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PREFACE

The variational bicomplex is a double complex of differential forms defined on
the infinite jet bundle of any fibered manifold π : E → M . This double complex
of forms is called the variational bicomplex because one of its differentials (or,
more precisely, one of the induced differentials in the first term of the first spec-
tral sequence) coincides with the classical Euler-Lagrange operator, or variational
derivative, for arbitrary order, multiple integral problems in the calculus of varia-
tions. Thus, the most immediate application of the variational bicomplex is that of
providing a simple, natural, and yet general, differential geometric development of
the variational calculus. Indeed, the subject originated within the last fifteen years
in the independent efforts of W. M. Tulczyjew and A. M. Vinogradov to resolve the
Euler-Lagrange operator and thereby characterize the kernel and the image of the
the variational derivative. But the utility of this bicomplex extents well beyond the
domain of the calculus of variations. Indeed, it may well be that the more important
aspects of our subject are those aspects which pertain either to the general theory
of conservation laws for differential equations, as introduced by Vinogradov, or to
the theory of characteristic (and secondary characteristic) classes and Gelfand-Fuks
cohomology, as suggested by T. Tsujishita. All of these topics are part of what I.
M. Gelfand, in his 1970 address to the International Congress in Nice, called formal
differential geometry. The variational bicomplex plays the same ubiquitous role in
formal differential geometry, that is, in the geometry of the infinite jet bundle for
the triple (E, M, π) that the de Rham complex plays in the geometry of a single
manifold M .
The purpose of this book is to develop the basic general theory of the variational

bicomplex and to present a variety of applications of this theory in the areas of dif-
ferential geometry and topology, differential equations, and mathematical physics.
This book is divided, although not explicitly, into four parts. In part one, which

consists of Chapters One, Two, and Three, the differential calculus of the varia-
tional bicomplex is presented. Besides the usual operations involving vector fields
and forms on manifolds, there are two additional operations upon which much of
the general theory rests. The first of these is the operation of prolongation which
lifts generalized vector fields on the total space E to vector fields on the infinite
jet bundle J∞(E). The second operation is essentially an invariant “integration
by parts” operation which formalizes and extends the familiar process of forming
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Preface

the formal adjoint of a linear differential operator. Chapters Four and Five form
the second part of the book. Here, the local and global cohomological properties
of the variational bicomplex are studied in some detail. While the issues, methods
and applications found in these two chapters differ considerable from one another,
they both pertain to what may best be called the theory of the “free” variational
bicomplex — no restrictions are imposed on the domain of definition of the dif-
ferential forms in the variational bicomplex nor do we restrict our attention to
sub-bicomplexes of invariant forms. In short, part two of this book does for the
variational bicomplex what, by analogy, the Poincaré Lemma does for the de Rham
complex. In Chapter Six, the third part of the book, we let G be a group of fiber
preserving transformations on E. The action of G on E lifts to a group action
G on J∞(E). Because G respects the structure of the variational bicomplex, we
can address the problem of computing its G equivariant cohomology. The Gelfand-
Fuks cohomology of formal vector fields is computed anew from this viewpoint. We
also show how characteristic and secondary characteristic classes arise as equivari-
ant cohomology classes on the variational bicomplex for the bundle of Riemannian
structures. In the final part, Chapter Seven, we look at systems of differential equa-
tions R on E as subbundles R∞ of J∞(E) and investigate the cohomology of the
variational bicomplex restricted to R∞. Cohomology classes now represent vari-
ous deformation invariants of the given system of equations — first integrals and
conservation laws, integral invariants, and variational principles. Vinogradov’s Two
Line Theorem is extended to give a sharp lower bound for the dimension of the first
nonzero cohomology groups in the variational bicomplex for R. A new perspective
is given to J. Douglas’ solution to the inverse problem to the calculus of variations
for ordinary differential equations.

A major emphasis throughout the entire book is placed on specific examples,
problems and applications. These are test cases against which the usefulness of this
machinery can, at least for now, be judged. Through different choices of the bundle
E, the group G and the differential relations R, these examples also illustrate how
the variational bicomplex can be adapted to model diverse phenomena in differential
geometry and topology, differential equations, and mathematical physics. They
suggest possible avenues for future research.

The general prequisites for this book include the usual topics from the calculus
on manifolds and a modest familiarity with the classical variational calculus and
its role in mechanics, classical field theory, and differential geometry. In the early
chapters, some acquaintance with symmetry group methods in differential equations
would surely be helpful. Indeed, we shall find ourselves referring often to Applica-
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The Variational Bicomplex

tions of Lie Groups to Differential Equations, P. Olver’s fine text on this subject.
In Chapter Five, the global properties of the variational bicomplex are developed
using the generalized Mayer-Vietoris argument, as explained in the wonderful book,
Differential Forms in Algebraic Topology, by R. Bott and L. Tu. The classical in-
variant theory of the general linear and orthogonal groups play a central role in our
calculations of equivariant cohomology in Chapter Six.
Some of the material presented here represents new, previously unpublished re-

search by the author. This includes the results in §3B on cochain maps between
bicomplexes, the entire theory of minimal weight forms developed in §4B, the analy-
sis of locally variational operators in §4C, the existence of global homotopy operators
in §5D, and the calculation of the equivariant cohomology of the variational bicom-
plex on Riemannian structures in Chapter Six. New proofs of some of the basic
properties of the variational bicomplex are given in §4A, §5A, and §5B and §7B.
Also, many of the specific examples and applications of the variational bicomplex
are presented here for the first time.
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INTRODUCTION

Although the formal introduction of our subject can be attributed to to the work
of Tulczyjew [70 ], Vinogradov [74 ], [75 ], and Tsujishita [68 ], it may nevertheless be
argued that the origins of the variational bicomplex are to be found in an article,
written just over a hundred years ago, by the mathematical physicist H. Helm-
holtz [32 ]. Helmholtz sought new applications of the powerful Hamiltonian-Jacobi
method for the integration of the equations of mechanics and so, to this end, he for-
mulated the problem of characterizing those systems of differential equations which
are derivable from a variational principle. This is the inverse problem to the calcu-
lus of variations. While Helmholtz restricted his attention to the inverse problem
for second order ordinary differential equations, others soon thereafter ([33 ], [11 ],
[40 ]) treated the inverse problem for higher order systems of partial differential
equations. By the turn of the century the following facts were known.

(i) The Lagrangian L for the given system of equations is not unique. In fact,
since the Euler-Lagrange operator E annihilates divergences of vector fields
(e.g., total time derivatives in the case of mechanics) another Lagrangian, with
identical Euler-Lagrange expressions, can be obtained by adding a divergence
to the original Lagrangian L.

(ii) There are certain necessary local integrability conditions, henceforth called the
Helmholtz conditions H, which a system of equations must satisfy in order to
be derivable from a variational principle. For example, in the case of linear
differential equations, the Helmholtz conditions coincide with those conditions
for formal self-adjointness. For special classes of equations, it was shown that
the Helmholtz conditions are sufficient for the local existence of a Lagrangian.

These two facts can be summarized symbolically by the following naive sequence of
spaces and maps:

{Vector Fields} Div−−−−→ {Lagrangians} Euler−−−−−−−−→
Lagrange

(0.1)

{Diff. Equations} Helm-−−−−−→
holtz

{Diff. Operators}.

In the parlance of homological algebra, this sequence is a cochain complex in that
the composition of successive maps yields zero, i.e.,

E(DivX) = 0 and H(E(L)) = 0.

viii



The Variational Bicomplex

The variational bicomplex is the full extension and proper differential geometric
realization of the complex (0.1).
The first step towards a complete definition of the variational bicomplex is a

description of the mathematical data from which it is constructed. This data varies
in accordance with the specific application at hand; however, for most situations
the following is prescribed:

(i) a fibered manifold π : E → M ;

(ii) a transformation group G on E; and

(iii) A set R of differential relations on the local sections of E.

The purpose of this introductory survey is to illustrate how this data arises in some
familiar contexts and to present some specific examples of cohomology classes in the
variational bicomplex. But, in order to do justice to these examples, it is necessary
to be to briefly introduce some notation and definitions and to be more precise
with regards to the sequence (0.1). A detailed description of our basic notation and
definitions is given in Chapter One.
Given the fibered manifold π : E → M , we construct the infinite jet bundle

π∞
M : J

∞(E)→ M

of jets of local sections ofM . If x ∈ M , then the fiber (π∞
M )

−1(x) in J∞(E) consists
of equivalence classes, denoted by j∞(s)(x), of local sections s on E. If V1 and V2

are two neighborhoods of x in M and if

s1 : V1 → E and s2 : V2 → E

are local sections, then s1 and s2 are equivalent local sections if their partial deriva-
tives to all orders agree at x. If the dimension of M is n and that of E is m + n,
then on E we can use local coordinates

π : (xi, uα)→ (xi),

where i = 1, 2, . . . , n and α = 1, 2, . . . , m. The induced coordinates on J∞(E) are

(xi, uα, uα
i , u

α
ij, . . . ),

where

uα
i

(
j∞(s)(x)

)
=

∂sα

∂xi
(x), uα

ij

(
j∞(s)(x)

)
=

∂2sα

∂xi∂xj
(x),

ix



Introduction

and so on.
The variational bicomplex is a double complex of differential forms on J∞(E)

and while it is not difficult to define (see Chapter 1) it suffices for the purposes of
this introduction to focus on that edge of the variational bicomplex consisting of
horizontal forms. A horizontal p form ω is a differential p form on J∞(E) which,
in any system of local coordinates, is of the form

ω = Aj1j2···jp
dxj1 ∧ dxj2 ∧ . . .dxjp ,

where the coefficients

A··· = A···(xi, uα, uα
i , u

α
ij, . . . )

are smooth functions on J∞(U). In particular, a horizontal n form

λ = L(xi, uα, uα
i , u

α
ij , . . . ) ν,

where ν = dx1 ∧ dx2 · · · ∧ dxn, is a Lagrangian for a variational problem on E. The
associated fundamental integral is defined on all sections s : M → E (assuming for
the moment that such sections exist and, in addition, that M is compact) by

I [s] =
∫

M

(
j∞(s)(x)

)∗
λ.

We denote the space of all horizontal p forms on J∞(E) by Ep(J∞(E)). For p < n,
there is a differential

dH : Ep(J∞(E))→ Ep+1(J∞(E))

called the horizontal exterior derivative or total exterior derivative. On functions
dH coincides with the familiar process of total differentiation; if

f = f(xi, uα, uα
i , u

α
ij, . . . )

then

dHf = [
∂f

∂xj
+

∂f

∂uα
uα

j +
∂f

∂uα
i

uα
ij + · · · ] dxj.

We also introduce the space En+1(J∞(E)) of source forms on J∞(E). A source
form ∆ is an n+ 1 form on J∞(E) which, in any local system of coordinates, is of
the form

∆ = Pβ(xi, uα, uα
i , u

α
ij, . . . ) du

β ∧ ν. (0.2)

x



The Variational Bicomplex

The Euler-Lagrange operator E can now be defined as an R linear map

E : En(J∞(E))→ En+1(J∞(E)).

If λ = L(xi, uα, uα
i , . . . ) ν is a Lagrangian on J∞(E), then

E(λ) = Eβ(L) duβ ∧ ν,

where

Eβ(L) =
δL

δuβ
=

∂L

∂uβ
− d

dxi

(∂L
∂uβ

i

)
+

d2

dxidxj

(∂L
∂uβ

ij

)− · · · .

The spaces Ep(J∞(E)), for p ≤ n + 1, and the maps dH and E form a cochain
complex

0 −−−→ E0
dH−−−→ E1 · · ·

dH−−−→ En−1
dH−−−→ En

E−−−→ En+1 −−−→ · · · .

That E ◦ dH = 0 is simply a restatement of the aforementioned fact the the
Euler-Lagrange operator annihilates divergences. This complex is called the Euler-
Lagrange complex E∗(J∞(E)) on the infinite jet bundle of the fibered manifold
π : E → M . The Euler-Lagrange complex continues indefinitely. The next dif-
ferential in the Euler-Lagrange complex,

H : En+1(J∞(E))→ En+2(J∞(E)),

is the Helmholtz operator from the inverse problem to the calculus of variations.
Thus the Euler-Lagrange complex E∗(J∞(E)) is the sought after formalization of
the informal sequence (0.1). The space En+2(J∞(E)) is a subspace of the space of
all n + 2 forms on J∞(E) but it is not, as one might anticipate in analogy with
(0.2), the subspace of forms of the type

η = Pαβ duα ∧ duα ∧ ν.

