the marginal Fermi liquid naturally takes into account this fact. This curious
combination, scale-less in the “time-direction”, but a distinct Fermi momentum in
the spatial directions has been coined local quantum criticality.

It is important to note that the concept of local quantum criticality is naturally im-
plemented in the marginal Fermi liquid picture. In fact, as it is evident from the Self
energy (4.10) and from the polarizability (4.9), the spatial part of the susceptibil-
ity exhibits ordinary mean-field behaviour and the self-energy depends only on the
frequency and exhibits non-trivial ω/T scaling. As we have previously explained,
these are exactly the two basic ingredients to get local quantum criticality. For this
reason the idea that the non-Fermi liquid behaviour of the strange metals is due to
the influence of a quantum critical point is now predominant in the community.

However, at present, the existence of a Quantum Critical point in the phase dia-
gram of the cuprates is still debated (see [70] for a review on the topic) and there
are no measurements which strongly corroborate or confute this idea. This is, above
all, due to the difficulty in performing measurements at very low temperature due to
the presence of the superconducting dome.
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Appendix A
Basics of Fermi liquid theory

A.1 Quasi-particles and interactions

The basics assumptions, outlined in Chapter 2, above which the Fermi liquid theory
is constructed, are equivalent to assume that there is a one-to-one correspondence
between the state of the free Fermi gas and those of the interacting quasi-particles
system, namely, if one takes a non interacting Fermi gas in a particular state and
adiabatically turns on the interactions between particles, one obtains a state of the
interacting system. Consequently, state in the interacting system may be classified
by the distribution of particles Npσ , (p is momentum and σ is spin), in the corre-
sponding state of Free Fermi gas. Npσ is referred as the quasi-particle distribution
function and quasi-particles obey the exclusion principle.

The distribution function Npσ of a general energy eigenstate is a highly discon-
tinuous function of p. However, to describe the microscopic properties of the Fermi
liquid is sufficient to consider the mean quasi-particle distribution npσ , that is the
average of Npσ over a group of neighbouring single-particle states. In the micro-
scopic state npσ is a smooth function of p.

The energy of each state may be regarded as a functional E{Np′σ ′} of the distri-
bution function. If we add a quasi-particle to an unoccupied state {p,σ}, then the
total energy of the system will increase by an amount εpσ called the quasi-particle
energy which is itself a functional of the distribution function. Without loss of gen-
erality, it is possible to assume that εpσ is a smooth function of p and consequently
the energy E{npσ} is a functional of the mean quasi-particle distribution function
npσ . Then, the quasi-particle energy is defined as the variation of the total energy
per unit volume V with respect to npσ :

δE =
1
V ∑

pσ

εpσ δnpσ . (A.1)

The mean quasi-particle distribution npσ can be determined via thermodynamic
arguments. In fact, a macroscopic thermal state at equilibrium and at temperature T
has to satisfy the relation:
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δE = T δ s+µδn (A.2)

where δ s is the variation of the entropy density, δn is the variation of the particle
density, T is the temperature and µ is the chemical potential. Since quasi-particles
are in one-to-one correspondence with the free Fermi gas, the entropy must have the
same form, namely:

s =−kB

V ∑
pσ

[npσ lnnpσ +(1−npσ ) ln(1−npσ )] , (A.3)

where kB is the Boltzmann’s constant. Moreover, since the total number of particles
is conserved, the density n is given by:

n =
1
V ∑

pσ

npσ . (A.4)

Now, substituting the variation of E (A.1), n and s with respect to npσ ,

δ s =−kB

V ∑
pσ

δnpσ ln
np,σ

1−npσ

, δn =
1
V ∑

pσ

δnpσ , (A.5)

in (A.2), and imposing that the relation have to be satisfied for every δnpσ , we
obtain:

npσ =
1

e(εpσ−µ)/kBT +1
. (A.6)

Namely, the quasi-particles obey the usual Fermi-Dirac distribution1.
At T = 0 (A.6) takes the familiar form θ(εpσ −µ) of a Fermi sea occupied up to

a given momentum pF , the Fermi momentum.
For small perturbation around the T = 0 equilibrium state, the quasi-particles

distribution function varies only in the neighbourhood of the Fermi surface. Then,
considering a state produced by adding a quasi-particle to the ground state, its en-
ergy measured relative to the ground state is given by:

ε
0
pσ = εpσ{n0

p′σ ′}, (A.7)

where the superscript 0 denote the ground state. The velocity of the quasi-particle
at the Fermi surface (the Fermi velocity) is given by:

vF =

(
∂ε0

pσ

∂ p

)
p=pF

. (A.8)

The quasi-particle effective mass m∗ is consequently defined by the relation:

1 Note however that also εpσ is a functional of npσ . Then the equation (A.6) is actually a quite
complicated implicit functional equation for npσ .
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vF =
pF

m∗
. (A.9)

Note that m∗ is in general different from the bare mass of an electron m.
In the neighbourhood of the Fermi surface the quasi-particle energy takes the

form
ε

0
pσ = µ + vF(p− pF) . (A.10)

It is useful also to define the quasi-particles density at the Fermi surface, namely:

N(0) =
1
V ∑

pσ

δ (ε0
pσ −µ) =− 1

V ∑
pσ

∂

∂εpσ

n0
pσ =

Ωdm∗pd−1
F

πd−1h̄d , (A.11)

where the last equivalence is obtained replacing the sum over p by an integral and
taking εpσ as the variable of integration and Ωd is the solid angle in d spatial di-
mensions 2.

By now we have not considered the possibility of interactions between quasi-
particles. Switching on interactions, the interaction energy of two quasi-particle is
defined as the amount fpσ ,p′σ ′/V that the energy of one (pσ ) changes due to the
presence of the other (p′σ ′). Then, a variation of the distribution function produces
a variation of εpσ given by

δεpσ =
1
V ∑

p′σ ′
fpσ ,p′σ ′δnp′σ ′ . (A.12)

In other words, f is the second order variation of the energy E (A.1) with respect to
npσ .

Consequently, in presence of interactions the variation of the energy due to a
variation δnpσ from its ground state can be written as:

δE =
1
V ∑

pσ

ε
0
pσ δnpσ +

1
2V 2 ∑

pσ ,p′σ ′
fpσ ,p′σ ′δnpσ δnp′σ ′ , (A.13)

and the corresponding quasi-particle energy is:

εpσ = ε
0
pσ +

1
V ∑

p′σ ′
fpσ ,p′σ ′δnp′σ ′ . (A.14)

As it is evident, the presence of interactions between quasi-particles affects both the
static properties of the Fermi liquid, like the effective mass m∗, both the transport
properties, as we will discuss better in the following Sections.

2 Remember that we are dealing with a d +1-dimensional Fermi liquid.
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A.2 Thermodynamic properties

In this section we will review the low-temperature behaviour of the basic thermo-
dynamical quantity of a Fermi liquid, namely the specific heat, the entropy and the
chemical potential.

Quite generally, the low temperature behaviour of the specific heat of a Fermi
liquid is linear in temperature, with a coefficient given in terms of the effective mass
of the quasi-particles at the Fermi surface.

To see this, we calculate the variation of the quasi-particle entropy with respect to
a variation of the temperature δT . Keeping into account (A.5) and (A.6), we obtain

δ s =
1

TV ∑
pσ

(εpσ −µ)δnpσ . (A.15)

Moreover, from (A.5) we obtain also the following relation:

δnpσ =
∂npσ

∂εpσ

[
−

εpσ −µ

T
δT +δεpσ −δ µ

]
. (A.16)

It is not difficult to prove that the leading low-T contribution to the previous formula
is provided by the first term. Then, as long as we concern with the low-T behaviour,
we can safely neglect δεpσ −δ µ in (A.16). Finally, the variation of the entropy is:

δ s =
1
V ∑

pσ

(εpσ −µ)2 ∂npσ

∂εpσ

δT
T 2 (A.17)

Replacing the sum by an integral other the energies we have:

δ s =−∑σ

∫
pd d p

dε

Ωd
(2π h̄)d dε

∂

∂ε

[
1

e(ε−µ)/kbT+1

](
ε−µ

T

)2
δT (A.18)

=−k2
BN(0)

∫
∞

−∞
dx ∂

∂x

( 1
ex+1

)
x2δT . (A.19)

Finally, we obtain the following expression for the entropy at low-T :

s =
π2

3
N(0)k2

BT . (A.20)

Consequently, the specific heat at constant volume is:

CV = T
(

∂ s
∂T

)
V
= s (A.21)

Considering the free energy F = E−T s, the first temperature variation (at constant
volume) is −sδT , so that at low temperature

F = E0−
π2

3
N(0)k2

BT 2 , (A.22)
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where E0 is the ground state energy density.
Finally, we calculate the first correction to the chemical potential by using the

thermodynamic relation µ =−(∂F/∂n)T , obtaining:

µ(n,T ) = µ(n,0)− π2

4
kB

(
1
3
+

n
m∗

∂m∗

∂n

)
T 2

TF
. (A.23)

where TF = p2
F/(2m∗kB) is the Fermi temperature.

A.3 Quasi-particle life-time: the Fermi liquid stability

Until now we have assumed that, even in the case where interactions between quasi-
particles are switched on, there is a region of the phase space sufficiently near to the
Fermi surface in which the Fermi liquid is stable, namely, the quasi-particles have a
sufficiently long life-time in order for the particle description to be consistent.

In this Section we will analyse this aspect in a more quantitative way, computing
explicitly the quasi-particle life-time when interactions between quasi-particles are
considered. To do this, we find quite instructive to take a different approach to what
we have considered in the previous Sections, namely the renormalization group ap-
proach. We will do all the computations at T = 0; the T 6= 0 case is more technically
involved but nothing changes in principle.

A.3.0.3 The renormalization group approach

In order to apply the renormalization group to the Fermi liquid we have to con-
struct a low-energy effective theory for the quasi-particles and, once the low energy
Lagrangian is defined, to determine a momentum cut-off and an associated scal-
ing limit for the physical quantities of the theory. We know that quasi-particles are

Fig. A.1 Arch of the Fermi surface near the point k0.

gap-less fermionic excitations of the Fermi liquid around the Fermi surface. Then,
in order to obtain a low energy effective field theory, we consider an arch in the
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vicinity of an arbitrarily point k0 on the Fermi surface 3 (see Figure A.1). We also
consider d-dimensional fermionic fields ψσ (kx,ky), where σ is the spin, kx is the
one-dimensional momentum orthogonal to the Fermi surface and ky is the d− 1-
dimensional momentum orthogonal to kx. The low energy effective field theory in
the vicinity of k0 is then given by a free fermion Lagrangian

S0 =
∫

dτ

∫
dkx

∫
dd−1kyψ

†
σ

(
∂

∂τ
+ ε(kx,ky)

)
ψσ , (A.24)

where ε(kx,ky) is the quasi-particle dispersion near k0. Expanding this function for
small kx and ky we obtain

S0 =
∫

dτ

∫
dkx

∫
dd−1kyψ

†
σ

(
∂

∂τ
+ vF kx +

κ

2
k2

y

)
ψσ , (A.25)

where κ is the curvature of the Fermi surface in k0. In this light, the Fermi surface
in the vicinity of k0 is defined as the locus of points where the quasi-particles have
zero energy, namely

vF kx +
κ

2
k2

y = 0 . (A.26)

The corrections due to the local curvature of the Fermi surface, as we will see ex-
plicitly in what follows, have relevant effects on the quasi-particle life-time.

The quantity vF kx +
κ

2 k2
y in (A.25) defines a natural momentum space cut-off,

and associated scaling limit. Note that the momentum in the x direction scale as the
square of the momentum in the y direction, and so we can choose the cut-off Λ so
that v2

F k2
x +κ2k4

y � Λ 4 As we reduce Λ , the theory scales toward the single point
k0 on the Fermi surface, as we required above.

The renormalization group analysis can now be easily applied. Keeping the quan-
tities vF and κ fixed, the action (A.25) is invariant under the following rescaling of
space-time:

k′x = kxe−2l , k′y = kye−l , τ
′ = τe−2l , (A.27)

where we have chosen the direction parallel to the Fermi surface as the ones defining
the primary length-scale. The scalings above imply that the fermionic field has to
scale in the following way:

ψ
′ = ψe

(d+1)l
2 . (A.28)

Having determined the low energy theory and the fundamental scalings, we can
now analyse the role of the interactions. The simplest contact interactions between
quasi-particles has the form:

Si = u0

∫
dτ

∫
dkx

∫
dd−1kyψ

†
σ ψ

†
σ ′ψσ ′ψσ (A.29)

Applying the renormalization group scaling (A.28) we obtain:

3 It is possible to prove that the results is independent on the choice of k0
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u′0 = u0e(1−d)l . (A.30)

Namely, the interaction between the quasi-particle u0 is irrelevant if d > 1. This
strongly suggest that the Fermi liquid picture of non-interacting fermions is indeed
renormalization group stable.

A.3.0.4 The quasi-particle life-time

To be more quantitative, let us compute the loop corrections to the free propagator,

G0
T (ω,k) =

1
ω− ε(kx,ky)+ i0+

, (A.31)

which occur due to the presence of the interaction (A.29). In this case, the propagator
(A.31) is modified in the following way:

GR(ω,k) =
Z

ω− ε(kx,ky)+Σ(ω,k)
, (A.32)

and, in order to compute the quasi-particle life-time, we are interested in comput-
ing the imaginary part of the fermion self-energy Σ(ω,k). To first order in u0, the

Fig. A.2 Relevant diagram for the u2
0 correction to the free energy Σ .

fermion self energy is real, and only the quasi-particle residue Z is modified. In
order to look at the possible instabilities of the quasi-particles, we have compute
corrections at order u2

0. The Feynman diagram contributing to the quasi-particle de-
cay at order u2

0 is indicated in Figure A.2, and it gives the following contribution to
the self energy:

Σ(ε,k) = u2
0

∫ ddq
(2π)d

∫ dω

2π
G0

R(ε +ω,k+q)Π(q,ω), (A.33)

where

Π(q,ω) =
∫ ddk

(2π)d

∫ dε

2pi
G0

R(ε +ω,k+q)G0
R(ε,k) (A.34)

is the polarizability. Let us first compute explicitly this last quantity. We are only
interested in terms that are singular in ω and q, and we can drop contribution from
region of high momentum and frequency. In this case, it is legitimate to invert the



40 A Basics of Fermi liquid theory

conventional order of integration and to first integrate over kx. This procedure yields
straightforwardly:

Π(ω,q) =
1

vF

∫ dd−1ky

(2π)d−1

∫ dε

2π

sign(ε +ω)− sign(ε)
ω + ivF qx + iκq2

y/2+ iκqy · ky
(A.35)

=
|ω|

2πvF

∫ dd−1ky

(2π)d−1
1

ω + ivF qx + iκq2
y/2+ iκqy · ky

(A.36)

=
|ω|

2πvF κ
∣∣qy
∣∣ ∫ dd−2ky

(2π)d−2 (A.37)

=
|ω|

2πvF κ
∣∣qy
∣∣Λ d−2 . (A.38)

Now, inserting the last result in (A.35) in (A.33) and evaluating the integrals we
obtain:

Σ(ω,k) = isign(ω)ω2 u2
0

4πv2
F κ

∫ dd−1qy
(2π)d−1

1
|qy| (A.39)

= isign(ω)ω2 u2
0

4πv2
F κ

Λ d−2 , f or d > 2 . (A.40)

In the important case of d = 2, there is an infrared divergences in the integral for
qy in (A.39) which has to be regularized, yielding to a logarithmic correction to the
result for d > 2:

ℑΣ ∼ u2
0ω

2 log
(

Λ

u0 |ω|

)
, f or d = 2 . (A.41)

Summarizing, up to logarithmic corrections, ℑΣ ∼ u2
0ω2 for d ≥ 2. Thus the quasi-

particle width vanishes as the square of the distance from the Fermi surface. Asymp-
totically close to the Fermi surface, the quasi-particle width is much smaller than the
quasi-particle energy: this is sufficient to regard the quasi-particle as a sharp excita-
tion, and confirm the validity of the basic Fermi liquid assumptions.

A.4 Thermo-electric transport

Having analysed the basic equilibrium properties of the Fermi Liquid, let us now
focus on its response to small perturbations, such as an electric fields or a thermal
gradient.

In the linear response framework, namely when the perturbations from the equi-
librium are small, the thermo-electric transport properties in an isotropic system are
controlled by three coefficients: the electric conductivity σ , the thermal conductivity
(computed at null electric current) κ and the thermo-electric conductivity α . They
relates the electric current j and the heat current q to the external electric field E and
thermal gradient ∇T in the following way:
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j = σE−α∇T , (A.42)

q = αT E− (κ +
T α2

σ
)∇T , (A.43)

where the quantity (κ + T α2

σ
) is usually called κ̄ and is the thermal conductivity

computed at null electric field.
In the next sections we will consider the Fermi liquid in non-equilibrium and

inhomogeneous situations that differ little from the equilibrium state of the equilib-
rium state of the homogeneous liquid. In what follows, we will use a semi-classical
description, specifying the quasi-particles distribution as a function of position and
time, npσ (t,r). The limit in this description resides in the uncertainty principle,
which constraints to what extent the quasi-particles are localized in the position
and momentum space.

More precisely, if the spatial inhomogeneity of the system occurs over a char-
acteristic length λ , then the particles are localized in space only other a distance
λ . At temperature T the distribution function varies in momentum space over a
characteristic momentum kBT/vF . Then, the use of the distribution function does
not require any localization of the quasi-particles in momentum space to less than
∆ p= kBT/vF . Thus, as long as λ� h̄vF/kBT , the Heisemberg uncertainty principle
causes no trouble. In what follow we will consider only this case.

A.4.1 The kinetic equation

With the assumptions outlined so far, the space and time dependence of the distribu-
tion function npσ (t,r) is determined by the kinetic equation, which, in the absence
of quasi-particle collisions, takes the form of the continuity equation for the distri-
bution function in p and r space. Consequently, neglecting forces that rotate spin,
the changes in the distribution function obey:

∂npσ (t,r)
∂ t

+∇r [vpσ (r, t)npσ (t,r)]+∇p [ fpσ (r, t)npσ (t,r)] = I
[
np′σ ′

]
. (A.44)

In the previous formula vpσ is the quasi-particle velocity (dr/dt), fpσ is the time
rate of change of the quasi-particle momentum (d p/dt) and I

[
np′σ ′

]
is the collision

integral, which takes into account the possible presence of quasi-particle collisions,
whose form we will discuss later.

The basic assumption of the quasi-particle kinetic theory is that the quasi-particle
energy εpσ (r, t) takes the role of the Hamiltonian, namely

vpσ (r, t) = ∇pεpσ (r, t) , (A.45)
fpσ (r, t) =−∇rεpσ (r, t) . (A.46)

Substituting (A.45) in (A.44), we obtain the kinetic equation in its full glory:



42 A Basics of Fermi liquid theory

∂npσ (t,r)
∂ t

+∇pεpσ (r, t)∇rnpσ (t,r)−∇rεpσ (r, t)∇pnpσ (t,r) = I
[
np′σ ′

]
. (A.47)

It is important to note that the Landau kinetic equation (A.47) is considerably
richer than the usual Boltzmann equation used to describe weakly interacting gases.
Specifically, there are two additional features included here. First, the quasi-particle
velocity can depend on position and time, and this effect only arises in non-linear de-
viation from homogeneous equilibrium. Second, the force term ∇rεpσ (r, t) includes
effective field contributions due to the possibility interactions between quasi-particle
which is hidden in εpσ (r, t).

In all the cases we will discuss later, the distribution function differs by only a
very small amount δnpσ from its value in uniform equilibrium n0

pσ , namely:

n(r, p) = n0
p, σ (εpσ )+δnp,σ , (A.48)

where we have defined δnp,σ such that the equilibrium distribution function n0 is a
function of the actual quasi-particle energy εpσ and not of the equilibrium energy
ε0

pσ .
Then we will consider only the kinetic equation (A.47) linearised in δnpσ ,

namely:
∂δnpσ

∂ t
+ vpσ ·∇rδnpσ − vpσ ·∇rεpσ

∂n0
pσ

∂εpσ

= I[δnpσ ] , (A.49)

where vpσ ≡ ∇pεpσ is the quasi-particle velocity and I[δnpσ ] is the linearised form
of the collision integral, which we will discuss later.

The quantity ∇rεpσ takes into account the effect of the external forces F applied
to the system. For example, in presence of an external electric field E and a magnetic
field B we will replace this quantity with:

−∇rεpσ = F =−e(E + vpσ ∧B) . (A.50)

Finally, Fourier transforming (A.49) in space and time, we obtain:

(ω−q · vpσ )δnpσ (q,ω)+F(q,ω) · vpσ

∂n0
pσ

∂εpσ

= iI[δnpσ ] . (A.51)

A.4.2 Electric conductivity in a Galilean invariant Fermi liquid

In this Section we will compute the conductivity of a Galilean invariant Fermi liquid
at zero temperature, namely we will consider a Fermi liquid in presence of an ex-
ternal electric field E and we will consider only the presence of collisions between
quasi-particles which conserve the total momentum (we do not consider external
collisions, I[δnpσ ] = 0). Our main goal is to prove that this kind of interactions do
not contribute to the resistivity of a Fermi liquid.
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To see this, let us consider the linearised kinetic equation (A.51) in presence of
an external magnetic field, with I[δnpσ ] = 0 and at zero momentum q = 0, namely:

ωδnpσ (q,ω)− ieE · vpσ δ (µ− εpσ ) = 0 , (A.52)

where we have used the relation
∂n0

pσ

∂εpσ
=−δ (µ− εpσ ) at T = 0.

Solving for δnpσ in (A.52) we obtain:

δnpσ (q,ω) =
ieE · vpσ δ (µ− εpσ )

ω
. (A.53)

Now, in a Fermi liquid the total current density J may be expanded as a function of
the deviation of the quasi-particle density from the equilibrium δnpσ in the follow-
ing way:

eJ = e∑
pσ

δnpσ jpσ , (A.54)

where jpσ is the current density of a quasi-particle ((p,σ ).
In a Galilean invariant system, as a direct consequence of Galilean invariance,

jp = p/m, where m is the bare mass of the electron. Substituting this expression for
jpσ in (A.54) and replacing the sum over p by an integral, it is easy to obtain:

σ(0,ω) =
iN(0)e2

mω
, (A.55)

or, using the Kramers-Kronig relations:

ℜσ(0,ω) =
N(0)e2

m
δ (ω) . (A.56)

As it is evident, if we consider only interactions between quasi-particles which con-
serve the total momentum, the Drude weight (the coefficient in front of the delta-
function in (A.56)) depends only in the bare mass of the electron. In other worlds,
this kind of interactions does not contribute to the resistivity.

In most of the qualitative arguments of the temperature scaling of the resistivity
in a Fermi liquid, it is argued that the famous T 2 scaling is due to the scattering
between quasi-particles. Actually this kind of interaction, as we have just proven,
does not contribute by itself to the resistivity, and it is more precise to say that it
is the combined action of the quasi-particle scattering and the Umklapp scattering
which generates the T 2 scaling of the resistivity. This is not the case for the thermal
conductivity, which is finite even if Umklapp scattering is not taken into account.
We will clarify this aspect better in the following Sections.
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A.4.3 Scattering mechanism in a metal

In the previous section we have considered the kinetic equations in the case that only
interactions between quasi-particles are allowed. To be more realistic it is necessary
to take into account the fact that in a metal several scattering mechanisms occur
which dissipate momentum. In particular the most relevant interactions in a metal
are those produced by interactions of quasi-particles with impurities and phonons.
In this section we will analyze this kinds of scattering processes carefully using the
kinetic equation (A.47).

In particular the linearised kinetic equation (A.49) in presence of an external
static electric field E and a thermal gradient ∇T can be written as:

−eE · vpσ

∂n0
pσ

∂εpσ

+ vpσ ·∇rn0
pσ = I[δnpσ ] . (A.57)

In principle all the computation has to be done at fixed total number of quasi-
particles (N = const). However, as we have computed in (A.23), the relative change
in the chemical potential is actually very small, (T/µ)2. Thus, at the leading order in
T/µ , all the physical effects can be calculated at µ = const instead that N = const.
Consequently:

∇rn0
pσ =−

εpσ −µ

T
∂n0

pσ

∂εpσ

∇rT , (A.58)

and the kinetic equation (A.57) may be written as:

−
(

eE +
εpσ −µ

T
∇rT

)
· vpσ

∂n0
pσ

∂εpσ

= I[δnpσ ] , (A.59)

where the collision integral I[δnpσ ] has to be evaluated depending on the specific
scattering mechanism.

Finally, the electric current j and the heat current q appearing in (A.54) assumes
the following form:

j =− e
V ∑

pσ

vpσ δnpσ , q =
1
V ∑

pσ

(εpσ −µ)vpσ δnpσ . (A.60)

A.4.3.1 Elastic scattering: impurities and the Wiedemann-Franz law

In a metal, the dominant scattering mechanism at low temperature is the scattering
of quasi-particles by fixed impurities. One of the characteristic of this mechanism is
that it is elastic. Because the atoms have large mass and are bounded in the lattice,
the quasi-particle energy may be regarded as unchanged in the collision.

In this Section we first prove that the basic assumption of elastic scattering is by
itself sufficient to give a simple relation between the electric and thermal conductiv-
ity in a Fermi liquid, the so called Wiedemann-Franz law. Secondly we will analyze
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the temperature dependence of the transport coefficients due to the scattering of
quasi-particles by impurities.

In order to derive the Wiedemann-Franz law, we first note that he elastic collision
operator does not affect the dependence of the function δnpσ on the energy εpσ . This
means that any factor δnpσ , which depends only on the energy, can be taken outside
the collision integral I. Consequently, under this assumption, the linearised collision
integral I[δnpσ ] can be written as:

I[δnpσ ] =
δnpσ

τ(p,T )
, (A.61)

where τ(p,T ) is a function those specific form has to be computed by explicitly
evaluate the collision integral. Substituting (A.61) in (A.59), we obtain:

δnpσ =−τ(p,T )
(

eE +
εpσ −µ

T
∇rT

)
· vpσ

∂n0
pσ

∂εpσ

. (A.62)

Finally, substituting (A.62) in (A.60), and transforming the sum other p into an
integral, the electric current j assumes the following form:

j =−e∑
σ

∫ dd p
(2π h̄)d τ(p,T )

(
eE · vpσ +

εpσ −µ

T
∇rT · vpσ

)
vpσ

∂n0
pσ

∂εpσ

. (A.63)

Comparing the previous equation with (A.42), the electric conductivity tensor is:

σµν =−e2
∑
σ

∫ dd p
(2π h̄)d τ(p,T )vpσ ,µ vpσ ,ν

∂n0
pσ

∂εpσ

. (A.64)

In case of isotropic system σµν = σδµν , we can mediate other the space directions,
obtaining

σ =−e2

3 ∑
σ

∫ dd p
(2π h̄)d τ(p,T )v2

pσ

∂n0
pσ

∂εpσ

. (A.65)

The integral above can be simplified keeping into account the fact that, to the linear

order in T/µ ,
∂n0

pσ

∂εpσ
=−δ (εpσ −µ). Eventually, we obtain

σ =
e2

3
N(0)
Ωd

J(pF) , where J(p) = ∑
σ

∫
dΩdτ(p,Ω ,T )v2

pσ . (A.66)

As regards the thermo-electric conductivity α , comparing the second term in
(A.63) with (A.60) we obtain:

α = 2e
3T ∑σ

∫ dd p
(2π h̄)d (εpσ −µ)τ(p,T )v2

pσ

∂n0
pσ

∂εpσ
(A.67)

= 2e
3T
∫

dηJ(p)η
∂n0

pσ

∂η
, (A.68)
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where η = (εpσ −µ) and we have mediated other the spatial directions. To evaluate

the integral in (A.67) we note that the function
∂n0

pσ

∂η
goes to zero exponentially as

η→±∞, and consequently we can safely extend the integration interval to (−∞,∞).
Moreover the function J is significantly different from zero only near the Fermi
surface and then we can expand it as follows:

J(p,T )∼ J(pF)+η
dJ(p)

dµ

∣∣∣∣
p=pF

. (A.69)

Stated this, we obtain:

α =
4e
3T

dJ(p)
dµ

∣∣∣∣
p=pF

∫
∞

0
η

2 n0
pσ

∂η
dη =−2e

9
T

dJ(p)
dµ

∣∣∣∣
p=pF

. (A.70)

From the previous result we can derive the Mott low, which describes the behaviour
of the Seebeck coefficient s = σ/α in a Fermi liquid where only elastic scattering
phenomena are considered:

s =− 2Ωd

3N(0)e
T

d logJ(p)
dµ

∣∣∣∣
p=pF

. (A.71)

As regards the thermal conductivity, setting E = 0 and repeating the procedure out-
lined above for the heat current, we obtain:

q =−π2

9
N(0)
Ωd

T J(pF)∇rT . (A.72)

Finally, comparing (A.42) and (A.66) with (A.60) we obtain:

κ +
T α2

σ
=

π2σT
3e2 . (A.73)

Actually, as we can argue from (A.70), the second term in the l.h.s. of (A.73) is
of order T/µ and consequently we can neglect this term with respect to the r.h.s..
Considering (A.73) and (A.65), we eventually find this simple relation for the ratio

κ

σT :
κ

σT
=

π2

3e2 . (A.74)

The previous formula is the celebrated Wiedemann-Franz law and is valid under the
unique assumptions that all the scattering processes are elastic.

In order to determine the dependence on the temperature for the transport coef-
ficients σ , α and κ in presence of scattering of quasi-particles by impurities sepa-
rately, we have to analyze the specific form of the collision integral I[npσ ] for the
case at hand. It assumes the following form:
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I[npσ ] =

Nimp ∑
σ σ ′

∫ dd p′

(2π h̄)d W (p, p′)
(
np′,σ ′(1−npσ )−np,σ (1−np′σ ′)

)
δ (εpσ − εp′σ ′) ,

(A.75)

where Nimp is the density of impurities in the metal 4 and W (p, p′) is the scatter-
ing amplitude. The factors (1− np′σ ′) and (1− npσ ) take into account of the Pauli
exclusion principle, namely a transition can take place only to an unoccupied state,
while the factors npσ and np′σ ′ signify that the scattering can occur only from an
occupied state. Linearising the collision integral in δnpσ we obtain:

I[δnpσ ] = Nimp ∑
σ σ ′

∫ dd p′

(2π h̄)d W (p, p′)
(
δnp′,σ ′ −δnp,σ

)
δ (εpσ − εp′σ ′) . (A.76)

Moreover, due to the elastic hypothesis (A.76) becomes:

I[δnpσ ] = δnp,σ )Nimp ∑
σ σ ′

∫ dd p′

(2π h̄)d W (p, p′)
(
l(p′)− l(p)

)
δ (εpσ − εp′σ ′) .

(A.77)
where l(p) is a quantity which does not depend on the temperature. Consequently,
since Nimp is temperature independent, the integral in (A.77) is independent on the
temperature as the quantity τ(p) in the formulæ above.

Finally, we have found that, considering scattering of quasi-particles by fixed im-
purities, which are the dominant scattering phenomena in a metal at low tempera-
ture, the electric conductivity σ is constant in temperature, while the thermo-electric
conductivity α and the thermal conductivity κ are both linear in T .

A.4.3.2 Electron-phonon scattering

In the previous Section we have derived the behaviour of the transport coefficients
considering scattering mechanism due to the presence of a dilute density of impuri-
ties. Here we want to keep into account the effect of the presence of the lattice.

In real metal in fact, we can not assume the lattice to be perfect and the con-
tributions due to lattice vibrations are in general relevant. As known (see [1] for
more details), the lattice vibrations can be considered as fictitious spin-less particles,
called phonons, obeying the Bose statistic. In formulæ, the equilibrium density of
phonons N0

p is given by:

N0
p =

1

e
h̄ωp
kBT −1

, (A.78)

4 We have assumed that the impurity atoms are randomly distributed and that the mean distance
between them is much greater than the scattering amplitude, so that every event can be assumed as
independent.
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where ωp is the phonons dispersion relations. At low momentum p, this is described
by sound waves, namely

ωp = us p (A.79)

where us is the sound velocity of phonos. The maximum physical significant value of
p is associated to the boundary of the Broullion zone, which is roughly expressed in
term of the lattice spacing a as kD ∼ π/a. The the maximum meaningful frequency
for phonons, called the Debye frequency, is given by:

ωD ∼
usπ

a
. (A.80)

Since we are dealing with another type of particle involved in the transport mech-
anisms, one has to keep into account, in addition to the Boltzmann equation for
quasi-particles (A.47), also the analogous equation for phonons:

∂Np

∂ t
+uk ·∇rNk = Iph,ph[Nk]+ Iph,e[Nk] , (A.81)

where uk ≡ ∂ωk
∂k . Note that it is necessary to add to the collision integral also the

contribution due to the phonon-phonon interaction. This is because phonons do not
conserve the total number of particle. Then the phonon-phonon interactions are not
elastic and contribute to the collision integral I.

Stated this, let us now analyze how the interactions between phonons and quasi-
particles affect the collision integral appearing in the quasi-particle kinetic equation
(A.47) Ie,ph[np], and that due to the phonons contribution in (A.81), Iph,e[np].

Regarding Ie,ph[np], this is given by:

Ie,ph[np] =∫ ddk
(2π)d δ

(
εp− εp′ −ωk

)
w(p′,k; p)

[
np′(1−np)Nk−np(1−np′)(1+Nk)

]
+
∫ ddk

(2π)d δ
(
εp− εp′ +ωk

)
w(p′; p,k)

[
np′(1−np)(1+Nk)−np(1−np′)Nk

]
,

(A.82)

where we have omitted the spin index since the interaction does not depend on the
spin and we have performed the trivial summation over the two possible polarization
state of the quasi-particle. The first term corresponds to processes with emission of
a phonon having momentum k and by an electron having momentum p, and the re-
verse processes with absorption of a phonon k by an electron p′ with return to p.
The second term corresponds to processes with absorption of a phonon by an elec-
tron p and the reverse process of its emission by en electron p′. The delta function
in the two integral ensures that the process conserves the total energy even though
the energy of the quasi-particle is not conserved. Then, in general, this mechanism
can not be considered as elastic with respect to the quasi-particles. Of course the
collision integral vanishes identically if we replace both the quasi-particle density
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np and the phonons density Nk with their equilibrium values n0
p and N0

k . The two
terms w(p′,k; p) and w(p′; p,k) are the probability weight corresponding to the two
processes.

On the other hand, Iph,e[np] appearing in the kinetic equation for phonons (A.81)
is the difference between the number of phonons k emitted by quasi-particles with
any momenta p and the number absorbed by quasi-particles with any p′:

Iph,e[Nk] = 2
∫ dd p

(2π)d δ
(
ε
′
p− εp +ωk

)[
np(1−np′)(1+Nk)−np′(1−np)Nk

]
,

(A.83)
where the factor 2 is due to the summation other the spin indices.

In order to solve the two coupled kinetic equations we need to linearise both the
collision integrals (A.82) and (A.83) with respect to the fluctuations δnp and δNk,
defined as:

np = n0
p(ε)+δnp , (A.84)

Nk = N0
k (ω)+δNk , (A.85)

where, as above, n0
p(ε) and N0

k (ω) are functions of the effective quasi-particle en-
ergy εpσ and phonons energy ωk respectively. Keeping in mind the form of the
equilibrium distribution functions (A.6) and (A.78) we obtain:

δnp =−
∂n0

p
∂ε

φ =
n0

p(1−n0
p)

T φ , (A.86)

δNk =−
∂N0

k
∂ω

χ =
N0

k (1+N0
k )

T χ , (A.87)

where φ and χ are unknown functions which measure the deviation from the equilib-
rium distributions. With this conventions the linearisation of the collision integrals
(A.82) and (A.83) yields:

Ie,ph[φ ,χ] =

−
∫ ddk

(2π)d
∂N0

k
∂ω

w(n0
p′ −n0

p)
[
(φp′ −φp +χk)δ (εp− εp′ −ωk)

−(φp′ −φp−χ−k)+δ (εp− εp′ +ωk)
]
, (A.88)

Iph,e[χ,φ ] =
∂N0

k
∂ω

∫ dd p′

(2π)d w(n0
p′−n0

p)
[
(φp′ −φp +χk)δ (εp− εp′ −ωk)

]
. (A.89)

Unfortunately the previous integrals can not be treated analytically and the best one
can do is to estimate their temperature behaviour. To proceed with a quantitative es-
timate, we need to evaluate the order of magnitude of the transition weight w. To do
this, we note that the order of magnitude of the parameters of the electron spectrum
in a metal can be expressed in terms of the lattice spacing a and the effective mass
of the electrons m∗ only; for example, the Fermi momentum pF ∼ h̄/a, the speed
vF ∼ pF/(m∗d) and the energy EF ∼ vF pF ∼ h̄2/(m∗d2). The parameters of the
phonons spectrum contain also the mass of the atoms of the lattice M. The density
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of the substance ρL ∼M and the speed of sound us ∼ ρ
−1/2
L ∼M−1/2. Consequently,

we obtain for the speed of sound

us ∼ vF

√
m∗

M
, (A.90)

and the Debye temperature TD associated to the Debye frequency ωD is given by:

TD ∼ h̄ωD ∼
h̄us

d
∼ EF

√
m∗

M
. (A.91)

As regards the transition probability w, as known (for more details see [1]), it propor-
tional to the square of the electron-phonon scattering potential which is proportional
to M−1/4. Then making the dimensions right, we obtain:

w∼ TDvF a2 . (A.92)

The previous estimation is correct in case of optical phonons which has a disper-
sion relation which tends to a constant at low momentum. In case of emission or
absorption of acoustic phonons we have to keep into account that the the dispersion
relation is ω ∼ usk. Then the we need to add an extra factor k/kD to the previous
estimation, namely:

w∼ TdvF ka3 (A.93)

for acoustic phonons.