To properly define En+p(J∞(E)), for p ≥ 2, and to define the map H and the sub-
sequent differentials in the Euler-Lagrange complex, we first need the full definition
of the variational bicomplex. These definitions are given in Chapters One and Two.
Lagrangians λ ∈ En(J∞(E)) which lie in the kernel of the Euler-Lagrange oper-

ator, that is, which have identically vanishing Euler-Lagrange form

E(λ) = 0

xi



Introduction

are called null or variationally trivial Lagrangians. Every total divergence or dH

exact Lagrangian
λ = dHη

is variationally trivial but the converse is not always true. The nth cohomology
group

Hn(E∗(J∞(E))) =
ker {E : En → En+1}
im {dH : En−1 → En}

=
{variationally trivial Lagrangians λ }

{ exact Lagrangians λ = dHη}
of the Euler-Lagrange complex will, in general, be non-zero.
We call source forms ∆ ∈ En+1 which satisfy the Helmholtz conditions H(∆) = 0

locally variational source forms. All Euler-Lagrange forms are locally variational
but again the cohomology group

Hn+1(E∗(J∞(E))) =
ker {H : En+1 → En+2}
im {E : En → En+1}

=
{locally variational source forms}

{Euler-Lagrange forms}
will in general be non-trivial. In Chapter Five, we shall prove that the cohomology
of the Euler-Lagrange complex E∗ is isomorphic to the de Rham cohomology of E.
In particular, a locally variational source form ∆ is always the Euler-Lagrange form
of a Lagrangian λ, ∆ = E(λ), whenever Hn+1(E) = 0.
In summary, from the first item on the above list of data, namely the fibered

manifold π : E → M , we can construct in a canonical fashion the infinite jet bun-
dle J∞(E), the variational bicomplex of differential forms on J∞(E) and its edge
complex, the Euler-Lagrange complex E∗(J∞(E)). At this point, the cohomology
groups of the variational bicomplex and the Euler-Lagrange complex are well un-
derstood. The remaining data, namely the group G and the differential relations R
are used to modify this basic step-up.
The role of the groupG is easily described. It is a symmetry group for the problem

at hand. Let G be the prolongation of G to J∞(E). If we denote by Ep
G(J

∞(E))
the G invariant (or more precisely G invariant) horizontal p forms on J∞(E) and
by En+1

G (J∞(E)) the G invariant source forms, then we can form the G invariant
Euler-Lagrange complex

0 −−−→ E0
G

dH−−−→ E1
G · · ·

dH−−−→ En−1
G

dH−−−→ En
G

E−−−→ En+1
G −−−→ · · · .

xii



The Variational Bicomplex

For example, if ∆ is a source form which is invariant under the group G and if ∆
is the Euler-Lagrange form for some Lagrangian λ, that is, if ∆ = E(λ), then it
natural to ask whether ∆ is the Euler-Lagrange form of a G invariant Lagrangian.
The answer to this question is tantamount to the calculation of the G equivariant
cohomology of the Euler-Lagrange complex:

Hn+1(E∗
G) =

{locally variational, G invariant source forms}
{source forms of G invariant Lagrangians} .

Although the equivariant cohomology of the variational bicomplex has been com-
puted in some special cases, it is fair to say that there are few, if any, general results.
This can be a difficult problem.
The differential relations R may represent open conditions on the jets of local sec-

tions of E or they may represent systems of differential equations. These equations
may be classical deterministic (well-posed) systems or they may be the kind of un-
derdetermined or overdetermined systems that are often encountered in differential
geometry. We prolong R to a set of differential equations R∞ on J∞(E) and then
restrict (or pullback) the variational bicomplex on J∞(E) to R∞. The cohomology
group Hn−1(E∗(R)) can now be identified with the vector space of conservation
laws for R ( first integrals when R is a system of ordinary differential equations)
while elements of Hn(E∗(R)) characterize the possible variational principles for R.
In Chapter Seven we obtain a lower bound on the dimension p of the non-zero co-
homology groups Hp(E∗(R)) (for classical, well-posed problems Vinogradov showed
that this bound is p = n− 1) and present some explicit general techniques for the
calculation of Hp(E∗(R)). But here too, as anyone who has studied Jesse Douglas’
paper on variational problems for ordinary differential equations will attest, the
general problem of computing the cohomology of the entire bicomplex for a given
system of equations R can be a difficult one.
Because of the ability to make these modifications to the free variational bicom-

plex on J∞(E), a surprising diversity of phenomena from geometry and topology,
differential equations, and mathematical physics, including many topics not directly
related to the calculus of variations, can be studied in terms of the cohomological
properties of the variational bicomplex. Our goal is to develop the machinery of
the variational bicomplex to the point that this cohomological viewpoint becomes
a useful one.

Some specific examples of cohomology classes in the variational bicomplex can
now be presented.
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Introduction

Example 1. For our first example, we consider a system of autonomous, second
order ordinary differential equations defined by the functions

Pα = üα − Fαβ(uγ)u̇β − Vα(uγ),

for α = 1, 2, . . . , m. The differential equations

Pα = 0 (0.3)

are (affine) linear in the first derivatives of the dependent variables uβ . The coeffi-
cient functions Fαβ and Vα are smooth functions of the dependent variable and are
defined on some open domain F ⊂ Rm.
The variational bicomplex which we use to study these equations is defined over

the trivial bundle E given by

π : R × F → R, (0.4)

with coordinates (x, uα) → x. Thus, for ordinary differential equations the con-
figuration space is, from our viewpoint, the fiber space F and the dynamics are
prescribed by the source form

∆ = Pα duα ∧ dx (0.5)

on the infinite jet bundle of E. This is notably different from the more standard
geometric treatment of second order ordinary differential equations wherein the
configuration space is viewed as the base manifold and the dynamics are specified
by a vector field on the tangent space of the configuration space. For the problems
we wish to treat in this example, our formulation is the better one — it extends in
a natural and obvious way to non-autonomous systems, to higher order equations
and to partial differential equations. For ordinary differential equations which are
periodic in the independent variable x, we can replace the base space R in (0.4) by
the circle S1.
For the source form (0.5), the Helmholtz equations H(∆) = 0 are equivalent to

the algebraic condition
Fαβ = −Fβα,

and the differential conditions

∂Fαβ

∂uγ
+

∂Fβγ

∂uα
+

∂Fγα

∂uβ
= 0,

and

xiv



The Variational Bicomplex

∂Vα

∂uβ
− ∂Vβ

∂uα
= 0.

(See §3A) In short, the 2 form

F =
1
2
Fαβ duα ∧ duβ

and the 1 form
V = Vα duα

must be closed forms on E. If F and V are closed, then the local exactness of
the Euler-Lagrange complex (see Chapter Four) implies that there is a coordinate
neighborhood U of each point in E and a first order Lagrangian λ defined on the
jet space over U such that

∆ | J∞(U) = E(λ).

There may be obstructions to the existence of a global Lagrangian — because the
base space is one dimensional, these obstructions will lie in H2(E) which, in this
example, is isomorphic to H2(F ).

Case 1. For simplicity, suppose that Vα = 0 so that the system of source equations
(0.3) becomes

üα = Fαβ u̇β . (0.6)

If F is a closed 2 form, then ∆ is a locally variational source form. As a represen-
tative of a cohomology class in H2(E∗(J∞(E))), ∆ is mapped by the isomorphism
between H2(E∗(J∞(E))) and H2(E) to the class represented by the two form F .
Thus ∆ admits a global Lagrangian if and only if F is exact.
For example, with F = R3 − {0}, the equations (in vector notation)

ü = − 1
||u|| u × u̇ (0.7)

are locally variational but not globally variational because the associated 2 form

F =
u1 du2 ∧ du3 − u2 du1 ∧ du3 + u3 du1 ∧ du2

[(u1)2 + (u2)2 + (u3)2]
3
2

is not exact on E.
Despite the fact that there may be no global Lagrangian for the locally variational

source form ∆, it may still be possible, via an appropriate formulation of Noether’s
theorem, to obtain global conservation laws for ∆ from global symmetries. This is
because the obstructions for the existence of global conservation laws lie in a dif-
ferent cohomology group, namely Hn(E), where n = dimM . For instance, because
the equations (0.7) are
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Introduction

(i) locally variational,
(ii) invariant with respect to rotations about the u3 axis, and because
(iii) H1(E) = H1(R3 − {0}) = 0,

the global version of Noether’s Theorem enables us to construct the first integral

I = −u1u̇2 + u2u̇1 +
u3

||u|| ,
which is defined on all of J∞(E).

Case 2. Let us now suppose that F = 0 and that the 1 form V is closed. The de
Rham cohomology class on E now determined by ∆ is represented by the 2 form
V ∧ dx. This form is always exact whether or not V itself is exact. For example,
with m = 2 and F = R2 − {0} the equations

ü = − v

u2 + v2
and v̈ =

u

u2 + v2
(0.8)

must admit a a global variational principle even though the 1 form

V =
v du− u du

u2 + v2

is not exact on E. Indeed, one readily checks that

λ = [−1
2
(u̇2 + v̇2) + x

vu̇− uv̇

u2 + v2
] dx (0.9)

is a Lagrangian for the system (0.8). But, because H1(E) = R, there is now a
potential obstruction to the construction of global conservation laws via Noether’s
Theorem and, in fact, the rotational symmetry of (0.8) does not lead to a global
first integral.
Observe that while (0.8) is translational invariant in x, the Lagrangian (0.9)

contains an explicit x dependence and is therefore not translational invariant. If we
let G be the group of translations in x, then any source ∆ defining an autonomous
system of equations belongs to E2

G(J
∞(E)). The problem of determining if a locally

variational, G invariant source form admits a global G invariant Lagrangian is,
by definition, the same as that of calculating the equivariant cohomology group
H2(E∗

G(J
∞(E))). A theorem of Tulczyjew [71 ] states that

H2(E∗
G(J

∞(E))) = H1(E)⊕H2(E).

In particular, we shall see that the source form (0.5) admits a global, translational
invariant Lagrangian if and only if both forms F and V are exact. Thus the system
(0.8) does not admit a translational invariant Lagrangian. This is perhaps the
simplest illustration of how the introduction of a symmetry group G can change the
cohomology of the Euler-Lagrange complex.
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Example 2. Let π : E → M be a fibered manifold over a n dimensional base
manifold M . As we have already mentioned, there is an isomorphism between
H∗(E) and H∗(E∗(J∞(E))). In particular, to every representative ω ∈ Ωn(E) of
a cohomology class in Hn(E), we can associate a Lagrangian on J∞(E) which is
variationally trivial but which is not globally dH exact.
Suppose that M and F are compact oriented n manifolds and that

h = hαβ duα ⊗ duβ

is a Riemannian metric on F . Let E :M × F → M . Then the volume form

ν =
√
det h du1 ∧ du2 · · · ∧ dun

on F pulls back to a closed form on E which represents a nontrivial cohomology
class in Hn(E). The associated Lagrangian λ on J∞(E) is found to be

λ =
√
det h det

[∂uα

∂xj

]
dx1 ∧ dx2 · · · ∧ dxn. (0.10)

It is an amusing exercise to verify directly that for any metric h, E(λ) = 0. The La-
grangian λ is not a global divergence and represents a non-trivial cohomology class
in the Euler-Lagrange complex. The corresponding fundamental integral, defined
on sections of E, or equivalently on maps s : M → F , is

I [s] =
∫

M

((j∞(s))∗(λ) =
∫

M

s∗(ν),

and coincides, apart from a numerical factor, with the topological degree of the map
s. This example illustrates how cohomology classes in the variational bicomplex on
J∞(E) may lead to topological invariants for the sections s of E.
Consider now the special case where M is the two sphere S2 and F is the two

torus S1 × S1. Let α = du and β = dv, where (u, v) are the standard angular
coordinates on F and let ν = α ∧ β. The Lagrangian (0.10) becomes

λ = (uxvy − uyvx) dx ∧ dy (0.11)

and, on sections s on E,

(j∞(s))∗(λ) = s∗(α ∧ β) = s∗(α) ∧ s∗(β).
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But s∗(α) is a closed one form on S2 and is hence exact on f . If we write

s∗(α) = d f, (0.12)

where f is a smooth real-valued function on S2, then

(j∞(s))∗(λ) = d (fs∗(β)). (0.13)

This proves that λ is exact on all sections s of E.
This example underscores an important point — that the cohomology of the vari-

ational bicomplex is “local” cohomology. The Lagrangian (0.11) defines a nontrivial
cohomology class in the Euler-Lagrange complex because it cannot be expressed as
the derivative of a one form whose values on sections s can be computed pointwise
from the jets of s. Indeed, because the function f in (0.13) is the solution to the
partial differential equation (0.12) on the two sphere S2, the value of f at any point
p ∈ S2 cannot be computed from the knowledge of j∞(s) at the point p alone.

Example 3. In this example we consider the variational bicomplex for regular
plane curves. Let

γ : [0, 1]→ R2

be a smooth, closed curve parametrized by

γ(x) = (u(x), v(x)).

We say that γ is regularly parametrized or, equivalently, that γ is an immersed
plane curve, if the velocity vector

γ̇(x) = (u̇(x), v̇(x)) �= 0

for all x. The rotation index of γ is defined by the functional

R [γ] =
1
2π

∫ 1

0

u̇v̈ − üv̇

u̇2 + v̇2
dx.

The rotation index is integer valued. It is also an isotopy invariant of the curve γ.
That is, if γ̃ : [0, 1] → R2 is another smooth, regularly parametrized closed curve
and if

H : [0, 1]× [0, 1]→ R2
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is a smooth homotopy of γ to γ̃ through regular curves, then

R [γ] = R [γ̃].

This latter fact is easily proved directly. Let

γε(x) = H(x, ε) = (uε(x), vε(x))

and let
u′ =

∂uε

∂ε
and v′ =

∂vε

∂ε
.

We then deduce, by direct calculation, that

d

dε
R [γε] =

1
2π

∫ 1

0

d

dε

[ u̇εv̈ε − üεv̇ε

u̇2
ε + v̇2

ε

]
dx

=
1
2π

∫ 1

0

d

dx

[ u̇εv̇
′
ε − u̇′

εv̇ε

u̇2
ε + v̇2

ε

]
dx = 0,

(0.14)

and therefore R [γ0] = R [γ1], as required.
The calculation in (0.14) can be interpreted from the viewpoint of the calculus

of variations. Let
λ = L(x, u, v, u̇, v̇, ü, v̈) dx (0.15)

be a second order Lagrange function for a variational problem for plane curves and
let γε(x) = (uε(x), vε(x)) be a 1 parameter family of such plane curves. Then the
first variational formula for the Lagrangian (0.15) is the identity

d

dε
L(x, u, v, u̇ε, v̇ε, üε, v̈ε) = u′

εEu(L) + y′εEv(L) +
d f

dx
(0.16)

where (with u1 = u and u2 = v)

Eα(L) =
∂L

∂uα
− d

dx

(∂L
∂u̇α

)
+

d2

dx2

(∂L
∂üα

)

are the components of the Euler-Lagrange expressions of L and f is the function

f =
[∂L
∂u̇

− d

dx

(∂L
∂ü

)]
u′ +

(∂L
∂ü

)
u̇′ +

[∂L
∂v̇

− d

dx

(∂L
∂v̈

)]
v′ +

(∂L
∂v̈

)
v̇′.

To apply this formula to the rotation index, we consider the specific Lagrangian

LR =
u̇v̈ − üv̇

u̇2 + v̇2
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so that the corresponding fundamental integral is the rotation index

R [γ] =
1
2π

∫ 1

0

LR(x, u, v, u̇, v̇, ü, v̈) dx.

The calculation (0.14) is now, in essence, the calculation of the first variation of
R [γ]. Indeed, one can readily verify that

Eu(LR) = 0 and Ev(LR) = 0.

The general first variational formula (0.16) now reduces to

d

dε
LR(x, u, v, u̇ε, v̇ε, üε, v̈ε) =

d f

dx

where

f =
u̇εv̇

′
ε − u̇′

εv̇ε

u̇2
ε + v̇2

ε

.

Upon integration with respect to x, this becomes (0.14). Thus, from the viewpoint
of the variational calculus, one proves that the rotation index is an isotopy invariant
by (i) showing that the Lagrangian λR defining the rotation index is variationally
trivial, and then (ii) applying the first variational formula.
Because E(λR) = 0, it can be expressed as the total derivatives

λR = dH

[
arctan(

v̇

u̇
)
]
= −dH

[
arctan(

u̇

v̇
)
]
. (0.17)

But, because the domain of λR is the open set

U = { (x, u, , v, u̇, v̇, ü, v̈) | u̇2 + v̇2 �= 0 }

and because neither one of the arctan functions in (0.17) is defined on all of U ,
equation (0.17) is only a local formula. In fact, λR cannot be the horizontal exterior
derivative of any function on all of U since this would imply that the rotation
index vanishes for all closed curves. Hence the Lagrangian λR defines a nontrivial
cohomology class in the Euler-Lagrange complex for regular plane curves.
To make this last statement more precise, we take for the fibered manifold E the

trivial bundle R × R2 → R with coordinates (x, u, v) → x. (We could also take
the base space to be the circle S1 — then all sections of E would automatically

xx



The Variational Bicomplex

correspond to closed curves in the plane.) The jet bundle J∞(E) is the bundle of
infinite jets of all plane curves γ and has coordinates

j∞(γ)(x) = (x, u, v, u̇, v̇, ü, v̈, . . . ).

Because we are interested in regularly parametrized closed curves we restrict the
variational bicomplex to the open submanifold defined by

R = { j∞(γ)(x) | u̇2 + v̇2 �= 0 }.

Now R has the same homotopy type as the circle S1 which has 1 dimensional de
Rham cohomology in dimension p = 1. Our general theory implies that Hp(E∗(R))
is therefore zero for p �= 1 while H1(E∗(R)) is the one dimensional vector space
generated by LR. This means that if

λ = L(x, u, v, u̇, v̇, ü, v̈, . . . ) dx

is any variational trivial Lagrangian defined on R, then there is a constant a and a
function

f = f(x, u, v, u̇, v̇, ü, v̈, . . . )

such that
λ = λR + dHf.

Apart from the multiplicative factor a, the fundamental integral

I [γ] =
∫ 1

0

L(j∞(γ)(x)) dx,

which we know a priori to be an isotopy invariant of γ, must coincide with the
rotation index of γ.
In our discussion thus far, we have not considered possible group actions on the

bundle E : R×R2 → R. The group G that naturally arises in geometric problems
for regular plane curves consists of

(i) the group of Euclidean motions in the fiber R2; and

(ii) the group of local, orientation preserving, diffeomorphism x̄ = f(x) of the
base space R.
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Since the Lagrangian λ0 can be expressed as

λR = κ ds,

where κ is the curvature function and ds is the arclength differential, it follows that
λR is G invariant, i.e.,

λR ∈ E1
G(R).

Moreover, λR is patently a cohomology class in H∗(E1
G(R)) since it is not the total

derivative of any function on R, let alone a G invariant one. As we shall see, a
theorem of Cheung [17 ] asserts that λ0 generates the only class in H1(E∗

G(R)). We
shall also see that the G invariant source form

∆ = (−v̇ du+ u̇ dv) dx,

which is the Euler-Lagrange form for the Lagrangian

λ =
1
2
(uv̇ − vu̇) dx

is not the Euler-Lagrange form of any G invariant Lagrangian and, in fact, gen-
erates H2(E∗(R)). We hasten to remark that while the calculation of Hp(E∗(R))
is a simple consequence of the general theory, the calculation of H1(E∗

G(R)) and
H2(E∗

G(R)) is based upon more ad hoc arguments.

Example 4. In this example we examine the Gauss-Bonnet theorem from the
viewpoint of the variational bicomplex. This theorem states that if S is a compact
oriented surface with Gaussian curvature K and Euler characteristic χ(S), then

χ(S) =
1
2π

∫
S

K dA.

We use the Gauss-Bonnet theorem to illustrate many of the issues with which we
shall be concerned. Specifically, we use the Gauss-Bonnet theorem to show

(i) how the data {E,G,R} can fitted together, sometimes in quite different
ways, to define a variational bicomplex to model a given situation;

(ii) that there is a rich local theory of the variational bicomplex which impinges
upon recent developments in the theory of determinantal ideals;

(iii) the need for a global first variational formula;
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(iv) the role of the first variational formula in Chern’s proof of the generalized
Gauss-Bonnet theorem;

(v) how characteristic and secondary characteristic classes arise as cohomology
classes in the variational bicomplex; and

(vi) that there is a novel connection between the cohomology of the variational
bicomplex for surfaces and the Gelfand-Fuks cohomology of formal vector
fields.

We begin with the local theory of surfaces and so, to this end, we let E be the
trivial bundle E : R2 × R3 → R2 with coordinates

(x, y, R)→ (x, y),

where R is the position vector R = (u, v, w) in R3. A section of E defined by a map
φ : R2 → R3 determines a local, regularly parametrized surface if φx × φy �= 0 and,
accordingly we restrict our considerations to the open set R of J∞(E) defined by

R = { (x, y, R,Rx, Ry, Rxx, Rxy, Ryy, . . . ) | Rx ×Ry �= 0 }.

The unit normal vector N , the first and second fundamental forms and the Gaussian
curvature are defined by

N =
Rx ×Ry

||Rx ×Ry|| ,
[
E F
F G

]
=

[ 〈Rx, Rx〉 〈Rx, Ry〉
〈Ry, Rx〉 〈Ry, Ry〉

]
,

[
l m
m n

]
=

[ 〈N,Rxx〉 〈N,Rxy〉
〈N,Rxy〉 〈N,Ryy〉

]
, and K =

ln−m2

EG− F 2
.

We emphasize that these expressions are all to be thought of as functions on R —
it is on jets of sections of E that these equations take on their usual meanings from
the local theory of surfaces.
The integrand in the Gauss-Bonnet formula defines a second order Lagrangian

on R, namely

λGB = LGB(x, y, R,Rx, Ry, Rxx, Rxy, Ryy) dx ∧ dy

where

LGB = K
√

EG− F 2.
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One can show that λGB is variational trivial, i.e.,

E(λGB) = 0.

Now the Euler-Lagrange form of any second order Lagrangian λ is generally a fourth
order source form which is linear in the derivatives of order 4 and quadratic in the
derivatives of order 3. If λ is variational trivial, then the vanishing of these higher
derivative terms in E(λ) severely restrict the functional dependencies of λ on its
second order derivatives. These dependencies can be completely characterized —
the highest derivative dependencies of a variationally trivial Lagrangian, of any
order, must occur via Jacobian-like determinants. In the case of the Gauss-Bonnet
Lagrangian λGB = KdA, these dependencies manifest themselves in the following
formula ( Struik [64 ] p.112):

LGB =
1
D3

·

{∣∣∣∣∣∣∣

〈Rxx, Ryy〉 〈Rxx, Rx〉 〈Rxx, Ry〉
〈Rx, Ryy〉 E F

〈Ry, Ryy〉 F G

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣

〈Rxy, Rxy〉 〈Rxy, Rx〉 〈Rxy, Ry〉
〈Rxy, Rx〉 E F

〈Rxy, Ry〉 F G

∣∣∣∣∣∣∣
}
.

By expanding these two determinants, one finds that λGB belongs to the deter-
minantal ideal generated ( over the ring of functions on the first order jet bundle
J1(E)) by the nine 2× 2 Jacobians

∂(Rx, Ry)
∂(x, y)

=




∂(ux, uy)
∂(x, y)

∂(ux, vy)
∂(x, y)

∂(ux, wy)
∂(x, y)

∂(vx, uy)
∂(x, y)

∂(vx, vy)
∂(x, y)

∂(vx, wy)
∂(x, y)

∂(wx, uy)
∂(x, y)

∂(wx, vy)
∂(x, y)

∂(wx, wy)
∂(x, y)



.

This observation applies to characteristic forms in general; because these forms are
closed forms in the appropriate Euler-Lagrange complex, their highest derivative
dependencies can always be expressed in terms of Jacobian determinants.
Source forms which are locally variational must likewise exhibit similar functional

dependencies in their highest order derivatives. The Monge-Ampere equation with
source form

∆ = (uxxuyy − u2
xy) du ∧ dx ∧ dy.

typifies these dependencies.
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Because the Gauss-Bonnet Lagrangian is variational trivial, it is possible to ex-
press λGB, at least locally, as the total exterior derivative of a horizontal 1 form
η. The general techniques provided by our local theory (see §4B and §4C) can be
applied, in a straightforward and elementary fashion, to find that

λGB = dHη

where

η =
F 〈Rx, dHRx〉 −E〈Ry, dHRx〉

E
√
EG− F 2

. (0.18)

This coincides with another formula found in Struik for the Gaussian curvature and
attributed to Liouville. We now observe that the 1 form η is actually defined on all
of R and so the Gauss-Bonnet Lagrangian λGB is a trivial cohomology class in the
Euler-Lagrange complex E∗(R). In fact, because R has the same homotopy type as
SO(3), H2(E∗(R)) = 0 and hence all variational trivial Lagrangians on R are dH

exact.
This does not contradict the Gauss-Bonnet theorem because the data given to this

point, namely the bundle E : R2×R3 → R and the regularity condition defining the
open domain R ⊂ J∞(E) only models the local theory of surfaces. To capture the
global aspects of the Gauss-Bonnet theorem, we now observe that the Lagrangian
λGB is invariant under the group G consisting of

(i) the Euclidean group of motions in the fiber R3; and

(ii) the group (or properly speaking, pseudo-group) of local orientation pre-
serving diffeomorphism of the base spaceR2, that is, λGB is invariant under
coordinate transformations of the surface.

We call E∗
G(J

∞(E)) the G equivariant Euler-Lagrange complex for surfaces in R3.
Let S be any compact, oriented surface in R3. By restricting the Euler-Lagrange

complex on R to forms which are G invariant we effectively restrict our consid-
erations to forms on E∗ which, when pulled back by coordinate charts to S, will
automatically patch on overlapping coordinate charts to define global forms. The
Lagrangian λGB ∈ E2

G(R) but the form η, as defined by (0.18), does not trans-
form invariantly under change of coordinates and hence η /∈ E1

G(R). Indeed, λGB

now represents a nontrivial cohomology class in H2(E∗
G(R)) and in fact generates

H2(E∗
G(R)).

There are three other ways in which a variational bicomplex can be constructed
so as to study some property of the Gaussian curvature. To describe the first of
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these alternative ways, we fix an abstract 2 dimensional manifold M , construct
the bundle E1 : M × R3 → M and consider the open set R ⊂ J∞(E1) of jets of
immersions from M to R3. For sections φ of E1 with j∞(φ) ∈ R, we can define the
functional

I [φ] =
1
2π

∫
M

(j∞(φ))∗λ.

The Gauss-Bonnet theorem implies that I [φ] is independent of φ and depends only
on the choice of the base manifoldM . To prove this result directly, that is, to prove
that I [φ] is a deformation invariant of the immersion φ, we turn, just as in the
previous example, to the first variational formula. Let

λ = L(xi, uα, uα
i , u

α
ij) dx ∧ dy

be any second order Lagrangian on J∞(E1). The independent variables (xi) = (x, y)
are now local coordinates on M . If

φε : M → R3

is a smooth 1 parameter family of immersions, then the classical first variation
formula states that

d

dε
L(j2(φε)) =

∂uα

∂ε
Eα(L)(j∞(φε)) + [

dV i

dxi
](j∞(φε), (0.19)

where
V i =

[∂L
∂uα

i

− ∂

∂xj
(
∂L

∂uα
ij

)
]duα

dε
+

[ ∂L

∂uα
ij

]duα
j

dε
.

Since λGB has vanishing Euler-Lagrange form, this implies that

d

dε
[(j∞(φε))∗λGB] = (j∞(φε))∗(dHη) = d [(j∞(φε))∗η],

where
η = V 1 dy − V 2 dx.

Before we can integrate this equation over all of M and thereby conclude that
I[φ1] = I[φ2] we must check that the local first variational formula (0.19) holds
globally. In other words, it is necessary to verify that the 1 form η transforms prop-
erly under coordinate transforms on R to insure that (j∞(φε))∗η patches together
to define a 1 form on all of S. For second order Lagrangians, this is indeed the case
and thus I [φ] is deformation invariant of the immersion φ. However, for higher or-
der variational problems, the standard extension of (0.19) does not provide us with
a global first variational formula. This problem has been identified and resolved
by a number of authors — for us the existence of a global first variational formula
is an easy consequence of the general global theory of the variational bicomplex
developed in Chapter Five.
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Gauss’ Theorema Egregium states that the Gaussian curvature is an intrinsic
quantity, computable pointwise from the two jets of the first fundamental form gij

by the formula

K =
1

det(gij)
R1212,

where Ri
j
hk is the curvature tensor of gij . This theorem motivates the second

alternative to our original bicomplex. This time we let Q be the manifold of positive
definite quadratic forms on R2 and let E2 : R2 ×Q → R2. A section g of E2 can be
identified with a metric g(x, y) = (gij(x, y)) on R2. Lagrangians on J∞(E2) take
the form

λ = L(xh, gij, gij,h, gij,hk, . . . ) dx ∧ dy.