High-T behaviour (T � TD)

At high temperatures, (T � TD), phonons with all possible momenta are exited
in the crystal, up to the maximum value which has the same order of the electron
Fermi momentum: kmax ∼ pF ∼ 1/a. By definition of the Debye temperature, the
maximum phonon energy ωmax ∼ TD, and consequently ω � T for all phonons.
This allow us to treat the emission ad absorption of a phonon as an elastic scattering
of a an electron and consequently, due to the discussion of the previous Section,
to consider the Wiedemann-Franz law to hold. The scattering angle are not small,
since the electrons and phonons momenta under these conditions are the same.

At high temperatures, when the phonon state occupation numbers are large, the
establishment of equilibrium in each volume element of the phonon gas takes place
very quickly. We can therefore regard the phonon distribution to be the equilibrium
one when considering the electrical and thermal conductivity. This corresponds to
take the function χ in (A.86) to be zero and to solve only the electron kinetic equa-
tion (A.47). As we will see, this approximation will be not valid in analysing the
Seebeck coefficient where we need to take into account the effect of the phonon
drag.
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In order to analyze the temperature scalings of σ and κ , let us now analyze the
temperature dependence of the collision integral Ie,ph. Because the phonon energy
ωk is small, we can expand the difference n0

p′ −n0
p in powers of ωk:

n0
p′ −n0

p ∼ ωk
∂n0

p

∂εp
. (A.94)

We can than put ωk = 0 in the argument of the delta function, obtaining:

Ie,ph(φ) = 2
∫ ddk

(2π)d w
∂N0

k
∂ωk

∂n0
p

∂εp
δ (εp′ − εp)(φp′ −φp)ωp . (A.95)

When ωk� T the equilibrium phonon distribution function can be written as N0
k ∼

T/ωk. Moreover we have also
∂n0

p
∂εp
∼−1/T . Substituting these expressions in (A.95)

and considering that the integral takes the major contribution from the region k ∼
kmax where ωk ∼ TD, we obtain:

Ie,ph ∼−w
T
TD

kd−1
max

vd−2
F

φp

T
. (A.96)

Then considering the estimation for the scattering rate (A.92) and (A.93) and deriv-
ing the function φp from (A.86) at high temperatures, we obtain:

Ie,ph ∼−φp ∼−T δnp . (A.97)

Putting this expression in the kinetic equation (A.47) and repeating the same steps
of the previous Section for impurity scattering (remember that in this approximation
the electron-phonon interaction is elastic as the scattering from fixed impurities) we
finally obtain:

σ ∼ N(0)e2h̄
m∗T

, (A.98)

and applying the Wiedemann-Franz law:

κ ∼ N(0)h̄
m∗

. (A.99)

regarding the Seebeck coefficient α , as we have anticipated, the situation is more
complicated. In fact, applying the Mott law (A.70), which is valid in general for
elastic scattering mechanism, and considering the expression for the collision inte-
gral (A.97) we obtain:

α
I ∼ T

eEF
. (A.100)

This contribution is extremely small due to the EF factor at the denominator which
comes from the logarithmic derivative in (A.70). This property may have the result
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that a comparatively small addition to φp due to the non-equilibrium of the phonons
yields a contribution to α which is comparable with (A.100).

In order to take into account the possible effect of the non-equilibrium of phonons
let us suppose that the electron transport equation (A.47) in presence of an external
thermal gradient can be expressed in the following form:

∂n0
p

∂T
vp ·∇rT = I(1)e,ph(φp)+ I(2)e,ph(φp) , (A.101)

and φp can be expressed as the sum of two contributions, φp = φ I
p +φ II

p where φ I
p is

the solution of (A.101) without I2
e,ph(φp) and φ II

p is the solution of the equilibrium
equation for phonons

I(1)e,ph(φp)+ I(2)e,ph(φp) = 0 . (A.102)

repeating the previous steps for I(2)e,ph(φp) we find that this quantity is proportional to
χ and then from (A.102) we obtain:

φ II

φ I ∼
χ

φ I ∼
TD

T
� 1 , (A.103)

namely φ I is the major part of φ . However, unlike φ I , φ II is not zero when εp =
µ . Consequently, in the calculation the corresponding contribution to the current
density is not cancelled, and the result is small only in the sense that φ II is relatively
small. This means that the additional contribution to the Seebeck coefficient due to
the presence of φ II is

α
II ∼ α

I EF

T
TD

T
∼ TD

eT
. (A.104)

The Seebeck coefficient is composed of two additive parts. These may be of the
same order of magnitude but vary differently in temperature. The contribution α II

is commonly called phonon drag contribution and is due to the fact that the heat
transfer in the crystal causes a flux of phonons which carries the electron with it.

Low-T behaviour (T � TD)

At low temperature, T � TD, the phonons distribution can not be regarded as the
equilibrium one. Consequently, the electron-phonon interaction is not elastic in this
case and one has to solve in a self consistent way both the kinetic equations for
phonons and electrons.

In this spirit, it is important to note that, in this range of temperatures, the re-
laxation in the phonon system takes place mainly by phonon-electron and not by
phonon-phonon collisions. To prove this statement let us first note that, at low T , and
in the vicinity of the Fermi surface, ω ∼ T , εpσ −µ ∼ T and therefore N0 ∼ n0 ∼ 1
and ∂N0/∂ω ∼ 1/T . Moreover, the integration other dd p can be safely taken other
a volume of a layer with thickness ∼ T/vF along the Fermi surface. Since k/p is
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small, the argument of the delta function can be expressed as:

εpσ − ε(p−k)σ ' k ·∇pεpσ −ω ' vF · k−ω . (A.105)

The delta function is removed by integration over the direction of p for a given k,
adding a factor 1/vF k to the integrand. Finally, estimating the scattering weight w
by means of (A.93), we obtain:

Iph,e[δnpσ ]∼−T

√
m∗

M
δnpσ ≡ νph,eδnpσ , (A.106)

where νph,e is the phonon-electron collision frequency. It is known (see e.g. [2]) that
the phonon-phonon collision frequency νph,ph is given by:

νph,ph = T

√
m∗

M

(
T
TD

)4

. (A.107)

Then, due to the factor
(

T
TD

)4
we have νph,ph� ν ph,e which proves the statement.

With the help of the observation above the behaviour of the relevant collision
integrals which appear in the kinetic equation for phonons and electrons can be esti-
mated using techniques similar to those illustrated in the previous Section. Referring
to [1] for the technical details, we obtain the following temperature behaviours for
the transport coefficients:

σ ∼ Cph,eT−(d+2) , (A.108)

S ∼ DT +EphdT d , (A.109)

κ ∼ Fph,eT d−1 , (A.110)

where the coefficients in front of the temperature are model dependent constants.
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Part II
Introduction to holography





Chapter 5
The gauge gravity duality

5.1 Review: Conformal Field Theory

In this Section we briefly review the basic concepts of Conformal Field Theories
(CFTs) which are necessary to understand the AdS/CFT correspondence. This re-
view is based on [17, 18]

5.1.1 The Conformal Group

A conformal transformation of the space-time coordinates is an invertible mapping
x→ x′ which leaves the metric invariant up to a scaling factor:

g′µν(x
′) = Λ(x)gµν(x). (5.1)

The set of conformal transformations forms a group, which has the Poincaré group
as a subgroup, (we obtain Poincaré transformations for the special case Λ(x) = 1).
The conformal transformations do not affect angles between arbitrary curves cross-
ing each over at some point, and map circle in circle.

Let us now analyse infinitesimal conformal transformations. Under an infinitesi-
mal coordinates transformation x′µ = xµ + εµ(x) the metric becomes:

g′µν = gµν − (∂µ εν +∂ν εµ). (5.2)

As it is evident from (5.1), in order for the previous transformation to be conformal
εµ has to satisfy the following condition:

∂µ εν +∂ν εµ = f (x)gµν , (5.3)

where f (x) is a generic function whose specific form has to be determined. Consid-
ering the transformation as an infinitesimal deformation of the Minkowski metric
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ηµν = diag(−1,1,1...,1) in a d-dimensional space-time and by applying an extra
derivative ∂ρ to (5.3), permuting the indices and making a linear combination, we
obtain:

2∂µ ∂ν ερ = ηµρ ∂ν f +ηνρ ∂µ f −ηµν ∂ρ f . (5.4)

It is not difficult to prove that (5.4) leads to the following equation for the function
f (x):

(d−1)∂ 2 f (x) = 0. (5.5)

If d = 1 the previous equation is meaningless as it is evident from the fact that in one
space-time dimension conformal transformations make not sense. The case d = 2
requires a more careful treatment and we shall briefly consider it at the end of the
chapter.
Let us now restrict the attention to d ≥ 3. In such a situation the solution of (5.5) is:

f (x) = A+Bµ xµ , with A, Bµ constants. (5.6)

Substituting (5.6) in (5.4), we find that the general expression for εµ is:

εµ = aµ +bµν xν + cµνρ xν xρ , with cµνρ = cµρν . (5.7)

Since the equations (5.3) and (5.4) hold for every x, we may treat each power of x
separately. It turns out that the constant term aµ is unconstrained and corresponds
to an infinitesimal translation. On the over hand, substituting the linear term in (5.4)
we find the following constraint for bµν :

bµν +bνµ =
2
d

bλ

λ
ηµν , (5.8)

which implies that bµν is a sum of an antisymmetric part and a pure trace:

bµν = αηµν +mµν , with mµν =−mνµ . (5.9)

The pure trace term represents an infinitesimal scale transformation, while the anti-
symmetric part is an infinitesimal rotation.

In a similar way, substituting the quadratic term of (5.7) in (5.4), we obtain:

cµνρ = ηµρ bν +ηµν bρ −ηνρ bµ , where bµ =
1
d

cσ
σ µ . (5.10)

The infinitesimal transformation corresponding to the previous constraint is called
the special conformal transformation (SCT),

x′µ = xµ +2xν bν xµ −bµ x2 . (5.11)

The corresponding finite transformations are:
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translation x′µ = xµ +aµ (5.12)

dilatation x′µ = αxµ (5.13)

rigid rotation x′µ = Mµ

ν xν (5.14)

SCT x′µ =
xµ −bµ x2

1−2bν xν +b2x2 . (5.15)

The generators of the transformations (5.12) are:

translation Pµ =−i∂µ (5.16)
dilatation D =−ixµ

∂µ (5.17)
rigid rotation Lµν = i(xµ ∂ν − xν ∂µ) (5.18)

SCT Kµ =−i(2xµ xν
∂ν − x2

∂µ). (5.19)

They satisfy the following algebra:[
D,Pµ

]
= iPµ (5.20)[

D,Kµ

]
= −iKµ (5.21)[

Kµ ,Pν

]
= 2i

(
ηµν D−Lµν

)
(5.22)[

Kρ ,Lµν

]
= i
(
ηρµ Kν −ηρν Kµ

)
(5.23)[

Pρ ,Lµν

]
= i
(
ηρµ Pν −ηρν Pµ

)
(5.24)[

Lµν ,Lρσ

]
= i
(
ηνρ Lµσ +ηµσ Lνρ −ηµρ Lνσ −ηνσ Lµρ

)
. (5.25)

We can reorganise all generators in the following matrix:

JMN =

 Lµν

Kµ−Pµ

2 −Kµ+Pµ

2
−Kµ−Pµ

2 0 D
Kµ+Pµ

2 −D 0

 with M, N = 1, ...,d +2, (5.26)

and check that the antisymmetric matrix JMN is a rotation in a d + 2-dimensional
space-time with signature (2,d):

[JMN ,JRS] = i(ηNRJMS +ηMSJNR−ηMRJNS−ηNSJMR) . (5.27)

This prove the isomorphism between the conformal group in d dimensions (for d ≥
3) and the group SO(2,d), with 1

2 (d +2)(d +1) generators.
Let us now briefly consider the case d = 2. In this case there are more solution

than that listed above. In order to prove this statement, it is useful to introduce the
complex variable

z = x1 + ix2, z̄ = x1− ix2, ds2 = dzdz̄. (5.28)

It is easy to see that the transformation z→ f (z), z̄→ f (z̄), with f an analytic
function, corresponds to a conformal rescaling of the metric: g′µν = | f (z)|2 gµν .
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Consequently, in addition to the solutions (5.12) we find also solutions correspond-
ing to the infinitesimal transformations δ z ∼ zn, n > 2, which are new conformal
transformations existing only in two space-time dimensions. This implies that the
conformal “group” is the infinite dimensional group of all the analytic functions. It
is due to the infinite dimensionality of this group that CFTs in two dimensions are
more constrained that CFTs in higher dimensions.
However there is a subtlety in the previous argument. We have proven in the first
part of the chapter that the conformal group in d ≥ 3 is finite dimensional while the
previous reasoning tells us that in two dimensions the same “group” is infinite di-
mensional. Actually we have put the word group between “...” since our argument is
purely local and we have not used yet the fact that conformal transformations must
be defined everywhere and invertible. In d ≥ 3 these requirements are automatically
satisfied. In d = 2 we have to distinguish between global conformal transformation
which satisfy this request and local conformal transformation which are not every-
where well defined. The set of global conformal transformations form the so called
proper conformal group. It turns out that the complete set of such mappings is

f (z) =
az+b
cz+d

, with ad−dc = 1, (5.29)

which is the SL(2,C) group. It is known that this group is isomorphic to SO(3,1).
Thus, as far as the proper conformal group is considered, there are no differences
between d = 2 and d > 2.

5.1.2 Field Theory and Conformal Invariance

Having explained what a conformal transformation is, let us now discuss the impli-
cations of conformal invariance on a quantum field theory.

At the classical level, a field theory is conformal invariant if its action is invari-
ant under conformal transformations. On the hover hand, it is important to observe
that conformal invariance at the classical level generally does not imply conformal
invariance at the quantum level. A quantum field theory necessitates of a regular-
ization prescription in order to make sense, and this introduces a scale in the theory
which, in general, breaks conformal invariance except in the fixed point of the renor-
malization group.
In fact, quantum field theory is, in most general terms, the study of the Renormal-
ization Group (RG) flows, i.e. how the theory evolves from the ultraviolet (UV) to
the infra-red (IR) regimes. One can ask which IR phases are possible. In principle,
there are three possibilities:

• A theory with a mass gap, as the non-abelian Yang-Mills theory in d = 4 space-
time dimensions.

• A theory with massless particles in the IR, as the QED.
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• A scale invariant (SI) theory with a continuous spectrum, as the λφ 4 scalar the-
ory.

It is the last class of theories which is commonly called Conformal Field Theory
(CFT).

5.1.2.1 Conformal invariance at the classical level

Let us first analyse the consequences of conformal invariance in a field theory at the
classical level.
The first thing to clarify is how classical fields transform under conformal transfor-
mation. Let Tg be a matrix representation of a conformal transformation parametrized
by ωg such that the multicomponent field Φ(x) transforms as

Φ
′(x′) = (1−ωgTg)Φ(x). (5.30)

The generator Tg must be added to the space-time part of the transformation (5.20)
in order to obtain the full generator of the symmetry. Then, to obtain the full form of
these generators, we use a standard trick in field theory, i.e. we establish the action
of these generators at the origin x = 0 and we subsequently translate the generator
at an arbitrary point in space time using the well known Hausdorf formula. As an
example, in order to applying this method to the angular momentum, we introduce
the spin matrix representation Sµν to define the action of the angular momentum on
the field Φ(0):

Lµν Φ(0) = Sµν Φ(0). (5.31)

Then we apply the Hausdorf formula to translate the previous expression to a non-
zero x:

eixρ Pρ Lµν e−ixρ Pρ = Sµν − xµ Pν + xν Pµ . (5.32)

This allow us to write the action of the generators on the fields as follows:

Pµ Φ(x) =−i∂µ Φ(x) (5.33)
Lµν Φ(x) = i(xµ ∂ν − xν ∂µ)Φ(x)+Sµν Φ(x). (5.34)

We can extend the previous argument to the full conformal group. The subgroup that
leaves the origin x = 0 is generated by rotations, dilatations and special conformal
transformations. Consequently, defining Sµν , ∆̃ and κµ as the eigenvalues of the
generators Lµν , D and Kµ at the origin respectively, the conformal algebra (5.20)
implies that these generators must satisfy the following commutation relations:
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∆̃ ,Sµν

]
= 0 (5.35)[

∆̃ ,κµ

]
= −iκµ (5.36)[

κµ ,κν

]
= 0 (5.37)[

κρ ,Sµν

]
= i
(
ηρµ κν −ηρν κµ

)
(5.38)[

Sµν ,Sρσ

]
= i
(
ηνρ Sµσ +ηµσ Sνρ −ηµρ Sνσ −ηνσ Sµρ

)
. (5.39)

The previous algebra allow us to use the Hausdorf formula in the same way as we
have just done for the angular momentum and to determine the full action of the
generators Kµ and D on the field Φ(x):

DΦ(x) =
(
−ixν ∂ν + ∆̃

)
Φ(x) (5.40)

Kµ Φ(x) =
(
κµ +2xµ ∆̃ − xν Sµν −2ixµ xν ∂ν + ix2∂µ

)
Φ(x). (5.41)

If we demand that Φ(x) belongs from an irreducible representation of the Lorentz
group, then, by Shur’s lemma, any matrix that commutes with all generators Sµν

must be a multiple of the identity. Consequently, the matrix ∆̃ is a multiple of the
identity and the algebra (5.35) forces all the matrices κµ to vanish. ∆̃ is then a simple
number, manifestly equal to −i∆ , where ∆ is the scaling dimension of the field Φ .
In principle we are now able to find the finite conformal transformation for the field
Φ(x). In the case of a scalar field φ (Sµν = 0) the result is:

φ
′(x′) = Λ(x)

∆
2 φ(x), (5.42)

where Λ(x) is the conformal scaling factor defined in (5.1). A field which transforms
as in (5.42) is called a primary field. 1 If the field Φ(x) belongs from an irreducible
representation R of the Lorentz group with non-zero spin, its transformation rule
should depend on the rotation matrix Mµ

ν defined in (5.12). Consequently, its trans-
formation is:

Φ
′(x′) = Λ(x)

∆
2 R
[
Mµ

ν

]
Φ(x), (5.43)

where R
[
Mµ

ν

]
is a representation matrix acting on the indices of Φ(x).

The stress-energy Tensor and conformal invariance

It is a well know theorem by Polyakov [20] that, at the classical level, a field theory
which is local, invariant under rotations a translations and posses the scale transfor-
mation symmetry is invariant under the whole conformal group.
The proof runs as follows: locality implies that, under an infinitesimal transforma-
tion x′µ = xµ + εµ(x) the action S of the theory changes as follows:

1 Note that the requirement that φ belongs from an irreducible representation of the Lorentz group
is necessary for the definition of primary field.
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δS =
∫

ddxT µν
∂µ εν , (5.44)

where Tµν is the stress-energy tensor of the theory. In other words, locality implies
the existence of a privileged tensor Tµν which is the conjugate variables of the metric
gµν .
Invariance under rotations implies that Tµν is a symmetric tensor while translational
invariance means that ∂µ T µν = 0.
Finally, invariance under scale transformations implies that Tµν is traceless: T µ

µ = 0.
Stated this, if the infinitesimal transformation under consideration is a conformal
transformation, it is evident from the definition (5.3) that:

δS =
1
d

∫
ddxT µ

µ ∂ρ ε
ρ = 0, (5.45)

which prove the statement.
The converse is in general not true, i.e. conformal invariance does not implies in
general the tracelessness of Tµν since ∂ρ ερ is not an arbitrary function.
However, it is possible to prove, (for more details see [17]), that under very general
conditions also the converse is true. Then, in the large majority of field theory at
the classical level, conformal invariance is a consequence of scale invariance and
Poincaré invariance.

5.1.2.2 Conformal invariance at the quantum level

Let us now analyse the consequence of conformal invariance at the quantum level
(i. e. on a regularized theory at the fixed point of the RG flow) on the two and
three-point functions. At first we restrict our analysis on primary scalar fields.

Consider the two-point function

〈φ1(x1)φ2(x2)〉=
1
Z

∫
DΦφ1(x1)φ2(x2)e−iS[Φ ], (5.46)

where φ1 and φ2 are two primary scalar fields not necessarily distinct, Φ denotes the
set of all functionally independent field of the theory and S[Φ ] is the conformally
invariant action.
The assumed conformal invariance of the action and of the functional integration
measure leads to the following transformation of the correlation function, according
to (5.42):

〈φ1(x1)φ2(x2)〉= Λ(x1)
∆1
d Λ(x2)

∆1
d 〈φ1(x′1)φ2(x′2)〉 (5.47)

If we consider only scale transformation x→ λx, the previous equation becomes:

〈φ1(x1)φ2(x2)〉= λ
∆1+∆2〈φ1(λx1)φ2(λx2)〉. (5.48)

Rotational and translational invariance requires that
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〈φ1(x1)φ2(x2)〉= f (|x1− x2|) , (5.49)

where f (x) is a scale invariant function by virtue of (5.48). Consequently

〈φ1(x1)φ2(x2)〉=
C12

|x1− x2|∆1+∆2
(5.50)

where C12 is a constant coefficient. Finally if we impose the invariance under SCT
(Λ(x) = (1−2bµ xµ +b2x2)−d), we obtain the following constraint:

C12

|x1− x2|∆1+∆2
=

C12

γ
∆1
1 γ

∆2
2

(γ1γ2)
∆1+∆2

2

|x1− x2|∆1+∆2
, (5.51)

with γi = (1− 2bµ xµ

i + b2x2
i ). This constraint is identically satisfied if ∆1 = ∆2.

Finally, we find that the two primary fields are correlated only if they have the same
scaling dimension:

〈φ1(x1)φ2(x2)〉=

{ C12
|x1−x2|2∆1

, i f ∆1 = ∆2

0 i f ∆1 6= ∆2
(5.52)

A similar analysis, performed on the three-points function of scalar primary fields,
yields:

〈φ1(x1)φ2(x2)φ3(x3)〉=
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
13

, (5.53)

where xi j =
∣∣xi− x j

∣∣ and C123 is an undetermined constant.
As regards the n-points Green’s functions with n≥ 4 conformal invariance does not
determines the form of the correlators as in the case n ≤ 3. This is due to the fact
that with four (or more) point it is possible to construct conformal invariants, the so
called anharmonic ratios. The n-points functions may have an arbitrary dependence
on these ratios.

Conformal invariance constrains also the form of two and three-points correlators
of higher spin primary fields. For details on this topic see [18, 19].

Conformal Ward Identities

In this section we will analyse the Ward Identities associated to conformal symme-
try.
Let us consider the following infinitesimal symmetry transformation on the field:

δΦ(x′) =−iωaTaΦ(x), (5.54)
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where Ta are the infinitesimal generators of the transformation and ωa are the in-
finitesimal parameter associated to the symmetry. Let ja

µ be the conserved current
associated to the symmetry (5.54). The Ward identity corresponding to the transfor-
mation (5.54) is:

∂µ〈 ja µ(x)Φ(x1)...Φ(xn)〉=−i
n

∑
i=1

δ (x− xi)〈Φ(xi)...TaΦ(xi)...Φ(xn)〉. (5.55)

As regards translational invariance, the generator associated to this symmetry is
Pµ =−i∂µ . Consequently, the associated Ward Identity is:

∂µ〈T µ

ν X〉=−∑
i

δ (x− xi)∂
i
ν〈X〉, (5.56)

where, from now on X stands for the collection of fields Φ(x1)...Φ(xn).
Let us now consider the Lorentz transformation. The associated current has the fol-
lowing form:

Jµνρ = T µν xρ −T µρ xν . (5.57)

The infinitesimal generator of the symmetry is given by (5.20), namely

Ta =−i(xν ∂ρ − xρ ∂ν)+Sνρ . (5.58)

Substituting these quantities in (5.55), and considering the Ward Identity (5.56), we
obtain

〈(T µν −T νµ)X〉=−i∑
i

δ (x− xi)S
µν

i 〈X〉 , (5.59)

which is the Ward identity associated to Lorentz symmetry.
Equation (5.59) means that the energy-momentum tensor is symmetric in the

Green’s function except correction given by contact points in the correlators.
Finally, as regard dilatation invariance, the associated current may be written as

jµ

D = T µν xν , (5.60)

while the infinitesimal generator is given by (5.20), D =−ixν ∂ν − i∆ , for a field of
scaling dimension ∆ . Consequently the Ward Identity associated to this symmetry
is

〈T µ

µ X〉=−∑
i

δ (x− xi)∆i〈X〉, (5.61)

where we have used (5.56).
Equations (5.56), (5.59) and (5.61) are the Ward Identities associated with confor-
mal invariance.
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5.1.3 Unitarity bounds

To conclude this brief review on CFTs we observe how the unitarity constraint im-
poses bounds on the scaling dimensions of the primary fields (for more details see
Appendix C).

As we have outlined in the previous Sections, each representation of the con-
formal group contains several fields with different scaling dimensions. However, as
known, a general field theory should not admit states with negative norm, i.e. the
theory should be unitary. A conformal field theory satisfies this request only under
particular conditions depending on the fields and the space-time dimensions d. In
particular for primary fields of integer angular momentum l it is possible to find:

∆min(l) = l +d−2, for l = 1,2,3... (5.62)
∆min(l = 0) = d

2 −1 (5.63)

The previous relations are commonly known as unitarity bounds. Similar bounds
can be derived for antisymmetric tensor and fermionic representation of the Lorentz
group.

5.2 Review: anti-de Sitter spaces

In this Section we shall review the basic aspects of the anti-de Sitter (AdS) space-
time. The the review is based on [1, 2, 3, 4].

5.2.1 AdS as a maximally symmetric solution of Einstein’s
equations

AdSd+1 is the maximally symmetric metric space in d +1 dimension with positive
curvature, where maximally symmetric means that it admits the maximum number
of independent killing vectors, namely (d+1)(d+2)

2 .
It is possible to prove that a maximally symmetric d + 1-dimensional metric

space is homogeneous and isotropic and that the curvature tensor can be expressed
as a function of the metric as follows:

Rλρσν =
R

(d +1)d
(gνρ gλσ −gρσ gλν), (5.64)

where R is the Ricci scalar. Moreover, due to the homogeneity and isotropy of the
space, at every point X , the Bianchi identity assumes the following form:



5.2 Review: anti-de Sitter spaces 71(
1

d +1
− 1

2

)
∂ρR = 0, (5.65)

which means that for d > 1 the Ricci scalar R is constant, namely

R = const ≡ d(d +1)K , (5.66)

where K is called the curvature constant. Consequently, taking into account (8.32),
the Ricci tensor and the curvature tensor may be written in the following form:

Rµν = dKgµν (5.67)
Rλρσν = K(gσρ gλν −gνρ gλσ ). (5.68)

A metric space in which the Ricci tensor and the curvature tensor can be expressed
in the form (8.34) is called space of constant curvature.

It is possible to prove that, given the curvature constant K, the dimensionality
d+1 of the space and the number of positive and negative eigenvalues of the metric
tensor, there exists an unique non-equivalent maximally symmetric metric space.

Since now, we have described only geometric properties of maximally symmetric
metric space. Let us now analyse under which conditions these particular metric
spaces are solutions of the Einstein’s equations. A maximally symmetric space-
time is a solution of the Einstein’s equation in d + 1 dimension with cosmological
constant Λ :

Rµν −
gµν

2
R =−Λ

2
gµν , (5.69)

Taking the trace of the previous equation and keeping in mind that R = d(d +1)K,
we obtain:

R =
d +1
d−1

Λ =−d(d +1)K, (5.70)

which implies that

Rλρσν =− Λ

d(d−1)
(gσρ gλν −gνρ gλσ ). (5.71)

The Λ = 0 solution is the Minkowsky space-time 2, for Λ > 0 the solution is called
de Sitter (dSd+1) space-time, while, for Λ < 0 we have the AdSd+1 space-time.

Eventually, AdSd+1 is the unique maximally symmetric solution of the Einstein’s
equation in d +1 dimensions with negative cosmological constant Λ .

2 In particular every flat solution of the Einstein’s equation is maximally symmetric.
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5.2.2 Hyper-surface embedding and geometric properties

The geometrical properties of AdSd+1 are better understood by embedding it in a
higher dimensional flat space-time with line element

ds2 =−dx2
0−dx2

d+1 +dx2
1 + ...+dx2

d . (5.72)

The AdSd+1 space can be represented as an hyperboloid in this flat d+2-dimensional
space-time, described by the equation

x2
0 + x2

d+1− x2
1− ...− x2

d = L2, (5.73)

where L is a constant parameter called the AdS radius. From (5.73), it is evident that
AdSd+1 has the topology of S1×Rd .
Equation (5.73) can be solved by introducing the parametrisation

x0 = L
√

1+ r2

L2 cosτ, (5.74)

xd+1 = L
√

1+ r2

L2 sinτ, (5.75)

xi = sinhrθi, ∑
d
i=1 θ 2

i = 1. (5.76)

where ρ ∈ (0,∞] and τ ∈ (0,2π] 3. Substituting (5.74) in (5.72) we find that the
induced metric on the hyperboloid (5.73) is:

ds2 = L2

−(1+
r2

L2

)
dτ

2 +
dr2(

1+ r2

L2

) +ρ
2dΩ

2
(d−1)

 , (5.77)

where dΩ 2
(d−1) is the line element on a d− 1-dimensional sphere. The curvature

tensor associated with the metric (5.77) is:

Rλρσν =
1
L2 (gνρ gλσ −gρσ gλν), (5.78)

which coincides with the AdSd+1 one if

1
L2 =− Λ

d(d−1)
. (5.79)

Moreover the group of isometries of the metric (5.77) is the same group under which
the hyperboloid (5.73) is invariant, namely SO(2,d) which has (d+1)(d+2)

2 genera-
tors, which is exactly the maximum number of linearly independent Killing vectors
admissible in a d +1-dimensional space.

3 Note that the time is 2π-periodic. As we will see in the next section this fact implies that geodesic
are also 2π-periodic.
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The parametrisation (5.74) is called the global parametrisation of AdSd+1 and it
covers the hyperboloid (5.73) exactly once. Another parametrization which shall be
useful is the so called Poincaré parametrization:

x0 =
1
2u

(
1+u2

(
L2− t2 +∑

d−1
i=1 x2

i
))

, (5.80)
xi = Luxi, i,1, ...,d−1, (5.81)

xd = 1
2u

(
1−u2

(
L2− t2 +∑

d−1
i=1 x2

i
))

, (5.82)
xd+1 = Lut, u ∈ (0,∞) (5.83)

which yields

ds2 = L2
(

u2
η

µν dxµ dxν +
du2

u2

)
, (5.84)

where ηµν is the diagonal flat metric with Minkoskian signature (1,d− 1). This
parametrization cover only half of the hyperboloid and has a Killing horizon at u= 0
where gtt = 0. In this parametrization the subgroup (of SO(2,d)) ISO(1,d − 2),
which represents the Poincaré invariance on the hyperplane (t, xi), and SO(1,1),
which represents the scale transformation under which the AdS metric is invariant

(t, xi, u)→ (at, axi, a−1u), a > 0, (5.85)

are manifest.
Another useful parametrization is obtained by the previous with the change of coor-
dinates z = 1

u , which yields

ds2 =
L2

z2

(
dz2 +η

µν dxµ dxν

)
. (5.86)

5.2.3 Geodesic motion in AdSd+1

We have seen in the previous Section that in the global parametrization (5.77) the
time coordinate τ is periodic. This fact has consequences on causality in the motion
of massive particles in AdS which has to be analysed carefully.

Because of the negative (attractive) cosmological constant Λ , the motion of mas-
sive particles in AdSd+1 is in a certain sense confined. In order to clarify this point
and to better understand the conformal structure of the space (as we will see in the
next section) it is useful to analyse the geodesic equation:

d2xµ

dτ2 +Γ
µ

νλ

dxν

dτ

dxλ

dτ
= 0, (5.87)

where τ is the proper time of the particle. To simplify the computation, we will study
only the radial motion of a massive and massless particle in the global coordinate
system (5.77). In this case the quadri-velocity has only two components:
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ut ≡ ṫ(τ), (5.88)
ur ≡ ṙ(τ), (5.89)

where the dot stands for the total derivative with respect to the proper time τ . Sub-
stituting these two components of u in the geodesic equation (5.87) we obtain two
ordinary differential equation for t and r:

ẗ +2ṫ ṙ r
r2+L2 = 0 (5.90)

r̈+ ṫ2 r
L2

(
1+ r2

L2

)
− ṙ2 r

r2+L2 = 0, (5.91)

which are valid both for massive and for massless particles.

Massive particles

In the case of massive particles we can normalize the velocity u as follows:

uaua =−1. (5.92)

The condition (5.92) allow us to simplify the equations (5.90) and (5.91). In partic-
ular, it permits to derive a differential equation for r(τ) alone:

r̈+
r

L2 = 0. (5.93)

Consequently, the general solution of the differential equations (5.90) and (5.91) is:

r(τ) = r0 cos
(

τ−τ0
L

)
, (5.94)

t(τ) = t0 +Larctan

 1√
1+

r2
0

L2

tan
(

τ−τ0
L

)
,

 (5.95)

where r0 ant τ0 are arbitrary parameters to be determined by the initial conditions.
First of all, we note that the motion is periodic and bounded in r. This implies that
no massive particles can escape to infinity.

The problem of the periodicity of massive geodesic could appear as a problem of
causality of the space but in reality, it has a simple solution. In fact, one has to keep in
mind that, as the global parametrisation (5.77) shows, AdS is not simply connected,
but has the topology of S1×Rd . Consequently, we can unwrap the circle S1 (to obtain
its covering R1) obtaining the universal covering of Anti-de Sitter space, which does
not contain any closed time-like lines. This space has the topology of Rd+1.

We shall in future mean by Anti-de Sitter space this universal covering space.
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Massless particles

For massless particles the velocity u must be normalized as follows:

uaua = 0. (5.96)

As a consequence, the equation for r(τ) (5.90) becomes:

r̈ = 0. (5.97)

The general solution of the differential equations (5.90) and (5.91) is:

r(τ) = a(τ− τ0), (5.98)

t(τ) = t0 +Larctan
(

r(τ)
L

)
, (5.99)

where a and t0 are arbitrary parameters to be determined by the initial conditions.
We see that null geodesic can reach r→ ∞ at finite proper time τ → ∞ which how-
ever corresponds to finite coordinate time interval, t− t0 = πL

2 .