Let M be any compact oriented Riemannian 2 manifold with metric g. Then, on
any coordinate chart (U, (x, y)) of M , we can use g to pull λ back to a two form λ̃

on U :
λ̃ = (j∞(g))∗λ.

A condition sufficient to insure that the λ̃ will patch together to define a 2 form on
all of M is that λ be G invariant, where G is now just the group of local orientation
preserving diffeomorphisms of R2. The Gauss-Bonnet Lagrangian

λGB =
√
gR1212 dx ∧ dy

belongs to E2
G(J

∞(E)) and, once again, generates all the 2 dimensional cohomology
of the Euler-Lagrange complex.
This approach immediately generalizes to higher dimensions by letting E2 : Rn×

Q → Rn. The bundle E2 is called the bundle of Riemannian structures on Rn. The
forms on J∞(E2) which are invariant under the group of orientation-preserving
local diffeomorphisms on Rn are called natural differential forms on the bundle
of Riemannian structures. A well-known theorem of Gilkey [28 ] asserts that the
cohomology of the Euler-Lagrange complexHp(E∗

G(J
∞(E2))) is generated, for p ≤ n

by the Pontryagin forms and the Euler form. It is in this context that characteristic
forms first appear in general as cohomology classes in the variational bicomplex.
Secondary characteristic classes can be identified with the next cohomology group

Hn+1(E∗
G(J

∞(E))). At this time, this is best illustrated by an example. Let n = 3.

Then, with respect to the coordinate frame { ∂

∂xi
}, the first Chern-Simons form is

λ = (
1
2
Γj

ihΓ
i
jk,l + Γ

j
ihΓ

m
jkΓ

i
ml) dx

h ∧ dxk ∧ dxl.
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Here Γj
ih are the components of the Christoffel symbols for the metric g. This 3 form

is a second order Lagrangian on E but it is not a G invariant one. Nevertheless, its
Euler-Lagrange form

∆ = (∇kR
i
h) dgij dx

i ∧ dxh ∧ dxk,

where ∇k denotes partial covariant differentiation and Ri
h is the Ricci tensor, is

manifestly G invariant, i.e., ∆ ∈ E4
G(J

∞(E)). Because ∆ is the Euler-Lagrange
form for some Lagrangian, it satisfies the Helmholtz conditions and therfore ∆
defines a cohomology class in H4(E∗

G(J
∞(E))). The form ∆ actually determines a

nontrivial class ( meaning that it is not the Euler- Lagrange form of any natural
Lagrangian) and in fact generatesH4(E∗

G(J
∞(E))). We shall rederive and generalize

all these results in Chapter Six by computing the G equivariant cohomology of the
entire variational bicomplex on Riemannian structures.
Because the curvature tensor is defined solely in terms of the connection coeffi-

cients and their first derivatives, we can also think of the Lagrangian λGB = K dA

as a first order Lagrangian on yet another bundle; the bundle E3 of metrics g and
affine connections Γ on R2, i.e.,

λGB = LGB(gij,Γi
jh,Γ

i
jh,k) dx ∧ dy

From this viewpoint λGB is no longer variationally trivial with respect to the inde-
pendent variations of the metric and connection. Nevertheless, we shall see (Chapter
Four, Example 4.14) that

E(λGB)(j∞(g), j∞(Γ)) = 0

whenever Γ is a Riemannian connection for g. Consequently, if (g1,Γ1) and (g0,Γ0)
are two pairs of metrics and Riemannian connections, the first variational formula
can still be used to deduce that

λGB((j∞(g1), j∞(Γ1))− λGB((j∞(g0), j∞(Γ0)) = dHη, (0.20)

where η is a manifestly invariant form depending smoothly on the one jets of
g0, g1,Γ0,Γ1. Again this proves that the integral

I [g,Γ] =
∫

M

λGB(j∞(g), j∞(Γ))
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is independent of the choice of metric g and Riemannian connection Γ on the two
dimensional manifoldM . This result is not restricted to two dimensional manifolds
but applies equally well to the Euler form

λ =
√
gKn dx1 ∧ dx2 · · · ∧ dxn,

where Kn is the total curvature function of a metric g on an n dimensional manifold
M . Moreover, given a vector fieldX onM , one can define a connection Γ0 away from
the zeros of X in such a way that λ(j∞(g), j∞(Γ0)) = 0. Thus, with g0 = g1 = g

and Γ1 the Christoffel symbols of g, (0.20) reduces to√
gKn dx1 ∧ dx2 · · · ∧ dxn = dHη.

This first variational formula reproduces exactly the formula needed by Chern in
his celebrated proof of the generalized Gauss-Bonnet theorem.

Finally, we briefly mention the connection with Gelfand-Fuks cohomology. Let
E be the trivial bundle E : Rn × Rm → Rm, let R ⊂ J∞(E) be the set of jets
of immersions (i.e., maps whose Jacobian is of maximal rank) and let G be the
pseudo-group of orientation preserving local diffeomorphism of the base space Rn.
When n = 1 and m = 2, we saw that the rotation index arises as a cohomology class
in E∗(R). When n = 2 and m = 3, the cohomology of the Euler-Lagrange complex
detects the Gaussian curvature. When n = m, i.e., when R is the set of jets of local
diffeomorphisms of Rn to Rn, we shall find (Chapter Six) that the Euler-Lagrange
complex computes the Gelfand-Fuks cohomology of formal vector fields on Rn.

Example 5. Outline, to be completed after writing Chapter Seven.
We now turn to some examples of cohomology classes for variational bicomplexes

for differential equations.

• Cauchy’s Integral Theorem as a conservation law for the Cauchy-Riemman equa-
tions.

• The Godbillon-Vey form as a conservation law for the Frobenius equations

d ω ∧ ω = 0.

• Variational principles as the E2 in the spectral sequence for the variational bi-
complex and Douglas’ solution to the inverse problem for second order ODE.

This completes our introductory survey of the variational bicomplex. Additional
introductory remarks, of a more specific nature, can be found at the beginning of
each chapter.

xxix



Chapter One

VECTOR FIELDS AND FORMS ON

INFINITE JET BUNDLES

In this chapter we introduce the variational bicomplex for a fibered manifold
and we develop the requisite calculus of vector fields and differential forms on the
infinite jet bundle of such spaces. Our objectives in this regard are simply to gather
together those definitions, basic results and formulas which will be used throughout
this book and to fix our notational conventions. We pay particular attention to the
notion of generalized vector fields and the interplay between the prolongations of
these fields and the contact ideal on the infinite jet bundle.
Detailed accounts of the geometry of finite jet bundles have been provided by
numerous authors including, for example, Goldschmidt [29 ], Pommaret [59 ] and
Saunders [62 ], and accordingly we do not dwell on this subject here. However,
since infinite jet bundles are, strictly speaking, not manifolds some care is given
to the development of the calculus of vector fields and forms on these spaces. We
follow, with some modifications, the presentations of Saunders [62 ] and Takens [65 ].
The material on generalized vector fields has been adopted from the recent text by
Olver [55 ].

A. Infinite Jet Bundles. Let π : E →M be a smooth fibered manifold with total
space E of dimension n+m and base space M of dimension n. The projection map
π is a smooth surjective submersion. The fiber π−1(x) over a point x ∈ M may
change topologically as x varies over M ; for example, let E be R2 −{(1, 0)} and let
π be the projection onto the x axis. In many situations E will actually be a fiber
bundle over M but this additional structure is not needed to define the variational
bicomplex. We assume that M is connected.
We refer to the fibered manifold E locally by coordinate charts (ϕ, U) where, for

p ∈ U ⊂ E,

ϕ(p) = (x(p), u(p))

and

x(p) = (xi(p)) = (x1, x2, . . . , xn), u(p) = (uα(p)) = (u1, u2, . . . , um).

1



2 The Variational Bicomplex

These coordinates are always taken to be adapted to the fibration π in the sense
that (ϕ0, U0), where ϕ0 = ϕ ◦ π and U0 = π(U), is a chart on the base manifold M
and that the diagram

U
ϕ−−−−→ Rn×Rm

π

� �proj

U0

ϕ0−−−−→ Rn,

where proj((x, u)) = (x), commutes. Throughout this book latin indices range from
1 to n and greek indices from 1 to m unless otherwise indicated. The summation
convention, by which repeated indices are assumed to be summed, is in effect. If
(ψ, V ) is an overlapping coordinate system and ψ(p) = (y(p), v(p)), then on the
overlap U ∩ V we have the change of coordinates formula

yj = yj(xi) and vβ = vβ(xi, uα). (1.1)

If ρ : F → N is another fibered manifold, then a map φ : E → F is said to be
fiber-preserving if it is covers a map φ0 : M → N , i.e., the diagram

E
φ−−−−→ F

π

� �ρ
M

φ0−−−−→ N

commutes. Thus, the fiber over x ∈ M in E is mapped by φ into the fiber over
y = φ0(x) ∈ N in F . We shall, on occasion, consider arbitrary maps between fibered
bundles although the general theory of the variational bicomplex is to be developed
within the category of fibered manifolds and fiber-preserving maps.
Denote by πk : Jk(E) → M the fiber bundle of k-jets of local sections of E.
The fiber (πk)−1(x) of x ∈ M in Jk(E) consists of equivalence classes, denoted
by jk(s)(x), of local sections s of E at x; two local sections s1 and s2 about x
are equivalent if with respect to some adapted coordinate chart (and hence any
adapted chart) all the partial derivatives of s1 and s2 agree up to order k at x.
Each projection πlk : J

l(E)→ Jk(E), defined for l ≥ k by

πlk[j
l(s)(x)] = jk(s)(x),

is a smooth surjection and, in fact, for l = k + 1 defines J l(E) as an affine bundle
over Jk(E). This implies that for all l ≥ k, J l(E) is smoothly contractible to Jk(E).
We shall often write, simply for the sake of notational clarity,

πkE = π
k
0 and πkM = π

k
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for the projections from Jk(E) to E and M .
An adapted coordinate chart (ϕ, U) on E lifts to a coordinate chart (ϕ̃, Ũ) on

Jk(E). Here Ũ = (πkE)
−1(U) and, if s : U0 → U is the section s(x) = (xi, sα(xi)),

then the coordinates of the the point jk(s)(x) are

ϕ̃ [jk(s)(x)] = (xi, uα, uαi1 , u
α
i1i2 , . . . , u

α
i1i2···ik), (1.2)

where, for l = 0, 1, . . . , k,

uαi1i2···il =
∂ lsα

∂xi1∂xi2 · · ·∂xil (x),

and where 1 ≤ i1 ≤ i2 ≤ · · · ≤ il ≤ n. This notation becomes cumbersome
when discussing specific examples for which the dimension of E is small. For these
situations we reserve the symbols x, y, z for base coordinates and u, v, w for fiber
coordinates. We shall write ux, uy, uxx, uxy, uyy · · · for the jet coordinates.
The inverse sequence of topological spaces {Jk(E), πlk} determine an inverse limit
space J∞(E) together with projection maps

π∞
k : J

∞(E)→ Jk(E) and π∞
E : J

∞(E)→ E,

and

π∞
M : J

∞(E)→M.

The topological space J∞(E) is called the infinite jet bundle of the fibered manifold
E. A point in J∞(E) can be identified with an equivalence class of local sections
around a point x ∈M — local sections s around x define the same point j∞(s)(x)
in J∞(E) if they have the same Taylor coefficients to all orders at x. A basis for
the inverse limit topology on J∞(E) consists of all sets W̃ = (π∞

k )
−1(W ) , where

W is any open set in Jk(E) and k = 0, 1, 2, . . . .
If σ is a point in J∞(E), it will be convenient to write

σk = π∞
k (σ)

for its projection into Jk(E).
The notion of a smooth function on the infinite jet bundle must be defined. Let

P be any manifold and let C∞(Jk(E), P ) be the set of smooth maps from Jk(E)
to P . For l ≥ k, there are the obvious connecting maps

π̃lk : C
∞(Jk(E), P )→ C∞(J l(E), P )
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which define the direct sequence {C∞(Jk(E), P ), π̃lk}. The set of smooth functions
from J∞(E) to P is then defined to be the direct limit of this sequence and is
denoted by C∞(J∞(E), P ). If f ∈ C∞(J∞(E), P ) then, by definition of the direct
limit, f must factor through a smooth map f̂ from Jk(E) to P for some k, i.e.,

f = f̂ ◦ π∞
k . (1.3)

We call k the order of f . If f is of order k, then it also of any order greater than k.
In particular, the projection maps π∞

k are themselves smooth functions of order k.
If U is a coordinate chart on E and the restriction of f to J∞(U) factors through
J l(U) then we say that f has order l on U . We remark that if W is an open set
in P , then f−1(W ) = (π∞

k )
−1(f̂−1(W )) is an open set in J∞(E). Therefore all

smooth functions on J∞(E) are continuous. This conclusion would be false had we
enlarged the class of smooth functions to include those of locally finite order.
We let C∞(J∞(E)) denote the set of smooth, real-valued functions on J∞(E).
If f is a smooth, real-valued function on J∞(E) which is represented by a smooth
function f̂ on Jk(E), then on each coordinate neighborhood (π∞

E )
−1(U) and for

each point σ = j∞(s)(x) ∈ (π∞
E )

−1(U) with k-jet coordinates given by (1.2),

f(σ) = f̂(xi, uα, uαi1 , u
α
i1i2

, . . . , uαi1i2···ik). (1.4)

As a matter of notational convenience, we shall often use square brackets, for ex-
ample, f = f [x, u], to indicate that the function f is a function on the infinite
jet bundle over U . Here the order of f is finite but unspecified. To indicate that
a function f is a function of order k, i.e., a function on Jk(U), we shall write
f = f [x, u(k)].
Unless it is necessary to do so, we shall not distinguish between a function on

J∞(E) and its representatives on finite dimensional jet bundles.
A map f : P → J∞(E) is said to be smooth if for any manifold Q and any smooth
map g : J∞(E)→ Q, the composition g ◦f from P to Q is a smooth map. Likewise,
if ρ : F → N is another fibered manifold we declare that a map Φ: J∞(E)→ J∞(F )
is smooth if for every smooth map g : J∞(F )→ Q the composition g◦Φ from J∞(E)
to Q is smooth. The following proposition furnishes us with representations of these
maps by smooth maps on finite jet bundles.