5.2.4 Carter-Penrose diagram and conformal boundary

In the previous Section we have seen that light-like geodesic can reach r =∞ in finite
coordinate time t < ∞. The hyper-surface r = ∞ is called the conformal boundary
of AdS. In order to understand the property of the boundary, let us try to sketch
the Carter-Penrose diagram for AdS space-time. The basic philosophy of the Carter-
Penrose diagram is to map a non-compact metric space in a compact one which is
related to the previous by a Weyl rescaling. The basic idea of this procedure is that
if two metrics differ by a Weyl rescaling, the null geodesic trace the same space-
time points. For AdSd+1 space-time in global coordinates (5.77), we can make the
following change of coordinates:

r = L tanθ , (5.100)
t = Lτ, (5.101)

τ ∈ (−∞,∞), θ ∈
[
0, π

2

)
, (5.102)

which maps the coordinate r in a finite interval. With the parametrization (5.100),
the metric becomes:

ds2 =
L2

cos2 θ

[
−dτ

2 +dθ
2 + sin2

θdΩ
2
d−1
]
. (5.103)

Making a Weyl rescaling with factor cos2 θ

L2 we obtain the metric
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Fig. 5.1 Carter-Penrose diagram of the AdSd+1 space-time.

ds2 =−dτ
2 +dθ

2 + sin2
θdΩ

2
d−1, (5.104)

which describe half of the Einstein static cylinder 4. The conformal boundary of
AdSd+1 is defined to be the hyper-surface θ = π

2 . It has the topology of R× Sd−1.
On the other hand, it is not possible to find a transformation which map the proper
time τ into a finite interval.5 Consequently the time-like infinity points i+ and i−

can not be smoothly included in the Carter-Penrose diagram (see Figure 5.1). As a
consequence, there exist no Couchy surface whatever in the space. While one can
find families of space-like surfaces (such as the surfaces t = const) which cover
the space completely, each surface being a complete cross-section of the space-
time, one can find null geodesics which never intersect any given surface in the
family. This is due to the fact that, as illustrated in the previous Section, only null
geodesic can reach the conformal boundary. This means that AdS is not globally
hyperbolic: Cauchy data on arbitrary space-like surface X , determines the evolution
of the system only in a region bounded by a null hyper-surface (called a Cauchy
horizon). Physics on AdS depends also on the boundary conditions imposed at the
boundary.

4 This implies that AdSd+1 is conformally flat. Remember that for conformally flat metric spaces
the Weyl tensor defined as

Cabcd ≡ Rabcd −
(
aa[cRd]b−aa[cFd]a

)
+

1
3
Rga[cgd]b (5.105)

identically vanishes.
5 By the way, I did not find a formal proof of this statement, even though this assertion is present
in almost every gravity textbook.
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5.3 Motivating the duality

Having reviewed the basics aspect of both the Conformal Field Theories and the
anti-de Sitter spaces we are now ready to understand the basic statement of the
duality. In this Section we try to motivate the gauge/gravity correspondence using
simple intuitive idea referring to [11] for the original string framework in which
Maldacena firstly obtains the conjecture [11].

It is common folklore to intuitive express the duality using the following phrase:

d +1-dimensional classical gravity theories on AdSd+1 vacuum are equivalent to
the large N (degrees of freedom per site) limit of strongly coupled d-dimensional

CFTs in flat space.

There are three issues which we have to clarify in order to understand the previ-
ous statement, namely:

• Why conformal field theories?
• How can we match the degrees of freedom of a d + 1-dimensional theory with

that of a d-dimensional one?
• Why the dual CFTs are strongly coupled and in the large N limit?

The answer to the first question is very simple if one has in mind the basic properties
of CFTs and AdS spaces. In fact, we have explained in the previous Section that the
isometry group SO(2,d) of AdSd+1 is exactly the symmetry group of a d dimen-
sional CFT. Then, if there is some region of AdS in which a quantum field theory
lives it is natural to assume that it has to be invariant under the same symmetry of
AdSd+1.

To get intuition on the second issue we need the help of the holographic principle
[12]. This principle states that a theory of gravity in d+1 space time dimensions, in
a local region of space has a number of degrees of freedom which scales like that of
a quantum field theory in the boundary of that region.

To understand this basic principle we need to use the celebrated Bekenstain-
Hawking area law [13, 14] for the entropy of a black hole. According to [13, 14], in
fact, black holes are thermodynamical object and have an entropy which is propor-
tional to the area A of their horizon, namely (see also Appendix B):

SBH =
A

4Gd+1
, (5.106)

where Gd+1 is the Newton’s constant in Planck units. Now, since we are considering
a black hole, its entropy has to be the maximal entropy of anything else in the same
volume. Consequently, every region of space has a maximum entropy scaling with
the area of the boundary and not with the enclosed volume, as one may think. This
is much smaller than the entropy of a local quantum field theory in the same space,
which would have a number of states N ∼ eV , and the maximum entropy S∼ logN
would have been proportional to the volume V . The maximum entropy in a region
of space can instead be related to the number of degrees of freedom Nd of a local
quantum field theory living in fewer dimensions
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S =
A

4Gd+1
= Nd . (5.107)

The AdS/CFT correspondence is a particular realization of this principle where
the gravity theory lives in an AdSd+1 vacuum, and its degrees of freedom are en-
coded on the conformal boundary, which contains all the space. 6 To clarify this
point, let us compute the area of the conformal boundary of AdSd+1. Using the met-
ric (5.86) embedded in a hyper-surface of constant radius z and time t we obtain:

A =
∫

z→0
dd−1x

√
gd−1 =

∫
z→0

dd−1x
Ld−1

zd−1 , (5.108)

where gd−1 is the determinant of the embedded metric, and we have taken the limit
z→ 0 since this is the locus where the conformal boundary is located, as we have
explained in the previous Section.

The integral (5.108) suffers from divergences coming both from the z→ 0 limit
and from the dd−1x integration, and need to be regularized. In order to do this, we
will perform the integral (5.108) up to a small value z = R and we enclose the space
in a closed space volume Vd−1, namely:

A =
Ld−1

Rd−1 Vd−1 . (5.109)

Finally, in accordance to (5.107) the maximum entropy in the bulk of AdSd+1 is

A
4Gd+1

∼ Ld−1

Rd−1
Vd−1

4Gd+1
. (5.110)

The dual quantum field theory in d dimensions is also UV and IR divergent and
needs to be regularized in the same way, by introducing a box of volume Vd−1 ,
and a short distance cut-off a. To get intuition on what a should be on the gravity
side, we note that from, the Quantum field theory point of view, a is an arbitrary
small UV cut-off. We need to construct, on the gravity side, a quantity with the
dimension of a length which has to be arbitrary small. But, in the previous steps we
have set a small cut-off R to the radial AdS coordinate z which has the dimension
of an energy. Consequently, a natural candidate is a ∼ RL2. 7 The total number of
degrees of freedom Nd of a quantum field theory in d dimensions is given by the
number of spatial cells Vd−1/ad−1 ∼Vd1/(L2d−2Rd−1) times the number of degrees
of freedom per lattice site N. As an example, a quantum field theory with matrix
fields φab in the adjoint representation of the symmetry group U(N) has a number
of degrees of freedom per point equal to N2. Thus

6 It is worth noting that, even though the common language could generate misunderstandings, the
dual field theory is not living on the conformal boundary of AdS.
7 This identification will be made clear when we will solve the third issue, identifying the radial
coordinate z with the renormalization group scale.
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Nd ∼
Vd−1N2

L2d−2Rd−1 . (5.111)

Finally, we have estimated the relation between the bulk gravitational degrees
of freedom and whose of the dual CFT and, using the holographic principle we
have understood why the CFT live in one less dimension. However, the estimation
(5.111) allow us also to understand the first part of the third issue, namely why
the number of degrees of freedom per site in the dual CFT has to be large. This is
related to the fact that we are considering classical gravity. In order to do this it is
necessary that the typical excitation length of the gravity theory is much larger than
the Planck’s length lp. Considering AdS, its typical length scale is given by its radius
L, then, keeping in mind that the gravitational Newton’s constant is proportional to
the Planck’s length, Gd+1 ∼ ld−1

p , and using the relations (5.107) and (5.108), we
obtain:

Ld−1

Gd+1
∼ Ld−1

ld−1
p
∼ N2� 1 , (5.112)

which proves the assertion.
We need now only to understand the last part of the third issue, namely why the

CFT is strongly coupled. This is related to the problem of giving physical interpre-
tation of the extra radial gravitational coordinate z at the dual level. In the previous
paragraphs of this Section we have identified the cut-off R of this coordinates with
the UV cut-off of the dual quantum field theory. Then we can already argue that the
radial coordinate has to be related to the renormalization group flow in some way.

To understand better this point, let us come back to a d-dimensional quantum
field theory. A possible way to describe such a theory is to organize the physics in
terms of lengths or energy scales. If one is interested in the properties of the theory
at a large length scale r� a, where a is the spacing of the lattice degrees of free-
dom or a possible cut-off of the theory, instead of using the bare theory defined at
a microscopic scale a, it is more convenient to integrate-out short distance degrees
of freedom and obtain an effective field theory at a scale r. One can proceed further
and define an effective field theory at a scale r′� r. This procedure defines a renor-
malization group flow and gives rise to a continuous family of effective theories in
d-dimensional Minkowski space-time labelled by the RG scale r. A remarkable fact
is that the RG equations are local in u = 1/r interpreted as an energy scale. This
means that we dont need to know the behaviour of the physics deeply in the UV or
in the IR to understand how things are changing in u. At this point we can visualize
this continuous family of effective theories as a single theory in d + 1-dimensions
with the RG scale r becoming a spatial coordinate.

It is tempting to identify this extra scale dimension with the radial dimension on
the gravity side. In order to understand how this is possible, let us recall that the
AdSd+1 metric can be cast in the following form:

ds2 =
r2

L2 ηµν dxµ dxν +
L2

r2 dr2 , (5.113)
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where the conformal boundary is now located at r→∞. This parametrization makes
clear that the AdSd+1 geometry can be viewed as a family of copies of Minkowski
spaces parametrized by the radial coordinate r, whose size is seen to shrink when

Fig. 5.2 Connection between the radial coordinates in AdS and the renormalization group flow in
the dual quantum field theory. Figure from [21].

r decreases from the conformal boundary r→ ∞ to the AdS horizon at r→ 0. This
clarify the UV/IR connection between gravity and the dual field theory and explain
why the field theory living on the boundary is strongly coupled. In fact, from the
view point of the gravity theory, physics near the conformal boundary r→ ∞ is the
large volume physics, i.e. IR physics. Near the horizon r = 0 is instead the short
distance UV physics. In contrast, from the view point of the quantum field theory,
physics at large r corresponds to short distance UV physics and vice versa (see
Figure 5.2).

5.4 The GKPW rule and its consequences

In the previous Section we have given arguments to justify, at least at the conceptual
level, the duality between a strongly coupled conformal field theory in the large N
limit and a classical gravitational theory in one more space-time dimension. Since
the gravitational theory is classical in principle, using the duality we can compute
easily observables in the strongly coupled CFT.

To do this, however, we need a prescription to relate observables in the gravita-
tional theory to observables in the dual strongly coupled field theory. In particular,
we have learned in Section 5.1 that the fundamental objects of CFTs are the primary
fields. Then in order to compute observables in the CFT we need a prescription to
relate the fields in the gravity sector to the primary fields of the CFT.

Let us consider a conformal field theory Lagrangian LCFT . It can be perturbed
by adding arbitrary functions, namely sources hA(x) of local operators OA(x):
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LCFT →LCFT +∑
A

hA(x)OA(x) , (5.114)

This is a UV perturbation because it is a perturbation of the bare Lagrangian by local
operators. According to the general connection between the radial AdS coordinate
and the renormalization group it corresponds to a perturbation near the boundary
r → ∞ in AdS space. Thus the perturbation by a source h(x) of the CFT will be
encoded in the boundary condition on the bulk fields.

Take now the source and extend it to the bulk side h(x)→ h(xµ ,r) with the extra
coordinate r being the radial dimension of AdSd+1 (see the metric (5.113)). Fields in
the boundary will be denoted with coordinates x, and bulk fields will be dependent
on the coordinates (xµ ,r). Suppose h(xµ ,r) to be the solution of the equations of
motion in the bulk with boundary condition

lim
r→∞

h(xµ ,r) = h(x), (5.115)

and another suitable boundary condition at the horizon to fix h(xµ ,r) uniquely 8. As
a result we have a one to one map between bulk fields and boundary fields [22, 23].
In fact, to each local operator O(x) corresponds a source h(x), which is the boundary
value in AdS of a bulk field h(xµ ,z) 9.

In order to deduce which field should be related to a given operator, symmetries
come in help, because there is no completely general recipe. As a rule of the thumb,
since internal symmetry of field in the gravitational sector are preserved in the dual
field theory, in general, we can say that the spin of the bulk fields correspond to the
spin of the dual operators in the boundary field theory.

To make a quantitative example, let us analyse how a very fundamental quan-
tity of a quantum field theory, the stress-energy tensor Tµν , is encoded in the dual
gravitational sector using the previous prescription. In particular, the source of Tµν

should be a tensor gµν . To have a gauge invariant coupling∫
ddxTµν(x)gµν(x) , (5.116)

gµν(x) should be the boundary value of a gauge field corresponding to the local
translational invariance. The field we are talking about is of course the metric tensor
gab(xµ ,r) with boundary value

lim
R→∞

gab(xµ ,r)
∣∣
r=R = gµν(x) . (5.117)

The right-hand side of the previous equation is to be intended as the embedding of
the bulk metric on the hyper-surface r = const.

The previous example allow us to make an important observation. In fact, we
have just explained that the metric tensor gµν , which encodes local diffeomorphisms

8 As noted in Section 5.2 AdSd+1 is not globally hyperbolic and one has to provide boundary
conditions both at the horizon and at the boundary to find a solution.
9 This statement will be clarified better when we will take as an example the scalar field i AdS.
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invariance in the gravitational bulk, sources the stress-energy tensor Tµν of the dual
field theory, which is a global conserved current (∂µ T µν = 0) due to the global trans-
lational and rotational invariance of the dual field theory. In this sense we can affirm
that, on the gravity side, the global symmetries arise as large gauge transformations,
namely there is a correspondence between global symmetries in the gauge theory
and gauge symmetries in the dual gravity theory. This correspondence will become
more clear when we will treat the Maxwell field in AdS in Section 5.6.2

This connection between field and operators allow us to express the duality as an
equality between partition function.

Namely, the proposal of Gubser, Klebanov, Polyakov and witten (GKPW) [22,
23], which, as everything in this framework is still a conjecture, affirms that the
partition function of the CFT ZCFT [{h(x)}] is equal to the partition function of the
dual gravitational theory ZAdS[{h(xµ ,z)}]:

ZCFT [{h(x)}] = ZAdS[{h(xµ ,r)}] , (5.118)

where {h(x)} is the collection of all the sources associated to each local operator
in the field theory side, and {h(xµ ,r)} is the collection of the bulk fields. However,
as we have outlined in the previous Section, we do not have a very useful idea of
what is the right hand side of this equation, except in the large N limits where this
gravity theory becomes classical. In these limits we can do the path integral by a
saddle point approximation, and the statement of the duality (5.118) becomes

ZCFT [{h(x)}] = eiSon−shell [{h(xµ ,r)}] , (5.119)

where Son−shell [{h(xµ ,r)}] is the classical gravitational action computed on-shell.
Finally, we are able to formulate the first operative rule of the AdS/CFT corre-

spondence, namely:

Rule 1: The gauge/gravity duality is a duality between partition functions which
relate the partition function of a CFT in d dimension to the on-shell action of a
gravitational theory in AdSd+1, namely:

ZCFT [{h(x)}]↔ eiSon−shell [{h(xµ ,r)}] .

The operators of the CFT are related to the fields in the bulk according to the fol-
lowing prescription:

field in AdSd+1 ↔ local operators of CFTd
spin of the gravitational fields↔ spin of the local CFT operators.

The sources for the operators are encoded in the boundary behaviour of the fields
in the gravitational side.
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5.4.1 Holographic renormalization and the prescription for the
correlators

In the previous Section we have expressed the AdS/CFT conjecture as an correspon-
dence between partition functions (5.119), according to the proposal of [22, 23].
However, the equality (5.119) is not well defined since both the r.h.s. and the l.h.s
suffer from divergences and need to be carefully renormalized.

In this Section we will outline the steps necessary to define a proper renormal-
ized on-shell gravitational action S(ren)

on−shell , which is necessary to consider the cor-
respondence (5.119) as a computational device to compute correlators in the dual
field theory. The renormalization procedure is known with the name of holographic
renormalization (for a review see [24]). Here we want only to outline the basic steps
of the procedure and discuss its physical relevance without entering in technicalities
which will be carefully treated in the next Section where we will apply the prescrip-
tion of the gauge/gravity duality to compute the correlators dual to a massive scalar
field in AdS.

Schematically, the holographic renormalization procedure consists in the follow-
ing steps:

1. Fix the boundary conditions and find a solution of the equations of motion:
the first step needed is to provide suitable boundary condition both for the horizon
and the boundary and to solve the gravitational equation of motion. The boundary
condition has to be chosen carefully both at the horizon and at the conformal
boundary since they determines the physical relevance of the solution. We will
be more clear about these issues when we will describe the holographic scalar
field in the next Section.

2. Compute the on-shell action and isolate the divergent part: the on-shell action
in AdSd+1 typically suffers of divergences due to the divergence of the boundary
volume (limit at infinity of the radial coordinates r). In order to compute the on-
shell action and isolate the divergent part we need to put an UV cut-off at r = R
and compute the action using the solution of the equations of motion previously
obtained. Typically, the action computed in this way splits into two parts:

Son−shell(φi,R) = S(reg)(φi,R)+S(div)(φi,R) , (5.120)

where φi is the collection of fields involved in the gravitational theory, S(reg) is
part of the on-shell action regular in the R→ ∞ limit while S(div) is the divergent
one.

3. Find appropriate counterterms: once the divergent terms have been recog-
nized the last step is to find the proper counterterms S(c.t.)(φi(x,R);R) which
cancel the divergences. In order for the gravitational theory to be consistent
S(c.t.)(φi(x,R);R) has to respect the following properties:

• It has to be a local function of the fields of the gravitational theory evaluated
at r = R and of the induced metric γi j on the manifold r = R.
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• It has to preserve the boundary value problem previously defined, namely it
must not modify the boundary condition at the conformal boundary previously
setted (this point will become more clear in the next Section, when we will
discuss the scalar field as an example).

Having done the previous steps, the renormalized on-shell action is defined as
follows:

S(ren)
on−shell = lim

R→∞

(
Son−shell(φi,R)+S(c.t.)(φi(x,R);R)

)
. (5.121)

At this point, keeping in mind the field operator correspondence outlined in the
previous section, we can give the prescription to compute the correlators of the
dual CFT from the renormalized on-shell gravitational action.

Rule 2: Once one has obtained the on-shell renormalized action S(ren) as a func-
tion of the boundary value of the gravitational fields φi(x), (which act as sources
for local operators in the dual field theory), the correlators of the boundary CFT
are given by the following relation:

〈Oi(x1)O j(x2)...Ol(xn)〉=
δ nS(ren)(hi(x))

δφi(x1)δφ j(x2)...δφl(xn)
.

5.5 An example: scalar field in AdSd+1

Having established the basic rules of the AdS/CFT correspondence, let us now anal-
yse deep further how it works.

As outlined in the previous sections, we will deal with a dual theory in the large
N limit, since only in this limit we can consider a classical gravitational theory in
the bulk. The main goal of this Section is to prove that the two point correlation
function of a scalar operator computed from a gravity theory using the GKPW rule
matches the Conformal Field theory result obtained in Section 5.1.

Our starting point is to consider the action of a scalar massive field φ of mass m
in a fixed AdSd+1 background. For simplicity, we will work in the probe limit, i.e.
we will assume that the scalar field does not back-react on the space-time, which is
considered as non-dynamical. The corresponding action is:

Ss =−
1

2κ2
d+1

∫
ddx
√
|g|
(
gµν

∂µ φ∂ν φ +m2
φ

2) , (5.122)

where κd+1 is the gravitational constant in d + 1 dimensions and we consider the
AdSd+1 metric gµν in the the Poincarè form as in (5.86), namely:
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ds2 =
L2

z2

(
dz2 +η

µν dxµ dxν

)
. (5.123)

The metric (5.123) is expressed in terms of the AdS radius L, and the conformal
boundary is located at z = 0. Regarding the metric ηµν this is the flat metric in d
dimensions, but we take for the moment the freedom of not specifying the signature.
This is due to the fact that the appropriate choice of the boundary conditions depends
on the signature of ηµν (Euclidean or Minkowski). Specifically, in the Euclidean
case the interior of AdS z→ ∞ is the center point of the space and requiring the
regularity of the solution is enough to specify the solution of the equations of motion
in the whole space. On the other hand, in the case of Minkowski signature, z→ ∞

is actually a killing horizon and suitable boundary conditions for the scalar field
have to be chosen in order to ensure the causality of the solution. This point will be
clarified in what follows.

Having defined the gravitational model at hand, in order to compute the on-shell
action we need to find a suitable solution for the scalar field φ . The equation of
motion associated to the action (5.122) is:

zd+1
∂z

(
1

zd−1 ∂zφ

)
+ zd+1

∂µ

(
1

zd−1 η
µν

∂ν φ

)
= m2L2

φ (5.124)

As it is evident from the metric (5.123), the space is homogeneous in the xµ = (t,x)
hyper-plane, then it is convenient to Fourier transform φ in this plane, namely:

φ(z,xµ) =
∫ dω

2π

dd−1k
(2π)d−1 e−iηµν kµ xν φ̃(z,ω,kµ) , (5.125)

where kµ = (ω,k).
Considering the previous mode decomposition, the equation (5.124) becomes:

zd+1
∂z

(
1

zd−1 ∂zφ̃

)
+ z2k2

φ̃ −m2L2
φ̃ = 0 . (5.126)

In order to find a solution of the previous differential equation we need to specify
appropriate boundary conditions for the scalar field φ . Since, as we have explained
in Section 5.2, AdS is not globally hyperbolic, we need to specify boundary condi-
tions both at the conformal boundary z = 0 and in the interior of AdS z→∞. As we
have anticipated the boundary conditions at z→ ∞ depend on the signature of the
metric ηµν and they will be discussed in detail later in the text.

At first, let us concentrate on the condition at the conformal boundary which is,
in both case, a regular point of the space. The equation (5.126) is a second order
differential equation of the Fuchsian type [25], which has z = 0 has a singular point.
Then, the Frobenius method [25] can be applied to find the two independent solu-
tions near the point z = 0. This basically consist in expanding the field φ near z = 0
and solve the equation term by term in the series expansion. The condition due to
the leading term in the expansion is called the indicial equation and provides the
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two independent solutions for φ near z = 0. Then, substituting the ansatz φ ∼ zα in
(5.126) and solving the equation at the leading order we find the following indicial
equation for α:

α (α−d) = m2L2 , (5.127)

which has two solutions of the following type:

α± =
d
2
±
√

d
4
+m2L2 . (5.128)

Note that α± respects the identity α++α− = d, then, Fourier transforming back to
real space, the solution for φ̃ near z = 0 can be expressed as:

φ 'C1(xµ)zα− +C2(xµ)zd−α− . (5.129)

At this point some comments are in order. At first, note that α± are real numbers
provided that m2L2 ≥− d

4 . This is the so called Breitenlohner-Freedman (BF) bound
[26]; it was prove in [26] that once the mass of the scalar m violates this bound, the
solution becomes unstable. This tells us that also negative values of the mass squared
are allowed provided that they are not “too negative”.

Secondly, we need to keep into account that, since we are dealing with a field
theory on a curved space time, in order for the solution to be regularly quantized it
has to be normalizable with respect to the inner product defined as follows [30]:

(φ1,φ2) = i
∫ (

φ
∗
2
←→
∂µ φ1

)
nµ dΣ (5.130)

where dΣ is a volume element in a given space-like hyper-surface and nµ is the
unit time-like vector normal to this hyper-surface. It can be proven that this inner
product is independent on the choice of nµ which consequently can be safely taken
to be proportional to ∂t . Then, considering the theory enclosed in a finite space
volume V , and keeping φ ∼C(t,x)zα we find that the condition

α ≥ d +2
2

(5.131)

ensures the normalizability of the solution.
Stated this, there are three possibilities:

• when m2L2 ≥ − d
4 + 1 the first term in (5.129) is always non-normalizable and

encodes the leading behaviour of the solution as z→ 0.
• in the finite interval − d

4 < m2L2 < − d
4 +1 both of the terms in (5.129) are nor-

malizable.
• if m2 saturates the BF bound, namely m2 =− d

4 , there are still two normalizable
solutions but, since the indicial equation (5.127) has two coincident solutions,
according to the Frobenius theorem the asymptotic behaviour of φ̃ has to be
modified as follows:
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φ 'C1(xµ)z
d
2 lnz+C2(xµ)z

d
2 . (5.132)

At this point we have not jet specified the boundary conditions for the scalar field.
According to the basic GKPW rule, the asymptotic behaviour of the field at the
conformal boundary z = 0 coincides with the source for the field in the dual field
theory. Then, it is tempting to fix the leading term in the asymptotic expansion
(5.129) to be the source Jφ in the dual conformal field theory. Actually, as we will see
in what follow, the allowed boundary conditions do not reduce only to this simple
case, and they depend on the value of the m2 [27, 28].

As we have noted previously, there are three different cases:

1. m2L2 ≥− d
4 +1.

In this case, since the leading behaviour of the expansion (5.129) is non-normalizable,
we need to fix C1(xµ) to be non-dynamical in order for the theory to be consis-
tent. Namely it is necessary to set C1(xµ) as the source for the scalar operator in
the dual field theory:

C1(xµ) = JC1
φ
(xµ) . (5.133)

Consequently, the coefficient C2(xµ) has to be determined from the equation of
motion (5.124) and the initial condition in the interior of AdS z→ ∞ which, for
the moment, we take to be given by specifying fixed values for φ :

lim
z→∞

φ(z,xµ) = φ+(xµ) . (5.134)

A valid action has to be stationary on the solution and, in order to apply the
GKPW rule to compute correlators, has also to be finite. The action (5.122) does
not meet any of these requirements. It is fact simple to verify that the the action
(5.122), considering the asymptotic behaviour near z = 0 (5.129) and the bound-
ary conditions (5.133) and (5.134), diverges on-shell. Moreover, considering the
variation of (5.122) we obtain:

δSs =
∫

dd+1x
√
|g|
(
∇

2
φ −m2L2

φ
)

δφ −
∫

z=ε

ddx
√
|h| 1√

|gtt |
∂zφδφ ,

(5.135)
where hµν is the induced metric on the manifold z = ε . The first term vanishes
on-shell due to the equation of motion (5.124). On the other hand, keeping into
account the asymptotic expansion (5.129), the second term becomes:

∫
z=ε

ddx
√
|h| 1√

|gtt |
∂zφδφ =

−
∫

ddx
(
zα−−α+α−C1δC1 +α−C1δC2 +α+C2δC1

)
+O(ε) , (5.136)

where we have neglected terms which vanish in the ε → 0 limit.
Due to the boundary condition (5.133), the terms proportional to δC1 vanish
on-shell since C1 is non-dynamical. However this is not the case for the terms
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proportional to δC2. Then, the action is not stationary on-shell and we are dealing
with an ill defined variational problem. In order to solve both these issues, it is
necessary to add to the action (5.122) the following boundary term:

SC1
c.t. =

∫
z=ε

ddx
√
|h|φ 2 . (5.137)

It is easy to verify that SC1
ren = Ss +Sc.t. is finite once compute on-shell, while its

variations yields:

δSC1
ren = δSs +δSC1

c.t. =
∫

dd+1x
√
|g|
(
∇

2
φ −m2L2

φ
)

δφ

+(α+−α−)
∫

z=ε

ddxC2δC1 , (5.138)

which vanishes on-shell due to the boundary condition (5.133).
Now, having a well defined on-shell action, we can apply the GKPW prescription
to compute the expectation value 〈OC1

φ
〉, namely:

〈OC1
φ
(x)〉= δSC1

ren

δJC1
φ
(x)

∣∣∣∣∣
Jφ=0

= (α+−α−)C2(x) . (5.139)

Regarding the two point function, we need the second order variation of the
renormalized action, namely:

〈OC1
φ
(x)OC1

φ
(0)〉= δSC1

ren

δJC1
φ
(x)δJC1

φ
(0)

∣∣∣∣∣
Jφ=0

= (α+−α−)
δC2(x)
δC1(0)

. (5.140)

Now, since the equations of motion are linear in the field φ , C2 can be only a
linear function of the source C1. Eventually, exploiting linearity, we obtain:

〈OC1
φ
(x)OC1

φ
(0)〉= (α+−α−)

C2(x)
C1(0)

. (5.141)

2. − d
4 < m2L2 <− d

4 +1.
As we have previously explained, in this case both the terms in (5.129) are nor-
malizable. It is of course possible to take C1 as the source for the dual operator
and to obtain the same result of the previous case, but there is also the possibility
of choosing C2 as the source, namely:

C2(x) = JC2
φ
(x) . (5.142)

This is commonly referred to choose a different quantization for the theory [28].
In this case, in order to have a finite stationary on-shell action we need to add a
different set of boundary terms:



5.5 An example: scalar field in AdSd+1 89

SC2
ren = Ss +

1
2

α−

∫
z=ε

ddx
√
|h|+

∫
z=ε

ddx
√
|h| 1√

|gtt |
∂zφφ . (5.143)

Evaluating the previous action on the asymptotic expansion (5.129), we obtain

SC2
ren = SC1

ren− (α+−α−)
∫

z=ε

ddxC1C2 , (5.144)

namely, the two quantizations are related by a Legendre transformation [27].
Varying SC2

ren we obtain:

δSC2
ren =

∫
dd+1x

√
|g|
(
∇

2
φ −m2L2

φ
)

δφ −
∫

z=ε

ddxC1δC2 , (5.145)

which vanishes on-shell if one consider the boundary condition (5.142). Then,
repeating the same steps of point 1, we obtain:

〈OC2
φ
(x)〉= δSC2

ren

δJC2
φ
(x)

∣∣∣∣∣
J

C2
φ

=0

=−(α+−α−)C1(x) ,

〈OC2
φ
(x)OC2

φ
(0)〉= δSC2

ren

δJC2
φ
(x)δJC2

φ
(0)

∣∣∣∣∣
J

C2
φ

=0

=−(α+−α−)
C1(x)
C2(0)

.

(5.146)

As a final comment we note that, as illustrated in [28] more general boundary
condition, where the source is a ultralocal function of C1 or C2 (depending on
the quantization), can be considered. Since this issue is beyond the scope of this
review, we refer to [28] for further details.

3. m2 =− d
4 .

In this case there are still two normalizable solutions and booth the quantization
can be defined repeating the steps of point 1 and 2. However, due to the logarith-
mic term which appears in (5.132) it is necessary to add the proper counterterms
in order to have a finite on-shell action. Since this is only a technical issue and
does not introduce any conceptual novelty, we refer to [28] for further details.

At this point we have provided a prescription to compute the expectation value and
the two point functions of the operator dual to the scalar field in a fixed AdS back-
ground, once one has chosen a quantization for the theory, namely once one has
decided how to define the sources which couples to the dual scalar operator. In or-
der to be more quantitative and to compare the holographic result with the CFT
result of Section 5.1 we need to solve the differential equation (5.124), providing a
form for C1 and C2. In solving the equation one has to face the problem of fixing
the boundary condition in the interior of AdS, which, as anticipated, depends on
the signature of the metric ηµν . We will discuss separately the Euclidean signature
case, which corresponds to compute the correlators in the imaginary time, and the
Minkowski case, which correspond to compute the correlator in the real time. In
what follows we will consider only the quantization in which C1 is identified as the
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source, which is valid for every value of the mass m. As we will see later, the alter-
native quantization modifies only the scaling dimension of the dual scalar operator
but does not introduce any conceptual novelty.

Euclidean signature: correlators in the imaginary time

In the Euclidean signature case, namely when k2 = ω2 + k2 > 0 in (5.124), the
equation (5.124) has the following solution:

φ̃(z,k) = aK

(
(L2z)

d+1
2

)
Kν

(
k

z
L2

)
+aI

(
(L2z)

d+1
2

)
Iν

(
k

z
L2

)
,

ν =

√
d2

4
+m2L2 ,

(5.147)

where ak and aI are undetermined constants, k =
√

ω2 + k2 and Iν and Kν are the
Bessel functions of the second kind.

Since in this case the interior of AdS z→∞ is a regular point, we need to impose
the regularity of the solution at this point. The asymptotic behaviour of the Bessel
functions at z→ ∞ is:

lim
z→∞

Iν(z) = ∞ ,

lim
z→∞

Kν(z) = 0 .
(5.148)

Then in order for the solution to be regular we need to impose aI = 0. Eventually,
the solution is uniquely determined except a normalization constant aK which is
irrelevant in the computation of the correlators since they are given by ratio of the
leading and the subleading term of φ̃ , as evident in (5.140).

Having a solution for the scalar field, we can apply the prescription (5.141) to
compute the two point function. In the momentum space this reads:

〈OC1
φ
(k)OC1

φ
(k′)〉= (2π)d

δ
d(k+ k′)(α+−α−)

C̃2(k)
C̃1(k′)

(5.149)

where C̃1,2 are the Fourier transform of C1,2.

The expansion near z = 0 of the Bessel function Kν

(
k z

L2

)
is:

Kν

(
k

z
L2

)
'
(

kz
2L2

)−ν
Γ (ν)

2
+

(
kz

2L2

)ν
Γ (−ν)

2
+ ... . (5.150)

From the previous expression, and considering the explicit form of ν , the correlator
is easily obtained:

〈OC1
φ
(k)OC1

φ
(k′)〉= (2π)d

δ
d(k+ k′)2ν

Γ (−ν)

Γ (ν)

(
k
2

)−2α−

. (5.151)
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Then coming back to real time (ω → iω) and Fourier transforming, we obtain:

〈OC1
φ
(x)OC1

φ
(0)〉= 2νΓ (∆)

π
d
2 Γ (ν)

1

|x|2α+
. (5.152)

Comparing the holographic result with the standard conformal field theory result of
Section 5.1 we see that, except an unconventional normalization 10, they agree if we
identify α+ with the scaling dimension of the operator OC1 , namely:

∆ = α+ . (5.153)

Note that the normalizability condition (5.131) on the behaviour of φ automatically
implies that:

∆ ≥ d−2
2

, (5.154)

which is exactly the unitarity bound for the scalar operator discussed in Section 5.1.
As a final comment, note that if we had considered the alternative quantization,

the scaling dimension of the dual scalar operator would be α− which is always
above the unitarity bound in the region where the solution is stable.

We are now ready to introduce the third computational rule of the AdS/CFT cor-
respondence:

Rule 3: The scaling dimension of the operator in the dual field theory is setted
by the mass of the field in the gravitational bulk.
Regarding the the scalar field, which is dual to a scalar operator, we have:

∆± =
d
2
±
√

d
4
+m2L2 . (5.155)

Considering a generic massive p-form of mass m in the bulk, we can find a similar
relation:

∆p,± =
1
2

(
d±

√
d2−4d p+4L2m2 +4p2

)
. (5.156)

In the massless case and for p = 1, the positive root is d− 1 which is the usual
dimension of a conserved current.

10 The normalization of this propagator is unconventional but is natural in AdS/CFT. For two point
correlation functions it plays no further role, but dealing with multi-point correlation functions,
the normalisation relative to lower-point ones does matter. This normalisation depends sensitively
on the regularisation procedure. For the choice which is natural in the bulk (placing the bound-
ary at z = ε first, taking the limit ε → 0 at the very end) are one is guaranteed that all relative
normalisation factors are correct
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Minkowski signature: correlators in real time

Let us now analyze the Minkowski signature case [29]. As previously anticipated,
in this case the interior of AdS is a killing horizon. Moreover, in this case k2 =
−ω2 + k2 is not positive definite and we have to distinguish between the time-like
and the space-like case. In the space-like case k2 > 0, and nothing changes with
respect to the Euclidean case. On the other hand, in the time-like case k2 < 0, and
the solution of the equation (5.124) is expressed in terms of the Henkel functions:

φ̃ = a+
( z

L2

) d
2

H(1)
ν

(√
ω2− k2z

L2

)
+a−

( z
L2

) d
2

H(2)
ν

(√
ω2− k2z

L2

)
. (5.157)

Expanding the previous solution in the interior of AdS, we obtain:

φ̃ ' a+e−i
√

ω2−k2z
L2 +a−ei

√
ω2−k2z

L2 at z→ ∞ . (5.158)

Unlike the previous case, we can not impose a regularity condition. Instead we are
dealing with truly fluctuating fields. We have two choices: the first one is to impose
in-falling boundary conditions with a+ = 0. Note that combined with the standard
eiωt this describes a wave-front moving to the interior at large z for positive ω . The
other choice is to impose out-going boundary conditions with a− = 0 for positive
ω . Let us analyze which are the consequences of both these choices on the corre-
lators. At the computational level, they can be computed in the same way as in the
Euclidean signature expanding the Henkel functions near z = 0, obtaining:

〈OC1(−k)OC1(k)〉=


2ν

Γ (−ν)
Γ (ν)

( k
2

)−2α− k2 > 0

2νeiπνsgn(ω) Γ (−ν)
Γ (ν)

( ik
2

)−2α− k2 < 0 , in

−2νe−iπνsgn(ω) Γ (−ν)
Γ (ν)

( ik
2

)−2α− k2 < 0 , out

(5.159)

Then Fourier transforming, we obtain:

〈OC1(x)OC1(0)〉=


2νΓ (∆)

π
d
2 Γ (ν)

1
|x|2α+

k2 > 0

iθ(x0)
2νΓ (∆)

π
d
2 Γ (ν)

1
|x|2α+

k2 < 0 , in

−iθ(−x0)
2νΓ (∆)

π
d
2 Γ (ν)

1
|x|2α+

k2 < 0 , out

(5.160)

Then, as it is evident from the previous expression, the ingoing wave boundary con-
dition corresponds to compute the retarded correlators, while the outgoing wave
boundary condition corresponds to compute the advanced correlator. This is actu-
ally a general rule in AdS/CFT [29].

Rule 4: Considering Minkowski signature, it is important to keep into account the
causal structure of the correlators. Specifically imposing ingoing wave boundary
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conditions for the field at the horizon corresponds to compute the retarded corre-
lators in the dual field theory, while imposing out-going wave boundary condition
corresponds to compute the advanced correlators in the dual field theory.

Finally we note that also the holographic three point function agrees with the CFT
result but in order to compute this correlator we have to use the Witten diagrams
technique [27]. Since this is beyond the scope of this review we refer to [27] for
further details.

5.6 Thermal AdS/CFT

In the previous chapters we have discussed the properties of zero temperature CFTs
and we have outlined how they are related to the gravitational field theory in asymp-
totically AdS space via the gauge/gravity correspondence. Having in mind the pos-
sible application of the holographic technique to the study of strongly correlated
condensed matter systems it is a necessary step to understand how the temperature
can be introduced in the holographic approach.

In order to do this, let us first analyze how the temperature is commonly intro-
duced in standard quantum field theory (for a review on the topic see for exam-
ple [32]). In order to understand the fundamental properties of a finite temperature
quantum field theory we will analyze the system in the canonical ensemble. Gen-
eralization of the following statements to the grand canonical ensemble are only a
matter of technicality.

Consider now a dynamical system characterized by a Hamiltonian H. The equi-
librium state of the system of volume V is described by the canonical density oper-
ator

ρ = e−βH , (5.161)

where β ≡ 1
kBT . Recall that in the zero temperature quantum field theory, the expec-

tation value of a given operator A is

〈A〉0 = ∑
n
〈n|A|n〉 , (5.162)

where |n〉 is a complete set of orthonormal states. However, in a heat bath, the op-
erator expectation value should be calculated as the ensemble average with a Boltz-
mann weight factor, namely:

〈A〉β =
1

Trρ
∑
n
〈n|A|n〉e−βH =

Tr (ρA)
Trρ

. (5.163)

Let us now consider the two point correlation function of a generic operator φ im-
mersed in the heat-bath. Using the previous relation we find:
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〈φ(t,x)φ(0,y)〉β =
1

Trρ
Tr
[
e−βH

φ(t,x)φ(0,y)
]

=
1

Trρ
Tr
[
φ(t,x)e−βHeβH

φ(0,y)e−βH
]

=
1

Trρ
Tr
[
φ(t,x)e−βHei(−iβH)

φ(0,y)e−i(−iβH)
]

=
1

Trρ
Tr
[
e−βH

φ(−iβ ,y)φ(t,x)
]

=〈φ(−iβ ,y)φ(t,x)〉β .

(5.164)

We see that imaginary temperature plays the role as a time variable. If we define the
imaginary time variable τ = it, then the relation above can be rewritten as

〈φ(τ,x)φ(0,y)〉β = 〈φ(β ,y)φ(τ,x)〉β . (5.165)

This is called the Kubo-Martin-Schwinger relation. It basically means that studying
a quantum field theory at finite temperature is equivalent to the study of the same
field theory in the imaginary time where, for the time component we need to take
periodic (or anti-periodic) boundary condition,

φ(0,x) =±φ(β ,x), (5.166)

depending on whatever the fields under consideration are bosonic or fermionic, re-
spectively.

Since holography is an equivalence between partition function it is convenient for
our purposes to rephrase the previous statement in the partition function language.
By noting that

e−βH = e−i
∫−iβ

0 Hdt = e−
∫ β

0 Hdτ , (5.167)

we may think at e−βH ad an evolution operator in the imaginary time. Then, by re-
peating the usual steps which lead to the path integral partition function, we obtain:

Z =
∫

Dφ〈φ |e−βH |φ〉=
∫

Dφe−
∫ β

0 dτL (τ,φ) , (5.168)

where L is the Lagrangian density of the theory under consideration and the paths
φ(τ,x) have to satisfy the periodic (or anti-periodic) boundary conditions (5.166).

As a final comment about standard finite temperature quantum field theory, let us
recall some basic properties of the Euclidean and Minkowski correlators which will
be useful in what follows. In the Euclidean formalism, due to the periodicity in the
imaginary time, it is convenient to express the field as a Fourier series:

φ(τ,x) = ∑
n

φ̃(ωn,x)eiωnτ , (5.169)

where the frequencies ωn are called Matsubara frequencies [33], and assume the
following form:
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ωn =
2πn
β

f or bosonic f ields ,

ωn =
2π(n+1)

β
f or f ermionc f ields ,

(5.170)

for n integer. Then, the Euclidean propagator GE in momentum space is defined
only for integer values of the frequency ω which corresponds to the Matsubara
frequencies previously defined and it assumes the following form:

GE(ωn,k) =
∫

dτddxeiωnt+ik·x〈TEO(τ,x)O(0)〉 , (5.171)

where O is a generic operator of the field theory and TE is the Euclidean time or-
dering operator. On the other hand, in the real time case, due to the causal structure
of Minkowski space-time, one has to deal with different propagators, namely the
advanced propagator GA, the retarded propagator GR, and the Feynmann propagator
GF defined as:

GA(kµ = i
∫

ddxe−ikµ xµ

θ(−t)〈O(xµ)O(0)〉 ,

GR(kµ =−i
∫

ddxe−ikµ xµ

θ(t)〈O(xµ)O(0)〉 ,

GF(kµ) =−i
∫

ddxe−ikµ xµ 〈TO(xµ)O(0)〉 .

(5.172)

They are, of course, defined for continuous values of ω and k and, at finite temper-
ature T , they are related as follows:

GF(kµ) = ℜGF(kµ)+ icoth
ω

2T
ℑGR(kµ) . (5.173)

The Euclidean and Minkowski propagators are closely related. The retarded propa-
gator GR(kµ), as a function of ω , can be analytically continued to the whole upper
half plane and, moreover, at complex values of ω equal to iωn, reduces to the Eu-
clidean propagator, while the advanced propagator, analytically continued to the
lower half plane, is equal to the Matsubara propagator at the points ω = −iωn,
namely:

GR(iωn,k) =−GE(ωn,k) , GA(−iωn,k) = GE(−ωn,k) . (5.174)

5.6.1 Introducing temperature in holography

We have now to face the problem of how we can introduce the concept of tempera-
ture in the holographic framework previously discussed. Specifically we need a way
to introduce the concept of temperature in gravity.
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As a first comment, it is important to note that in the situations discussed in
the previous chapters we were dealing with exact scale invariance, since we were
analysing conformal field theory at zero temperature. One has to expect that the
introduction of a finite temperature adds a scale in the system and consequently
breaks scale invariance. Since scale invariance is recovered at energies well above
the characteristic scale of the deformation, we expect that the gravitational space-
time should also recover scaling invariance as we go to the conformal boundary,
which, as we have explained, corresponds to the UV sector of the dual field theory.
In other words we need a gravitational space-time which takes into account the no-
tion of temperature but recover scale invariance in the conformal boundary, namely
we need a space-time which has to be asymptotically AdS.

In this light, the fact illustrated in the previous Section that black holes are ac-
tually thermal states comes in help. Let us then analyze the most simple asymptot-
ically AdS black hole solution known, the AdS-Shrwarzshild black hole, in order
to understand in which sense the temperature of the black hole is related with the
notion of temperature in the dual field theory. In this Section we want to discuss
this black hole solution in the framework of the holographic techniques discussed
in the previous chapters, mainly focussing on the properties of the dual field theory
described by this gravitational state. The construction of the solution and its stability
is discussed in Appendix B, to which we refer for more details.

Let us then consider the Einstein- Hilbert action (in Minkowski signature):

S=
1

2κ2
d+1

∫
dd+1x

√
−g
(

R+
d(d−1)

L2

)
+

1
2κ2

d+1

∫
∂M

ddx
√
−γ

(
2K +

2(d−1)
L2

)
.

(5.175)
In the previous expression, the specific value of the cosmological constant Λ =
d(d−1)

L2 is required to have an asymptotically AdS solution. We have also added two
boundary terms on the manifold ∂M = {z = 0}, expressed in terms of the induced
metric on this manifold γµν , and the trace of the extrinsic curvature K = γµν ∇µ nν ,
where nµ is an outward pointing normal vector to the boundary z = 0. These bound-
ary terms are necessary in order to have a well defined variational problem and a
finite on-shell action in the same spirit as what has been explained in details for the
scalar field in the previous Section (see, for example, Appendix E of [31] for more
details).

There is a very simple black hole solution associated to the previous action,
namely:

ds2 =
L2

z2

(
− f (z)dt2 +

dz2

f (z)
+dxidxi

)
, f (z) = 1− zd

zd
h
. (5.176)

At z = zh, gtt vanishes, and it can be proven that this is a real horizon (see Appendix
B). In order to make contact with the notion of temperature in the dual field theory,
let us analyze the previous metric in the imaginary time coordinate, τ = it. Since
the properties of the black hole are encoded in the near horizon geometry, let us also
expand the metric near z = zh:



5.6 Thermal AdS/CFT 97

ds2
E '−

L2d
z3

h
(z− zh)dτ

2− dz2

L2d
z3
h
(z− zh)

+
L2

z2
h

dxidxi . (5.177)

It is now convenient to perform the following re-parametrization:

ρ = 2

√√√√ z− zh
L2d
z3
h

, tE =
1
2

L2d
z3

h
τ , (5.178)

under which the metric (5.177) becomes:

ds2 ' ρ
2dt2

E +dρ
2 +

L2

z2
h

dxidxi . (5.179)

The important region to analyse is the plane spanned by ρ and the imaginary time
tE . This is just the metric of a plane in polar coordinates with τ acting as the compact
angular direction. Upon approaching the horizon ρ → 0 one sees that the pre-factor
of dt2

E is vanishing: this means that the Euclidean time direction shrinks to a point.
However, since the horizon is not a special point, we should not allow this point to
be singular. Smoothness at the horizon can be achieved by insisting that ρ = 0 is the
center of a Euclidean polar coordinates system, and this implies that tE is periodic
with period

β = 4π

√
g′zz(zh)

gtt ′(zh)
=

4πzh

d
. (5.180)

But we have learned in the previous Section that, at the level of the dual field theory,
studying the theory in the imaginary time with a periodic time coordinate of period
β is equivalent to study the field theory at finite temperature T = 1

β
. Since the grav-

itational time coordinate is inherited by the dual field theory we can affirm that that
β in expression (5.180) is exactly the inverse of the temperature in the dual field
theory.

We care then ready to list the fifth computational holographic rule: Rule 5:
Strongly coupled quantum field theories at finite temperature are dual to black hole
solutions on the gravitational side. The temperature of the black hole is exactly the
temperature of the dual field theory.

5.6.1.1 Thermodynamics

Having understood how to introduce thermal states in holography we want to make
some comments on the thermodynamics of the simple thermal state illustrated in the
previous Section, namely the dual of the AdS-Shwarzshild black hole.

In order to obtain the thermodynamics of the dual system we need the partition
function and consequently the on-shell action. In the previous Section we have out-
lined that the action (5.175) has the correct counterterms which ensure its finiteness
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once computed on the solution (5.176) (once rotated to imaginary time). Then to
compute the on-shell action is only a matter of computation. We recall, however,
that the correct procedure to obtain a finite on-shell action is to evaluate the action
(5.175) on the solution (5.176) but limiting the radial coordinate z to the interval
[ε,zh] and to perform the ε → 0 limit only at the end of the computation. Moreover
we recall that the on-shell action is also divergent due to integration over the space
coordinates and we need to enclose the system in a finite volume V in order to ob-
tain a finite result. Keeping this in mind, the Euclidean on-shell action SE and the
partition function Z are given by:

SE =−V (4π)dLd−1

2κ2
d+1dd T d−1 , Z = e−SE , (5.181)

where we have used the relation (5.180) to express T as a function of zh. The relevant
thermodynamical quantities are now easily achieved. The pressure p is given by:

p = T
∂ logZ

∂V
=

(4π)dLd−1

2κ2
d+1dd T d ≡−F , (5.182)

where F is the free energy. The entropy s is given by:

s = T
∂ logZ

∂T
=

V (4π)dLd−1(d−1)
2κ2

d+1dd T d−1 . (5.183)

It is easy to prove that the previous result is consistent with the area law (see Ap-
pendix B) which relates the entropy of the black hole with the area of the horizon
A(zh) as follows:

sbh =
2πA(zh)

κ2
d+1

=
V (4π)dLd−1(d−1)

2κ2
d+1dd T d−1 . (5.184)

Finally the energy ε can be derived from the thermodynamic relation ε =−p+T s,
obtaining:

ε = (d−1)
(4π)dLd−1

2κ2
d+1dd T d , (5.185)

which is exactly the energy of the AdS-Shwarzshild black hole derived in Appendix
B.

In conclusion, the dual field theory inherit the thermodynamics from the black
hole state in the gravity side.
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5.6.2 Holography at finite charge density

A common additional structure that arises in condensed matter systems is a U(1)
symmetry. This could be, for instance, the electromagnetic U(1) symmetry. In this
section we will consider the gravitational dual of theories with a global U(1) sym-
metry. The electromagnetic U(1) symmetry in nature is of course gauged (local).
However, there are at least two reasons why photons can be correctly neglected in
many condensed matter processes. Firstly the electromagnetic coupling is observed
to be small. Secondly, the electromagnetic interaction is screened in a charged
medium. This come in help in the holographic framework where typically the gauge
field is non dynamical at the boundary [34].

So what is the dual to a global U(1) symmetry in field theory? We can take our
cue from the symmetries that we have already discussed in previous sections. An-
other global symmetry that the field theory possesses (in a fixed Minkowski back-
ground metric, say) is SO(d− 1) rotational invariance. In the bulk this symmetry
symmetry also appears, but it is gauged. Namely, it is part of the diffeomorphism
invariance of general relativity: we can act on our AdS space-time with a local
SO(d−1) rotation and we simply obtain AdS again in a different coordinate system.
This observation suggests the general correspondence:

Rule 6: Gauged symmetries in the gravitational theory corresponds to global sym-
metries in the dual field theory.

To describe the physics of the global U(1) symmetry we should therefore add
a Maxwell field to our bulk space-time. The minimal bulk action is thus Einstein-
Maxwell theory:

SE−M =
1

2κ2
d+1

∫
dd+1x

√
−g
(

R+
d(d−1)

L2

)
− 1

4q2

∫
dd+1x

√
−gFabFab +

1
2κ2

d+1

∫
∂M

ddx
√
−γ

(
2K +

2(d−1)
L2

)
, (5.186)

where F ≡ ∂[aAb] is the field strength of the gauge field Aµ , q is a coupling constant
which takes into account the strength of the back-reaction of the gauge field on the
gravity sector, and we have added, as in the previous Section, the boundary terms
necessary to have a finite on-shell action and a well defined variational problem.
Actually these boundary terms are the correct ones only for d > 2. For d = 2 the
asymptotically AdS solution of the Einstein Maxwell theory has some technical
peculiarities and requires a separate treatment. We do not discuss this case in this
review.

The Einstein’s equation of motion is:

Rab−
1
2

gabR−
d(d−1)

2L2 gag =−
κ2

d+1

2q2 Tab, (5.187)
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where Tab is the stress-energy tensor

Tab =
1
4

gabFcdFcd−FacF c
b . (5.188)

The equations of motion for Fab are:

∇aFab = 0, (5.189)

where ∇a is the usual covariant derivative.
Before finding a particular solution of the previous set of equations, let us clarify

what we need to obtain in the holographic framework. Our main purpose is to study
a strongly coupled field theory at finite density and finite temperature. Regarding the
finite temperature we have learned in the previous Section that this is achieved by
studying a black hole solution of the gravitational theory. Concerning the finite den-
sity issue, we have just learned that the gauge field in the gravitational side sources
a current density Ja in the dual field theory. If we want a finite density ρ we need
to switch on the gauge field in the bulk so that the time component of Ja, 〈Jt〉 = ρ ,
has a non-zero expectation value. But, according to the standard holographic dictio-
nary, the value of the field at the conformal boundary acts as the sources for the dual
operator. Putting all together, and keeping in mind that at the dual level the source
of the charge density ρ is the chemical potential µ , in order to find the gravitational
dual of a finite charge density system we need to impose: 11

lim
z→0

At = µ . (5.190)

This is the first basic condition. The second one is that we want to recover scale
invariance at energy scales much greater than the chemical potential µ , namely we
want the space-time to be asymptotically AdS.

We are now ready to find the gravity dual of a field theory at finite density and
temperature. We consider the following ansatz for the metric gab and the gauge field
Aa:

A = At(z)dt , (5.191)

ds2 =
L2

z2

[
−g(z)dt2 +hi j(xl)dxidx j +

dz2

g(z)

]
, (5.192)

where h is the horizon metric and i = 1, ...,d−1.
The solution of the equations (5.187) and (5.189) with the ansatz (5.191) and
(5.192), imposing the flatness of the horizon, the asymptotically AdS-ness and the
boundary condition (5.190), is the following

11 To work instead in the canonical ensemble, fixed charge density ρ , we should add a bound-
ary term to the Euclidean action so that ∆SE = 1

q2

∫
∂M ddx

√
γ

1√
gtt

FzbAb. This term changes the

variational problem so that one must keep the field strength Frb fixed at the boundary rather than
the potential Aa. It can be seen to imply the standard thermodynamic relation F = ω + µQ. Here
Q = ρV is the total charge.
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g(r) = 1−
(

1+ d−2
d−1

γ̄2µ2

L2

)(
z
zh

)d
+ d−2

d−1
γ̄2µ2

L2

(
z
zh

)2(d−1)
, (5.193)

At = µ

(
1−
(

z
zh

)d−2
)
, (5.194)

where zh is an outer planar horizon and γ̄ ≡ κd+1
q . It is important to note that in

order to completely determine the profile of the gauge field we need to provide
also a condition at the horizon which, in this case, is that it should be vanishing,
At(zh) = 0. It can be retained by requiring the norm of the vector field gtt√−gAtAt
to be finite at the horizon.

Actually, in the case at hand, where the gauge field is not coupled to matter, the
constant in (5.194) can be rescaled by means of a gauge transformation. Imposing
that At(zh) = 0 is then a gauge choice. According to the holographic dictionary, it is
only in this gauge that µ in (5.194) plays actually the role of the chemical potential
[16].

Moreover we note that we have indicated with zh the outer horizon, but this
solution presents also an inner horizon hidden by zh. The two horizons coincide in
the limit of zero temperature. In this case the black hole is said to be extremal.

The derivation of the thermodynamical quantities associated to this black hole
solution proceeds analogously as what has been done for the zero density case in
the previous section. In particular, the black hole temperature is given by:

T =−g′(zh)

4π
=

1
4πzh

(
d−

(d−2)2z2
hµ2γ̄2

(d−1)L2

)
. (5.195)

Since we are working in the grand canonical ensemble (µ fixed) the referring
potential is the Landau potential Ω which can be derived from the partition function
Z = e−SE

E−M as follows:

Ω =−T logZ =− Ld−1V
2κ2

d+1zd
h

(
1+

(d−2)z2
hµ2γ̄2

(d−1)L2

)
= F

(
T
µ

)
V T d (5.196)

where the function F is easily obtained by solving (5.195) for zh. This func-
tion is a non-trivial output from AdS/CFT. At low temperatures we have Ω '
aµd + bµd−1T + cµd−2T 2 + ... . In particular, the leading non-trivial temperature
dependence of the thermodynamic potential is linear, as is the leading low tem-
perature dependence of the heat capacity c = T ∂S

∂T . At high temperatures one finds
Ω ' µ2(d−1)/T d−2 + ....

The transport properties and their relations with thermodynamics for these solu-
tion will be treated carefully in Part 3.
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5.7 Summa: the Holographic Dictionary

In the previous Sections we have illustrated the basic technical tools necessary to
implement the AdS/CFT correspondence at the computational level. All the pre-
scriptions outlined above can be collected in a table which constitutes an a sort of
dictionary with all the basic ingredients necessary to use the gauge/gravity duality.
This goes under the name of holographic dictionary.
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Boundary: field theory Bulk: gravity

partition function partition function

scalar operator/order parameter Ob scalar field φ

source of the operator boundary value of the field (leading coefficient of
the non-normalizable solution)

VEV of the operator boundary value of radial momentum of the field
(leading coefficient of the normalizable solution;
subleading to the non-normalizable solution)

conformal dimension of the operator mass of the field

spin/charge of the operator spin/charge of the field

energy momentum tensor T ab metric field gab

global internal symmetry current Ja Maxwell field Aa

Fermionic operator O f Dirac field ψ

two-point correlation function ratio of non-normalizable to normalizable solution
evaluated at the boundary

higher-point correlation functions Witten diagram computation

RG flow evolution in the radial AdS direction

global space-time symmetry local isometry

internal global symmetry local gauge symmetry

finite temperature black hole Hawking temperature or radius of com-
pact Euclidean time circle

chemical potential/charge density boundary value of the electrostatic potential At

free energy on-shell value of the action

entropy area of the black hole horizon

phase transition instability of black holes
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Appendix B
Asymptotically AdS space-time: AdS black holes

In this Appendix we will describe the main properties of the black holes whose
metric are asymptotically Anti-de Sitter. In particular we will focus our attention
on the Schwarzshild-Anti-de Sitter black hole and its charged version, the Reissner-
Nordström-Anti-de Sitter black hole. These two kind of asymptotically Anti-de Sit-
ter black holes will be extremely important in the formulation of thermal AdS/CFT
correspondence, as outlined in the main text.

The main properties of these space-times is that they should look like Anti-de
Sitter space-time ”far-away” from any mass concentration or black hole that may be
present.
Before analysing in detail the main features of these black holes, let us define the
asymptotically AdS space time.
Definition: a d-dimensional metric space (M ,gab) is said to be asymptotically
Anti-de Sitter if there exist a manifold M̄ with boundary I , equipped with a metric
ḡab and a diffeomorphism from M onto M̄ −I of M̄ and the interior of M̄ such
that:

• there exists a function Ω on M̄ for which ḡab = Ω 2gab on M
• I has the topology of Sd−2, Ω vanishes on I but ∇aΩ normal vector on I is

nowhere vanishing in I
• on M , gab satisfies the Einstein’s equation
• the Weyl tensor of ḡab is such that Ω d−4Cabcd is smooth on M and vanishes on

I .

The first condition ensures that the new metric ḡab is conformally related to the
physical metric gab; the second instead requires that the topology of the boundary is
the one suggested by the geometry of anti-de Sitter space-time, and that the bound-
ary itself is attached at infinity with respect to the physical metric. The requirement
on the normal of I implies that Ω is a good radial coordinate in a neighbourhood
of I in the barred space-time. Third condition is a restriction to the asymptotic
behaviour of matter fields which ensures that the fluxes of some conserved quanti-
ties across I are well-defined. We also expect that the limit of Ω 4−dCabcd on the
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conformal boundary vanishes since as a property of the Weyl tensor, Cabcd = 0 in
Anti-de Sitter space-time.

B.1 AdS-Schwarzshild black hole

We now attempt to construct a static d + 1-dimensional solution of the Einstein’s
equation with negative cosmological constant Λ which admits a black hole inter-
pretation.
Let us start with the most general ansatz for a static, isotropic and spherically sym-
metric metric:

ds2 =− f (r)dt2 + f−1(r)dr2 + r2hi j(x)dxidx j, (B.1)

where the coordinates are labelled as xµ = (t,r,xi), (i,1, ...,d−1). The metric hi j is
a function of the coordinates xi only, and is the horizon metric.1 The non-vanishing
component of the Ricci tensor associated with the metric B.1 are:

Rtt =
1
2 f f ′+ 1

2r (d−1) f f ′, (B.2)

Rrr =− 1
2

f ′′
f −

1
2r (d−1) f ′

f , (B.3)

Ri j = Ri j(h)−hi j [(d−3) f + r f ′] , (B.4)

where Ri j(h) is the Ricci tensor derived from the horizon metric h only, and the
primes denote the derivative with respect to the radial coordinate r. Let us now take
the following ansatz for f :

f (r) = κ− M
rd−2 +

r2

L2 , (B.5)

where κ and M are two yet undetermined parameter and L is an arbitrary parameter
with dimension of a length2. With this form for f , one can easily see that the space-
time is an Einstein space with negative cosmological constant, namely

Rµν =− d
l2 gµν (B.6)

provided the horizon is an Einstein space-time of the form:

Ri j(h) = (d−2)κhi j. (B.7)

It is important to observe here that we have obtained a solution to Einstein’s equation
with a negative cosmological constant for any value of κ , provided the horizon is

1 We will explain later, when we outline the black hole interpretation of the solution, why this is
actually the horizon metric.
2 This is related to the AdS radius previously defined, as we will see.



B.1 AdS-Schwarzshild black hole 109

itself Einstein. However, the horizon may be an Einstein space with positive, zero,
or negative curvature. This opens up the possibility to construct black hole solutions
in which the topology of the horizon is non-spherical.
We have now to prove that the solution we have found is actually asymptotically
Anti-de Sitter in the sense we have explained in the previous section. In order to do
this, let us analyse the non vanishing components of the curvature tensor:

Rtrtr =
1
2 f ′′, Rtit j =

r
2 f f ′hi j, Rrir j =− r f ′

2 f hi j (B.8)

Ri jkl = r2Ri jkl(h)− r2 f
[
hikh jl−hilh jk

]
, (B.9)

where Ri jkl(h) is the curvature tensor constructed from the horizon metric hi j. It
is apparent from the previous equations that the M = 0 solution is locally iso-
metric to Anti-de Sitter (Rµνρσ = − 1

L2

(
gµρ gνσ −gµσ gνρ

)
), provided that the

horizon is itself a constant curvature space with curvature constant κ , (Rµνρσ =
κ
(
gµρ gνσ −gµσ gνρ

)
).

Thus, imposing the extra requirement that the M = 0 solution be a constant curva-
ture space-time, forces the horizon to be a constant curvature space, and not simply
Einstein. However, once again there is no restriction on the sign of κ . Although the
M = 0 space-time is locally isometric to Anti-de Sitter space, its topology depends
on the value of κ , and hence on the topology of the horizon. In particular, we have
the three possibilities, namely elliptic horizons (κ = 1), flat horizons (κ = 0), and
hyperbolic horizons (κ =−1). We note from B.5 that the dominant behaviour of the
metric at infinity is determined by the cosmological constant term, for any value of
M. Since the M = 0 solution is locally isometric to anti-de Sitter space, we have a
class of black hole solutions which are asymptotically locally Anti-de Sitter, for all
values of M.

Black hole interpretation

We have constructed a solution of the Einstein’s equation which is asymptotically
Anti-de Sitter. We have now to prove that the horizon of this solution, namely the
surface f (r) = 0, is actually a black hole horizon. In order to do this we have to
prove that f (r) has a simple positive root r+, such that f (r) > 0 for all r > r+.
Under these conditions, in fact, the surface r = r+ has an horizon interpretation.
To see this, consider a particle with four momentum P = (−E, p). A static observer
at infinity has four velocity U =

kµ√
−k2

, where k =−∂t . The energy measured by the

local observer is
E =−gµνU µ Pν =

E∞√
−gtt

. (B.10)

So E is red-shifted by a factor
√
−gtt from E∞. Consequently, from the point of view

of an observer at infinity (whose proper time corresponds to the coordinate t), due
to the positivity of f (r) for r > r+ and the fact that f (r+) = 0, the surface r = r+ is
a surface of infinite red-shift.
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For κ =±1 it is not a simple task to prove that there exists a positive root r+ of f (r)
that satisfies the conditions illustrated above for arbitrary dimension d, and we refer
to [3, 5, 6, 9] for more detail.
On the other hand, for κ = 0, which is the most relevant case in AdS/CFT corre-
spondence, it is apparent that f (r) has a positive solution for

r+ = (ML2)
1
d , (B.11)

and f (r) is positive for r > r+. Thus, for κ = 0 we have black hole solution with
toroidal topology.

B.1.1 Thermodynamical quantities

We want now to calculate the thermodynamical quantities associated with our black
hole solution. The arguments illustrated below are valid for every black hole solution
which has an acceptable horizon located at r+. The parameter M is specified in terms
of r+ as follows:

M = rd−2
+

(
κ +

r2
+

L2

)
. (B.12)

Before calculating the thermodynamical quantities associated with the black hole
solution, we have to show how a black hole is a thermal state. In other words we
have to compute the partition function Z associated to the black hole.
In quantum field theory, the amplitude for a field to propagate from an initial field
configuration to a final field configuration is given by the weighed sum over all
field configurations, where the weights are determined by the action of the field:
Z =

∫
Dφ eiS[φ ]. One needs to be careful about the convergence associated with the

oscillatory integral. To circumvent this issue, it is useful to perform a Wick rotation
t → iτ , thereby rotating the contour of integration of time by π

2 counter-clockwise.
The Wick rotated path integral becomes ZE =

∫
Dφ e−SE [φ ], which converges. If

one wants to define a thermal state of the quantum field theory, it is necessary to
restrict the imaginary time τ to a finite interval and to impose periodic boundary
condition. The period of the imaginary time is identified with the inverse of the tem-
perature β = 1

T .
In curved space-time, the path integral is generalized to sum over variations in
geometry as well as fields. If we consider only variation of the metric, the Eu-
clidean partition function is ZE =

∫
Dge−IE [g], where IE [g] is the usual Wick rotated

Einstein-Hilbert action with cosmological constant Λ :

IE =− 1
16πGd+1

∫
dd+1x

√
gE (R−2Λ) . (B.13)

Because we are dealing with manifolds with boundary, we also need to consider the
Hawking-Gibbons boundary term, though, as we will see, it is not relevant for our
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discussion.

In the case of the black hole, the requirement for the Euclidean metric to have no
conical singularity at the horizon r = r+, fixes the period of the imaginary time τ

and consequently the temperature T which must be identified with the temperature
of the black hole. In this sense the black holes have to be considered as thermal
states.
Let us consider the AdS-Shwarzshild solution we have constructed in the previous
section. The euclidean metric gE is:

ds2
E = f (r)dτ

2 + f−1(r)dr2 + r2hi j(xi)dx2dx j, (B.14)

where we recall that f (r) =
(

κ− M
rd−2 +

r2

L2

)
and f (r+) = 0. The near horizon be-

haviour of gE is:

(
ds2

E
)

r≈r+
= f ′(r+)(r− r+)dτ

2 +
dr2

f ′(r+)(r− r+)
+ r2

+hi j(xi)dx2dx j. (B.15)

Defining new coordinates

ρ = 2
√

r− r+
| f ′(r+)|

, tE =
1
2

∣∣ f ′(r+)∣∣τ, (B.16)

we finally find the near horizon geometry(
ds2

E
)

r≈r+
= ρ

2dt2
E +dρ

2 + r2
+hi j(xi)dx2dx j. (B.17)

This metric has the topology of the horizon described by the metric h times an
euclidean plane in polar coordinates (ρ, tE). There is a deficit angle which leads to
a conical singularity in ρ = 0 unless tE is 2π-periodic. The corresponding period in
the euclidean time coordinate τ is:

β =
4π

f ′(r+)
. (B.18)

As we have outlined above, this period has to be identified with the inverse of the
black hole temperature T . Consequently, remembering the expression of the param-
eter M in terms of the horizon radius r+ B.12, we find:

β =
1
T

=
4πL2r+

dr2
++(d−2)κL2 . (B.19)

It is worth highlighting some of the features of these black holes which depend on
the value of κ 3. For κ = 1, it has been shown in [6] that the inverse temperature B.19

3 These properties are extremely important in the computation of the thermodynamical quantities,
as we will see in what follows
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has a maximum value. Hence, the black hole solutions only exist for temperatures
greater than a certain minimum value. On the other hand, for the case of κ = 0 and
κ = −1, it is easy to check from B.19 that there is no such minimum temperature;
hence, the κ = 0 and κ = −1 black holes exist for all temperatures. However, one
does notice that for κ = −1, the requirement of positivity of temperature enforces
an inequality on the value of r+ , namely that r+ > rcrit , where

rcrit =

(
d−2

d

) 1
2

L, (B.20)

which corresponds to a critical mass

Mcrit =−
2
d

(
d−2

d

) d−2
2

Ld−2. (B.21)

The next step toward the computation of the thermodynamical quantities is the cal-
culation of the on-shell action associated to the black hole. The Euclidean action
B.13 is proportional to the space-time volume, namely

IE =
d

16πGd+1L2

∫
dd+1x

√
gE , (B.22)

where we have substituted the value of the cosmological constant Λ = − d(d−1)
2L2 .

Since the integral B.22 diverges we have to regularise it in order to compute the
action. The standard way to regularize gravitational actions is to compare them with
a convenient background, which is, in a sense, the thermal background of our black
hole solution [10]. The choice of a suitable background depends on the particular
value of κ . For κ = −1, since, as we have said, the black hole solution exist only
for temperature greater than a certain minimum value, the background solution can
be taken to be Anti-de Sitter space with arbitrary Euclidean time period. For κ = 0,
since the black hole solution exists for every temperature, a suitable background so-
lution is the space B.1 with M = 0. Finally for κ =−1 due to the positivity condition
on the temperature, the background metric is the metric B.1 with M = Mcrit given by
B.21. As regards the Gibbons-Hawking boundary term, we can forget about it since
it cancels in the subtraction of the background action from the black hole one.
We have now to evaluate the difference between the on-shell action of the black
hole and of the background. Since the two integrals diverge by themselves, we put
a cut-off at r = K and we evaluate the difference in the limit K→ ∞:

I f
E = lim

K→∞

d
8πGd+1L2

(∫
β

0
dt
∫ K

r+
rd−1dr

∫
Mh

√
h−

∫
β0

0
dt
∫ K

0
rd−1dr

∫
Mh

√
h
)
,

(B.23)



B.1 AdS-Schwarzshild black hole 113

where Mh is the manifold with metric h, β is given by B.19, β0 is the period of the
background metric 4. The condition that the black hole metric and the background
metric must match at r = K allow to express β0 in terms of β . In particular, in order
for the two metric to match, the Euclidean period at r = K must be the same, namely

β0

√
κ− Mcrit

Kd−2 +
K2

L2 = β

√
κ− M

Kd−2 +
K2

L2 . (B.24)

Evaluating the integral B.23 with the condition B.24 yields:

I f
E =

Vol(Mh)

16πGd+1L2 β

[
−rd

++κL2rd−2
+ −L2Mcrit

]
. (B.25)

The thermodynamical quantities are now easily computed. The energy and the en-
tropy per unite volume are given by:

E
Vol(Mh)

= 1
Vol(Mh)

∂ I f
E

∂β
= 1

16πGd+1
(M−Mcrit), (B.26)

S
Vol(Mh)

= 1
Vol(Mh)

(
βE− I f

E

)
= 1

16πGd+1
rd−1
+ . (B.27)

Finally we note that the specific heat of the κ = 0 and κ = 1 solutions is positive.
For κ = 0, we find:

C
Vol(Mh)

=
1

Vol(Mh)

∂E
∂T

=
1

4πGd+1
r(d−1)
+ , (B.28)

while for κ =−1, we have

C
Vol(Mh)

=
1

4πGd+1
r(d−1)
+

[
dr2

+− (d−2)L2

dr2
++(d−2)L2

]
. (B.29)

In the latter case, we see that the specific heat is positive provided r+ > rcrit. We
contrast this with the case κ = 1, where for temperatures greater than a minimum
value there are two black holes, the smaller of which has negative specific heat, the
larger having positive specific heat [6].

4 Note that in the background action the integration in the radial coordinate stars from r = 0 also for
the space-time with M = Mcrit since this space-time has no black hole interpretation. Consequently
the period β0 of the background space-time is arbitrary regardless the sign of κ .





Appendix C
Radial quantization and unitarity bounds

In this brief Appendix we shall illustrate the radial quantization and how, with this
tool, it is possible to impose constraints on the conformal dimension of the fields in
a unitary theory, the so called unitarity bounds.