Proposition 1.1. (i) If f : P → J∞(E) is a smooth map, then for each k =
0, 1, 2, . . . maps fk : P → Jk(E) defined by

fk = π∞
k ◦ f (1.5)
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are smooth. Conversely, given a sequence of smooth maps fk : P → Jk(E) such
that fk = πlk ◦ fl for all l ≥ k, there exists a unique smooth map f from P to

J∞(E) satisfying (1.5).

(ii) If Φ: J∞(E) → J∞(F ) is a smooth map, then for each k = 0, 1, 2, . . . there
exists an integer mk with ml ≥ mk whenever l ≥ k and smooth maps

Φmk

k : J
mk(E)→ Jk(F ) (1.6)

satisfying

ρ∞k ◦ Φ = Φmk

k ◦ π∞
mk
. (1.7)

Conversely, given a sequence of smooth maps (1.6) such that

ρlk ◦ Φml

l = Φ
mk

k ◦ πml
mk

(1.8)

for all l ≥ k, there exists a unique smooth map Φ from J∞(E) to J∞(F ) satisfying
(1.7).

Proof: These statements are direct consequences of the definitions. To prove (ii),
observe that for each k = 0, 1, 2, . . . the map ρ∞k ◦ Φ from J∞(E) to Jk(F ) is
required to be smooth and therefore must factor through Jmk(E) for some mk.
With no loss in generality it can be assumed that the order mk of ρ∞k ◦ Φ is an
increasing function of k.

A smooth map Φ from J∞(E) to J∞(F ) described by a sequence of maps (1.6)
is said to be of type (m0, m1, m2, . . . ). We emphasize that a smooth map Φ from
J∞(E) to J∞(F ) need not factor through Jk(E) for any k. Indeed, such a restriction
would preclude the identity map on J∞(E) from being smooth.
A map Φ : J∞(E) → J∞(F ) called projectable if it is covers maps from Jk(E)
to Jk(F ) for each k, i.e.,

J∞(E)
Φ−−−−→ J∞(F )

π∞
k

� �ρ∞k
Jk(E)

Φk−−−−→ Jk(F ).

Such a map is of type (0, 1, 2, . . . ).
Although the fibered manifold π : E → M may not admit any global sections,
the bundle π∞

E : J
∞(E) → E always admits global sections. These can be readily

constructed using partitions of unity.
An important class of smooth maps from J∞(E) to J∞(F ) are those which arise
as the prolongation of maps from E to F .
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Definition 1.2. Let φ be a map from E to F which covers a local diffeomorphism

φ0. Then the infinite prolongation of φ is the map

prφ : J∞(E)→ J∞(F )

defined by

prφ
(
j∞(s)(x)

)
= [j∞(φ ◦ s ◦ φ−1

0 )]
(
φ0(x)

)
, (1.9)

where s is a local section of E defined on a neighborhood of x on which φ0 is a

diffeomorphism.

The prolongation of φ is a smooth, projectable map. Moreover, if φ is a diffeo-
morphism, then so is prφ.

B. Vector Fields and Generalized Vector Fields. The tangent bundle to the
infinite jet bundle J∞(E) can be defined in various (equivalent) ways. One pos-
sibility is to consider the inverse system of tangent bundles T (Jk(E)) with the
projections (πlk)∗ from T (J l(E)) to T (Jk(E)) for all l ≥ k as connecting maps and
to designate T (J∞(E)) as the inverse limit of these vector bundles. In this way
T (J∞(E)) inherits the structure of a topological vector bundle over J∞(E). Al-
ternatively, the tangent space Tσ(J∞(E)) at a point σ ∈ J∞(E) may be defined
directly as the vector space of real-valued R linear derivations on J∞(E). The
tangent bundle T (J∞(E)) can then be constructed from the union of all individual
tangent spaces Tσ(J∞(E)) in the usual fashion. These two approaches are equiv-
alent. Indeed, a derivation Xσ on J∞(E) at the point σ determines a sequence
of derivations Xk,σk to T (Jk(E)) at σk = π∞

k (σ) — if f is a smooth function on
Jk(E), then

Xk,σk(f) = Xσ(f ◦ π∞
k ). (1.10)

These derivations satisfy
(πlk)∗Xl,σl = Xk,σk (1.11)

for all l ≥ k and therefore define a tangent vector in the inverse limit space
T (J∞(E)) at σ. Conversely, every sequence of vectors Xk,σk ∈ Tσk(J∞(E)) satis-
fying (1.11) defines a derivation Xσ on J∞(E) at σ — if f is a function on J∞(E)
which is represented by a function f̂ on Jk(E), then

Xσ(f) = Xk,σk(f̂).

The projection property (1.11) ensures that this is a well-defined derivation, inde-
pendent of the choice of representative f̂ of f .
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If Φ: J∞(E)→ J∞(F ) is a smooth map, then the Jacobian

Φ∗ : T (J∞(E))→ T (J∞(F ))

is defined in the customary manner, viz., if Xσ is a tangent vector to J∞(E) at the
point σ, then for any smooth function f on J∞(F )

(Φ∗Xσ)(f) = Xσ(f ◦ Φ).

If Xσ is represented by the sequence of vectors Xk at σk for k = 0, 1, 2, . . . and Φ
is represented, in accordance with Proposition 1.1, by functions Φmk

k then Φ∗(Xσ)
is represented by the sequence of vectors (Φmk

k )∗(Xmk
).

A vector field X on J∞(E) is defined to be a C∞(J∞(E)) valued, R-linear deriva-
tion on C∞(J∞(E)). Thus, for any real-valued function f on J∞(E), X(f) is a
smooth function on J∞(E) and must therefore be of some finite order. Although the
order of the function X(f) may exceed that of f , the order of X(f) is nevertheless
bounded for all functions f of a given order.

Proposition 1.3. LetX be a vector field on J∞(E). Then for each k = 0, 1, 2, . . . ,
there exists an integer mk such that for all functions f of order k, the order of X(f)
does not exceed mk.

Proof: The case k = 0 and E compact is easily treated. For k = 0 and E non-
compact or for k > 0, we argue by contradiction. First, pick a sequence of points
pi, i = 1, 2, 3, . . . in Jk(E) with no accumulation points. Let Ui be a collection of
disjoint open sets in Jk(E) containing pi. Let φi be smooth functions on Jk(E)
which are 1 on a neighborhood of pi and have support inside of Ui.
Now suppose, contrary to the conclusion of the proposition, that there are func-
tions fi on Jk(E) for i = 1, 2, 3, . . . such that the order of X(fi) exceeds i. We can
assume that the order of X(fi) exceeds i in a neighborhood of a point p̃i, where
p̃i ∈ (π∞

k )
−1(pi). If this is not the case, if the maximum order of X(fi) is realized

about a point q̃i /∈ (π∞
k )

−1(pi), then we can simply redefine fi to be the composition
of fi with any diffeomorphism of Jk(E) which carries pi to the point qi = π∞

k (q̃i).
Define f =

∑
i φifi. Then f is a smooth function on J

k(E) but X(f) is not a
smooth function on J∞(E) since it is not of global finite order. This contradiction
proves the lemma.

We say that a vector field X on J∞(E) is of type (m0, m1, m2, . . . ) if for all
functions f of order k the order of X(f) is mk. With no loss in generality, we shall
suppose the sequence mk increases with k. A vector field on J∞(E) is projectable
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if it projects under π∞
k to a vector field on J

k(E) for each k. Projectable vector
fields are of type (0, 1, 2, . . . ).
With respect to our induced local coordinates on J∞(U), a vector field X takes
the form

X = ai
∂

∂xi
+ bα

∂

∂uα
+

∞∑
p=1

[ ∑
1≤i1≤i2≤···≤ip≤n

bαi1i2···ip
∂

∂uαi1i2···ip

]
. (1.12)

The components ai, bα and bαi1i2···ip are all smooth functions on J
∞(U). If f is

a smooth function on J∞(U), then f is of finite order and so X(f) involves only
finitely many terms from (1.12). The vector field X is projectable if the ai and
bα are smooth functions on U and the bαi1i2···ik are smooth functions on J

k(U),
k = 1, 2, . . . .
The sets of sections of T (Jk(E)) for k = 0, 1, 2, . . . do not constitute an inverse
system (since it is not possible to project an arbitrary vector field on J l(E) to one
on Jk(E) for k < l) and, for this reason, it is not possible to represent a given vector
field on the infinite jet bundle by a sequence of vector fields on finite dimensional
jet bundles. To circumvent this problem we introduce the notion of generalized
vector fields. Generalized vector fields first appeared as generalized or higher order
symmetries of the KdV equation. They play a central role in both the theory and
applications of the variational bicomplex. First recall that if P and Q are finite
dimensional manifolds and φ : P → Q is a smooth map, then a vector field along φ
is a smooth map Z : P → T (Q) such that for all p ∈ P , Z(p) is a tangent vector to
Q at the point φ(p).

Definition 1.4. A generalized vector field Z on Jk(E) is a vector field along the

projection π∞
k , i.e., Z is a smooth map

Z : J∞(E)→ T (Jk(E))

such that for all σ ∈ J∞(E), Z(σ) ∈ Tσk(Jk(E)).
Similarly, a generalized vector field Z on M is a vector field along the projection

π∞
M , i.e., Z is a smooth map

Z : J∞(E)→ T (M)

such that for all σ = j∞(s)(x), Z(σ) ∈ Tx(M).

Since a generalized vector field Z on Jk(E) is a smooth map from the infinite
jet bundle to a finite dimensional manifold, it must factor through Jm(E) for some
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m ≥ k. Thus there is a vector field Ẑ along πmk , i.e., a map

Ẑ : Jm(E)→ T (Jk(E))
such that

Z = Ẑ ◦ π∞
m .

We call m the order of the generalized vector field Z. If f is a function on Jk(E),
then Z(f) is the smooth function on J∞(E) defined by

Z(f)(σ) = Ẑ(σm)(f).

The order of the function Z(f) is m. Note that a generalized vector field on Jk(E)
of order k is simply a vector field on Jk(E).
Generalized vector fields are projectable. If Z is a generalized vector field on

J l(E), then for k ≤ l the map Z : J∞(E)→ T (Jk(E)) defined by

Z(σ) = (πlk)∗(σ
l)[Z(σ)]

is a generalized vector field on Jk(E). We write (πlk)∗(Z) for Z.

Proposition 1.5. Let X be a vector field on J∞(E) of type (m0, m1, m2, . . . ).
Then there exist generalized vector fields Xk on J

k(E) of order mk such that

(πlk)∗(Xl) = Xk (1.13)

and, for all functions f of order k,

X(f)(σ) = Xk(σ)(f). (1.14)

Conversely, given a sequence of generalized vector fields Xk on Jk(E) satisfying
(1.13), there exists a unique vector field X on J∞(E) satisfying (1.14).

Proof: Given X , simply define the generalized vector fields Xk by Xk(σ) =
(π∞
k )∗(σ)(Xσ).

We remark that if the vector field X on J∞(E) is given locally by (1.12), then
the associated generalized vector fields Xk on Jk(E) are given by truncating the
infinite sum on p in (1.12) at p = k.
The Lie bracket of two vector fields X and Y on J∞(E) is the vector field [X, Y ]
given by

[X, Y ](f) = X
(
Y (f)

) − Y
(
X(f)

)
.

If X is of type (m0, m1, m2, . . . ) and Y is of type (n0, n1, n2, . . . ), then [X, Y ] is of
type (t0, t1, t2, . . . ), where tk = max{mnk

, nmk
}. In fact, the projection of [X, Y ] to

Jk(E) is the generalized vector field [X, Y ]k on Jk(E) given by

[X, Y ]k(σ)(f) = Xnk
(σ)

(
Yk(f)

)− Ymk
(σ)

(
Xk(f)

)
,

where f is any function on Jk(E). If X and Y are projectable, then [X, Y ] is
projectable and [X, Y ]k = [Xk, Yk].
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This is a convenient point at which to fix our multi-index notation. For arbi-
trary, unordered values of the k-tuple I = i1i2 · · · ik, let {i1i2 · · · ik} denote the
rearrangement of these indices in non-decreasing order. Set

uαI = u
α
i1i2···ik = u

α
{i1i2···k}.

With this convention uαI is symmetric in the individual indices i1i2 · · · ik which make
up the multi-index I. The length k of the multi-index I is denoted by |I|. Next, let
lj be the number of occurrences of the integer j amongst the i1i2 · · · ik and define
the symmetric partial derivative operator ∂ Iα by

∂ Iα = ∂
i1i2···ik
α =

l1! l2! · · · ln!
k!

∂

∂uα{i1i2···ik}
. (1.15)

For J = j1j2 · · · jk it is easily seen that

∂ Iα(u
β
J ) = δ

β
αδ
I
J ,

where

δIJ = δ
(i1
j1
δi2j2

···δik)
jk

and (i1i2 . . . ik) denotes symmetrization on the enclosed indices, e.g.,

δ
(i
jδ
h)
k =

1
2
[δijδ

h
k + δ

h
j δ
i
k].

Thus we have that

∂uxx
∂uxx

= 1 and
∂uxy
∂uxy

= 1

whereas

∂ xxu uxx = 1 and ∂ xyu uxy =
1
2
.