C.1 The radial quantization

In quantum field theory, in order to construct an Hilbert space we have to chose a
foliation of space-time. Each leaf of the foliation becomes endowed with its own
Hilbert space.
We create in and out states |ψin〉 and 〈ψout | by inserting operator respectively in the
past or in the future of a given surface. The overlap of in and out states living on the
same surface is equal to the correlation function 〈ψout |ψin〉. On the other hand, if
the two states belong to different foliation there must be a unitary operator U which
connect the two states, and the same correlation function is equal to 〈ψout |U |ψin〉.
Usually, in order to chose a proper foliation, it is convenient to look at the symmetry
of the theory. For example, in a Poincaré invariant theory it is convenient to foliate
the space by surface of constant time.
On the other hand, in a CFT it is convenient to chose foliations by Sd−1 spheres of
various radii: this is called the radial quantization. We will assume that the spheres
are centred in x = 0, even though quantizing with respect to any other point should
give the same correlators.
The evolution generator, in this case, is given by the dilatation operator D, and it
shall play the role of the Hamiltonian:

U = eiDτ , (C.1)

where τ = logr.The states living on a sphere are classified by their scaling dimen-
sion ∆ and by their SO(d) spin l
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D|∆ , l〉= i∆ |∆ , l〉 (C.2)
Lµν |∆ , l〉a = Sb

µν a|∆ , l〉b, (C.3)

since, as it is evident from the conformal algebra 5.20, the only generator which
commutes with D is the angular momentum L. The spin matrix S is different from
zero only in the case of non-zero spin operators.

State-operator correspondence

In radial quantization we create states on the sphere by insert operator inside the
sphere. Consequently, the vacuum state |0〉 corresponds to inserting nothing. The
dilatation eigenvalue, which corresponds to the energy of this state, is zero.
If we insert an operator with scaling dimension ∆ at the origin O∆ (x = 0), the cor-
responding state |∆〉= O∆ (x = 0)|0〉 has energy equal to ∆ . In fact,

D|∆〉= DO∆ (x = 0)|0〉= [D,O∆ (x = 0)]|0〉= i∆ |∆〉, (C.4)

where we have used the commutation relation 5.20.
Finally the state generated by the insertion of an operator at non-zero x, O∆ (x), is
not an eigenstate of D. This fact is evident:

|Ψ〉 = O∆ (x)|0〉= eiPxO∆ (0)e−iPx|0〉 (C.5)

= eiPx|∆〉= ∑
∞
n=0

(iPx)n

n! |∆〉 (C.6)

Moreover it is easy to see that the operator Pµ and Kµ acts as the creation and
annihilation operators in radial quantization. This is evident from the fact that, as we
have said in the previous section, they satisfy the following commutation relations:

[D,Pµ ] = iPµ (C.7)
[D,Kµ ] =−iKµ . (C.8)

In other words, each time the momentum operator Pµ acts on |∆〉 a state with energy
∆ +1 is generated, while the operator Kµ lowers the dimension by 1.
This algebraic construction of state with definite energy allow us to make clearer
the definition of local primary operator. In fact if we did not have a primary, then
we could keep lowering dimensions. Assuming that dimensions are bounded from
below (as they are in unitary theories, see below), eventually we must hit zero, and
this will give us a primary.
Let us go back to the states generated by inserting a primary operator at the origin.
We saw that these states have scaling dimension ∆ and are annihilated by Kµ . We
can go backwards as well: given a state such that its scaling dimension is ∆ which is
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annihilated by Kµ , we can construct a local primary operators. 1 Indeed, to construct
an operator we must define its correlation functions with other operators. And it is
easy to see that a good definition could be:

〈φ1(x1)φ2(x2)...O∆ (0)〉= 〈0|φ1(x1)φ2(x2)...|∆〉. (C.9)

The last thing we have to do is to define the conjugation operator in radial quanti-
zation. A hint in this direction is given by the fact that the operator Kµ and Pµ are
conjugate by applying the inversion operator R twice

Kµ = RPµR. (C.10)

Since we have previously identified these operators as the creation and annihilation
operators of the radial quantized theory, it is natural to try to define the conjugation
operator as the inversion, so that

Kµ = P†
µ . (C.11)

Consequently, given a state |ψ〉= φ(x)|0〉, we define its conjugate 〈ψ| by:

〈ψ|= 〈0|[φ(x)]†, with [φ(x)]† = r−2∆φ φ(Rx) = R[φ(x)]. (C.12)

This definition has the property that, as we will see, in a unitary theory the correla-
tion function are R-reflection positive.

Two point functions in radial quantization

Let us now outline how to compute correlation functions in radial quantization. For
simplicity, we shall restrict our analysis to the scalar-scalar two point function.
Since φ(x1)|0〉= eiPx1 |∆φ 〉 and keeping into account our definition of the conjugate
state in radial quantization C.12, we obtain:

〈0|φ(x1)φ(x2)|0〉= r
−2∆φ

2 〈∆φ |e−iKRx2eiPx1 |∆φ 〉. (C.13)

Expanding in series both the exponential inside the mean value and r
−2∆φ

2 , and mul-

tiplying and dividing by r
∆φ

1 we obtain the following expansion for the two point
function:

〈0|φ(x1)φ(x2)|0〉=
1

r
∆φ

1 r
∆φ

2

∑
N
〈N,n2|N,n1〉

(
r1

r2

)∆φ+n

, (C.14)

1 This is called state-operator correspondence: states are in one-to-one correspondence with local
operators.
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where |N,n1〉 = 1
N! (Pµ nµ)N |∆φ 〉, and we have taken into account the fact that the

expectation value of product of operator involving different power of Kµ and Pµ

vanishes since states with different energies are orthogonal to each over.
Then, the coefficients of the expansion of the correlator in radial quantization are
certain matrix elements which could be computed using only the conformal algebra.
It is possible to see that the expansion agrees with the series expansion of the exact
two-point function in radial coordinates.

C.2 Unitarity bounds

Finally, we are now able outline how to obtain unitarity bounds for the scaling di-
mensions of primary operators with the help of radial quantization.
By unitarity bounds we mean that the dimension of a symmetric traceless primary
field must be above a certain minimal value which depends on the spin l of such
field:

∆min(l) = l +d−2, for l = 1,2,3... (C.15)
∆min(l = 0) = d

2 −1 (C.16)

Similar bounds can be derived for antisymmetric tensor and fermionic representa-
tion of the Lorentz group.
In order to prove the bounds 9.16, let us consider the matrix element

〈∆ , l|Kν Pµ |∆ , l〉. (C.17)

This value has only positive eigenvalue in a unitary theory. In fact, suppose than
there is a negative eigenvalue λ < 0 with ξµ the corresponding eigenvector. Then
consider the state |ψ〉= ξµ Pµ |l〉. With λ < 0 this state has negative norm and con-
sequently violates the unitarity of the theory:

〈ψ|ψ〉= ξ
†Aξ = λξ

†
ξ < 0. (C.18)

Now, using the fact that [Kµ ,Pν ] ∼ i(Dδµν −Mµν), we obtain that the eigenvalue
of A get two contribution: one is proportional to ∆ , while the second will be the
eigenstates of the hermitian matrix

Bν{s},{t}µ = 〈{s}|iMµν |{t}〉, (C.19)

where {s} and {t} are the spin index.
The condition that λA ≥ 0 is equivalent to:

∆ ≥ λmax(B), (C.20)
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where λmax(B) is the maximum eigenvalue of B. It turns out (form more details see
[18]) that

λmax(B) = D−2+ l, for l ≥ 1, (C.21)

and this prove the first of the unitarity bound 9.16.
In principle we can consider matrix element involving more Ks and Ps and get
stronger bounds. This is indeed the case for l = 0 at level 2, where, imposing the
positivity of

Aµν , ρσ = 〈∆ |Kµ Kν Pρ Pσ |∆〉, (C.22)

we obtain ∆(l = 0)≥ D
2 −1 which is the second of the bounds 9.16.

However, it is possible to prove that the constraints we have shown above are nec-
essary and sufficient to have unitarity at all level. In other words higher levels than
1 are not needed for l ≥ 1, and higher levels than 2 are not needed for l = 0.
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Part III
Thermo-electric transport in AdS/CFT





Chapter 6
Preamble: linear response theory

In this preamble we want to review some standard concepts of linear response theory
which will be useful in what follows. In particular we want to relate the thermo-
electric transport coefficients to the correlations function of the associated conserved
currents. The formulæ we will derive are commonly known under the name of Kubo
formulæ.

The master formula for the whole of linear response theory comes from first-
order time-dependent perturbation theory in quantum mechanics. For a system
with a time-independent Hamiltonian H and a collection of operator Aa(t,x) in the
Heisemberg picture defined with respect to the Hamiltonian H, we imagine to add
a time-dependent contribution δH(t) to the Hamiltonian. Then the change in the
expectation values for Aa(t,x) are:

δ 〈Aa(t,x)〉=−i
∫ t

−∞

dt ′〈
[
At

a,x),δH(t ′)
]
〉 , (6.1)

to first order in δH. Usually the time-dependent part of the Hamiltonian δH is
constructed by switching on an external sources λa(t,x) for each operator Aa(t,x),
namely:

δH(t) =−
∫

ddx Aa(t,x)λa(t,x) , (6.2)

where the index a is summed. Specifically we want to switch on the perturbation
adiabatically at t→−∞ and to switch it off at t = 0. To do this, we will consider the
following form for the sources:

λa(t,x) = eεt
λa(x)θ(−t) , (6.3)

where ε is an arbitrary small parameter. Using the expression (6.3), we can express
equation (6.1) in the following way:
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δ 〈Aa(t,x)〉 = i
∫ t

−∞

dt ′eεt ′
θ(t− t ′)

∫
ddx′λb(x′)〈

[
Aa(t,x),Ab(t ′,x′)

]
〉 (6.4)

= i
∫ 0

−∞

dt ′eεt ′
θ(t− t ′)

∫
ddx′λb(x′)

[
Aa(t,x),Ab(t ′,x′)

]
〉 (6.5)

=−
∫ 0

−∞

dt ′eεt ′
∫

ddx′λb(x′)GR
ab(t− t ′,x− x′) , (6.6)

where we have used the definition of the retarded Green’s function

GR
ab(t− t ′,x− x′)≡−iθ(t− t ′)〈

[
Aa(t,x),Ab(t ′,x′)

]
〉 . (6.7)

Then, Fourier transforming along the spatial directions and Laplace transforming
along the temporal direction, we obtain:

δ 〈Aa(z,k)〉=−λ
0
b (k)

∫ dω

2π

GR
ab(ω,k)

(iω + ε)(i(ω− z)+ ε)
. (6.8)

In order to evaluate the dω integral in (6.8), we have to keep in mind that GR
ab(tk)

is non-zero only for t > 0, hence GR
ab(ωk) is an analytic function in the upper half-

plane of complex ω . Consequently we close the contour of the integration in the
upper-half plane, where GR

ab is analytic. There are two poles inside the contour, at
ω = iε and ω = z+ iε , thus

δ 〈Aa(z,k)〉=−λ
0
b (k)

GR
ab(z,k)−GR

ab(0,k)
iz

, (6.9)

where the argument of GR is understood to be slightly above the real axis. Then
sending to zero the regulator ε and evaluating the k → 0 limit, we find the well
known Kubo formulæ:

δ 〈Aa(z,0)〉= lim
k→0
−λ

0
b (k)

GR
ab(ω,k)−GR

ab(0,k)
iω

. (6.10)

If we are specifically interested in the response of the system to a temperature
gradient ∂iT and an electric field Ei, then the change in the Hamiltonian can be
written in the flowing form [1]:

δH =−
∫

ddx
(
T 0 j−µJ j) ∂ jT

T
+ J j E j

T
, (6.11)

where T µν is the stress energy tensor associated to the system, µ is the chemical
potential and J j is the charge density current. The last expression makes clear that
the heat current Q j can be expressed as Q j = T 0 j−µJ j.

Moreover, as we have already stressed in the previous chapters, the electric con-
ductivity σ , the thermo-electric conductivity α and the thermal conductivity κ̄ are
related to the charge density and heat current in the following way:
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J
Q

)
=

(
σ αT

αT κ̄T

)(
E

−∇T/T

)
. (6.12)

Finally, putting all together, we obtain the following expressions for the spectral
transport coefficients:

σ(ω) = lim
k→0

GR
JJ(ω,k)−GR

JJ(0,k)
iω

,

α(ω) = lim
k→0

GR
JQ(ω,k)−GR

JQ(0,k)
iωT

,

κ̄(ω) = lim
k→0

GR
QQ(ω,k)−GR

QQ(0,k)
iωT

.

(6.13)





Chapter 7
The simple Raissner-Nordström case

In the previous chapters we have learned that the 4-dimensional Einstein-Hilbert-
Maxwell model on a Reissner-Nordström AdS black hole is the most simple holo-
graphic dual of a three-dimensional strongly coupled system with a non-zero charge
density.

In this chapter we will review the thermo-electric transport properties of this
simple model in order to prepare the ground for the introduction of momentum
dissipation mechanism in holography, which will be discussed in later chapters.

7.1 Bulk solution

As explained in the previous Part, the simplest 4-dimensional gravitational model
admitting asymptotically AdS charged black hole solutions, namely an Einstein-
Hilbert-Maxwell theory, corresponds to the action

SRN =
∫

d4x
√
−g
[

1
2κ2

4

(
R− Λ

L2

)
− 1

4q2 Fµν Fµν

]
+

1
2κ2

4

∫
z=zUV

d3x
√
−gb 2K ,

(7.1)
where we have already included the Gibbons-Hawking boundary term, which is
expressed in terms of the induced metric (gb)µν and the extrinsic curvature K on
the surface at z = zUV . Actually zUV represents a UV cut-off that will be sent to
zero in the final step of the holographic renormalization procedure. As it is well
known (see for example [31]) the Gibbons-Hawking term is necessary in order to
have a well-defined bulk variational problem. In the action (7.1) Λ = −6 is the
dimensionless cosmological constant measured in units of the AdS4 radius L; κ4
and q are respectively the gravitational and Maxwell coupling constants and their
dimension is [κ4] = 1 and [q] = 0.

From the action (7.1) we get the Einstein and Maxwell equations

129
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Rµν −
gµν

2

(
R− Λ

L2

)
= γ

2
(

Fµρ F ρ

ν −
gµν

4
Fρσ Fρσ

)
,

∂µ

(√
−gFµν

)
= 0 ,

(7.2)

where we have introduced the ratio of the gravitational and Maxwell couplings,
namely γ ≡ κ4

q . Being the equations of motion (7.2) insensitive to an overall rescal-
ing of the action (7.1), they depend only on γ and not on the individual couplings.
It is worth noticing that for the simple model at hand γ could be rescaled away by
means of a field redefinition1.

As already derived, the model admits the following black-brane solution:

ds2 = L2

z2

[
− f (z)dt2 +dx2 +dy2 + 1

f (z)dz2
]
, A = φ(z)dt , (7.3)

f (z) = 1−
(

1+ z2
hγ2µ2

2L2

)(
z
zh

)3
+

z2
hγ2µ2

2L2

(
z
zh

)4
, (7.4)

φ(z) = µ−q2ρz = µ

(
1− z

zh

)
. (7.5)

where z is the radial coordinate running from zUV at the UV radial shell to zh at the
black hole horizon. Of course, in the limit of vanishing cut-off, the radial UV shell
is identified with the conformal boundary of the asymptotic AdS geometry.

We recall that the coefficients of the leading and subleading near-boundary terms
of the bulk gauge vector are respectively mapped to the dual chemical potential µ

and charge density ρ ≡ µ/(q2zh) of the corresponding global current in the bound-
ary theory. Eventually, the black hole temperature (which coincides with that of
the boundary theory) and the other thermodynamical quantities, such as the energy
density E , the entropy density S and the pressure P, can be derived in the standard
holographic way (see Chapter 5.6.2). Finally, one obtains

T =− 1
4π

f ′(z)
∣∣∣∣
z=zh

=−γ2µ2zh

8πL2 +
3

4πzh
,

E = 2P =
L2

z3
hκ2

4

(
1+

z2
hµ2γ2

2L2

)
S =

2πL2

κ2
4 z2

h
.

(7.6)

To get some physical insight we note that for T = 0 the black hole has a non-zero
horizon radius z∗h =

√
6 L

γµ
. Consequently the horizon area is non-zero and the sys-

tem has non-vanishing ground state energy. Regarding the temperature dependence
of the entropy density, at low T we have

S ' const +BT f or T � µ , (7.7)

where B is a constant. This implies that the specific heat Cv = T ∂S /∂T is linear
in temperature. In the opposite regime (T � µ) the system approaches the simple

1 Nevertheless this is not a general feature (e.g. it is not true for the holographic superconductor)
and we prefer to keep γ explicit.
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Shwarzshild conformal configuration, and the specific heat goes like T 2 as expected
for a three-dimensional CFT at finite temperature.

To conclude this section it is relevant to pinpoint an interesting properties of the
near horizon geometry of the Reissner-Nordström black brane. We have learned in
the previous Part that the radial coordinates encodes the renormalization group flow
of the dual field theory. Consequently studying the near horizon properties of the
black branes is equivalent to analyse the IR features of the dual field theory. To do
this, we set T = 0 and we expand the metric (7.3) near the horizon z∗h, obtaining:

ds2 =
L
ζ 2

(
−dt2 +dζ

2)+ L2

z∗ 2
h

(
dx2 +dy2) , (7.8)

where we have defined the radial quantity ζ in the following way:

ζ =

√
6

z∗h

(
1− z

z∗h

)
. (7.9)

We started out this story with the “central dogma” of holography, that the isometries
in the bulk code for the global space-time and scaling symmetries in the boundary
field theory. We therefore just have to inspect the scaling isometry of the metric
(7.8):

t→ λ t , ζ → λζ , x→ x , (7.10)

Comparing this with the scaling isometry of the pure AdSd+1 geometry (z is the
radial direction),

t→ λ t , ζ → λζ , x→ λx , (7.11)

we directly infer that we are dealing with a (quasi) local quantum critical state in
the boundary field theory: in spatial directions there is no sense of scale invariance,
while the dynamics of the fields is scale invariant merely in temporal regards! Such
an emergence scale invariance seems to be ubiquitous in the strange metals, ac-
cording to a variety of experimental properties in various laboratory systems. It is
just fascinating that the most primitive gravitational set up for a finite density sys-
tem (the Reinssner-Nordström black hole) gives rise to this very peculiar behaviour.
Both the zero temperature entropy and this local quantum criticality are phenomena
which are alien in any known bosonic field theory.

7.2 Fluctuations

Having analysed the basic physical properties of the background solutions, we want
now to compute the relevant correlators for computing the thermo-electric transport
coefficients. As it is evident from (6.13), in order to evaluate the spectral thermo-
electric transport coefficient we need to compute the retarded Green’s functions both
at zero momentum GR(ω,0) and at zero frequency GR(0,k). In this section we will



132 7 The simple Raissner-Nordström case

derive in detail GR(ω,0) and we will analyse in the following section in which case
the counter-terms GR(0,k) are relevant in defining the transport coefficients.

We consider vector fluctuations on the homogeneous and isotropic background
specified by (7.3), (7.4) and (7.5). Without spoiling the generality of the treatment,
the fluctuating fields that we study are the gauge field fluctuations along the x spatial
direction, namely ax, and the vector mode of the metric, htx; these are the relevant
fluctuations in order to analyse the thermo-electric transport (see below). We fur-
ther assume harmonic temporal dependence and isotropic spatial dependence (null
momentum) for the fluctuations.

The fluctuation dynamics is governed by the Einstein and Maxwell equations
(7.2) which assume the following explicit form

a′′x +
f ′
f a′x +

ω2

f 2 ax =− z2φ ′

f L2

(
h′tx +

2
z htx
)
, (7.12)

h′tx +
2
z htx +2γ2φ ′ax = 0 , (7.13)

where all the fields are functions of the z variable alone and the primes denote
derivatives with respect to z. Despite the dynamics for the fluctuations ax and htx
is coupled, combining (7.12) and (7.13) we obtain an equation where only ax and
derivatives thereof appear,

a′′x (z)+
f ′(z)
f (z)

a′x(z)+
[

ω2

f (z)2 −2γ
2 z2φ ′(z)2

f (z)L2

]
ax(z) = 0 . (7.14)

To actually solve the differential problem governing the fluctuation dynamics, we
need to specify appropriate boundary conditions at the horizon; we consider in-
falling boundary conditions which are those needed to compute retarded correlators
of the dual theory [2]. From (7.14) we have that the gauge field fluctuations can
be analysed and solved without considering the metric fluctuations which are later
determined by means of (7.13) upon substituting the solution for ax. Therefore we
have to impose the in-falling boundary conditions at the horizon on the gauge field
alone,

a(IR)x = (zh− z)−
iω

4πT (b0 +O(zh− z)) . (7.15)

Since the equation (7.14) is homogeneous, we can rescale the parameter b0 to 1, as
a consequence ax and htx are completely determined in terms of the frequency ω

and the background quantities.

7.2.1 Renormalization of the fluctuation action

In order to compute the correlators to be plugged into the Kubo formulæ for the
transport coefficients, we need to consider the on-shell bulk action expanded at the
second order in the fluctuations. The gauge/gravity prescription identifies the bound-
ary value of the bulk fluctuation fields with the dual sources. The correlators of inter-
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est are then obtained taking appropriate functional derivatives of the on-shell action
with respect to these sources. This entire procedure represents the gauge/gravity
version of the standard field theory paradigm to derive correlation functions.

In general the bulk on-shell action for the fluctuating field is divergent and needs
to be properly renormalized. As explained in the previous Part, the holographic
renormalization procedure consists in considering a regularized action to be inte-
grated up to a near-boundary radial cut-off; then, appropriate boundary counter-
terms are considered and eventually the limit of zero cut-off defines the renormal-
ized action. The boundary counter-terms make the on-shell action finite once the
UV cut-off goes to zero. They must respect the symmetries of the boundary theory
and provide a well-defined bulk variational problem. As mentioned before, in (7.1)
we have already added the Gibbons-Hawking boundary terms to the bulk action;
this provides a well-defined bulk variational problem for the fields. Then (see for
instance [3]) the only well-behaved boundary term needed in order to render the
on-shell action finite is

Sc.t. =
1

2κ2
4

∫
z=zUV

d3x
√
−gb

4
L
. (7.16)

Eventually, the limit of vanishing cut-off is considered and (as we are interested in
the linear response or, said otherwise, to two-point correlators) only the quadratic
part of the action in the fluctuating field is retained. The renormalized quadratic
action is defined as

S(2)ren = lim
zUV→0

SRN +Sc.t.

∣∣∣∣
O(ax,htx)2

. (7.17)

Once we have obtained a finite on-shell action, it is perfectly legitimate to ask
ourselves whether finite counter-terms could also be added. Such finite counter-
terms would lead to ambiguities in the definition of the renormalized action. We
state once more that the counter-terms have to respect all the symmetries of the
boundary theory2, the power counting and the definition of the bulk variational
problem. This latter characteristic amounts to avoid introducing boundary terms
containing radial derivatives. The former symmetry requirements impede us to con-
sider terms as aiai which would brake the boundary gauge symmetry. The power-
counting criterion instead forbids us to consider Fi jF i j which is allowed by the sym-
metries but would force us to introduce new dimensionful parameters. We further
notice that a Chern-Simons term is always trivial on our background solutions as a
consequence of spatial rotational invariance. Such arguments exhaust all the possi-
bilities as far as the gauge field is concerned. Turning our attention to the metric,
we are allowed to consider two kinds of terms: a boundary cosmological constant

2 As a general feature, the correlators satisfy Ward identities related to the symmetries of the
model. In a generating functional framework, such identities (as the correlators themselves) are
obtained by appropriate functional derivatives of the generating functional itself and of the expec-
tation values of the various quantities in the theory. Counter-terms (either finite or not) in the QFT
action which respect the symmetries of the original theory affect both the Ward identities and the
correlators in a consistent way.
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and a term proportional to the boundary Ricci scalar. The first actually appeared in
(7.16); the latter is null as the manifold transverse to the radial coordinate z is flat
Minkowski space-time upon which we are considering homogeneous configurations
in the space coordinates (i.e. null momentum).

From an asymptotic study of the equations of motion we have that the boundary
expansions of the fields ax and htx are

ax(z) = a(0)x +a(1)x
z
L
+ ... , htx(z) =

L2

z2 h(0)tx +h(1)tx
z
L
+ ... , (7.18)

and consequently the renormalized quadratic on-shell action for the model at hand
is given by

S(2)ren =
∫

d3x
[ 1

2q2L
a(0)x (−ω)a(1)x (ω)

− 1
2κ2

4

3
L

h(0)tx (−ω)h(1)tx (ω)− E

4
h(0)tx (−ω)h(0)tx (ω)

]
+ (ω ↔−ω) , (7.19)

where we have Fourier transformed with respect to the time coordinate.

7.3 Correlators and transport coefficients

We are now ready to compute the relevant correlators to define the thermo-electric
transport coefficients. As it is evident from (6.13) we need to identify the sources
for the charge density current J and for the heat density current Q. As explained
in the previous Part, the sources for J is simply the leading term of the gauge field
at the boundary, namely a(0)x . Regarding the heat current, it is a composite operator
involving the tx-component of stress energy tensor T tx. Since we know that the
sources for the stress energy tensor are encoded in the leading terms of the metric
fluctuations h(0)µν , we obtain:

JQ = h(0)tx −µa(0)x . (7.20)

From (7.20) we have the following relations among the corresponding functional
derivatives

δ

δJx
=

δ

δa(0)x

, (7.21)

δ

δJQ
=

δ

δh(0)tx

−µ
δ

δa(0)x

, (7.22)

where the partial derivatives with respect to the sources a(0)x and h(0)tx are to be taken
keeping to zero the source upon which one does not differentiate. We underline that
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the sources a(0)x and h(0)tx are, in principle, independent quantities. Stated this, in order
to compute the explicit expressions of correlators in terms of the background quanti-
ties and the near-boundary fluctuations, we start taking double functional derivatives
of the on-shell renormalized and quadratic action (7.19). Namely,

δ 2S
(δJx)2 =

1
q2L

δa(1)x

δa(0)x

, (7.23)

δ 2S
δJQδJx

=
δ 2S

δJxδJQ
=− 3

2Lκ2
4

δh(1)tx

δa(0)x

−µ
1

q2L
δa(1)x

δa(0)x

, (7.24)

and

δ 2S
(δJQ)2 =− 3

κ2
4 L

δh(1)tx

δh(0)tx

−E − µ

q2L
δa(1)x

δh(0)tx

+
3µ

κ2
4 L

δh(1)tx

δa(0)x

+
µ2

q2L
δa(1)x

δa(0)x

. (7.25)

To proceed, we observe that the equation for the fluctuations of the gauge field is in-
dependent of htx and that, because of equation (7.13), h(1)tx is completely determined
in terms of a(0)x and the parameters of the background,

h(1)tx =
2
3

γ
2q2

ρLa(0)x ; (7.26)

hence we have

δa(1)x

δh(0)tx

=
δh(1)tx

δh(0)tx

= 0 and
δh(1)tx

δa(0)x

=
2
3

γ
2q2

ρL . (7.27)

Eventually, the correlators assumes the following form:

GR
JxJx(ω,0) =

1
q2L

δa(1)x

δa(0)x

,
1
T

GR
JxJQ

(ω,0) =− 1
T

ρ− µ

T
GR

JxJx(ω,0) , (7.28)

and
1
T

GR
JQJQ

(ω,0) =
1
T
(−E +2µρ)+

µ2

T
GR

JxJx(ω,0) . (7.29)

In order to evaluate the Kubo formlæ(6.13) we need also to compute the retarded
green’s functions at non-vanishing momentum, namely GR(0,k). In principle this
can be done exactly in the same way as explained in the zero momentum case,
switching on the momentum and setting to zero the frequency ω . Actually, with an
analytical computation illustrated in [4], one can prove that:

GR
JxJx(0,k) = O(k2) ,

GR
JxJQ

(0,k) = O(k2) ,

GR
JQJQ

(0,k) =−P+O(k2) ,

(7.30)
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where P is the pressure, defined in (7.6). Consequently, in the zero momentum limit
only GR

JQJQ
(0,k) contributes to the transport coefficient with a non-trivial counter-

term.
Finally, using (6.13), the thermo-electric transport coefficients assume the fol-

lowing form:

σ(ω) =− i
q2Lω

δa(1)x

δa(0)x

,

α =
i

T ω
ρ− µ

T
σ(ω) ,

κ̄(ω) =
i

ωT
(E +P−2µρ)+

µ2

T
σ(ω)

(7.31)

7.4 Physical properties of transport coefficients

To conclude this chapter we want to analyse some physical properties of the trans-
port coefficients previously derived. As it is evident from (7.31), the spectral be-
haviour of the transport coefficients is completely determined once the thermody-
namical quantities and the electric conductivity σ(ω) is known. The real and imag-
inary part of σ(ω) are plotted in Figure 7.1 for different values of the ratio T/µ .
As one can see from the Figure, the imaginary part of the electric conductivity has
a pole in ω = 0. Using the Kramers-Kronig relations,
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Fig. 7.1 Real (left) and imaginary (right) part of the electric conductivity σ(ω) for different values
of the ratio T/µ , (T/µ = 0.1 (blue), T/µ = 1 (green) and T/µ = 10 (red).

ℜσ(ω)=
1
π

P
∫

∞

−∞

ℑσ(ω ′)

ω ′−ω
dω
′ , ℑσ(ω)=− 1

π
P
∫

∞

−∞

ℜσ(ω ′)

ω ′−ω
dω
′ , (7.32)

this pole is related to the existence of a delta function in the real part of the conduc-
tivity. This is perfectly consistent with hydrodynamics [2], since the conservation
of momentum implies that the DC conductivity diverges. Actually, an analytical
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computation performed in [4] shows that the residue of σ(ω) at ω = 0 behaves as
follows:

ℜσ(ω) =
ρ

E +P
δ (ω)+ ... . (7.33)

The previous expression is consistent with the numerical computation shown in Fig-
ure 7.1, where once the ration T/µ is lowered (or equivalently the chemical potential
µ is increased), a depletions zone develops near ω = 0. Using the relations (7.32)
it is evident that the spectral weight is transferred in the pole at ω = 0 (7.33), since
the charge density ρ is proportional to the chemical potential µ . At high frequency
ω � µ the conductivity approaches a constant values 1/q2 consistent with the con-
formal prediction.

In the neutral case (µ = 0) the delta function int he electric conductivity disap-
pear. In this case explicit form of σ(ω) can be computed exactly [5], leading to

σ̃(ω) =
1
q2 . (7.34)

Then in the purely conformal case the electric conductivity is constant both in tem-
perature and in frequency as it should. Regarding the other transport coefficients, the
thermo-electric conductivity α vanishes as it is the case for a neutral plasma, while
the thermal conductivity is a pure delta functions whose residue is proportional to
the entropy, namely:

˜̄κ = S δ (ω) . (7.35)





Chapter 8
Momentum dissipation in holography

8.1 Adding a mass to the graviton to break momentum
conservation

In this Section, after discussing the basic properties of the massive gravity model
which we consider, we will explain how to compute the thermo-electric transport
coefficients for this system.

8.1.0.1 The massive gravity model

The idea underlying the application of massive gravity in holography consists in
breaking the diffeomorphism invariance in the bulk by introducing a mass term for
the graviton in such a way that one has momentum dissipation in the boundary
dual field theory. Actually, several ways to give a mass to the graviton had been
studied, but, following [6], we work here with the formulation of the massive gravity
presented for the first time in [7]. The action of the model is:

S =
∫

d4x
√
−g
[

1
2κ2

4

(
R+

6
L2 +β

(
[K ]2− [K 2]

))
− 1

4q2 Fµν Fµν

]
+

1
2κ2

4

∫
z=zUV

d3x
√
−gb 2K ,

(8.1)

where β is an arbitrary parameter having the dimension of a mass squared and the
small square brackets denote a trace operation. Notice that the action (8.1) contains
already the Gibbons-Hawking term necessary to have a well-defined bulk variational
problem. The matrix (K 2)

µ

ν is defined in terms of the dynamical metric gµν and a
fiducial fixed metric fµν in the following way1

1 Within this formulation of massive gravity, it is possible to consider also a linear term in the
trace of K ; namely an α[K ] term in the Lagrangian density where α is a numerical coefficient.
However in this paper we always consider the case α = 0. The reason for doing so is twofold: first

139
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(K 2)
µ

ν ≡ gµρ fρν , K ≡
(√

K 2
) µ

ν

. (8.2)

Along the lines of [6], we consider the following form for fµν :

fµν = diag(0,0,1,1) . (8.3)

Considering this particular form for the fiducial metric means that the action is still
invariant under diffeomorphism in the (z, t) plane, but not in the (x,y) plane. At
the dual level this implies that the theory has conserved energy but no conserved
momentum.

8.1.0.2 Background and thermodynamic

The equations of motion descending from the action (8.1) are:

Rµν −
R
2

gµν +
Λ

2L2 gµν +Xµν = γ
2Tµν ,

∂µ

(√
−gFµν

)
= 0 ,

(8.4)

where γ ≡ κ4
q and

Tµν = Fµρ F ρ

ν −
gµν

4
Fρσ Fρσ ,

Xµν =−β

(
K 2

µν − [K ]Kµν +
gµν

2
(
[K ]2− [K 2]

))
.

(8.5)

We want to study the system in the presence of a chemical potential, we then con-
sider the same background ansatz as in (7.3). In the massive case the black-brane
solution is:

φ(z) = µ−q2
ρz = µ

(
1− z

zh

)
, ρ ≡ µ

q2zh
,

f (z) =
γ2µ2z4

2L2z2
h
− γ2µ2z3

2L2zh
− z3

z3
h
− β z3

zh
+β z2 +1 .

(8.6)

In the limit β → 0 the emblackening factor f (z) reduces to that corresponding to
the standard Reissner-Nordström solution. The black hole temperature is computed
in the usual way leading to

T =− f ′(zh)

4π
=−γ2µ2zh

8πL2 +
β zh

4π
+

3
4πzh

. (8.7)

a rigorous proof of the absence of ghosts in the model exists only in this α = 0 case [6]; secondly,
as noted in [8], with α 6= 0 logarithmic terms appear in the near-boundary expansion of the bulk
fields. The latter fact introduces non-standard divergences in the on-shell 2+1-dimensional action.
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The full set of thermodynamical quantities were derived in [12]. For the sake of later
need, we report here the explicit expressions for the entropy density S , the energy
density E and the pressure P,

S =
2π

κ2
4

L2

z2
h
, E =

L2

z3
hκ2

4
+

L2β

zhκ2
4
+

µ2

2q2zh
, P=

L2

2κ2
4 z3

h
− βL2

2κ2
4 zh

+
µ2

4q2zh
. (8.8)

Notice that the dual theory of a massive gravity has in general E 6= 2P. The equation
of state E = 2P is expected for a 2 + 1 dimensional conformal theory but, as it
happens with the conservation laws of the stress-energy tensor, the massive gravity
set-up introduces modifications that are proportional to the mass parameter β .

Scales and scalings

As we have just noted observing the thermodynamic quantities, the massive pa-
rameter β introduces a new scale in the model. This new scale affects the scaling
symmetries of the bulk fields. In fact, if we rescale the radial coordinate z as z→ az,
we find that the other quantities of the model must scale as

(t,x,y)→ a(t,x,y) , β → β

a2 , µ → µ

a
, zh→ azh (8.9)

in order for this scaling to be a symmetry of the action. In particular, if we consider
the scale invariant temperature T̃ ≡ T/µ we find from (8.7) that this is a function of
the scale invariant quantities β/µ2 and µzh:

T̃ ≡ T
µ

= F
(

β

µ2 ,zhµ

)
. (8.10)

Moving the temperature while keeping fixed both the chemical potential µ and the
mass parameter β (which, as we will see, is related to the momentum dissipation
rate in the dual field theory) corresponds to varying the horizon radius zh.

Finally, we note that, as in the massless case, the constant γ can be rescaled away
from the action (8.1) by means of a redefinition of the gauge field. In fact the system
is invariant under the scaling

γ → aγ , µ → µ/a , (8.11)

namely the same scaling symmetry found in the Reissner-Nordström AdS black
hole. This scaling affects in particular the transport coefficients and consequently to
compute the transport coefficients at different values of γ is equivalent to compute
the same quantities at the corresponding rescaled values of the chemical potential.
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8.1.1 Massive gravity and momentum dissipation

In the previous Section we have analysed the basic properties of the background
black-brane solution in the presence of a mass term for the graviton. We need now to
understand how a mass potential for the graviton is related to momentum dissipation
in the dual strongly coupled field theory.

The basic idea illustrated in [6] is that the massive gravity potential breaks the dif-
feomorphism invariance in the bulk. Since we have learned in the previous part that
diffeomorphism invariance in the bulk is related to the conservation of the stress-
energy tensor in the dual field theory, a gravitational theory with a mass potential
would correspond to a dual theory where

∂µ T µν 6= 0 . (8.12)

Specifically, since considering the fiducial metric (8.3) corresponds to breaks the
diffeomorphism invariance along the x and y directions one would expect that the
model we are considering corresponds to a theory in which momentum is not con-
served in some way.

A more precise statement was provided in [8] where, by analysing the poles
of the correlation functions in the hydrodynamic limit (namely at sufficiently low
momentum dissipation rate τ−1, where momentum is an almost conserved quantity),
it was discussed that massive gravity is the dual gravitational realization of a system
in which the conservation law for the stress-energy tensor is modified as follows:

∂tT tt = 0, ∂tT ti =−τ
−1T ti , (8.13)

where τ−1 is the momentum dissipation rate. At order O(β ) the scattering rate is
expressed in terms of the thermodyanamical quantities (7.6) and of the graviton
mass β in the following way 2:

τ
−1 =− S β

2π(E +P)
. (8.14)

A further evidence of the analogy between massive gravity and momentum dissi-
pation was provided in [10], where it was proven that the holographic lattices [11]
gives an effective mass term for the graviton.

As a final comment it is important to note that the explicit form of the scattering
rate (8.14) constrains the possible values of the mass parameter β . In particular,
since τ−1 has to be positive, β must assume negative values. Th situation is more
involved once one considers non linear massive potential, as discussed in [13].

Eventually, we have argued that the massive gravity model which we have anal-
ysed in the previous sections provides an interesting effective gravitational theory
useful to study the effects of momentum dissipation in an holographic strongly cou-

2 For a more precise definition of the momentum dissipation rate see [29].
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pled dual field theory. In the next sections we will focus on the thermo-electric
transport properties of the system.

8.1.2 Fluctuations and transport in the massive case

We are now ready to compute the correlators and consequently to define the thermo-
electric transport coefficient analogously to what has been done for the massless
case in the previous chapter. Firstly we will focus our attention to the retarded
Green’s function at zero momentum GR(ω,0). As noted before, in order to properly
define the transport coefficients we need to compute also the correlation function in
the opposite limit, namely GR(0,k). We will comment at the end of the section about
the importance of these counter-terms in the definition of the transport coefficients.

8.1.2.1 Linearised equations and asymptotic expansions

In order to obtain the correlation functions GR(ω,0), we need to expand the action
(8.1) at the second order in the fluctuation fields analogously to what has been don
in the massless case. However, as opposed to the massless case, here the equations
for htx and hzx are independent and then we have to turn on both the fluctuations to
be consistent. Hence we consider the following set of fluctuations

A→ A+ e−iωt ax(z)dt ,

ds2→ ds2 +2e−iωt hzx(z)dzdx+2e−iωt htx(z)dt dx .
(8.15)

Expanding the equations of motion (8.4) to the linear order in the fluctuations (8.15)
we obtain:

h′tx +
2
z

htx + iωhzx +2γ
2
φ
′ax +2β

i f
ω

hzx = 0 ,

d
dz

[
h′tx + iωhzx +

2
z

htx +2γ
2
φ
′ax

]
+2β

htx

f
= 0 ,

d
dz

(
f a′x
)
+

ω2

f
ax +

φ ′z2

L2

(
h′tx +

2
z

htx + iωhzx

)
= 0 .

(8.16)

There are no derivatives of hzx in the first equation of motion which therefore can be
algebraically solved to obtain hzx. We then substitute the solution inside the second
equation. Finally we are left with two coupled equations for ax and htx:

d
dz

[
f a′x
]
+

2φ ′z
L2
−γ2φ ′ω2zax +β f (zh′tx +2htx)

2β f +ω2 +
ω2

f
ax = 0 ,

d
dz

[
f
z

2γ2φ ′zax + zh′tx +2htx

2β f +ω2

]
+

1
f

htx = 0 .

(8.17)
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In the β → 0 limit the first equation in (8.17) reduces to (7.14) obtained in standard
massless gravity. This, however, cannot be simply interpreted as the fact that the
fluctuation dynamics in the limit β → 0 coincides with that arising in the massless
gravity on the Reissner-Nordström black hole. Indeed, the second equation in (8.17)
shows that the limits β → 0 and ω → 0 do not commute. Since we are interested in
computing DC observables we always consider the ω → 0 first.

IR expansion

As usual, in order to compute the retarded correlators, we have to numerically solve
the equations (8.17) imposing the in-going wave boundary conditions at the horizon
z = zh, namely

h(IR)tx = (zh− z)−
iω

4πT (a0 +O(zh− z)),

a(IR)x = (zh− z)−
iω

4πT (b0 +O(zh− z)).
(8.18)

It is important to note that, unlike the case of fluctuations on pure Reissner-
Nordström black hole, it is impossible to combine the two equations (8.17) in a
unique equation for ax. The dynamics of electric and thermal fluctuations is conse-
quently more intimately mixed. From the bulk standpoint, it is possible to rescale
to 1 only one of the two coefficients a0 and b0. Said otherwise, the physics of the
model is sensitive to the ratio η = a0/b0. In the computations aimed at getting the
transport coefficients, in order to isolate the purely electric response of the system,
we have to tune the coefficient η so that the thermal source vanishes. Symmetri-
cally, to compute the pure thermal contribution, we must fix η so that the electric
field source is zero.

UV expansion

Near the boundary z = 0 the expansion of the fluctuations in powers of z is:

hUV
tx (ω,z) =

L2

z2

[
h(0)tx (ω)+

1
2
(2β +ω

2)
z2

L2 h(0)tx (ω)+
z3

L3 h(1)tx (ω)+O

(
z4

L4

)]
,

aUV
x (ω,z) = a(0)x (ω)+

z
L

a(1)x (ω)+O

(
z2

L2

)
.

(8.19)

The coefficients of the higher orders in the z expansions can be determined in terms
of the background parameters and the integration constants h(0)tx ,h(1)tx ,a(0)x , a(1)x . Since
we are concerned with solutions of a system of second-order differential equations,
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these integration constants remain arbitrary in the UV analysis. As usual, once one
imposes the above-mentioned IR boundary conditions at the horizon they are de-
termined and can be read from the full bulk solution. According to the standard
holographic dictionary, we interpret h(0)tx and a(0)x as the sources of the dual opera-
tors whose vacuum expectation values are given by h(1)tx and a(1)x .

8.1.2.2 On-shell action and renormalization

The action (8.1) diverges if evaluated on-shell at the quadratic order in the fluctua-
tions. The counter-term which is necessary to make the quadratic action finite is, as
in the massless case,

S(div)
c.t. =

1
2κ2

4

∫
z=zUV

d3x
√
−gb

4
L
. (8.20)

Finally, as usual, the total on-shell action reduces to a purely boundary term. Fourier
transforming the fields and substituting hzx by means of the second equation in
(8.16) we obtain

Stot = S+S(div)
c.t.

= lim
zUV→0

V
∫ dω

2π

[
µz2
(
β f +ω2

)
L2q2zh (2β f +ω2)

axhtx +
β z2 f

2κ2
4 L2 (2β f +ω2)

htxh′tx

− f
2q2 axa′x +

z
2κ2

4 L2
√

f
htxhtx

]
z=zUV

+(ω ↔−ω) ,

(8.21)

where the prime denote the derivative with respect to the radial variable z, the argu-
ments of the first and second fluctuation in each pair are respectively (−ω,z) and
(ω,z) and V represents the volume of the spatial manifold.

The boundary action (8.21) evaluated on the boundary expansions (8.19) allows
us to compute the correlators and consequently the transport coefficients as we will
explain below.

8.1.2.3 Definition of the correlators at zero momentum

The computation of GR(ω,0) is analogous to that illustrated for the massless case,
but with two important differences. The first one is that, since we are dealing with
two coupled differential equations, relations (7.27) are not valid and we have to keep
into account that:

δa(1)x

δh(0)tx

6= 0 , and
δh(1)tx

δh(0)tx

6= 0 . (8.22)

The second is that, on the computational level, in the massive case the IR parameter
η = a0/b0 coming from the boundary conditions at the horizon (8.18) has a physical
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relevance and cannot be simply rescaled to 1. Indeed we have to tune η depending
on which source we need to set to zero in performing the functional derivatives.
We resort to a numerical shooting method to the purpose of finding the value of η

corresponding to the desired UV source set-up.
Eventually, differentiating with respect to the sources following what has been

done for the massless case in the previous chapter,we obtain:

GR
JJ(ω,0) =

1
q2L

δa(1)x

δa(0)x

∣∣∣∣∣
h(0)tx =0

, (8.23)

GR
QQ(ω,0) = 2

[
−1

E

2
− 3β

2κ2
4 L(2β +ω2)

δh(1)tx

δh(0)tx

∣∣∣∣∣
a(0)x =0

− µ

2q2L
δa(1)x

δh(0)tx

∣∣∣∣∣
a(0)x =0

+

µ2

zhq2
β +ω2

2β +ω2 +
3µβ

2κ2
4 L(2β +ω2)

δh(1)tx

δa(0)x

∣∣∣∣∣
h(0)tx =0

+
µ2

2q2L
δa(1)x

δa(0)x

∣∣∣∣∣
h(0)tx =0

]
, (8.24)

GR
JQ(ω,0) =

1
2q2L

δa(1)x

δh(0)tx

∣∣∣∣∣
a(0)x =0

− µ

zhq2
β +ω2

2β +ω2

− 3β

2κ2
4 L(2β +ω2)

δh(1)tx

δa(0)x

∣∣∣∣∣
h(0)tx =0

− µ

q2L
δa(1)x

δa(0)x

∣∣∣∣∣
h(0)tx =0

. (8.25)

8.1.3 Counter-terms and transport coefficients definition

In order to define the transport coefficient as in (6.13) we need also to evaluate
the retarded Green’s function at non-zero momentum, namely GR(0,k). The com-
putation proceeds analogously to what has been done in the previous section for
GR(ω,0) except that in this case it is necessary to switch on also the fluctuation hxy
which couples to the other fluctuations through the non-zero momentum along the
x direction. A numerical computation leads to:

GR
JJ(0,k) = O(k2) ,

GR
JQ(0,k) = O(k2) ,

GR
QQ(0,k) =

E

2
+O(k2) .

(8.26)

Consequently, the counter-terms play an important role only in defining the thermal
conductivity. Actually, it is important to note that the counter-term in the thermal
conductivity is exactly those which removes an non-physical pole at ω = 0 which
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would have no explanation in a plasma where momentum is not conserved such as
those described by massive gravity.

Finally the thermo-electric transport coefficients σ(ω), α(ω) and κ̄(ω) assumes
the following form:

σ(ω) =
1

iω
GR

JJ(ω,0) ,

α(ω) =
1

iωT
GR

JQ(ω,0) ,

κ̄(ω) =
1

iωT

(
GR

QQ(ω,0)− E

2

) (8.27)

where the quantities GR
IJ(ω,0) are defined in (8.23)-(8.25).

8.2 Spectral properties of transport coefficients

Having furnished a prescription for numerically compute the transport coefficient in
holographic massive gravity let us now discuss briefly their spectral properties.

The real and imaginary part of the electric conductivity σ(ω) are plotted in Fig-
ure 8.1 for different values of the scale invariant ratio T/µ . As it is evident from
the Figure, at high T/µ a smooth Drude peak develops in the low frequency region
of the spectrum while the imaginary part of the conductivity goes to zero indicating
the absence of a delta function at ω = 0, as expected.
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Fig. 8.1 Real (left) and imaginary (right) part of the electric conductivity σ(ω) for β =−0.1 and
different values of the ratio T/µ , (T/µ = 0.1 (grey), T/µ = 1 (purple) and T/µ = 10 (light blue).

At high frequency the conductivity approaches a constant values in agreement
with the conformal prediction. In this region in fact ω � T,µ, |β | and the model
comes back to the conformal regime.

Once the ratio T/µ is lowered a depletion region develops in the low frequency
region and the lack of spectral weight is transferred in the Drude-like peak which
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becomes narrower and higher eventually transforming into a delta function in the
limit T/µ → 0.

A similar qualitative behaviour can be seen, as expected in the thermal conduc-
tivity κ̄(ω), plotted in Figure 8.2. We note in particular that the imaginary part of
κ̄(ω) goes to zero, as expected. This is due to the fundamental presence of the
counterterm GR

QQ(0,k) in the Kubo formulæ (6.13).
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Fig. 8.2 Real (left) and imaginary (right) part of the thermal conductivity ¯kappa(ω) for T/µ = 1
and β =−0.1.

8.3 DC transport coefficients

Having analysed the basic spectral properties of the transport coefficients, we can
now move to the analysis of the DC transport properties. To do this we will fol-
low the method developed in [15] to compute analytically the DC thermo-electric
response. This approach is based on the analysis of quantities which do not evolve
from the IR to the UV. In other words, it relies on a “membrane paradigm” [16] for
massive gravity bulk models.

8.3.1 The electric conductivity and the Seebeck coefficient

Due to the isotropy of the system we are allowed to consider just perturbations in the
x direction without loss of generality. Then the static electric conductivity σDC and
the Peltier coefficient ΠDC are defined in terms of the electric field Ex, the charge
density current Jx and the heat flow Qx in the following way

σDC ≡
Jx

Ex

∣∣∣∣
∇xT=0

, ΠDC ≡
Qx

Ex

∣∣∣∣
∇xT=0

. (8.28)
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The definitions (8.28) imply that, in order to compute σDC and sDC, we must con-
sider non-zero electric field and vanishing thermal gradient.

Inspired by [15], we turn on the following fluctuating components

ax(t,z) = −E t + ãx(z) , (8.29)
htx(t,z) = h̃tx(z) , (8.30)
hzx(t,z) = h̃zx(z) , (8.31)

where the temporal dependence of the 4-potential aµ corresponds to a constant elec-
tric field E along x and with h we denote fluctuations of the metric components.

The set of coupled linearised equations of motion for the fluctuating fields are

h̃′′tx(z)+
2
z

h̃′tx(z)+2
(

β

f (z)
− 1

z2

)
h̃tx(z)−

2γ2µ

zh
ã′x(z) = 0 , (8.32)

E z2µ γ2

zh f (z)
+

(
z4µ2γ2

2z2
hL2 − z f ′(z)+3 f (z)−3

)
h̃zx(z) = 0 , (8.33)

ã′′x (z)+
f ′(z)
f (z)

ã′x(z)−
z2µ

L2zh f (z)
h̃′tx(z)−

2zµ

L2zh f (z)
h̃tx(z) = 0 . (8.34)

Note that equation (8.33) for h̃zx can be solved algebraically and, recalling the ex-
plicit expression of the emblackening factor f (z) given in (8.75), the solution can
be expressed as follows

h̃zx(z) =−
Eγ2µ

zhβ f (z)
. (8.35)

In order to completely determine the solution of the remaining two equations
(8.32) and (8.34), we have to provide suitable boundary conditions for the fluctua-
tion fields htx(t,z) and ax(t,z) at the conformal boundary z = 0 and at the horizon
z = zh. At the horizon we require the regularity of the fluctuations; this requirement
can be easily fulfilled by switching to the Eddington-Finkelstein time coordinate

v = t− 1
4πT

log
(

zh− z
L

)
, (8.36)

leaving untouched all the other coordinates. From the IR regularity requirement for
all the metric components in the new coordinate system we derive the behaviour of
h̃tx at the horizon, namely

h̃tx(z) =−
Eγ2µ

zhβ
+O(z− zh) . (8.37)

An analogous regularity requirement at the horizon applied to the gauge field yields

ãx(z) =
E

4πT
log
(

zh− z
L

)
+O(z− zh) . (8.38)
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As we will explain better in what follows, considering the conformal boundary
located at z = 0, we have to furnish boundary conditions in such a way that the dual
system has an external electric field and vanishing thermal gradient. Given the ansatz
(8.86), the small-z leading behaviour of the fluctuating field a(t,z) corresponds to
a constant electric field E. According to the standard holographic dictionary, the
coefficient of the subleading fall-off in z of the field a(t,z) corresponds to the charge
density current Jx; namely ãx ∼ Jxz at small z. Regarding the metric fluctuation h̃tx,
from equation (8.32) it is easy to see that it has two independent behaviours in
the near-boundary region, i.e. z and z−2. The holographic dictionary prescribes that
imposing that there are no sources associated to thermal gradients corresponds to
setting to zero the coefficient of the leading z−2 term. All in all, the set of boundary
conditions that we have just illustrated determines the solution of the differential
equations (8.32) and (8.34) completely.

In order to compute the DC transport coefficients it is fundamental to note that
there are two linear combinations of the fluctuations which are independent of the
coordinate z and are respectively related to the charge density current and the heat
current. The first conserved current is

J̄µ =−
√
−g
q2 Fzµ , (8.39)

with µ = t,x,y. Given the ansatz (8.86), the only non-zero component of the
Maxwell equation

√
−g∇MFMN = ∂z(

√
−gFzx) = 0 states that J̄x is independent

of the radial coordinate z and it assumes the following explicit form in terms of the
fluctuating fields

J̄x =−
√
−g
q2 Fzx =

z2µ

L2q2zh
h̃tx(z)−

f (z)
q2 ã′x(z) . (8.40)

Relying on the “radial conservation” we can compute J̄x both at the horizon z = zh
and at the boundary z = 0 knowing that the two results must correspond. Computing
it at z = 0 and recalling the above-mentioned UV behaviours, it is possible to see
that this quantity is actually the charge density current Jx of the dual field theory.
Then, evaluating (8.40) at z = zh we find:

Jx =

(
1
q2 −

γ2µ2

L2q2β

)
E . (8.41)

The electric conductivity σDC is now easily computed by means of (8.28),

σDC =
Jx

E
=

1
q2 −

γ2µ2

L2q2β
, (8.42)

which corresponds exactly with the analytical expression found in [12].
The second conserved quantity, which is related to the heat current, is subtler

to identify. Indeed, as noted in [15], it is associated to the existence of the Killing
vector k = ∂t and it assumes the following form:
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Q̄ =

√
−g

κ2
4

∇
zkx−φJx =(

φ ã′x
q2 +

h̃′tx
2κ2

4
+

h̃tx

κ2
4 z

)
f +
(
− f ′

2κ2
4
− µz2φ

L2q2zh

)
h̃tx , (8.43)

where in the second passage we gave an explicit expression of Q̄ in terms of the
fluctuation fields. Evaluating Q̄ on the equations of motion (8.32) and (8.34) and
keeping into account the particular form of the background quantities f and φ (8.75),
one has that ∂zQ̄ = 0. Namely Q̄ is radially conserved.

Having obtained a radially conserved quantity, in order to repeat the same steps
done previously for the electric conductivity, we have to prove that Q̄ coincides, if
evaluated on the boundary, with the heat current in the x direction Qx = T tx− µJx

of the dual field theory. Actually, in this case, the proof of this statement is straight-
forward. In fact, Jx is constant along the radial direction and φ(0) = µ , and con-
sequently the term φ Jx reduces to µ Jx when evaluated at the conformal boundary.
Moreover, it is not difficult to see that

√
−g

κ2
4

∇zkx coincides with the linearised tx

component of the stress-energy tensor of the dual field theory3 evaluated at the con-
formal boundary z = 0, namely

T tx =
L5

κ2
4 z5

(
−Ktx +Kgtx

b +
2
L

gtx
b

)
=

h̃′tx
2κ2

4
√

f
− h̃tx

κ2
4 z
√

f
+

2h̃tx

κ2
4 z f

. (8.44)

Finally, having associated the quantity Q̄ with the heat flow, the Peltier coefficient
is straightforwardly obtained evaluating Q̄ at the horizon z = zh and relying on the
IR behaviour of the fluctuating fields. We obtain

ΠDC =
Q̄
E

=− 2πµ

βq2zh

(
−γ2µ2zh

8πL2 +
3

4πzh
+

β zh

4π

)
. (8.45)

The expressions for the DC electrical conductivity (8.5.2.1) and the Peltier coef-
ficient (9.52) obtained here with an analytical computation along the lines described
by [15] coincide with those found in [35] using numerical methods. Note that the
term inside the parenthesis of equation (9.52) coincides exactly with the temperature
(8.8). Consequently, by Onsager reciprocity (see later), one has αDC = ΠDC

T , finding
exactly formula (1.4) of [35], which was satisfied by numerical data.

8.3.2 Thermal conductivity and Onsager reciprocity

The thermal conductivity κ̄DC is defined as

3 To have an explicit expression of the stress-energy tensor we refer for instance to [19]
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κ̄DC ≡
Qx

−∇xT

∣∣∣∣
Ex=0

. (8.46)

Symmetrically to what we have done in the previous Section, to compute this quan-
tity we must consider a thermal gradient at vanishing electric field. To this end,
we rely on the elegant method described in [15]; we consider the following set of
fluctuations

ax(t,z) = α2 φ(z) t + ãx(z) , (8.47)

htx(t,z) = −α2
L2

z2 f (z) t + h̃tx(z) , (8.48)

hzx(t,z) = h̃zx(z) . (8.49)

As we will explain at the end of the section α2 is the source for the thermal gradient
along the x direction, ∇xT/T . Namely, we will have to derive the heat current with
respect to α2 in order to compute the thermal conductivity.

Considering the ansatz (8.47), (8.48) and (8.49), one finds that the equations of
motion for h̃tx and ãx are the same as those given in Section 8.3.1, namely (8.32) and
(8.34). The equation for h̃zx looks slightly different but is still algebraically solvable;
its solution being

h̃zx(z) =−
L2α2

{
2L2q2

[
3z
(
β z2

h +1
)
−2β z3

h

]
−κ2

4 µ2zz2
h

}
2β z(z− zh)

{
κ2

4 µ2z3zh−2L2q2
[
z2
(
β z2

h +1
)
+ zzh + z2

h

]} . (8.50)

As regards the boundary conditions, the regularity of the fluctuations at the horizon,
in this case, implies that

h̃tx(z) =−
α2
(
2L2q2

(
β z2

h +3
)
−κ2

4 µ2z2
h

)
4β z3

hq2
+

α2L2 f (z)
2πT z2 log

(
zh− z

L

)
+O(z− zh) ,

(8.51)
and

ãx = O(z− zh) . (8.52)

Moreover, at the boundary z = 0 we require that h̃tx is proportional to z and, as
before, we have ãx = Jxz+ ..., where the ellipsis indicates higher power of z.

Importantly, since the equations of motion for h̃tx and ãx are the same as in the
case studied in the previous Section, the quantities J̄x (8.40) and Q̄ (8.43) are still
independent of z. Enforcing the near-boundary conditions discussed previously, we
have that also in this case J̄x corresponds to the x component of the dual charge
density current. However, the relation between Q̄ and the heat current Qx is in this
case more subtle than before. Indeed the tx component of the holographic stress-
energy tensor evaluated on the ansatz (8.47), (8.48) and (8.49) for the fluctuations
assumes the following form

T tx = t
(
− α2L2 f ′

2κ2
4 z2
√

f
+

2α2L2√ f
κ2

4 z3 − 2α2L2

κ2
4 z3

)
+

h̃′tx
κ2

4
√

f
− h̃tx

κ2
4 z
√

f
+

2h̃tx

κ2
4 z f

. (8.53)
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Therefore the quantity
√
−g

κ2
4

∇zkx (contained in Q̄) computed at z = 0 equals just

the time-independent part of T tx (i.e. the last three terms in (8.53)). Nevertheless,
as discussed in [15] (see Appendix D for more details), in order to compute the
DC response, only the time-independent part of T tx is relevant. To the purpose of
computing the DC thermal conductivity we can then assume that Q̄ corresponds
to the heat current. Then, evaluating it at the horizon, considering in this case the
horizon conditions (8.51) and (8.52) and differentiating with respect to α2 which, as
anticipated, is the source for the thermal gradient ∇xT/T , we find

κ̄DC =
1
T

Q̄
α2

=
π
[
γ2µ2z2

h−2L2
(
β z2

h +3
)]

2βκ2
4 z3

h
, (8.54)

which agrees with our previous numerical result reported in [35].
Eventually, relying on the boundary conditions (8.51) and (8.52) we evaluate

the charge density current J̄x (8.40) at z = zh. We can then prove that the Onsager
reciprocity relation holds, namely

αDC =
Jx

−∇xT

∣∣∣∣
Ex=0

=− 2πµ

βq2zh
=

ΠDC

T
, (8.55)

where the last identity can be obtained by using (9.52) and dividing it by the tem-
perature (8.8).
Said otherwise, the conductivity matrix is symmetrical and the Peltier coefficient
ΠDC is equal to the thermal conductivity αDC multiplied by T .

For completeness we still have to prove that α2 is actually the source for the
thermal gradient ∇xT/T . To do this let us consider the coordinate transformation on
the boundary:

t = t̄−α2t̄ x̄ ,

x = x̄ .
(8.56)

At the linearised level we find that these coordinate transformation implies the fol-
lowing transformations for the stress-energy tensor:

T t̄t = (1+2α2x̄)T tt ,

T x̄x = T xx , T ¯tx = T tx , Jt̄ = (1+α2x̄)Jx , Jx̄ = Jx .
(8.57)

In particular the time dependence has dropped out of the expectation values.
At the level of the bulk fields, the coordinates transformation (8.56) implies the

following asymptotic behaviour at z→ 0:

ds2 =−L2

z2 f (z)(1−2α2x̄)dt̄2 +
L2

z2 dx̄2 + ... ,

A = φ(z)(1−α2x̄)dt̄ + ... .

(8.58)
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Finally, in order to identify α2 with ∇xT/T let us recall that the period of Euclidean
time is 1/T . In order to keep track of all the factors of the temperature, let us rescale
the time so that there is no T dependence in the period: t = t̃/T . With the new
dimensionless time coordinate, the metric has gt̃ t̃ = 1/T 2 . We are taking the original
metric to be Minkowski space. It follows that a small constant thermal gradient,
T → T + x∇xT , implies

δgtt =−
2x∇T

T
. (8.59)

where we have scaled back to the original time coordinate t. Comparing the previous
expression with (8.58), we find that α2 can be identified with ∇xT/T as we have
previously stated.

8.3.3 DC properties of the transport coefficients

The purpose of this section is to compare the temperature dependence of the trans-
port coefficients of the simple massive gravity model analysed in the previous sec-
tions to those of the Fermi liquid and of the cuprates outlined in Part 1. Actually the
simple massive gravity model (8.1), is a very simple toy model and we do not expect
that it could reproduce phenomenological properties of the cuprates. However, the
comparison of this section is useful in light of the analysis of more realistic models
(see for example the following section) and especially for the analysis which we
will perform in Chapter 9, where holography will be proposed as a machinery to
generate effective field theory useful in the understanding phenomena which occurs
in strongly coupled systems.

Coming back to the massive gravity model (8.1), the most serious problem in
order to perform phenomenological comparison is probably the finite horizon area at
zero temperature, which means, as in the Reinssner-Nordsẗrom case, that the system
violates the third law o thermodynamics. The residual zero temperature entropy
probably means that at some point an instability should occurs and the ground state
of the system would change (see the following section for the analysis of a model
which avoids this problem).

Regarding the thermo-electric transport coefficients, we have previously derived
that the electric conductivity σDC is given by:

σDC =
1
q2 −

γ2µ2

L2q2β
. (8.60)

As it is evident from the previous formula, the conductivity is completely consistent
with the massless Raissner-Nordström case. In fact, in the massless limit |β | → 0
σDC diverges as it should in a system where momentum is conserved. However, in
the neutral limit µ = 0 the conductivity remains finite even if β is zero. This is
in agreement with the hydrodynamic prevision that in a neutral plasma the electric
conductivity remains finite even if momentum is conserved.
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Regarding the temperature dependence of σDC, we note from (8.60) that it does
not depend on the horizon radius zh and consequently it is constant in temperature
as one can see from the thermodynamic expressions (8.8). The constant behaviour
of the electric conductivity is recovered in the Fermi liquid in the (elastic) scattering
dominate regime (see Part 1), but it is not realistic that this behaviour persist for
al the temperature range. The constant behaviour disagrees also with the cuprates
phenomenology where a stable linear in temperature resistivity is measured (see
Part 1).

Regarding the thermo-electric conductivity, in the system at hand αDC ap-
proaches a constant at T = 0 and then grows linearly with the temperature:

αDC =

√
2πµ

(
2βL2− γ2µ2

)
βq2

√
3γ2µ2L2−6βL4

− 4π2µ

3βq2 T +O
(
T 2) (8.61)

As we will explain better in Chapter 9, this is due to the fact that the entropy S is
non-zero at T = 0 (see (8.8)).

(8.61) disagrees both with the cuprates phenomenology and with the Fermi liq-
uid prediction. In fact, the Mott law describing the Fermi-liquid thermo-electric
response for elastic scattering mechanisms

sMott =−
π2

3q2 T
∂ logσDC

∂ µ
(8.62)

yields a Seebeck coefficient which goes linearly to zero as T → 0.
Finally, the thermal conductivity κ̄DC goes linearly to zero with the temperature

and is proportional to the heat capacity C = T ∂S
∂T ,

κ̄DC =−

√
3
2 γ2µ2L2−3βL4

2βL2−2γ2µ2 C+O
(
T 2) . (8.63)

This is is agreement with the Reissner-Nordström limit, where we have seen that the
coefficient of the delta function at ω = 0 for the thermal conductivity is basically
proportional to the entropy and consequently, since it is linear in temperature at low
T , to the specific heat.

8.4 Adding the dilaton

As we have seen in the previous section, the simple massive gravity model (8.1) is
not very interesting from the phenomenological point of view. We have just outlined
that the temperature behaviour of the DC transport coefficients deviates from both
the paradigmatic Fermi liquid and the phenomenology of the cuprates (see Part 1).
Moreover, as in the Raissner-Nordström case, there is a residual non-zero entropy at
T = 0. Consequently, the system violates the third law of thermodynamics, which
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means that at sufficiently low T something has to happen which modify the ground
state with respect to those described by (8.1). The core of the problem is that at zero
temperature the horizon of the black hole, as in the Reissner-Nordström case, is
located at some point which do not coincides with z = ∞. Then, to get rid of the zero
temperature entropy this horizon has to be located at z = ∞. There are two common
way to solve this issue. One can either introduce charged sources to discharge the
horizon: an example of this case is the well known holographic superconductor
[24] and the subsequent literature. The second way is to attempt to violate Gauss’s
law. This can be realized in a simple way by employing the so called Einstein-
Maxwell Dilaton (EMD) gravity. Dilaton fields are quite unfamiliar to condensed
matter physics but these turn out to be quite ubiquitous in string theory where they
naturally appear in the low energy spectrum, and thereby also in top-down theories.
A dilaton field φ is an object having its own potential while it typically shows up
as well as determining dynamically the gauge coupling Z(φ) multiplying e.g. the
Maxwell term.

In general the EMD model, including a mass term for the graviton, is described
by the following action:

S =
∫

d4x
√
−g
[
R−V (φ)− Z(φ)

4
Fµν Fµν − 1

2
∂µ φ∂

µ
φ +Mβ (g)

]
+Sc.t. , (8.64)

where V (φ) is the dilaton potential, which should tend to the cosmological constant
Λ/L2 =−6/L2 at z→ 0 in order for the space to be asymptotically AdS, Z(φ) is the
coupling between the dilaton and the Maxwell field as stated above, and the mass
term we consider is given by

Mβ (g) = β
[
tr(K )2− tr(K 2)

]
. (8.65)

Holographic studies on the transport properties of this theory can be found e.g.
in [18, 25, 26]. In particular in [18] the DC transport coefficient are computed an-
alytically following the method illustrated in the previous sections for the massive
gravity model (8.1). Even though the DC transport coefficient can be fully expressed
in terms of the horizon data, to find a general analytical solution for the background
which is well behaved at z→∞ and asymptotically AdS at z→ 0 (which is an essen-
tial ingredient to apply the holographic dictionary (see Part 2)) is not an easy task
and, by now, very few solution of this kind are known analytically.

Here, in order to describe an holographic model which has several interesting
properties from the phenomenological point of view, we will focus on the following
EMD model:

Sd =
∫

d4x
√
−g
[
R+6coshφ− eφ

4
Fµν Fµν− 3

2
∂µ φ∂

µ
φ +Mβ (g)

]
+Sc.t. . (8.66)

This model is inspired by [22] which was considered in 3+1 dimensions with a
mass term for the graviton in [23].

The bulk solutions of (8.66) are
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ds2 =
g(z)
z2

(
−h(z)dt2 +

dz2

g(z)2h(z)
+dx2 +dy2

)
,

At =

√
3Q(Qzh +1)

zh

(
1+

β z2
h

(Qzh +1)2

)
zh− z

zh(Qz+1)
,

φ(z) =
1
3

logg(z) , g(z) = (1+Qz)
3
2 ,

h(z) = 1+
β z2

(Qz+1)2 −
z3(Qzh +1)3

z3
h(Qz+1)3

(
1+

β z2
h

(Qzh +1)2

)
.

(8.67)

The parameter Q controls the dilaton profile and is related to the chemical potential.
In the asymptotical Minkowsky case, namely when V (φ) = 0 and the dilaton has no
mass, the parameter Q is related to the conserved dilaton charge.

The thermodynamics of the model is holographically related to the bulk solution
in the following way

T =
3(1+Qzh)

2 +β z2
h

4π(1+Qzh)
3
2 zh

, S =
4π

z2
h
(Qzh +1)

3
2 ,

µ =

√
3Q(Qzh +1)

zh

[
1+

β z2
h

(Qzh +1)2

]
,

ρ =
µ

zh
(Qzh +1) ,

(8.68)

As one can see from the previous solution in this case (asymptotically AdS) the
parameter Q is no longer an independent parameter of the solution and is related to
the chemical potential. Moreover, since the chemical potential µ must be real, the
parameter Q and β are constrained in order for the radicand in (8.68) to be positive.

Following exactly the same method described in the previous section (see [15]
for the details of the computation in the general EMD model) we have analytical
control upon the entire set of thermo-electric transport coefficients and we obtain
the following explicit expressions

σDC =

2β (Qzh +1)−3Qzh

[
β +

(
1
zh
+Q

)2
]

2β
√

Qzh +1
,

αDC =−2
√

3π

β zh

√
Q(Qzh +1)

[
Q(Qzh +2)+β zh +

1
zh

]
,

κ̄DC =−
2π

(
1
zh

)
5/2
√

1
zh
+Q

(
z2

h

(
β +3Q2

)
+6Qzh +3

)
β
√

Qzh +1
.

(8.69)

We remind the reader that, also in the present dilaton model, the positivity of the
momentum dissipation rate requires β < 0 so in the preceding formulæ β is always
negative.
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8.4.1 Properties of DC transport coefficients

We are now ready to briefly discuss the temperature dependence of both the thermo-
dynamical quantities and the transport coefficients derived in the previous section.
Actually the properties of the model at hand are very subtle and the temperature
scalings strongly depends on the way in which one solve the relation between µ ,
Q, β and zh in (8.68) (We will come back to this subtle point in Chapter 9). In this
section we will suppose that Q is a non-zero real fixed number in line with what has
been originally done in [23].

In this case the high temperature limit (T/µ� 1) has exactly the same properties
of the simple massive gravity model (8.1) discussed previously. This is in line with
the fact that the dilaton introduced in the dual field theory an operator which is
irrelevant in the UV while it modifies the near horizon geometry and consequently
the low temperature properties of the model.

Stated this, we have only to discuss the low temperature (T/µ � 1) properties
of the various physical observables.

Let us start from the thermodynamics. In order to derive the relevant scalings it
is useful to note that the relation (8.68) between the temperature T and the horizon
radius zh implies that, at low temperature (large horizon radius) the temperature
scales as T ' √zh. Consequently, we find that the entropy goes linearly to zero as
the temperature decreases, namely:

S ' 4πQ3/2 1
√

zh
' T

µ
. (8.70)

Then as stated before there is no residual entropy density at T = 0 and the ground
state of the system is stable. Regarding the charge density, it approaches a constant
at T = 0 and grows quadratically at the increasing of the temperature:

ρ '
√

3Q
√

β +Q2 +

√
3
(
β +3Q2

)
2zh
√

β +Q2
' A1 +B1

T 2

µ2 , (8.71)

where A1 and B1 are constants
Regarding the transport coefficients, the DC electric resistivity ρDC = 1/σDC is

linear in temperature

ρDC '

(
−9Q2

√
Q(β +Q2)+2β

√
Q
√

β +Q2 +3β
√

Q(β +Q2)
)

4βQ
√

β +Q2

1√
zh

∝
T
µ

,

(8.72)
in agreement with the phenomenology of the cuprates. However, the thermo-electric
conductivity, which in the cuprates is typically fitted with a power low of the kind
A−BT ,scales as follows:

αDC '−
2
√

3πQ
√

β +Q2

β
−
√

3π
(
β +3Q2

)
β zh
√

β +Q2
' A2−B2

T 2

µ2 , (8.73)
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where A2 and B2 are constants.
Finally regarding the thermal conductivity, the experimental data are not conclu-

sive and we can not make contact with the phenomenology. However, in this specific
model κ̄DC goes to zero quadratically:

κ̄DC '
− 6πQ2

β
−2π

zh
∝

T 2

µ2 . (8.74)

Note that from the previous relation we find that |β | > 1/(3Q2) in order for the
thermal conductivity to be positive. This probably provides an additional constraints
to the stability of the model even though a detailed study of the stability of the
solution is still a work in progress.