As an illustration of this notation, suppose that f is a smooth function on J∞(U)
which is homogeneous in the fiber variables of degree p, i.e., for all λ ≥ 0

f(xi, λuα, λuαi , λu
α
ij, . . . ) = λ

pf [x, u].
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Then Euler’s equation for homogenous functions can be expressed in terms of these
symmetrized partial derivatives as

∞∑
|I|=0

(∂ Iαf) u
α
I = pf [x, u],

where, as usual, the summation convention applies to each individual index i1i2 . . . ik
in the repeated multi-index I. The numerical factors introduced in (1.15) compen-
sate precisely for all the repeated terms that occur in these sums.
This multi-index notation differs from that which is commonly encountered in
the literature but it is well suited to our purposes. It ensures that the operator ∂ Iα
is completely symmetric in its upper indices i1i2 · · · ik and this, in turn, simplifies
many of the formulas in our variational calculus. It eliminates the need to order
the sums which occur in formulas such as (1.12). Indeed, we can now rewrite this
equation as

X = ai
∂

∂xi
+

∞∑
|I|=0

bαI ∂
I
α,

where the coefficients bαI are taken to be symmetric in the indices of I. Finally, this
notation eliminates the presence of many unwieldy multi-nomial coefficients which
would otherwise explicitly occur. Note that, with these conventions in effect,

X(uβJ) = bβJ .

In general, our multi-index notation is restricted to quantities which are totally
symmetric in the individual indices represented by the multi-indices. For example,
if I = rst and J = hk, then

aIJ = arst hk

may be assumed to be symmetric in the indices rst and hk. The one exception to
this rule arises when we write

dxi1 ∧ dxi2 ∧ · · · ∧ dxik = dxI .

In this case the multi-index I is skew-symmetric in the indices i1i2 . . . ik.

C. Differential Forms and the Variational Bicomplex. The pth exterior prod-
uct bundles Λp(Jk(E)) together with the pullback maps

(πlk)
∗ : Λp(Jk(E))→ Λp((J l(E)),
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defined for all l ≥ k ≥ 0, form a direct system of vector bundles whose direct
limit is designated as the pth exterior product bundle Λp(J∞(E)) of J∞(E). Let
σ ∈ J∞(E). Then each ω ∈ Λpσ(J∞(E)) admits a representative ω̂ ∈ Λp

σk(Jk(E)) for
some k = 0, 1, 2, . . . and ω = (π∞

k )
∗ω̂. We call k the order of ω. If X1, X2, . . . , Xp

are tangent vectors to J∞(E) at σ then, by definition,

ω(X1, X2, . . . , Xp) = ω̂
(
(π∞
k )∗X

1, (π∞
k )∗X

2, . . . , (π∞
k )∗X

p
)
.

Observe that this is well-defined, that is independent of the choice of representative
ω̂ of ω. Evidently, if ω is of order k and one of the vector fields X1, X2, . . . , Xp is
π∞
k vertical, then ω(X

1, X2, . . . , Xp) = 0.
A section of Λp(Jk(E)) is a differential p-form on Jk(E). We denote the vector
space of all differential forms on Jk(E) by Ωp(Jk(E)). These spaces of differential
p forms also constitute a direct limit system whose direct limit is the vector space
of all differential p forms on J∞(E) and is denoted by Ωp(J∞(E)). Again, every
smooth differential p form ω on J∞(E) is represented by a p form ω̂ on Jk(E) for
some k. In local coordinates (x, u, U) a p-form ω on J∞(U) is therefore a finite sum
of terms of the type

A[x, u] duα1
I1

∧ duα2
I2

∧ · · · ∧ duαa

Ia
∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxib , (1.16)

where a + b = p and where the coefficient A is a smooth function on J∞(U). The
order of the term (1.16) is the maximum of the orders of the coefficient function
A[x, u] the differentials duαIl

. For example, the form uxxdux ∧ dx is of order 2 and
uxduxxx ∧ dx is of order 3.
If ω̂ is a p-form on Jk(E) and X1, X2, . . . , Xp are generalized vector fields on

Jk(E) of type m1, m2, . . . , mp respectively, then the function ω̂(X1, X2, . . . , Xp)
is a smooth function on J∞(E) the order of which is equal to the maximum of
m1, m2, . . . , mp. If ω is a differential form on J∞(E) which is represented by a
form ω̂ on Jk(E) and X1, X2, . . . , Xp are vector fields on J∞(E) represented by
sequences of generalized vector fields {X1

l }, {X2
l }, . . . , {Xp

l } for l = 0, 1, 2, . . . ,
then

ω(X1, X2, . . . , Xp) = ω̂(X1
k , X

2
k , . . . , X

p
k).

With these definitions in hand, much of the standard calculus of differential forms
on finite dimensional manifolds readily extends to the infinite jet bundle. Let ω be a
differential p form on J∞(E) which is represented by the form ω̂ on Jk(E). If X is a
vector field of type (m0, m1, m2, . . . ) on J∞(E) which is represented by the sequence
of generalized vector fields Xk on Jk(E), then X ω is the p − 1 form on J∞(E)
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represented by the form Xk (πmk

k )
∗(ω) on Jmk(E). Hence, X ω is a differential

form of order mk. If Φ: J∞(E) → J∞(F ) is a smooth map represented by the
sequence of maps Φmk

k : J
mk(E) → Jk(F ) and ω is a form on J∞(F ) represented

by a form ω̂ on Jk(F ), then the pullback form Φ∗(ω) is represented by the form
(Φmk

k )
∗(ω̂) of order mk Exterior differentiation

d : Ωp(J∞(E))→ Ωp+1(J∞(E))

is similarly defined via representatives — if ω is a p form on J∞(E) represented
by ω̂ on Jk(E), then d ω is the p + 1 form on J∞(E) represented by d ω̂. In local
coordinates, the differential df of a function of order k is given by

d f =
∂f

∂xi
dxi + (∂αf) duα + (∂ iαf) du

α
i + · · ·+ (∂ i1i2...ik

α f) duαi1i2...ik

=
∂f

∂xi
dxi +

k∑
|I|=0

(∂ Iαf) du
α
I .

(1.17)

When the order of f is unspecified, we simply extend the summation in (1.17) from
|I| = k to |I| =∞ and bear in mind that sum is indeed a finite one.
Let X and Y be vector fields on J∞(E) and suppose that ω is a one form.
It follows from the above definitions and the invariant definition of the exterior
derivative d on finite dimensional manifolds, that

(d f)(X) = X(f),

(d ω)(X, Y ) = X
(
ω(Y )

) − Y
(
ω(X)

)− ω
(
[X, Y ]

)
,

and so on.
Lie differentiation of differential forms on the infinite jet bundle is exceptional in
this regard. This is due to the fact that for an arbitrary vector field X on J∞(E),
there is no general existence theorem for the integral curves of X and hence even
the short-time flow of X may not be defined. However, when X is a projectable
vector field on J∞(E), then the flow of each projection Xk is a well-defined local
diffeomorphism φk(t) on Jk(E) for each k. If ω is represented by the form ω̂ on
Jk(E), define

[LX(ω)](σ) = [LXk
ω̂](σk) =

[ d
dt
[(φk(t))∗(ω̂)](σ)

]∣∣
t=0

.



14 The Variational Bicomplex

From this definition, it can be proved that for vector fields X1, X2, . . . , Xp,

LX ω(X1,X2, . . . , Xp) (1.18)

= X
(
ω(X1, X2, . . . , Xp)

)
+

p∑
i=1

(−1)i+1ω([X,Xi], X1, . . . , X̂i, . . . , Xp).

For a non-projectable vector field X the right-hand side of this equation is still
a well-defined derivation on Ωp(J∞(E)) and so, for such vector fields, we simply
adopt (1.18) as the definition of Lie differentiation.
From (1.18) and the previous formula for the exterior derivative d, it follows in
the customary manner that

LXω = d (X ω) +X dω. (1.19)

Henceforth we shall not, as a general rule, distinguish between a differential form
on J∞(E) and its representatives on finite dimensional jet bundles.
Now let Ω∗(J∞(E)) be the full exterior algebra of differential forms on J∞(E).
The contact ideal C(J∞(E)) is the ideal in Ω∗(J∞(E)) of forms ω such that for all
σ ∈ J∞(E) and local sections s of E around σ0 = π∞

E (σ),

[j∞(s)]∗(x)ω(σ) = 0.

If ω ∈ C, then d ω ∈ C so that C is actually a differential ideal.
A local basis for C is provided by the contact one forms

θαI = du
α
I − uαIj dx

j ,

where |I| = 0, 1, 2, . . . . We call |I| the order of the contact form θαI even though
this form is defined on the (|I|+1)-st jet bundle over U . For example, with respect
to the coordinates (x, y, u) on R3 → R2 the contact one forms of order zero and
one are θ = du− uxdx− uydy and

θx = dux − uxxdx− uxydy and θy = duy − uxydx− uyydy.

If π : U → U0 is a local coordinate neighborhood for E and Ξ: U0 → J∞(U)
satisfies

Ξ∗(ω) = 0

for all ω ∈ C, then there exists a local section s : U0 → U such that

Ξ(x) = j∞(s)(x)

for all x ∈ U0.
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Proposition 1.6. Let π : E → M and ρ : F → N be two fibered manifolds and

let φ : E → F be a smooth map which covers a local diffeomorphism φ0 : M → N .

(i) The prolongation of φ, prφ : J∞(E) → J∞(F ) preserves the ideal of contact
forms, i.e.,

[prφ]∗C(J∞(F )) ⊂ C(J∞(E)).

(ii) Let Φ: J∞(E)→ J∞(F ) be a smooth map which covers φ. If Φ preserves the

contact ideal, then Φ = prφ.

Proof: To prove (i), let ω ∈ C(J∞(F )) and let η = [prφ]∗(ω). We show that
η ∈ C(J∞(E)). Let σ = j∞(s)(x) be a point in J∞(E), where s is a local section
of E around x and let s̃ = φ ◦ s ◦ φ−1

0 be the induced local section of F around the
point y = φ0(x). Let σ̃ = j∞(s̃)(y). The definition (1.9) of prφ implies that

prφ ◦ j∞(s) = j∞(s̃) ◦ φ0.

The chain rule now gives

[j∞(s)]∗(x) η(σ) = [j∞(s)]∗(x)
(
[prφ]∗(σ)ω(σ̃)

)
= [prφ ◦ j∞(s)]∗(x) [ω(σ̃)]
= [j∞(s̃) ◦ φ0]∗(x) [ω(σ̃)]

= φ∗0(x)
(
[j∞(s̃)]∗(y)ω(σ̃)

)
.

This last expression vanishes since ω lies in the contact ideal of J∞(F ). Therefore
η belongs to the contact ideal of J∞(E).
To prove (ii), let π : U → U0 and ρ : V → V0 be coordinate neighborhoods on E
and F such that φ0 : U0 → V0 is a diffeomorphism. Let s : U0 → U be any local
section and let Ξ: V0 → J∞(V ) be defined by

Ξ(y) = (Φ ◦ j∞(s) ◦ φ−1
0 )(y).

Because Φ is assumed to preserve the contact ideal, Ξ∗(ω) = 0 for any ω ∈
C(J∞(F )). This implies that there is a section s̄ : V0 → V such that Ξ(y) = j∞(s̄)(y)
for all y ∈ V0, i.e.,

Φ ◦ j∞(s) ◦ φ−1
0 = j∞(s̄).

Since Φ covers φ, it follows immediately that s̄ = φ ◦ s ◦ φ−1
0 and hence Φ = prφ,

as required.
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One forms in C are said to be vertical one forms on J∞(E). More generally, let
Cs be the sth wedge product of C in Ω∗, i.e., ω ∈ Cs if and only if it is a sum of
terms of the form

α1 ∧ α2 ∧ · · · ∧ αs ∧ η,
where each α1, α2, . . . , αs ∈ C and η ∈ Ω∗. Set, for s = 0, 1, . . . , p+ 1,

Ωs,pV = Cs ∩ Ωp.

Then every form in Ωs,pV consists of terms containing at least s contact one forms.
There are clearly inclusions

Ωp = Ω0,p
V ⊃ Ω1,p

V ⊃ · · · ⊃ Ωp,pV ⊃ Ωp+1,p
V = 0

and, because C is a differential ideal,

dΩs,pV ⊂ Ωs,p+1
V . (1.20)

Let ω be a p form on J∞(E). Then ω is said to be horizontal if at each point σ ∈
J∞(E) and for each π∞

M vertical tangent vector Y ∈ Tσ(J∞(E)), i.e., (π∞
M )∗(Y ) = 0,

Y ω(σ) = 0.

More generally, fix 0 ≤ r ≤ p + 1 and let let s = p − r. Define Ωr,pH to be the
subspace of Ωp of forms ω such that for all points σ ∈ J∞(E)

ω(X1, X2, . . . , Xp) = 0,

whenever at least s + 1 of the tangent vectors to J∞(E) at σ are π∞
M vertical. A

local section of Ωr,pH is a sum of terms of the form (1.16) provided b ≥ r — i.e., there
are at least r horizontal differentials dx in each term of ω. There are the obvious
inclusions

Ωp = Ω0,p
H ⊃ Ω1,p

H ⊃ · · · ⊃ Ωp,pH ⊃ Ωp+1,p
H = 0

and

dΩr,pH ⊂ Ωr,p+1
H . (1.21)

Definition 1.7. The space Ωr,s(J∞(E)) of type (r, s) differential forms on J∞(E)
is defined to be the intersection

Ωr,s(J∞(E)) = Ωr,pH (J
∞(E)) ∩ Ωs,pV (J∞(E)),
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where r+s = p. The horizontal degree of a form in Ωr,s is r and the vertical degree

is s.

A p form belongs to Ωr,s(J∞(E)) if and only if it is locally a sum of terms of the
form

A[x, u] θα1
I1

∧ θα2
I2

∧ · · · ∧ θαs

Is
∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxir .

For example, if α, β and γ are forms of order k and type (r, 0), (r, 1) and (r, 2)
respectively then with respect to our local coordinates on J∞(U),

α = Aj1j2···jr [x, u
(k)] dxj1 ∧ dj2 · · · ∧ dxjr ,

β =
k∑

|I|=0

AIα j1j2···jr [x, u
(k)] θαI ∧ dxj1 ∧ dxj2 · · · ∧ dxjr ,

γ =
k∑

|I|,|J|=0

AIJαβ j1j2···jr [x, u
(k)] θαI ∧ θβJ ∧ dxj1 ∧ dxj2 · · · ∧ djr .