As a final comment, we want to stress again that the temperature scalings depend
on how you solve the constraints which relates the parameter Q to the chemical
potential µ in (8.68). In Chapter 9 we will consider again this model analysing how
different solutions of the constraint lead to different, phenomenologically relevant
scalings.

8.5 Holographic magneto-transport

In Chapter 7 we have analysed the basic thermo-electric transport properties of a
strongly correlated plasma which conserves momentum. Then we got rid that, in or-
der to make contact with experiments some mechanisms of momentum dissipation
must be considered since they are ubiquitous in condensed matter systems, and we
consequently have analysed in some details a possible way to include momentum
dissipation in holography in the previous sections of this chapter. Actually, as the
reader should have noted in Part 1, most of the measurements for the cuprates are
performed in systems immersed in an external magnetic field. This is due to the
fact that, since the superconducting phase transition occurs at high critical tempera-
ture Tc, in order to analyse the transport properties in the normal phase, the critical
temperature has to be suppressed in some way, and the external magnetic field do
exactly this game. Eventually, in this section we want to include the effects of an
external magnetic field in the effective holographic field theory discussed in the
previous sections, namely, the massive gravity model (8.1).

Specifically, we want to discuss the effects due to the presence of an external
magnetic field B orthogonal to the plane xy. In particular, its consequences on the
thermoelectric transport coefficients in the holographic system (8.1) at non-zero
chemical potential µ . To include the constant magnetic field B we adopt the fol-
lowing ansatz for the background metric gµν and the gauge field Aµ

ds2 =
L2

z2

[
− f (z)dt2 +dx2 +dy2 +

1
f (z)

dz2
]
,

A = φ(z)dt +Bxdy .

(8.75)
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Substituting this ansatz within the equations of motion derived from (8.1), we obtain
the following black brane solution

φ(z) = µ−q2
ρz = µ

(
1− z

zh

)
, ρ ≡ µ

q2zh
,

f (z) = 1− z3

z3
h
+β

(
z2− z3

zh

)
− z3

zh

(
1− z

zh

)
γ2
(
B2z2

h +µ2
)

2L2 ,

(8.76)

where we have denoted with zh the horizon location defined by the vanishing of the
emblackening factor, namely f (zh) = 0. The definition of ρ is actually substantiated
by the explicit analysis of the thermodynamics that we perform in Section 8.5.1. For
the sake of practical convenience, we introduced γ ≡ κ4/q.

8.5.1 Thermodynamics

As discussed in the previous section, the black brane solution (8.76) corresponds
to a planar demonic black hole having both electric and magnetic charges. From
the boundary theory standpoint, B represents a magnetic field perpendicular to the
spatial manifold xy which enters the boundary thermodynamical quantities; as usual
in gauge/gravity, these are derived from the bulk on-shell action as we now show in
detail.

The temperature T and the entropy density S are the easiest thermodynamical
quantities to compute since they are determined from the horizon data, namely

T =− f ′(zh)

4π
=−

κ2
4 z2

h

(
B2z2

h +µ2
)
−2L2q2

(
β z2

h +3
)

8πL2q2zh
, S =

2πL2

κ2
4 z2

h
. (8.77)

In order to compute the energy density E , the pressure P, the charge density
ρ and the magnetization M, we need to evaluate explicitly the Landau potential
Ω which, according to the holographic dictionary, is identified with the on-shell
bulk action. Not surprisingly, the bulk action (8.1) when naively evaluated on the
solution (8.76) is divergent and therefore needs to be renormalized. The standard
renormalization process consists in regularizing the action by means of a UV cut-off
zUV and supplementing it with appropriate counter-terms. These could necessarily
be written in terms of boundary fields but (proceeding as in [12]), once evaluated on
the solution (8.76), can be explicitly expressed as follows

Sct =
1

2κ2
4

∫
z=zUV

√
−gb

(
4
L
+

2
L

β z2
UV

)
, (8.78)

where gb is the metric induced on the z = zUV shell. With this counter-term in place,
the Landau potential Ω assumes the following form
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Ω ≡ lim
zUV→0

(S+Sct)on-shell =V
(

3B2zh

4q2 −
L2

2κ2z3
h
+

βL2

2κ2zh
− µ2

4q2zh

)
. (8.79)

We have denoted with V the boundary spatial volume.
Once the Landau potential is known, the other thermodynamical quantities fol-

low easily by means of standard thermodynamical relations. We explicitly obtain4

P =−Ω

V
=−3B2zh

4q2 +
L2

2κ2
4 z3

h
− βL2

2κ2
4 zh

+
µ2

4q2zh
, (8.80)

E =−P+S T +µρ =
B2zh

2q2 +
L2

κ2
4 z3

h
+

βL2

κ2
4 zh

+
µ2

2q2zh
, (8.81)

ρ =
∂E

∂ µ
=

µ

q2zh
, M =−∂E

∂B
=−Bzh

q2 . (8.82)

For later purposes it is useful to define one additional and less common thermo-
dynamical quantity, namely the magnetization energy ME defined as

ME ≡− δΩ

δFE
xy

, (8.83)

where FE
xy = ∂xδgty− ∂yδgtx and δgta represents a variation of the metric sourc-

ing T ta. Following [21], an operative method to evaluate the magnetization energy
consists in computing the on-shell action on the following solution

At = φ(z) , Ay = Bx− (φ(z)−µ)BEx ,

ds2 =
L2

z2

[
− f (z)

(
dt−BExdy

)2
+dx2 +dy2 +

1
f (z)

dz2
]

,
(8.84)

where φ(z) and f (z) are the same as in (8.76); the magnetization energy ME is then
obtained by differentiating the on-shell action with respect to BE and finally setting
BE to zero as one can understand comparing de definition of FE

xy and the explicit
form for the metric in (8.84). This computation proceeds exactly in the same way as
in [21] and the mass term for the graviton does not affect the final result. Eventually
we obtain

ME =
µM

2
. (8.85)

4 In order to compute the thermodynamical derivatives with respect to T , µ and B one must recall
that zh is an implicit function of these quantities as given in (8.77).
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8.5.2 Transport coefficients

We compute analytically the whole set of thermoelectric DC transport coefficients
for the boundary theory corresponding to the bulk model (8.1). To this aim, we
employ the method first illustrated in the previous sections. Since the application of
the method presents some technical difficulties when the magnetic field is present,
we will explain the computation in details in what follows.

8.5.2.1 Electric conductivity

We consider linearised fluctuations around the bulk background solution (8.76). Fol-
lowing [15], to the purpose of computing the linear response to a “pure” electric field
(i.e. in the absence of a thermal gradient), one considers the following ansatz for the
fluctuating fields

ai(t,z) = −Ei t + ãi(z) , (8.86)
hti(t,z) = h̃ti(z) , (8.87)
hzi(t,z) = h̃zi(z) , (8.88)

where i = x,y; we henceforth adopt small Latin letters to refer to spatial boundary
indices5. The vector Ei introduced in the ansatz corresponds to an external electric
field perturbing the system.

The quantity

J̄µ =−
√
−g
q2 Fzµ , (8.89)

(where µ = t,x,y is a boundary space-time index) is conserved along the holo-
graphic direction as a direct consequence of the Maxwell equation for the fluctu-
ations. Indeed, recalling the ansatz (8.86), we obtain

√
−g∇MFMN = 0 −→ ∂z(

√
−gFzi) = 0 . (8.90)

The capital indices refer to the bulk space-time and the arrow means that we consider
just the spatial components. The quantities J̄i are radially conserved and explicitly
given by

J̄i =−
f (z)
q2 ã′i(z)−

Bz2 f (z)
L2q2 εi j h̃z j(z)+

z2µ

L2q2zh
h̃ti(z) , (8.91)

where εi j = −ε ji = 1. To obtain (8.91) we have again referred to the ansatz (8.86)
and considered just up to the linear order in the fluctuating fields. We remind the
reader that the boundary indices are raised and lowered with the flat boundary
Minkowski metric.

5 Note that the magnetic field mixes the x and y fluctuation sectors and therefore all the components
along these directions in (8.86) must be switched on.
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To study the near-horizon behaviour of the fluctuating fields and demand regular
infra-red behaviour, it is convenient to adopt the Eddington-Finkelstein coordinates,
namely

v = t− 1
4πT

log
[

zh− z
L

]
, (8.92)

leaving all the other bulk coordinates untouched. Skipping the details (which are
analogous to what illustrated for the B = 0 case in the previous sections), the infra-
red regularity requirement amounts to having the following asymptotic behaviours

h̃ti(z) = f ′(zh) h̃zi(zh)(zh− z)+O(zh− z)2 , (8.93)

and

ãi(z) =
Ei

4πT
log
[

zh− z
L

]
+O(zh− z) . (8.94)

To avoid clutter, we relegated the explicit expressions of the equations of motion
for the linearised fluctuations in Appendix E.1. It is however important to recall that
h̃zi(z) is governed by an algebraic equation and therefore expressible in terms of
the other fluctuating fields (hence it does not demand further IR requirements). An
explicit infra-red asymptotic analysis returns

h̃ti(zh) =−
L2γ2

[
Bεi jE jzh

(
γ2B2z2

h + γ2µ2−L2β
)
+EiL2β µ

]
zh
(
L2β −B2z2

hγ2
)2

+B2z3
hγ4µ2

, (8.95)

which we report explicitly for the sake of completeness and to underline that its
B→ 0 limit is consistent with previous results obtained directly at B = 0 in the
previous sections.

It is essential to observe that, turning the attention to the near-boundary asymp-
totics, one actually identifies J̄(z = 0) with the electric current Ji of the boundary
theory,

J̄i(z = 0) = Ji . (8.96)

Moreover, being J̄ radially conserved, it can be evaluated in the IR and then ex-
pressed exclusively in terms of the near-horizon asymptotic data, namely J̄(z = 0) =
J̄(z = zh).

The electric conductivity matrix is

Ji = σi jE j . (8.97)

Hence its entries are directly read from the explicit expression of the electric current;
this yields

σxx =
βL2

[
βL2q2−κ2

4
(
B2z2

h +µ2
)]

−2βB2κ2
4 L2q2z2

h +B2κ4
4 z2

h

(
B2z2

h +µ2
)
+β 2L4q4

, (8.98)

and
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σxy =
Bµzh

[
κ4

4
(
B2z2

h +µ2
)
−2βκ2

4 L2q2
]

q2
[
−2βB2κ2

4 L2q2z2
h +B2κ4

4 z2
h

(
B2z2

h +µ2
)
+β 2L4q4

] . (8.99)

We have σxx = σyy and σxy =−σyx.

8.5.2.2 Thermoelectric response

We want now to compute the thermoelectric conductivities αxx and αxy. Considering
the system at non-zero electric field and zero thermal gradient, these two conductiv-
ities are defined by the following relation

Qi = αi j T E j , (8.100)

where Qi is the heat current in the i-direction, which can be related to the boundary
stress-energy tensor T µν and to the electric current Jµ by the identity Qi = T ti−µJi.

In order to apply the same procedure used for the electric conductivity in the pre-
vious section, we need to define in the gravitational system (8.1) a quantity Q̄i which
is radially conserved and that, choosing the appropriate UV boundary conditions for
the functions appearing in the ansatz, can be identified at the boundary with the heat
current Qi. As illustrated in [15], the quantity which does the game in the absence
of an external magnetic field is:

Q̄i
1 =

√
−g

κ2
4

∇
zki−φ(z) J̄i , (8.101)

where k = ∂t . The proof that this quantity is radially conserved relies on the fact that
k is a Killing vector for the gravitational action (8.1) (see [15] for more details).

When one considers circumstances with a non-zero magnetic field B, the quantity
(8.101) is no longer radially conserved. In fact, differentiating Q̄i with respect to z
and evaluating the result on the equations of motion (see Appendix E.1) we obtain

∂zQ̄i
1 = ε

i jE j
B
q2 . (8.102)

We can therefore define the following radially conserved quantity,

Q̄i =

√
−g

κ2
4

∇
zki−φ(z) J̄i− ε

i jE j
B
q2 z . (8.103)

Evaluating the expression (8.103) on the ansatz (8.86) at the linear order in the
fluctuations we obtain
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Q̄i =
f (z)φ(z)

q2 ã′i(z)−
Bz
q2 εi jE j +

Bz2 f (z)φ(z)
L2q2 εi jh̃z j(z)

+

(
− f ′(z)

2κ2
4
+

f (z)
zκ2

4
− z2µ φ(z)

L2q2zh

)
h̃ti(z)+

f (z)
2κ2

4
h̃′ti(z) .

(8.104)

The proof that Q̄ corresponds to the heat current at the boundary is straightforward.
In fact, the third term in (8.103) vanishes at z= 0, the second term is equal6 to−µJi,
and the first term coincides at the boundary with the ti component of the holographic
stress-energy tensor,

T ti =
L5

κ2
4 z5

(
−Kti +Kgti

b +
2
L

gti
b

)
=

h̃′ti(z)

2κ2
4

√
f (z)
− h̃ti(z)

zκ2
4

√
f (z)

+
2 h̃ti(z)
zκ2

4 f (z)
.

(8.105)
Exploiting its radial conservation, we can compute Q̄i at z = zh and express the

heat current only in terms of horizon data. Finally, using the definition of the ther-
moelectric conductivities (8.100), we obtain:

αxx =−
2πβ µL4q2

−2βB2κ2L2q2z3
h +B2κ4z3

h

(
B2z2

h +µ2
)
+β 2L4q4zh

, (8.106)

and

αxy =
2πBL2

(
κ2

4
(
B2z2

h +µ2
)
−βL2q2

)
−2βB2κ2

4 L2q2z2
h +B2κ4

4 z2
h

(
B2z2

h +µ2
)
+β 2L4q4

+
8BπL2q2z2

h

κ2
4 q2z2

h

(
B2z2

h +µ2
)
−2L2q4

(
β z2

h +3
) . (8.107)

However, as illustrated in [21, 27], in order to properly define the thermoelectric
response in the presence of a magnetic field, one has to subtract to the heat current
the contribution due to the magnetization current7. This implies that the off-diagonal
components of the thermoelectric conductivity have to be defined as

α
sub
xy = αxy +

M
T

, (8.108)

and, recalling the explicit expression of the temperature T and of the magnetization
M derived in Section 8.5.1, we obtain

6 We remind the reader that the quantity J̄i is radially conserved and coincides with the boundary
electric current, as illustrated in the previous section.
7 We note that the radially conserved quantity (8.101) is defined up to an additive constant. There-
fore it would be possible to add to Q̄i

1 the constant εi jE j
Bzh
q2 and the radially conserved quantity

defined in such a way would coincide with the magnetization-subtracted heat current. This is in
line with the analysis of [31].
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α
sub
xy =

2πBL2
(
κ2

4
(
B2z2

h +µ2
)
−βL2q2

)
−2βB2κ2

4 L2q2z2
h +B2κ4

4 z2
h

(
B2z2

h +µ2
)
+β 2L4q4

. (8.109)

From now on, we will refer to αsub
xy as the off-diagonal component of the thermo-

electric conductivity and we will indicate it with αxy.

8.5.2.3 Thermal conductivity

The thermal conductivities κ̄xx and κ̄xy are defined in terms of the heat current gen-
erated by the presence of an external thermal gradient ∇iT in the following way

Qi =−κ̄i j∇ jT (8.110)

As illustrated in [15], in order to study the holographic model (8.1) in the presence
of an external thermal gradient and at zero electric field we have to consider the
following ansatz for the fields of the theory

ai(t,z) = si φ(z) t + ãi(z) ,

hti(t,z) =−si
L2

z2 f (z) t + h̃ti(z) ,

hzi(t,z) = h̃zi(z) ,

(8.111)

where si can be proven to be equal to the quantity −∇iT
T in the boundary field the-

ory (see [15]). The linearized equations of motion for this ansatz can be found in
Appendix E.2.

As in the thermo-electric case, the quantity (8.101) evaluated on the ansatz
(8.111) is not radially conserved. On the other hand, the quantity (already given
in (8.103))

Q̄i =

√
−g

κ2
4

∇
zki−φ(z) J̄i + ε

i js j
Bµ

q2 z , (8.112)

is radially conserved once evaluated on shell.
The computation of the thermal conductivities is now straightforward. As in the

previous section, we evaluate the radially conserved quantity (8.112) on the ansatz
(8.111) at the linear order in the fluctuations. Also in this case, as long as we consider
the DC response, Q̄i can be proven to coincide with the heat current in the boundary
field theory (see Appendix E.3 for further details on this point)8. Finally, computing
the quantity Q̄i at the horizon z = zh, and considering the definition of the thermal
conductivities (8.110) we obtain

8 Actually, considering the ansatz (8.111) there are some additional technical difficulties in proving
this statement due to the fact that the quantity ∇zki differs from the holographic stress-energy
tensor T ti by terms linear in the time coordinate t. However, as proven in [15], these terms do not
contribute to DC transport properties.
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κ̄xx =
1
T

Q̄x

αx
=−

πL2
(
βL2q2−B2κ2z2

h

)[
2L2q2

(
β z2

h +3
)
−κ2z2

h

(
B2z2

h +µ2
)]

2κ2z3
h

[
−2βB2κ2L2q2z2

h +B2κ4z2
h

(
B2z2

h +µ2
)
+β 2L4q4

]
(8.113)

Also in this case we need to subtract the contribution due to the magnetization cur-
rent [21, 27] from the off-diagonal conductivity κ̄xy, namely

κ̄xy =
1
T

Q̄x

αy
+

2
(
ME −µM

)
T

=−
πBµL2

[
κ2

4 z2
h

(
B2z2

h +µ2
)
−2L2q2

(
β z2

h +3
)]

2z2
h

[
−2βB2κ2

4 L2q2z2
h +B2κ4

4 z2
h

(
B2z2

h +µ2
)
+β 2L4q4

] ,
(8.114)

where we have used equation (8.85) for ME .

8.5.3 Structure of the thermoelectric transport coefficients

The behaviours of the transport coefficients found in the previous section depend on
the specific form of the thermodynamical quantities obtained in the massive grav-
ity model in Section 8.5.1. Nevertheless, as we will show, these transport coeffi-
cients can be cast in a form which may aspire to be universal, at least within the
holographic framework. It is tempting, in fact, to argue that the formulæ obtained
through holography with massive gravity could remain valid in a more general
framework, namely as long as one considers strongly coupled systems with neutral
mechanisms of momentum dissipation9 (e.g. impurities). This statement is partially
corroborated by [31, 32, 33], where formulæ for the thermo-electric transport coef-
ficients in agreement with those obtained in this paper are computed in holographic
Q-lattices [31] and, independently of holography, by means of the memory matrix
approach [32].

In order to proceed, we write the full set of transport coefficients computed in
massive gravity in terms of the thermodynamical quantities and two transport quan-
tities σ̃ and h. Let us start defining the explicit expressions for these latter in the
model at hand. As far as σ̃ is concerned, it appears manifestly from the expression
of the transport coefficients that it represents the µ = ρ = B = 0 conductivity, then
it takes the usual [12, 35, 36] form σ̃ = 1/q2 and it is directly connected to the
parameter q of the bulk model. Regarding h, we define it explicitly as follows

h =−S β

2π
=

4βL2q2zh

κ2
4 z2

h

(
B2z2

h−3µ2
)
−2L2q2

(
β z2

h +3
) , (8.115)

noticing its relation to the parameter β .
In order to gain physical intuition on the nature of h, we connect it to the charac-

teristic time τ of momentum dissipation at B = 0

9 This statement might not be valid in cases when the momentum dissipation is obtained by adding
an additional gauge field as in [39, 40].
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τ|B=0 =−
2π (E +P)

S β
=−

2L2q2
(
β z2

h +3
)

4βL2q2zh
, (8.116)

as found in [8] through an analysis at low momentum dissipation; combining (8.115)
and (8.116), for h we have

h|B=0 =
E +P

τ
. (8.117)

We also stress that, according to [29], the connection of τ to a momentum dissipation
characteristic time is made up to order β 2 corrections; therefore τ can be, strictly
speaking, interpreted as a dissipation characteristic time only when momentum is
slowly dissipated [37] and at vanishing magnetic field. This said and still sticking
to B = 0, τ proved to be a formally very useful quantity to furnish explicit and
exact expressions for the holographic transport coefficients in all dynamical regimes
[12, 35, 36, 38]. In the present extended context, i.e. encompassing a non-trivial
magnetic field, we prefer to express everything in terms of the quantity h (as defined
in (8.115)) both inside and outside the regime of strong momentum dissipation and
independently on the magnitude of the magnetic field B. Even reminding ourselves
the connection of h to τ through (8.117), we adopt the former to prevent confusion
and avoid a direct hint to a momentum dissipation characteristic time (whose explicit
expression for B 6= 0 is yet unknown).

It amounts just to a matter of algebra to verify that the transport coefficients
derived in Section 8.5.2 can be expressed in the following general form :

σxx = h
ρ2 + σ̃

(
B2σ̃ +h

)
B2ρ2 +(B2σ̃ +h)2 , σxy = ρB

ρ2 + σ̃
(
B2σ̃ +2h

)
B2ρ2 +(B2σ̃ +h)2 , (8.118)

αxx =
ρ S h

B2ρ2 +(B2σ̃ +h)2 , αxy = S B
ρ2 + σ̃

(
B2σ̃ +h

)
B2ρ2 +(B2σ̃ +h)2 , (8.119)

κ̄xx =
S 2T

(
B2σ̃ +h

)
B2ρ2 +(B2σ̃ +h)2 , κ̄xy =

Bρ S 2T

B2ρ2 +(B2σ̃ +h)2 . (8.120)

We highlight once more that the transport coefficients (8.118), (8.119), (8.120) are
expressed as functions of the entropy density S , the charge density ρ , the mag-
netic field B, the conductivity σ̃ and h only. They formally do not depend on any
detail of the specific model that has been used to derive them. We therefore advance
the proposal that they can have wider relevance. Within the holographic context,
such a claim could be corroborated by the comparison of these formulæ with the
corresponding results obtained in other holographic models [31]. More generally, a
careful comparison with the phenomenology and real experiments must be pursued.
In a later section we start addressing this wide question.

Finally we note that, even defining the incoherent conductivity σQ≡ [S T/(E +P)]2

as in [4], we find a mismatch between the holographic formulæ (8.118), (8.119),
(8.120) and the hydrodynamic results of [21]. This is however expected, since (as
recently pointed out in [29, 30]), in the zero magnetic field case the holographic DC
formulæ for the thermo-electric transport agree with the modified hydrodynamic
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result of [4] at order 1/β 2 and there is a mismatch at order β 0. The discrepancy
we have found here reflects most probably that an analogous situation arises also in
the B 6= 0 case. To the purpose of identifying precisely the coherent and incoherent
contributions to the thermo-electric conductivities for B 6= 0 a careful extension of
the B = 0 analysis of [29] is in order. Complementary studies could also be pursued
within the fluid/gravity approach as in [30].

8.5.4 Bulk electromagnetic duality and its consequences from the
boundary perspective

The 3+ 1 dimensional bulk Lagrangian (8.1) enjoys electromagnetic self-duality.
From the boundary viewpoint this implies that the equilibrium states corresponding
to two bulk solutions connected by the electromagnetic duality can be mapped into
each other, which practically means that the information regarding the thermody-
namics and the transport can be interpreted in two dual ways. Though, this does not
correspond to a boundary electromagnetic duality; actually, from the holographic
dictionary it emerges clearly that the bulk electromagnetic duality exchanges the
boundary magnetic field with the charge density.

The physical relevance of these duality arguments is connected to the possible
description of the theory in terms of dual degrees of freedom and is related to the
ubiquitous particle/vortex dualities of critical or near-to-critical systems. Indeed, as
noted in [21], in the limit ρ, τ−1, B� T 2, and ρ ∼ B , the hydrodynamic transport
coefficients enjoy the above mentioned duality (a priori of any gauge/gravity argu-
ment), namely, by exchanging the charge density with the magnetic field, ρ↔B and
the quantum critical conductivity with its inverse σQ↔ 1/σQ, the hydrodynamical
transport coefficient map into each other as follows

σxx, σxy, αxx, αxy, κxx, κxy

l
ρxx,−ρxy,−ϑxy,−ϑxx, κxx,−κxy , (8.121)

where ρ̂ = σ̂−1 is the resistivity matrix, θ̂ ≡−ρ̂ · α̂ is the Nernst coefficient matrix
and κ̂ = ˆ̄κ−T α̂ · ρ̂ · α̂ is the thermal conductivity matrix at zero electric current10.

As just argued, in a gauge/gravity context, the map (8.123) becomes particu-
larly transparent as a direct consequence of the bulk electro-magnetic duality. So
the transport coefficients (8.118), (8.119), (8.120) that we have obtained holograph-
ically naturally satisfy (8.123) in any dynamical regime; both within and outside
the hydrodynamic approximation. The self-duality is naturally expressed in terms
of the characteristic conductivity σ̃ = 1/q2 which is mapped into its inverse and

10 Where
ρ̂ = ρxx 1+ρxy ε̂ , (8.122)

and similarly for the other transport matrices.
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not through the quantum critical conductivity σQ; we remind the reader that this
latter is equal to [S T/(E +P)]2 as described in [4]. The electro-magnetic duality
formulated in terms of σ̃ is exactly valid in every dynamical regime, namely

ρ ↔ B , σ̃ ↔ 1/σ̃ ,

σxx, σxy, αxx, αxy, κxx, κxy

l
ρxx,−ρxy,−ϑxy,−ϑxx, κxx,−κxy . (8.123)

The validity of (8.123) also far from the hydrodynamic approximation has inter-
esting consequences. One can move away from hydrodynamical regime either low-
ering the temperature or increasing the magnetic field. This statements can be made
precise referring to the charge density ρ; lowering the temperature means actually
to consider a regime where the ratio T/

√
ρ turns to be small. Then it is possible to

appreciate that the two ways out of hydrodynamical regime just mentioned are dual
in the sense of the map (8.123) and correspond roughly speaking to spoil criticality
by means of a strong magnetic field or a strong charge density.



Chapter 9
Physical implications

Having described in Chapter 8 the technical details to obtain a holographic effective
field theory which takes into account momentum dissipation effects, we are now
ready to discuss the physical implication of the technical result previously obtained.

Specifically, in the present chapter we will discuss two physical implication in
which holography takes a predominant role.

In section 9.1, we will discuss a recent conjecture, according to which in strongly
correlated materials near criticality, such as the cuprates, some physical observables,
namely the momentum, charge and heat diffusion constants, have to saturate certain
bounds. At first we will analyse how these bounds can be conjectured starting from
the principle of Planckian dissipation, namely the fact that in critical matter all the
scales are setted by the indetermination principle. Secondly we will argue on the
possible existence of such bounds in holography, which at the moment constitute
almost the only way to analyse the diffusivities in strongly coupled field theories.

In section 9.2, we will discuss a different implication of the holographic result
of Chapter 8, namely we will argue on how holography can be taken as an effective
field theory to discuss the phenomenology of the cuprates. With the phenomeno-
logical intuition that massive gravity could have a more general validity if taken as
an effective low energy field theory, we will promote the parameter of the model
to temperature dependent quantities. Then, with some phenomenological input, we
will discuss how some scalings of the thermo-electric transport coefficients of the
normal phase of the cuprates can be reproduced in this way.

171
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9.1 Criticality and diffusion bounds

9.1.1 The shear viscosity bound and the concept of Planckian
dissipation

In order to understand how the bounds on the charge and heat diffusion have been
conjectured, we now briefly review a very famous result of holography, namely the
fact that in a holographic fluid the viscosity/entropy ratio (η/S ) is equal to [43]:

η

S
=

1
4π

h̄
kB

, (9.1)

where kB is the Boltzman’s constant. As we will see, this extremely small ratio,
which does not depend on any thermodynamical quantity of the model, is directly
related to the concept of Planckian dissipation, namely the fact that in the strongly
interacting quantum critical state, Planck’s constant sets, together with the tempera-
ture, the rate of the production of heat. This concept will be fundamental in order to
formulate the possible existence of bounds in charge and heat diffusions in cuprates.

Let us start by illustrating how the result (9.1) was found in holography. The
shear viscosity η is a kinetic transport coefficients which measures the resistance
of a fluid to flow. It is well defined only in a system where momentum is strictly
conserved. As all the kinetic transport coefficients of a fluid, the shear viscosity
can be related to correlation functions via the Kubo’s formulæ [44]. Specifically,
η follows from the absorptive part of the spatially transversal stress-energy tensor
(Txy) propagator through,

η = lim
ω→0

1
2ω

∫
dtdx〈 [Txy(t,x),Txy(0,0)]〉 . (9.2)

To compute correlators such as that in (9.2) is actually the bread and butter of holog-
raphy. To do this, we will follow the elegant method illustrated in [16].

Let us consider a theory of gravity coupled to matter

S =
∫

r>r0

d4x
√
−g
[

1
16πGN

(R−Λ)+LM

]
, (9.3)

where GN is the newton constant and LM is a generic matter Lagrangian. We will
assume that this theory has has a black-bran background of the following kind:

ds2 =−gttdt2 +grrdr2 +gi jdxidx j , (9.4)

where the indexes i, j run other the spatial boundary directions x and y. In order
for the previous metric to be a black-brane, we assume that it has an event horizon
at r = r0, where gtt has a first order zero and grr has a first order pole. Moreover,
we will assume that all the metric components depend on r only, so that we have
translational invariance in t and xi directions, and that the system preserve the full
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rotational symmetry, namely
gi j = δi jgxx . (9.5)

Finally we take the boundary at r = ∞ and assume that the metric asymptotes to a
structure that supports gauge/gravity duality according to what have been explained
in Part 2.

In order to compute the viscosity for the field theory dual to the gravitational
system just introduced, we need to analyse the fluctuation of the metric hx

y = gxxhxy
which, according to the holographic dictionary (see Part 2), is dual to the xy com-
ponent of the stress-energy tensor Txy. At this point an observation comes in help:
for Einstein gravity coupled to matter fields, in the absence of a background off-
diagonal component of the metric, as in (9.4), the effective action for hx

y is simply
that of a massless scalar field φ with coupling 1/(16πGN):

Se f f =
∫

r>r0

d4x
√
−g

1
16πGN

(∇φ)2 . (9.6)

Consequently, using the standard prescription (see Part 2), the shear viscosity η is
given by:

η = lim
ω→0

lim
r→∞

Π(r,ω)

iωφ̃(r,ω)
, (9.7)

where φ̃(r,ω) is the Fourier transform in the time direction of the field φ , Π(r,ω)≡
−
√
−g

16πGN
grr∂rφ̃(r,ω) is the subleading term for the scalar field in the r→ ∞ limit

and we work in the zero momentum limit k = 0. As usual the field φ̃ is evaluated on
the equation of motion associated to (9.6),

∂rΠ =

√
−g

16πGn
grrgtt

ω
2
φ̃ , (9.8)

imposing ingoing-wave boundary conditions at the horizon r0. The relevant observa-
tion made in [16] is that in the low frequency limit the equations of motion become:

∂rΠ = 0+O(ωφ) , ∂r(ωφ) = 0+O(ωΠ) . (9.9)

Thus, the evolution in r is completely trivial and we can evaluate (9.7) at any value
of r. In particular it is convenient to compute it at the horizon r0 where ingoing-wave
boundary conditions fix everything. Consequently Π assumes the following form:

Π(r0,ω) =
1

16πGN

√
−g

grrgtt

∣∣∣∣
r=r0

iωφ̃(r0,ω) , (9.10)

and eventually:

η =
1

16πGN

A
V

, (9.11)
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where A is the area of the horizon and V is the spatial volume of the boundary
theory. Using the Beckenstein-Hawking formula for the entropy (see Part 1), S =
A/(4GNV ) we recover the result anticipated in (9.1).

The proof here is extremely general, applying also to charged black-holes dual
to theories with chemical potential.

It has been conjectured in [43] that the value of η/S in (9.1) is in fact a lower
bound for all realistic critical matter. Restricting to the holographic framework we
now know that in theory where the the effective gravitational coupling for hx

y is
stronger than the universal value (9.1) for Einstein gravity. An example of this kind
is Gauss-Bonnet gravity (see [45] for a review on the topic).

Independently of the fact that the value 1/4π is effectively a bound or not, the
important statement is that this number is actually always small and the order of
magnitude of the ration η/S is basically dictated by the Planck’s constant h̄. Then,
the notion that a bound of the form

η

S
≥C

h̄
kB

, (9.12)

where C is a constant of order one to be discovered has survived since now.
Let us now explain the physical relevance of this holographic result. We have

anticipated that it is related to Planckian dissipation, namely the fact that in the
strongly interacting quantum critical state, Planck’s constant sets, together with the
temperature, the rate of the production of heat. This can be made clear by recalling
that the viscosity embodies the dissipative nature of the plasma under consideration.
In particular, in the presence of a single intrinsic relaxation rate τE for the modes of
the plasma, the viscosity of a relativistic liquids equals

η = (E +P)τE , (9.13)

where E and P are the energy density and the pressure respectively (see e. g. [46]).
Considering now a system at vanishing chemical potential we have S = (E +P)/T
and therefore the ration η/S assume the following form:

η

S
= T τE . (9.14)

But as we have anticipated, in a Planckian dissipator all the scales are setted by
the Planck’s constant and the temperature through the indetermination principle,
namely τE 'C1h̄/(kBT ), where C1 is a constant of order 1. Putting all together we
find that in a system with Planckian dissipation we have a formulation of a bound
on η/S as in (9.12).

This result acquires a great relevance since it is supported by measurements of
η/S extremely near to the holographic prediction in in the quark gluon plasma
created at the heavy ion colliders, as well as in the unitary fermionic cold atom gas
[47]. Moreover, recent experimental ARPES measurements on an optimally doped
cuprate show that, also in this case, the ratio η/s due to the intrinsic electronic
contribution is close to saturate the afore mentioned bound [48].
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It is worth mentioning that in the critical region of the phase diagram of a sys-
tem with a quantum critical point all the scales are setted by the temperature and
the Planck’s constant (see Part 1). Then systems with a quantum critical point are
always Planckian dissipator. Eventually, the measurements before mentioned par-
tially corroborate the idea that the peculiar transport properties of the strange met-
als are caused by the existence of a quantum critical point in their phase diagram.
Moreover the experimental observation of the holographic prediction (9.1) in these
systems promote holography as a very interesting and powerful tools for analysing
these peculiar materials.

As a final comment, in order to make contact with the conjecture of the bounds on
the charge and heat diffusion constant [41] which we will outline in the next section,
let us explain how the proposal of the conjectured bound on the ratio η/S in (9.12)
can be translated in a bound for the momentum diffusion constant D. Actually, it is
a well known result of relativistic hydrodynamics that, at zero chemical potential,
η/S = DT/c2, where c is the speed of light. Then using the holographic prediction
(9.12), we find for the momentum diffusion constant:

D
c2 ≥C

h̄
kBT

. (9.15)

The measurements of [47, 48] corroborate the holographic intuition that quantum
critical systems are close to saturate the bounds (9.15).

9.1.2 The diffusivity bounds conjecture in cuprates

We have seen in the previous section that the concept of Planckian dissipation and
the consequent possibility to formulate a bound for the momentum diffusion con-
stant is based on extremely general arguments and aspire to be a general feature of
critical matter (this fact is also corroborated by measurements). Relying on a wider
applicability of similar arguments, it is tempting to find whether other physical ob-
servables in strange metals and, more generally, in strongly correlated materials
have to saturate a bound due to Planckian dissipation. However, the identification
of the correct kinematic framework where one can formulate universal bounds is,
in general, not easy. The reason being that in metallic materials the mechanisms
for momentum relaxation, such as the lattice or scattering from disorder, which are
necessary to make the conductivities finite, are extrinsic to the electron dynamics.
Hence it is difficult to formulate intrinsic and universal bounds.