In particular, a form λ ∈ Ωn,0(J∞(U)) assumes the form

λ = L[x, u] ν,

where ν = dx1 ∧ dx2 ∧ · · ·dxn. Hence each element of Ωn,0(J∞(E)) defines a
Lagrangian for a variational problem on E. The fundamental integral or action
for this variational problem is the functional I[s], defined on compactly supported
sections s of E by

I[s] =
∫
M

[j∞(s)]∗(λ).

Observe that
Ωr,s = 0 if r ≥ n.

Let ΩrM denote the space of r forms on M . The projection π
∞
M : J

∞(E) → M

induces inclusions
(π∞
M )

∗ : ΩrM → Ωr,0.
It follows easily from the definitions that

Ωp(J∞(E)) =
⊕
r+s=p

Ωr,s(J∞(E)).
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We denote the projection map to each summand by

πr,s : Ωp(J∞(E))→ Ωr,s(J∞(E)). (1.22)

If ω ∈ Ωp is given by a sum of terms of the form (1.16), then the projection πr,s(ω)
can be computed by first substituting

duαI = θ
α
I + u

α
Ijdx

j (1.23)

and then collecting together those terms of horizontal degree r and vertical degree
s.
Owing to (1.20) and (1.21), it follows that the exterior derivative d on J∞(E),
when restricted to Ωr,s, maps into Ωr+1,s ⊕ Ωr,s+1. Thus d splits into horizontal
and vertical components

d = dH + dV ,

where

dH : Ω
r,s(J∞(E)) −→ Ωr+1,s(J∞(E))

and

dV : Ωr,s(J∞(E)) −→ Ωr,s+1(J∞(E)).

Specifically, for functions f on J∞(U) of order k, the substitution of (1.23) into
(1.17) leads to

d f =
∂f

∂xi
dxi + (∂αf) duα + (∂ iαf) du

α
i + · · ·

= [
∂f

∂xi
+ (∂αf)uαi + (∂

j
αf)u

α
ij + · · · ] dxi+

+ [(∂αf) θα(∂ iαf) θ
α
i + (∂

ij
α f) θ

α
ij + · · · ].

The terms in brackets are of type (1, 0) and (0, 1) respectively and therefore define
dHf and dV f , i.e.,

dHf = [
∂f

∂xi
+ (∂αf)uαi + (∂

j
αf)u

α
ij + · · · ] dxi

and
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dV f = (∂αf) θ
α + (∂ iαf) θ

α
i + (∂

ij
α f) θ

α
ij + · · ·

=
k∑

|I|=0

(∂ Iαf) θ
α
I .

The dxj component of the horizontal one form dHf is the total derivative of f
with respect to xj and is denoted by Djf :

Djf =
∂f

∂xj
+ (∂αf)uαj + (∂

h
αf)u

α
hj + (∂

hk
α f)uαhkj + · · ·

=
∂f

∂xj
+

k∑
|I|=0

(∂ Iαf)u
α
Ij .

(1.24)

For example, on R3 → R2 with coordinates (x, y, u)

Dxu
2 = 2uux and Dxyu

2 = 2uxuy + 2uuxy.

Note that total differentiation agrees with ordinary partial differentiation on the
jets of local sections s of E, i.e.,

[(Djf)](j∞(s)) =
∂

∂xj
[f(j∞(s))].

Note also that if f is a function of order k, then Djf is of order k + 1.
Since d (dxi) = 0, we have that

dH(dx
i) = 0 and dV (dx

i) = 0.

Likewise, because
d θαI = −duαIj ∧ dxj = −θαIj ∧ dxj ,

we can conclude that

dHθ
α
I = −θαIj ∧ dxj and dV θ

α
I = 0.

Of course, d2 = 0 implies that

d2
H = d

2
V = 0 and dHdV = −dV dH .

These formulas, together with the formula for dHf show that if ω is of order k, then
the order of dHω in general increases to order k + 1.
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Definition 1.8. The variational bicomplex for the fibered manifold π : E → M

is the double complex (Ω∗,∗(J∞(E)), dH, dV ) of differential forms on the infinite jet

bundle J∞(E) of E:

�dV

�dV

0 −−−→ Ω0,3 · · · Ωn,3�dV

� � � �dV

0 −−−→ Ω0,2
dH−−−→ Ω1,2

dH−−−→ Ω2,2
dH−−−→ · · · Ωn−1,2

dH−−−→ Ωn,2�dV

�dV

�dV

�dV

�dV

0 −−−→ Ω0,1
dH−−−→ Ω1,1

dH−−−→ Ω2,1
dH−−−→ · · · Ωn−1,1

dH−−−→ Ωn,1�dV

�dV

�dV

�dV

�dV

0 −−−→ R −−−→ Ω0,0
dH−−−→ Ω1,0

dH−−−→ Ω2,0
dH−−−→ · · · Ωn−1,0

dH−−−→ Ωn,0

(1.25)

To (1.25) we append the de Rham complex of M , viz.,

0 −−−→ R −−−→ Ω0,0
dH−−−→ Ω1,0

dH−−−→ Ω2,0
dH−−−→ · · · Ωn−1,0

dH−−−→ Ωn,0�(π∞
M )∗

�(π∞
M )∗

�(π∞
M )∗

�(π∞
M )∗

�(π∞
M )∗

0 −−−→ R −−−→ Ω0
M

d−−−→ Ω1
M

d−−−→ Ω2
M

d−−−→ · · · Ωn−1
M

d−−−→ ΩnM

However, in general, this will not be done explicitly.
We record the following elementary fact.

Proposition 1.9. Let ω ∈ Ωr,0(J∞(E)). Then dV ω = 0 if and only if ω is the

pullback, by π∞
M , of an r form on M .

Proof: It suffices to prove this proposition locally since the global result then
follows by an elementary partition of unity argument. Let U be a coordinate chart
on E and let

ω = AJ [x, u(k)] dxJ
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on J∞(U). Then
dV ω =

k∑
|I|=0

(∂ IαAJ) θ
α
I ∧ dxJ

and this vanishes if and only if all the coefficients AJ of ω are functions of the base
variables xi alone

All forms in Ωn,s are obviously dH closed but they are not, in general, dH exact
(even locally). One can then introduce the cohomology vector spaces

En,s1 (J
∞(E)) = Ωn,s(J∞(E))/dH{Ωn−1,s(J∞(E))}.

These spaces are part of the so-called E1 term of the spectral sequence for the
variational bicomplex (1.25) and they play a central role in development of the
subject. A slightly different approach will be adopted here. In the next chapter we
shall introduce the interior Euler operator

I : Ωn,s(J∞(E))→ Ωn,s(J∞(E)) for s ≥ 1

which is defined in local coordinates by

I(ω) =
1
s
θα ∧ [

∞∑
|I|=0

(−D)I [∂Iα ω].

This operator satisfies I ◦ dH = 0 and is a projection operator in the sense that
I2 = I. We set

Fs(J∞(E)) = I(Ωn,s(J∞(E))) = {ω ∈ Ωn,s | I(ω) = ω }.

For instance, it is not difficult to see that F1(J∞(E)) consists of those type (n, 1)
which are locally of the form

ω = Pα[x, u] θα ∧ ν.

For reasons to presented in Chapter 3, we call Fs(J∞(E)) the space of type s
functional forms on J∞(E). The induced vertical differential

δV : Fs(J∞(E))→ Fs+1(J∞(E))
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is defined by δV = I ◦ dV Thus, with the interior Euler operator I in hand, we can
construct the augmented variational bicomplex for the fibered manifold E:

�dV

�dV

�δV

0 −−→ Ω0,3 · · · Ωn,3
I−−→ F3 −−→ 0�dV

�dV

�δV

0 −−→ Ω0,2
dH−−→ Ω1,2

dH−−→ · · · Ωn−1,2
dH−−→ Ωn,2

I−−→ F2 −−→ 0�dV

�dV

�dV

�dV

�δV

0 −−→ Ω0,1
dH−−→ Ω1,1

dH−−→ · · · Ωn−1,1
dH−−→ Ωn,1

I−−→ F1 −−→ 0�dV

�dV

�dV

�dV

0 −−→ R −−→ Ω0,0
dH−−→ Ω1,0

dH−−→ · · · Ωn−1,0
dH−−→ Ωn,0

(1.26)
It turns out (see Chapter 5) that

Fs(J∞(E)) ∼= En,s1 (J
∞(E))

so that this distinction is really just one of terminology. Nevertheless, the sub-
spaces Fs ⊂ Ωn,s and the projection operators I are very useful in both theoretical
and practical considerations. It is the utility of these operators which we wish to
emphasize.
As we shall see in the next chapter, the map E = I ◦ dV : Ωn,0 → F1 is precisely
the Euler-Lagrange operator from the calculus of variations.

Definition 1.10. The Euler-Lagrange complex E(J∞(E)) associated to a fibered

manifold π : E →M is the the edge complex of the augmented variational bicomplex

on J∞(E):

0 −−→ R −−→ Ω0,0
dH−−→Ω1,0

dH−−→ · · · (1.27)

dH−−→ Ωn−1,0
dH−−→ Ωn,0 E−−→ F1

δV−→ F2
δV−→ F3

δV−→ · · ·
For many problems, the Euler-Lagrange complex is the object of ultimate inter-
est — the variational bicomplex provides us with the means by which the Euler-
Lagrange complex can be studied.
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D. Prolongations of Generalized Vector Fields. To each generalized vector
field X on E there is an associated vector field on J∞(E) called the prolongation
of X and denoted by prX . To motivate this general construction, consider first the
classical case of a projectable vector field X on E with projection X = π∗X on M .
Then the flow Xt of X on E covers the flow Xt of X on M and so, by prolongation
to J∞(E) we obtain a local, one parameter group of transformations Ft on J∞(E),
i.e.,

Ft = prXt.

The prolongation of the vector field X is the vector field on J∞(E) associated to
this flow,i.e.,

prX =
d

dt

[
Ft

]∣∣
t=0

.

The salient property of prX is that it preserves the contact ideal C.
Lemma 1.11. Let X be a projectable vector field on E and let prX be its prolon-

gation to J∞(E). Then

(i) prX projects to X ,i.e., (π∞
E )∗(prX) = X , and

(ii) LprX C ⊂ C.
Proof: Property (i) is obvious — in fact prX is a projectable vector field whose
projection to Jk(E) is the flow of the prolongation of Xt to Jk(E), i.e.,

F kt
(
jk(s)(x)

)
= jk

(
Xt ◦ s ◦X−t

)
(y).

By virtue of 1.6, the flow Ft preserves the contact ideal and this suffices to prove
(ii).

Proposition 1.12. Let X be a generalized vector field on E. Then there exists

a unique vector field Z on J∞(E) such that

(i) Z projects to X , i.e., (π∞
E )∗(Z) = X , and

(ii) Z preserves the contact ideal, i.e., LZ C ⊂ C.
The vector field Z is called the prolongation of X to J∞(E) and is denoted by prX .

Conversely, if Z is any vector field on J∞(E) which satisfies (ii), then Z is the

prolongation of its projection onto E, i.e., Z = prZ0 where Z0 = (π∞
E )(Z).

Proof: It suffices to prove local uniqueness and existence. Let X and Z be given
locally by

X = ai
∂

∂xi
+ bα

∂

∂uα
(1.28)

and
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Z = Zi
∂

∂xi
+

∞∑
|I|=0

ZαI ∂
I
α, (1.29)

where the coefficients ai, bα, Zi and ZαI are all smooth functions on J
∞(U). Prop-

erty (i) requires that
Zi = ai and Zα = bα.

Since LZ is a derivation, property (ii) holds for all contact forms on J∞(U) if
and only if it holds for the local basis of contact forms θαI , i.e.,

LZ θαI ∈ C. (1.30)

Direct calculation yields

LZθαI = dZαI − ZαIj dx
j − uαIjdZ

j

= dHZ
α
I + dV Z

α
I − ZαIj dx

j − uαIjdHZ
j − uαIjdV Z

j .

The second and last terms in this last equation are in C. The remaining terms are
all horizontal and must therefore vanish. Consequently (1.30) holds if and only if

ZαIj = DjZ
α
I − uαIhDjZ

h. (1.31)

This equation furnishes us with a recursive formula for the coefficients of Z. It
is clear that this formula uniquely determines the coefficients ZαI in terms of the
coefficients ai and bα.

In fact, (1.31) is easily solved to give rise to the explicit prolongation formula

ZαI = DI(b
α − uαj a

j) + uαjIa
j, (1.32)

where DI indicates repeated total differentiation,

DI = Di1Di2 · · ·Dik
for I = i1i2 . . . ik.
We remark that if X is of order m, then Z is of type (m,m+ 1, m+ 2, . . . ). For
example, if X is of order 0, the first prolongation coefficient is given by

Zαi = Dib
α − uαjDia

j

=
∂ bα

∂xi
+
∂ bα

∂uβ
uβi − uαj

[∂aj
∂xi
+
∂aj

∂uβ
uβi

]
.

For projectable vector fields on E, Lemma 1.11 and Proposition 1.12 yield a proof
different than that presented in Olver [55 ] of the prolongation formula (1.32).
We now show that every tangent vector to J∞(E) can be realized pointwise as
the prolongation of a vector field on E.
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Proposition 1.13. Let σ be a point in J∞(E) and let Zσ be a tangent vector to

J∞(E) at σ. Then there exists a vector field X on E such that

(prX)(σ) = Xσ.

Proof: It suffices to construct X locally on a coordinate neighborhood U of E.
Let

Zσ = ci
∂

∂xi
+

∞∑
k=0

cαI ∂
I
α

and

X = ai
∂

∂xi
+ bα

∂

∂uα
.

Take ai to be the constants ci and take bα to be functions of the base coordinates
xi alone and such that

∂ bα

∂xI
(x0) = cαI ,

where x0 = π∞
M (σ). Such functions b

α exist by virtue of a theorem of Borel (see
Kahn [38 ], pp 31–33 ). The prolongation formula (1.32) shows that the coefficient
Xα
I of ∂

I
α in prX at σ equals c

α
I , as required.