A recent proposal advanced in [41] suggested that, in analogy to the bound on
η/s, the quantities that could be universally bounded in strange metals are the
thermo-electric diffusion constants D+ and D−.

The idea beyond this proposal is that strongly correlated materials in general do
not admit a description in terms of quasi-particles, and they typically do not mani-
fest a well defined Drude peak in the low frequency spectrum of the thermo-electric
transport coefficients (we have appreciated this fact explicitly for the cuprates in
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Part 1). We will refer to this regime, where momentum is quickly dissipated and
consequently there is no sharp Drude peak, as the incoherent regime, in contrast
to the coherent regime where momentum is slowly dissipated. Due to this fact, the
thermo-electric transport coefficients are not good quantities in order to formulate
universal bounds since their form is extremely sensitive to the fact that the system
under consideration is in the coherent or incoherent regime. On the contrary diffu-
sion constants are typically setted by Einstein’s relations (see below and Appendix
F) and are not sensitive to the coherence or incoherence of the system.

Following this line of arguments, and conjecturing that the concept of Planckian
dissipation should affect all the diffusion constants in the same way, the proposal of
[41] is that the charge and heat diffusion constant D± (see below and Appendix F
for a careful definition) have to saturate a bounds of the following kind:

D± ≥C
h̄v̄2

kBT
, (9.16)

where C is an undetermined constant and we have replaced the speed of light ap-
pearing in (9.12) with the characteristic speed in a metal v̄ which might be identified
with the Fermi velocity. This is a non-trivial sleight of hand. In particular, the bound
on the ration η/S is only equivalent to (9.12) for relativistic systems with zero
charge density. In some regards, however, v̄ does play a role analogous to the speed
of light for instance by mediating a linear dispersion relation for the low energy
excitations of the Fermi surface. This velocity represents an extra scale of the rel-
ativistic low-energy effective description which may be naturally related to a UV
cut-off (as described for instance in [42]). It is relevant to note that, in the holo-
graphic context, an extra scale of the effective description was for instance used in
[38] in order to set two different temperature scalings for the resistivity and the Hall
angle.

The diffusion constants D+ and D− are related to the transport coefficients via
the Einstein relations, namely:

D+D− =
σ

χ

κ

cρ

, (9.17)

D++D− =
σ

χ
+

κ

cρ

+
T (ζ σ −χα)2

cρ χ2σ
, (9.18)

where σ , α and κ are respectively the electric, the thermo-electric and the ther-
mal conductivities (see [41] for a derivation); cρ is the specific heat at fixed charge
density ρ , ζ is the thermo-electric susceptibility and χ is the electric susceptibility.

In order to proceed, one has to note that typically the order of magnitude of the
thermo-electric conductivity is smaller than that of the electric and thermal con-
ductivity. Consequently the third term in (9.18) can be neglected and the universal
bounds (9.16) translate directly in restrictions on the electric and thermal conduc-
tivity, namely

σ

χ
,

κ

cρ

≥ v̄h̄
kBT

. (9.19)
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Let us now analyse the physical consequence of the conditions (9.19). In par-
ticular we will assume to be in a critical system in the incoherence regime, which,
according to the previous arguments, has to saturate the bound (9.19). If the bound
of the electric conductivity is saturated, then the resistivity ρ = 1/σ behaves as
follows:

ρ ∼ 1
v̄2χ

kBT
h̄

. (9.20)

Assuming that the the susceptibility χ is almost independent of the temperature (in
agreement with DMFT prediction) we find that once the bound on the diffusion con-
stants (9.16) is saturated, the resistivity is linear in temperature, as experimentally
observed in the cuprates (see Part 1). Moreover, if we (naively and incorrectly in a
non-quasiparticle system) match the expression for the resistivity (9.20) to a Drude
formula, we will extract the effective timescale

τext =
h̄

kBT
, (9.21)

namely, in the incoherent regime also the scale of the extrinsic momentum dissi-
pation rate τext due to the extrinsic momentum dissipation mechanisms is basically
setted by the temperature, in accordance with the principle of Planckian dissipation.

Soon after the analysis of [41], the author of [42], relying on hydrodynamical
arguments, suggested that a bound on the sum of the thermoelectric diffusion con-
stants is more natural than bounding the same diffusivities individually, namely

D++D− ≥C′
h̄v̄2

kBT
; (9.22)

still [42] (to which we refer for details) observes that the sum D++D− is always a
real quantity and argues on the basis of a perturbative approach.

We will see in the following sections that, in the holographic framework there are
some hints that a bound on the sum of the diffusion constants could be formulated,
in accordance with [42].

9.1.3 On the existence of diffusivity bounds in holography

We have understand in the previous sections that the possible existence of bounds
on the diffusion constants is extremely interesting from the phenomenological point
of view, especially in considering strongly coupled materials near the critical region,
as the cuprates should be.

In the following two sections we will investigate the possibility of a formulation
of bounds on the heat and charge diffusion constants in the context of holography.

In particular we will investigate two specific models. Firstly we will analyse the
simple massive gravity model (8.1). Here we will find that the behaviour of the
transport coefficients and of the susceptibilities does not fulfil all the requirements
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illustrated in the previous sections in order to conjecture a bound. As a consequence
we will find that in this simple model the diffusion constants are both unbounded
and tend to zero in the full incoherent regime.

Secondly we will analyse the dilaton model (8.66). We have already explained in
the previous chapter, how this model provides a linear in T resistivity, which is one
of the basic requirements in order for the bounds to exist. Here we will analyse the
model in a particular critical region, (we will be more clear later about this subtle
point), showing that, in this case, all the phenomenological requirements for the
formulation of the bounds are fulfilled and a bound on the sum of the charge and
heat diffusion constants can be defined in accordance with [42].

9.1.3.1 Diffusion constants in simple massive gravity

Let us start from the simple massive gravity model (8.1). Having obtained the DC
transport coefficients and the relevant thermodynamical quantities in the previous
chapter, we are now ready to study the diffusion constants through the Einstein
relations (9.17) and (9.18).

Eventually the diffusion constants take the following form

D± =
−12+ z2

h

(
20β −19µ2

)
±
√

∆

32β zh
, (9.23)

where

∆ = z4
h
(
144β

2−696β µ
2 +361µ

4)+ z2
h
(
288β +456µ

2)+144 . (9.24)

and we have set κ4 = L = q = 1 since this parameters are not relevant in the present
analysis.

We refer to Figure F.7 to have a qualitative idea of the generic behaviour of
the diffusion constants with respect to the temperature. In the simple case of zero
chemical potential µ = 0 (see right panel of F.7) the electric and thermal sector
decouple and the two diffusivities take the following form

Dc =
σ

χ
=−

√
4π2T 2−3β −2πT

β
, (9.25)

Dh =
κ

cρ

=−
√

4π2T 2−3β

β
. (9.26)

We observe that in the high temperature regime Dc has an 1/T behaviour.
Even though also for µ 6= 0 the diffusivities are bounded from below by an

1/T power law in the high temperature region, the coefficient of such bounding
behaviour can be apparently lowered at will acting on the mass parameter β . Never-
theless, to be precise on this point, one needs to consider whether the range of β is
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Fig. 9.1 Sample diagrams to illustrate the behaviour of thermo-electric diffusion constants at (left)
finite chemical potential, namely µ = 1 (blue line for D− and green line for D+), and (right) µ = 0
(blue line for D− = Dc and green line for D+ = Dh). The graviton mass parameter has been chosen
to be β =−1.

possibly limited by consistency requirements of the model in such a way to produce
a lower bound for the conductivities.

The first requirements comes from the stability of the models. We have men-
tioned in the previous chapter that in order for the momentum dissipation rate τ−1

to be positive we need:
β < 0 . (9.27)

A further consistency requirement is provided by asking the positivity of the en-
ergy density. More specifically, we consider the holographic renormalization of the
model (8.1) on the black brane solutions (7.3) and the assumption that finite counter-
terms do not affect the thermodynamics (namely that they do not depend on the
thermodynamic variables) as discussed in [12]. It is then possible to refer the renor-
malized energy density to its value at zero T (keeping fixed all the other quantities)
and ask that its value at finite T be never lower than that at T = 0, namely

E (T,µ;β )−E (0,µ;β )> 0 . (9.28)

This energy requirement does not furnish any additional constraint on the parameter
β , and the renormalized energy density appearing in (9.28) remains positive for
every β < 0.

All in all, the consistency requirements, although restricting the possible choices
of mass parameters, do not lead either to a diffusion bound nor to a minimal value
for the diffusion constants below which the holographic model is not trustworthy.
Indeed it is always possible to achieve a strongly incoherent regime (where momen-
tum is quickly dissipated) by sending |β | to infinity without any apparent consis-
tency problem.

In line with these observations, one has that the infinite |β | limit leads to vanish-
ing diffusion constants, namely

lim
β→−∞

D±(T,β ) = 0 . (9.29)
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Despite this limit corresponds to a bulk model dominated just by the mass term of
the graviton where the dynamics of the metric vector fluctuation of interest trivial-
izes, such argument does not yield a quantitative ground to formulate a bound. Even
observing that an infinite |β | limit leads necessary to a regime where the graviton
mass exceeds the Planck mass one could limit the value of the gravity model as an
effective field theory rather than supporting the existence of a bound on diffusivity.

The outcome of the previous analyses is that the simple massive gravity model
(8.1) does not allow to formulate consistent bounds on the thermo-electric diffusion
constants even in the case where the mass of the graviton has non-trivial RG (i.e.
radial) behaviour. In addition it is important to observe that the electric conductiv-
ity (8.5.2.1) is, in a regime of large |β |, dominated by the constant term, namely
the charge conjugation symmetric piece 1/q2. This highlights a limitation in repro-
ducing a linear in T resistivity in massive gravity in a regime where momentum
dissipation exceeds the other scales of the system. In other words, the incoherent
regime considered to formulate the conjecture on diffusion bounds (phenomeno-
logically motivated by the consequent linear in T resistivity) does not lead to the
desired phenomenology in the simple massive gravity model (8.1) and, as we will
see in the next sections, an analysis of the diffusion constants in a model where these
requirements are fulfilled is mandatory.

9.1.3.2 Diffusion constants in EMD

Let us now move to analyse the diffusion constants in the Einstein-Maxwell-Dilaton
model which we have analysed in (8.66).

First of all, we note that the common structure of the cuprate phase diagram (see
Part 1) shows that the strange metal phase is reached, in general, at high T . Given the
scaling properties of the holographic model with respect to a rescaling of the bound-
ary space-time1, it is natural to compare the temperature to the chemical potential
and consider the scaling invariant ratio T/µ . Hence we mean high temperatures in
the sense T/µ� 1 and, inverting the qualitative argument just given, it is natural to
study the µ = 0 case to describe the “criticality” condition which gives rise to the
strange metal. On top of this, when the chemical potential is vanishing, the charge
and heat transport of the model decouple.

Asking for µ = 0 in (8.68) we face two possibilities. We can set Q = 0 and
consequently trivialize the dilaton profile falling back to the solution (7.3) already
found in simple massive gravity. Alternatively we can set

Qzh +1 = |β |1/2zh ; (9.30)

we focus on this second case where the dilaton has non-trivial radial profile. For
completeness, let us present explicitly the background solutions in this case,

1 See for instance [35] for the analysis of the scaling properties of the pure massive gravity model.
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ds2 =
g(z)
z2

(
−h(z)dt2 +

dz2

g(z)2h(z)
+dx2 +dy2

)
,

At = 0 , φ(z) =
1
3

logg(z) ,

g(z) =
(

1+ |β |1/2z− z
zh

) 3
2
, h(z) = 1+

β z2z2
h(

zh + |β |1/2zzh− z
)2 .

(9.31)

As we will see shortly, enforcing relation (9.30) is far more than a technicality;
indeed it corresponds to considering non-trivial critical conditions which relate the
parameter Q to the other scales of the model (the temperature, through zh, and the
graviton mass β ) in a particular manner. Fixing µ = 0 by imposing relation (9.30)
defines a family of backgrounds whose phenomenology differs from that of simple
massive gravity. As we are going to describe precisely, the new features of such
a family present a linear in T resistivity and an overall physical behaviour in line
with the that indicated in [41] as the basis for discussing diffusion bounds. Let us
further underline that (9.30) and Q = 0 define two different branches of possible
backgrounds that have different physical properties.

Studying the thermodynamics of the critical conditions associated to (9.30) leads
to

T =
|β |1/4

2πz1/2
h

, ρ = 0 , S = 8π
2|β |1/2T , (9.32)

which feature linear in T entropy at all temperature. Moreover, regarding the sus-
ceptibilities, we obtain

ζ = 0 , (9.33)
χ = |β |1/2 , (9.34)

cρ = 8π
2|β |1/2T . (9.35)

Particularly interesting to us is the electric susceptibility χ independent from the
temperature. Continuing the analysis of the critical model resulting from the condi-
tion (9.30), we find the transport coefficients to be

σ = |β |1/4z1/2
h =⇒ σ

−1 = 2π|β |−1/2T , (9.36)
s = 0 , (9.37)
κ = 16π

3|β |−1/2T 2 . (9.38)

We underline the fact that the resistivity is linear in T for the entire range of temper-
ature.

The set of equilibrium and transport quantities just found fulfils precisely the
phenomenological framework that was considered in formulating diffusion bounds
in [41]. More specifically, a constant electric susceptibility was assumed as a hy-
pothesis and a linear in T resistivity as the consequence of an electrical diffusivity
saturating the bound. Moreover, in [41] it was conjectured that the charge diffusion
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constant Dc obeys a bound which depends only on temperature; the arguments rely-
ing on the hypothesis that the momentum dissipation rate is fast with respect to the
scale of T , a regime referred to as incoherent regime.

Analysing the dilaton model we find that, in the critical condition associated to
(9.30), the charge diffusion constant takes a very simple form independent on the
parameter β , namely

D(crit)
c =

σ

χ
=

1
2πT

. (9.39)

It is very important to note that (9.39) (emerging from (9.32)- (9.35) and (9.36))
does not refer to any specific regime for the momentum dissipation rate controlled
by β ; in this sense, it is not necessarily related to either an incoherent or a coherent
regime. Such feature is very appealing because allows us to be “agnostic” about the
hierarchy of T and the momentum dissipating scale |β |; the phenomenology of the
critical model at hand is therefore robust also in this sense.

Let us now focus on the heat diffusion constant Dh. The assumptions of constant
susceptibility χ and linear in T resistivity do not suggest a bound for Dh which, still
following [41], can nevertheless be conjectured by analogy with Dc. For the critical
dilaton model Dh takes the following explicit form

D(crit)
h =

κ

cρ

=
2πT
|β |

. (9.40)

In order to discuss the possibility of formulating a bound, let us consider the inco-
herent regime where momentum is dissipated quickly. As for the simple massive
gravity model considered in Section 9.1.3.1, the incoherent regime is achieved in
the limit T/ |β | → 0. The heat diffusion constant (9.40) depends explicitly on β

while instead the charge diffusion constant (9.39) does not. This crucial difference
leads to the impossibility to rely on incoherence and formulate a lower bound which
depends only on temperature for D(crit)

h .
Although one cannot formulate a bound for both the heat and charge diffusion

constants separately, as a direct consequence of the bound on D(crit)
c , the sum of the

two is naturally bounded once incoherence is considered, namely

D(crit)
h +D(crit)

c ≥ 1
2πT

. (9.41)

In [42] different arguments were proposed to motivate a bound on the sum of diffu-
sion constants rather than on them individually relying on a hydrodynamical anal-
ysis. We refer to [42] for a detailed discussion on the topic but intuitively we note
that the quantity Dh +Dc is more natural to formulate a bound since in general the
two diffusion constants separately could be a complex quantities while their sum is
always real (see Appendix F).

The present analysis of the holographic dilaton model moves somehow oppo-
sitely with respect to [42]: we were able to compute the two diffusion constants
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separately and we have found that a bound can be formulated only on the sum of
the two once incoherence is considered.

The set of results obtained through the study of the critical massive gravity dila-
ton model, and specifically (9.41), appear to be intimately related to the detail of the
model. Actually, as we have seen explicitly, simple massive gravity led to different
results. At the best of our knowledge, the dilaton model under consideration studied
at µ = 0 according to (9.30) is the only holographic model were all the assumptions
made in [41] are fulfilled. It is therefore particularly relevant that in such circum-
stances a bound on the sum of the diffusion constants can be naturally formulated.
In other words it is possible to consider the present analysis as a support (at least in
a specific and well defined case) of the physics conjectured in [41].

9.2 Holographic inspired phenomenology

In this section we discuss the possible general predictions based on the thermo-
electric transport coefficients (8.118), (8.119), (8.120) explicitly computed with
gauge/gravity techniques.

We want to express the behaviour of the holographic model (8.1) as indepen-
dently as possible of its specific details. In line with this aim, the transport coef-
ficients (8.118), (8.119), (8.120) were expressed in terms of the thermodynamical
quantities (computed in Section 8.5.1) and in terms of the conductivity of the ρ = 0
system σ̃ and the quantity h defined in (8.115). These latter quantities can be thought
of as “phenomenological parameters” whose value is not predicted within the model
itself; as already observed, they are indeed directly related to parameters of the bulk
model (q and β respectively). To clarify this idea of extending the results beyond
the model used to obtain them, consider for example σ̃ ; for the model at hand it is
related to the bulk coupling, namely σ̃ = 1/q. However, expressing all the physi-
cal results directly in terms of σ̃ , corresponds to a model-independent formulation
where σ̃ is regarded as a parameter per se accounting for an a priori unspecified
ρ = 0 conductivity.

We must also recall that, as usual in bottom-up holographic models (i.e. not de-
rived as consistent low-energy effective theories of UV complete string setups), we
have no direct control of the microscopic degrees of freedom. Hence, it is particu-
larly natural to exploit the bottom-up holographic model as a simple example grasp-
ing essential features of a whole class of strongly coupled theories. On the technical
level, we rely on promoting parameters to be temperature dependent functions to
the purpose of performing a phenomenological analysis. As already stressed, such a
logical leap constitutes a departure from the original holographic model and our cur-
rent aim is to define how to test carefully this phenomenological approach against
experimental data. When successful, it can inform us about universal characteristics
and shed light on the mysterious behaviour of the transport properties in strongly
correlated materials such as the cuprates (see [17] for a wide and precise exper-
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imental report). Previous phenomenological analyses along these lines have been
performed in [38, 41, 49, 50].

The purpose of this section is to generalize to the whole set of thermo-electric
transport coefficients the proposal of [38] which instead considers phenomenolog-
ical scalings only for the resistivity and the Hall angle. There it was noted that, at
low-B2, the electric conductivity follows an inverse Matthiessen’s rule: the conduc-
tivity due to the zero density sector σ̃ and σD (this latter directly related to h and
hence, in specific regimes, to a momentum relaxation scattering time) add up as
follows

σxx = σ̃ +σD , with σD =
ρ2

h
, (9.42)

while the Hall angle tanθH does not depend on σ̃

tanθH =
σxy

σxx
∼ B

ρ
σD . (9.43)

In [38] it was also noted that, in order to fit the experimental scalings of the con-
ductivity and Hall angle measured in the cuprates, namely ρxx ∼ σ−1

xx ∼ T and
tanθH ∼ 1/T 2, the two conductivities σ̃ and σD must have the following scalings in
temperature3

σ̃ ∼ σ̃
0
√

ρ

T
, σD ∼ σ

0
D

(√
ρ

T

)2

, (9.44)

where σ̃0 and σ0
D are dimensionless parameter which do not depend on T . Inspired

by phenomenological intuition, we have also supposed that the charge density ρ is
constant in temperature. In addition, in the quantum critical region the DC conduc-
tivity must be dominated by σ̃ , namely σ̃ � σD.

To make contact with both the theoretical and experimental literature, we will
determine the scalings for the same transport coefficients discussed in [49], namely
the the resistivity ρxx, the Hall angle tanθH , the Hall Lorentz ratio Lxy, the magneto-
resistance ∆ρ

ρ
= ρxx(B)−ρxx(0)

ρxx(0)
, the Seebeck coefficient s = αxx

σxx
, the Nernst coeffi-

cient ν = 1
B

[
αxy
σxx
− s tanθH

]
, the thermal conductivity κxx and the thermal magneto-

resistance ∆κ

κ
= κxx(B)−κxx(0)

κxx(0)
.

As already argued before, we regard the transport coefficients (8.118), (8.119),
(8.120) as (possibly) universal functions of the magnetic field B, the charge den-
sity ρ , the entropy S , the ρ = 0 conductivity σ̃ and σD. Then, once the values
of the charge density and the magnetic field are set, we need to fix the scalings of
three quantities in order to determine the behaviour of all the transport coefficients4.

2 The values of external magnetic fields implemented in a typical experimental set up can generally
be considered small with respect to the intrinsic scales of the materials.
3 We have chosen to express the scalings in temperature as a function of the dimensionless quantity
T/
√

ρ , considering the system at fixed charge density.
4 Notice that this is exactly the same number of quantities which were needed to be fixed in the
approach of [49].
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Note that the same approach cannot be followed in the hydrodynamical analysis of
[21] because the hydrodynamical expressions are not always writeable in terms of h
which, in the small momentum dissipation and B = 0 regime, assumes the explicit
form E+P

τ
.

In order to discuss the consequences of the proposal of [38] extended to the whole
set of thermoelectric transport coefficients, we consider the following phenomeno-
logically inspired inputs

ρ ∼ ρ0 = const , σ̃ ∼ σ̃
0
√

ρ0

T
,

1
h
∼ R

σ̃0

ρ2
0

(√
ρ0

T

)2

, S ∼S0

(
T
√

ρ0

)δ

,

(9.45)

where R ≡ σ0
D

σ̃0 and S0 are parameters independent of the temperature and δ is an
exponent to be phenomenologically determined. Considering the scalings (9.45)
within (8.118), (8.119) and (8.120), in order to analyse the consequences of the
proposal of [38], we expand the transport coefficients at the first leading order in the
dimensionless ratio R and at weak magnetic field, namely B/ρ0� 1.

In order to fix the scaling exponent of the entropy density δ , we compare the
leading exponent of the thermal hall conductivity κxy (having imposed the scalings
(9.45)) with the experimental predictions for optimally doped YBCO [52, 58]. We
prefer to consider as a phenomenological input the scaling of this transport coef-
ficient instead of the Hall Lorentz ratio LH ; the reason being that the experiments
described in [52, 58] found unexplained discrepancies both in the order of mag-
nitude and in the temperature scaling of LH [51] while the same two experiments
agree on κxy, which has to scale as T−1. To reproduce this behaviour for the leading
term of κxy, we have to set δ = 1, namely the proposal of [38] combined with the
input of experimental data forces the entropy to scale linearly in temperature in the
quantum critical region

S ∼S0
T
√

ρ0
. (9.46)

This behaviour is in agreement with the experimental measurements of the elec-
tronic specific heat in various series of cuprates near optimal doping [54, 55, 56] in
a wide range of temperature and with the holographic analysis of [23].

With this assumptions, at the first sub-leading order in the dimensionless ratio R
and at the first order in B/ρ0, we find the following scalings
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ρxx ∼ 1
σ̃0

T√
ρ0
− σ0

D
σ̃0 2 , (9.47)

∆ρ

ρ
∼ σ̃0 σ0

D

(
B
ρ0

)2 (√
ρ0
T

)3
−2σ0 2

D

(
B
ρ0

)2 (√
ρ0
T

)4
, (9.48)

Lxy ∼
S 2

0 σ0
D

2 σ̃0 ρ2
0

T√
ρ0
− 5S 2

0 σ0 2
D

4ρ2
0 σ̃0 2 , (9.49)

tanθH ∼ 2σ0
D

B
ρ0

(√
ρ0
T

)2
− Bσ0 2

D
σ̃0

B
ρ0

(√
ρ0
T

)3
, (9.50)

ν ∼ σ̃0

ρ

√
ρ0
T −

σ0
D

ρ0

(√
ρ0
T

)2
, (9.51)

s∼ S0 σ0
D

ρ0 σ̃0 −
S0σ0 2

D
ρ0σ̃0 2

√
ρ0
T , (9.52)

κxx ∼
S 2

0 σ0
D

ρ
3/2
0

T√
ρ0
− S 2

0 σ0 2
D

σ̃0ρ
3/2
0

, (9.53)

∆κ

κ
∼−(σ0

D)
2
(

B
ρ0

)2 (√
ρ0
T

)4
+

2σ0 3
D

σ̃0

(
B
ρ0

)2 (√
ρ0
T

)5
. (9.54)

Some of the temperature scalings derived with this approach are in accordance
with the analysis of [49]. There are however three discrepancies: the magneto-
resistance for which we find a B2T−3 scaling instead of B2T−4 and the Nernst
coefficients and the Seebeck coefficients for which the authors of [49] found be-
haviours of the type T−3/2 and −T 1/2 respectively. This discrepancies are due to
the fact that, as opposed to the assumptions made in [49], in the present analysis
the charge density is non-zero and the entropy has to scale linearly in temperature
(instead of T 2 as predicted in [49]).

Let us now make contact with the experimental literature on the cuprates. The
Seebeck coefficient, in the normal phase of several families of cuprates, it is usually
fitted with a law of the kind A−BT [52] regardless of the doping concentration. In
(9.52) we found (correctly) a constant leading term while the subleading term scales
as T−1, in contrast with the measurements of [52]. Actually, in [53] deviations from
the linear behaviour were observed at high temperature (T ≥ 300 K); due to these
deviations, a power law of the kind T−1/2 was proposed in [49] but also a term
T−1 is compatible with the data. It is however not clear whether at this temperature
the phonon-drag mechanism (which, at least in normal metals, has to be taken into
account in the analysis of the thermopower) can be neglected [55, 56].

Concerning the magneto-resistance, in [54] the temperature dependence for
YBCO and LSCO near optimal doping was studied. The result was that in YBCO
∆ρ

ρ
follows a power law of the kind B2/T n with n ' 3.5− 3.9 while in LSCO a

behaviour of the kind A/(B+CT )2 was found. It would be interesting to make a
quantitative evaluation of the unknown coefficient in (9.48) to compute with our
approach the correction to the T−3 behaviour due to the subleading T−4 term.

With regard to the other transport coefficients, namely ν , κxx and ∆κ

κ
, the experi-

mental measurements in the normal phase are not conclusive. Specifically the Nernst
coefficient in [57, 58] can be seen to go to zero at high temperature in accordance
to (9.51) but the data are not sufficient to determine a proper scaling law. Finally
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the thermal conductivity, and consequently also the thermal magneto-resistance, are
extremely difficult to measure since typically in this materials the dominant contri-
bution to these transport coefficients is given by phonons and not by electrons.

Except the most stable results, namely the resistivity and the Hall angle, the ex-
periments do not seem in general conclusive on the other transport coefficients and
we prefer to postpone any stringent comment on the possible connection between
the present analysis and the experimental data to future discussions.

We want nonetheless to stress that, as it is evident from the universal for-
mulæ (8.118), (8.119) and (8.120), the behaviour of the transport coefficients and
that of the thermodynamical quantities are intimately related. If the universality of
the transport formulæ is confirmed, any proposal on the mechanism which deter-
mines the transport properties of the cuprates (at finite charge density) has to keep
into account also the correct behaviour for the thermodynamical quantities.
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Appendix D
Effect of linear source in time on DC transport

In this Appendix we will explain why the term linear in the time coordinate t in the
expectation value for the stress energy tensor (8.53) does not contribute to the DC
response of the system.

To do this, let us consider the set of source λ (t) associated with a set of operator
φA. As we have learned in Part 3,at the level of linear response theory the expectation
value of phiA is given by:

〈φAt)〉=
∫

dt ′GAB(t− t ′)λB(t ′) , (D.1)

where GAB is the associated Green’s function. Expressing the latter in terms of its
Fourier transform, we obtain:

〈φA(t)〉=
1

2π

∫
dt ′dωe−i(t−t ′)t ′G̃AB(t− t ′)λB(t ′) . (D.2)

We want to study the implication of a source linear in time on the DC transport
properties. Then, we set λA(t) = tcA:

〈φA(t)〉=
1

2π

∫
dt ′dωe−i(t−t ′)t ′G̃AB(t− t ′)t ′cB . (D.3)

Using the identity: ∫
dt ′eiωt ′t ′ =−2πδ

′(ω) , (D.4)

we find:
〈φA(t)〉= i∂ω

(
e−iωtG̃AB(ω)

)
ω=0 cB . (D.5)

We next define the conductivity matrix σAB as the zero-frequency part of the spectral
weight:

σAB = lim
ω→0

ℑ
G̃AB(ω

ω
. (D.6)
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Then, using the fact that the real and imaginary parts of the Green’s function are
even and odd functions of ω respectively, we can express (D.5) in the following
way:

〈φA(t)〉=
(
tG̃AB(0)−σAB

)
cB . (D.7)

Then a source linear in the time coordinate t affects the expectation value of the
associated operator with a term linear in t plus the DC conductivity matrix. We can
therefore neglect the linear in t term when we are dealing with the DC response, as
stated in the main text.



Appendix E
Technical aspects of holographic
magneto-transport

In this Appendix we will explain some technical aspects of the computation of the
holographic magneto-transport DC response.

E.1 Fluctuations equations with electric ansatz

h̃′′ti(z)+
2
z

h̃′ti(z)+2
[

βL2−B2z2γ2

L2 f (z)
− 1

z2

]
h̃ti(z)

− 2Bz2γ2µ

L2zh
εi j h̃z j(z)−

2γ2µ

zh
ã′i(z)−

2Bγ2

f (z)
εi jE j = 0

(E.1)

Bεi jã′j(z)+
(

β

γ2 −
B2z2

L2

)
h̃zi(z)−

Bz2µ

zh f (z)L2 εi jh̃t j(z)+
µ

zh f (z)
Ei = 0 (E.2)

ã′′i (z)+
f ′(z)
f (z)

ã′i(z)+Bz
z f ′(z)+2 f (z)

L2 f (z)
εi jh̃z j(z)+

Bz2

L2 εi jh̃′z j(z)

− z2µ

L2zh f (z)
h̃′ti(z)−

2zµ

L2zh f (z)
h̃ti(z) = 0

(E.3)

E.2 Fluctuations equations with thermal ansatz
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h̃(th)ti (zh) = h̃(el)
ti (zh)+

BL2εi js jγ
2µ
[
z2

hγ2
(
B2z2

h +µ2
)
−2L2

(
z2

hβ +3
)]

4z2
h

[
−2B2L2z2

hβγ2 +B2z2
hγ4
(
B2z2

h +µ2
)
+L4β 2

]
−

L2si
[
−L2z2

hγ2
(
3B2

(
z2

hβ +2
)
+β µ2

)]
4z3

h

[
−2B2L2z2

hβγ2 +B2z2
hγ4
(
B2z2

h +µ2
)
+L4β 2

]
−

L2si
[
B2z4

hγ4
(
B2z2

h +µ2
)
+2L4β

(
z2

hβ +3
)]

4z3
h

[
−2B2L2z2

hβγ2 +B2z2
hγ4
(
B2z2

h +µ2
)
+L4β 2

]
(E.4)

h̃′′ti(z)+
2
z

h̃′ti(z)+

[
−z2γ2

(
2B2z2

h +µ2
)
+2L2z2

hβ + z2z2
hγ2φ ′(z)2

L2z2
h f (z)

− 2
z2

]
h̃ti(z)

+
2Bz2γ2φ ′(z)

L2 εi jh̃z j(z)+2γ
2
φ
′(z) ã′i(z)

+ γ
2
[

t si

(
φ
′(z)2− µ2

z2
h

)
−

2Bεi j(E j− s jφ(z))
f (z)

]
= 0

(E.5)

4BL2z3z2
hγ

2 f (z)εi jã′j(z)+4z2
h f (z)

(
L2z3

β −B2z5
γ

2
)

h̃zi(z)

−4Bz5zhγ
2
µ εi jh̃t j(z)−6L4z2

hsi f (z)+2L4z2
hsi
(
z2

β +3
)

+L2z3
γ

2 [−B2zz2
hsi +4Eizhµ + siµ

2(3z−4zh)
]
= 0

(E.6)

ã′′i (z)+
z4γ2

(
B2z2

h +µ2
)
+6L2z2

h f (z)−2L2z2
h

(
z2β +3

)
2L2zz2

h f (z)
ã′i(z)

+Bz
z4γ2

(
B2z2

h +µ2
)
+10L2z2

h f (z)−2L2z2
h

(
z2β +3

)
2L4z2

h f (z)
εi jh̃z j(z)

+
Bεi js j

f (z)
+

Bz2

L2 εi jh̃′z j(z)−
z2µ

L2zh f (z)
h̃′ti(z)−

2zµ

L2zh f (z)
h̃ti(z) = 0

(E.7)

E.3 Stress-energy tensor with thermal gradient

In this appendix we want to clarify a very subtle aspect of the computation of the DC
transport coefficient illustrated in [15], namely the fact that the stress energy tensor
T ti (8.105) and the quantity

√
−g

κ2
4

∇zki coincide once evaluated on the boundary up

to a term linear in the time coordinate t; this latter however does not contribute to
the DC response as clearly explained in Appendix C of [15].

Once evaluated on the thermal ansatz (8.111), the two quantities previously men-
tioned take the following form
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√
−g

κ2
4

∇
zki =

1
κ2

4

(
h̃ti

(
f (z)

z
− f ′(z)

2

)
+

f (z)
2

h̃′ti

)
, (E.8)

T ti =
L5

κ2
4 z5

(
−Kti +Kgti

b +
2
L

gti
b

)
=

h̃′ti(z)

2κ2
4

√
f (z)
− h̃ti(z)

zκ2
4

√
f (z)

+
2 h̃ti(z)
zκ2

4 f (z)

+ tαi

(
− 2L2

z3κ2
4
+

2L2
√

f (z)
z3κ2

4
− L2 f ′(z)

2z2κ2
4

√
f (z)

)
. (E.9)

In order to evaluate the previous quantities at the boundary z = 0 we substitute the
background solution (8.76) for f (z) and we impose h̃ti ∼ h(0)ti z near z = 0. This latter
condition is due to the fact that, as explained in [15], we need to switch off the term
proportional to z−2 in the asymptotic expansion for h̃ti in order to avoid additional
thermal deformation associated to this mode. Keeping into account these asymptotic
behaviours it is easy to verify that the z→ 0 limit of (E.8) coincides with the time
independent part of (E.9) evaluated in the same limit.





Appendix F
Einstein relations for charge and heat diffusion
constants

In this Appendix we want to derive the Einstein relations (9.17) and (9.18) which
relate the charge and heat diffusion constants to the transport coefficients and the
thermodynamical susceptibilities.

From basics thermodynamics we find that the following relation holds between
the spatial gradients of the the thermodynamical quantities ρ , ε , µ and T :(

∇iρ

∇iε

)
= A

(
∇iµ

∇iT ,

)
(F.1)

where

A =

(
χ ζ

T ζ +µχ µζ + cµ ,

)
(F.2)

and the susceptibilities χ , ζ and cµ are given by:

χ =
dρ

dT
, ζ =

dρ

dµ
, cµ = T

dS
dT

. (F.3)

As explained in the main text, the transport coefficients relate the heat current JQ and
the charge current J to the gradients of the temperature and the chemical potential
as follows: (

J
JQ

)
=−

(
σ̂ α̂

T α̂ ˆ̄κ

)(
∇µ

∇T

)
, (F.4)

We recall that the heat current JQ is related to the energy current JE by the following
relation:

JE
i = JQ

i +µJi . (F.5)

Since the energy density E and the charge density ρ are conserved in the system at
hand, the following continuity relations hold:

∂tρ =−∇ · J , ∂tE =−∇ · JE . (F.6)

Finally, using the previous relations, the following diffusion equation holds:
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∂t

(
ρ

E

)
=

(
σ̂ α̂

T α̂ +µσ̂ ˆ̄κ +µα̂

)
A−1

∇
2
(

ρ

E

)
. (F.7)

The diffusivity matrix D is defined as:

D ≡
(

σ̂ α̂

T α̂ +µσ̂ ˆ̄κ +µα̂

)
A−1 . (F.8)

The eigenvalues D+ and D− of D satisfy the following relations:

D++D− =
σ̂

χ
+

κ̂

ρ
+

T (ζ σ̂ −χα̂)2

cρ χ2σ̂
,

D+D− =
σ̂ κ̂

cρ χ
,

(F.9)

where κ̂ = ˆ̄κ−T α̂σ̂−1α̂ and cρ = cµ − ζ 2T
χ

. The relations (F.9) are called the Ein-
stein’s relation for the charge and heat diffusion constants.
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