Corollary 1.14. If ω ∈ Ωp(J∞(E)) and

prX ω = 0

for all vector fields X on E, then ω = 0.

Definition 1.15. A generalized vector field on π : E → M which is π vertical is

called an evolutionary vector field.

In local coordinates an evolutionary vector field Y takes the form

Y = Y α
∂

∂uα
,

where the coefficients are functions on J∞(U). This terminology reflects the fact
that, at least within a fixed coordinate chart, the components Y α define the system
of evolution equations

∂ sβ

∂ ε
= Y β(xi, sα,

∂ sα

∂xi1
, . . . ,

∂ sα

∂xi1xi2 · · ·xik )
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for a one parameter family sα(x, ε) of local sections of E. For evolutionary vector
fields the prolongation formula (1.32) simplifies to

prY =
∞∑

|I|=0

[DIY α] ∂ Iα. (1.33)

Proposition 1.16. Suppose that Y is an evolutionary vector field on J∞(E)
and ω ∈ Ωr,s(J∞(E)). Then LprY ω ∈ Ωr,s,

LprY ω = dV (prY ω) + prY (dV ω) (1.34)

and

prY (dHω) = −dH(prY ω). (1.35)

Proof: The statement that LprY ω ∈ Ωr,s is a local one which can be verified on
generators. First, by Proposition 1.12, the Lie derivative with respect to prY of
the contact one form θαI is again a contact one form. Second, since Y is π vertical,
the Lie derivative LprY dx

i = 0. These two observations show that LprY preserves
horizontal and vertical type.
To prove (1.34) and (1.35), we simply expand the Lie derivative formula (1.19)
in terms of dH and dV to arrive at

LprY ω = {dV (prY ω) + prY (dV ω)}+ {dH(prY ω) + prY (dHω)}.

Because Y is vertical, prY ω is of degree (r, s − 1). The first group of terms is
therefore of degree (r, s) while the second group is of degree (r + 1, s− 1). Conse-
quently the second group must vanish. This proves (1.35) which, in turns, proves
(1.34).

Owing to (1.34), it is easily verified that LprY commutes with dV and hence with
dH .

Corollary 1.17. If Y is an evolutionary vector field and ω ∈ Ωr,s(J∞(E)), then

LprY (dHω) = dH(LprY ω)

and

LprY (dV ω) = dV (LprY ω).

Generalized vector fields on M can also be lifted to vector fields on J∞(E).
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Proposition 1.18. Let X be a generalized vector field on M . There exists a

unique vector field Z on J∞(E) such that

(i) Z projects to X , i.e., (π∞
M )∗(Z) = X , and

(ii) Z annihilates all contact one forms, i.e., if ω ∈ Ω0,s then Z ω = 0.

The vector field Z is called the total vector field for X and is denoted by Z = totX .

Conversely, if Z is any vector field on J∞(E) satisfying (ii), then it is the total

vector field for its projection onto M

Proof: As in the proof of Proposition 1.12, it suffices to work locally. Let

X = ai[x, u]
∂

∂xi
and

Z = Zi
∂

∂xi
+

∞∑
|I|=0

ZαI ∂
I
α.

Then (i) implies that Zi = ai. Property (ii) holds if and only if

Z θαI = 0

and this implies that ZαI = u
α
Ija

j . Thus Z is uniquely given in terms of X by

Z = aiDi, (1.36)

where Di is total differentiation with respect to xi.

We remark that if X is of order m, then totX is of type (m0, m1, m2, . . . ), where
mi = m for i ≤ m and mi = i for i ≥ m. Note also that totX is the prolongation
of its projection onto E, i.e., with XE = (π∞

E )∗(totX), we have

totX = prXE . (1.37)

This result is immediate from our local coordinate formula (1.32) This implies that
totX preserves the contact ideal, i.e.,

LtotX C ⊂ C.
We also remark that the total differentiation operator Dj is the total vector field

for partial differentiation
∂

∂xj
, i.e.,

Dj = tot
∂

∂xj

=
∂

∂xj
+

∞∑
|I|=0

uαIj ∂
α
I .

(1.38)
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By Proposition 1.18, Dj annihilates all contact one forms:

Dj θαI = 0. (1.39)

Definition 1.19. Let X be a generalized vector field on E. The associated total

vector field is the total vector field for the projection of X onto M :

totX = tot[(π)∗X ].

The associated evolutionary vector field is the vertical, generalized vector field

Xev = X − (π∞
E )∗(totX). (1.40)

If, in local coordinates,

X = ai
∂

∂xi
+ bα

∂

∂uα

then

Xev = (bα − uαi a
i)
∂

∂uα
.

We shall use the next proposition repeatedly in subsequent chapters.

Proposition 1.20. Let X be a generalized vector field on E. Then the prolon-

gation of X splits into the sum

prX = prXev + totX. (1.41)

Proof: Take the prolongation of (1.40) and apply (1.37).

We conclude this chapter with formulas for the Lie brackets of prolonged vector
fields and total vector fields.

Proposition 1.21. (i) Let X and Y be generalized vector fields on E. Then

[prX, prY ] = prZ1, (1.42a)

where Z1 is the generalized vector field on E defined, for any function f on E by

Z1(f) = prX
(
Y (f)

) − prY (
X(f)

)
. (1.42b)

(ii) Let X and Y be generalized vector fields on M . Then

[totX, totY ] = totZ2, (1.43a)
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where Z2 is the generalized vector field on M defined, for all functions f on M by

Z2(f) = totX
(
Y (f)

) − totY (
X(f)

)
. (1.43b)

(iii) Let X be a generalized vector field onM and let Y be an evolutionary vector

field on E. Then

[totX, prY ] = totZ3, (1.44a)

where Z3 is the generalized vector field on M defined, for all functions f on M , by

Z3(f) = prY
(
X(f)

)
. (1.44b)

In particular, if X is a vector field on M , then

[totX, prY ] = 0. (1.45)

Proof: To prove (i) it suffices to observe that since prX and prY preserve the
contact ideal, [prX, prY ] must preserve the contact ideal and so, in accordance
with Proposition 1.12, this Lie bracket is the prolongation of its projection onto E.
To prove (ii) it suffices to check, by virtue of Proposition 1.18, that [totX, totY ]
annihilates all the contact forms θαI . This follows from the identity

(d θαI )(totX, totY ) =

(totX)
(
(totY ) θαI

) − (totY )((totX) θαI
) − [totX, totY ] θαI .

A similar argument proves (iii). Note that Z3 is indeed a well-defined generalized
vector field on M because, for all functions f on M , prY (f) = 0.



Chapter Two

EULER OPERATORS

In the variational calculus, various local differential operators, similar in construc-
tion to the Euler-Lagrange operator, occur repeatedly and play a distinguished role.
These so-called higher Euler operators first arose in the classification of the conser-
vation laws for the KdV equation [45 ] and the BBM equation [51 ] and they occur
naturally in the solution to the inverse problem to the calculus of variations. The
general properties of these operators have been well documented by various authors
including Aldersley [1 ], Wantanabe [79 ] and Tu [69 ]. In this chapter a general
framework is introduced in which the higher Euler operators naturally emerge as
a special case. Many properties of the higher Euler operators can be effortlessly
derived from this viewpoint. These properties will be used in the next chapter to
prove the local exactness of the rows of the variational bicomplex.
This general framework also leads immediately to the construction of the projec-

tion operators

I : Ωn,s(J∞(E)) → Ωn,s(J∞(E)),

introduced in §2C, and used to construct the augmented variational bicomplex.
The map I first appeared explicitly in the papers of Kuperschmidt [46 ], Decker and
Tulczyjew [21 ], and Bauderon [8 ] (but denoted by τ+, τ , and D∗ respectively). It
plays a central role in both the theoretical developments and practical applications
of the variational bicomplex. Salient properties of the operator I are established. In
particular, we show that the Euler-Lagrange operator E factors as the composition
of the operator I and the vertical differential dV , i.e., if λ ∈ Ωn,0(J∞(E)) is a
Lagrangian for a variational problem on E, then

E(λ) = I(dV λ).

We illustrate the utility of this invariant decomposition of the Euler-Lagrange
operator by calculating the Euler-Lagrange equations for some of the interesting
geometrical variational problems as described in Griffiths [31 ]. These calculations
also highlight the role of moving frames in applications of the variational bicomplex.

30
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A. Total Differential Operators. We begin with a general construction. Let
Ev(J∞(E)) be the vector space of evolutionary vector fields on J∞(E). Consider a
differential operator

P : Ev(J∞(E)) → Ωr,s(J∞(E))

which is locally of the form

P (Y ) =
k∑

|I|=0

(DIY
α)P I

α[x, u], (2.1)

where Y is an evolutionary vector field given locally by

Y = Y α[x, u]
∂

∂uα
.

Each coefficient P I
α is a smooth form of type (r, s). We call such an operator a

total differential operator since it involves only total derivatives of the evolutionary
vector field Y . To define this class of operators intrinsically, let TV → J∞(E) be
the bundle of π∞

M vertical vectors on J∞(E). Let Λr,s → J∞(E) be the bundle of
type (r, s) forms on J∞(E). Let L be a linear bundle map from the bundle TV to
the bundle Λr,s which covers the identity map on J∞(E), i.e.,

TV
L−−−−→ Λr,s� �

J∞(E)
id−−−−→ J∞(E).

Then a differential operator P on Ev(J∞(E)) is a total differential operator if there
exists a linear map L such that

P (Y ) = L(prY ).

Two examples of such operators which we shall study in detail are

Pω(Y ) = prY ω,

where ω is a fixed, type (r, s+ 1) form on J∞(E), and

Pη(Y ) = LprY η = prY dV η,
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where η is a fixed form of type (r, 0). If η is of type (r, s) for s ≥ 1, then Pη is not
a total differential operator.
If, at a point σ ∈ J∞(E), one of the type (r, s) forms P I

α(σ) is nonzero for |I| = k,
then the operator P is said to be of order k at σ. The collection of forms P I

α, |I| = k,
determine the symbol of P at σ. The order of the operators Pω and Pη coincide
with the orders of ω and η as differential forms on J∞(E). The symbol of Pη is

(Pη)Iα = ∂ I
α (η).

The standard approach the linear differential operators on finite dimensional man-
ifolds (see, e.g., Kahn [38 ], Chapter 6) can be adopted without change to give
invariant definitions to the order and symbol of our total differential operators.
In particular, a zeroth order total differential operator is one which is linear over
smooth functions on J∞(E) and is therefore given locally by

P (Y ) = Y αQα.

Proposition 2.1. Let P : Ev(J∞(E)) → Ωr,s(J∞(E)) be a total differential

operator which is given locally by (2.1). Then P can be rewritten locally as

P (Y ) = Y αQα +Di(Y αQi
α) +Dij(Y αQij

α ) + · · ·

=
k∑

|I|=0

DI (Y αQI
α).

(2.2)

The coefficients QI
α are smooth, type (r, s) forms on J∞(U). They are uniquely

defined in terms of the original coefficients P I
α of P by

QI
α =

k−|I|∑
|J|=0

(|I|+|J|
|I|

)
(−D)JP IJ

α . (2.3)

Proof: This proposition is a simple exercise in repeated “integration by parts”.
To establish this proposition, we expand the right-hand side of (2.2) by the product
rule to find that

k∑
l=0

DIl

(
Y αQIl

α

)
=

k∑
l=0

l∑
r=0

(
l
r

)(
DIr

Y α
)
DJl−r

QIrJl−r
α

=
k∑

r=0

(
DIr

Y α
)[ k∑

l=r

(
l
r

)
DJl−r

QIrJl−r
α

]
.
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Here the subscripts on the multi-indices denote their length, e.g., |Il| = l. Conse-
quently, (2.2) holds if and only if

P I
α =

k−|I|∑
|J|=0

(|I|+|J|
|J|

)
DJQ

IJ
α , (2.4)

for all |I| = 0, 1, 2, . . . , k. For example, with k = 2, this set of equations is

P ij
α = Qij

α ,

P i
α = Qi

α + 2DjQ
ij
α , and

Pα = Qα +DiQ
i
α +DijQ

ij
α .

The uniqueness of this representation is apparent from (2.4) — if all the P I
α

vanish, then by examining these equations in the order |I| = k, |I| = k − 1, . . .
|I| = 0, it follows immediately that all the QI

α = 0. Consequently, to verify (2.3), it
suffices to check that the QI

α given by (2.3) satisfy (2.4). Substitution of (2.3) into
the right-hand side of (2.4) with |I| = r leads to

k−r∑
l=0

(
r+l
r

)
DJl

QIrJl
α =

k−r∑
l=0

(
r+l
r

)
DJl

[ k−r−l∑
s=0

(
r+l+s
r+l

)
(−D)Ks

P IrJl−sKs
]

=
k−r∑
l=0

[ k−r−l∑
s=0

(
r+l
r

)(
r+l+s
r+l

)
(−1)sDJl+s

P IrJl+s
α

]
.

To simplify this last expression, we replace the summation on s by one on s′ = l+s

and interchange the order of summations. This leads to the expression

k−r∑
s′=0

[ s′∑
l=0

(−1)l+s
(
r+l
r

)(
r+s′
r+l

)]
DJs′P

IrJs′
α .

Since the summation in square brackets vanishes if s′ = 0 and equals 1 if s′ = 0,
this expression reduces to P Ir

α , as required.

Proposition 2.1 implies that if QI
α and Q̃I

α are two collections of forms of type
(r, s) and

k∑
|I|=0

DI(Y αQI
α) =

k∑
|I|=0

DI(Y αQ̃I
α)
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for all evolutionary vector fields Y , then QI
α = Q̃I

α. We shall use this simple fact
repeatedly in what follows.
Our next task is to examine the transformation properties of the coefficients QI

α.
First note that for |I| = k,

QI
α = P I

α

and that these forms determine the symbol of P . The lower order coefficients
QI

α, |I| < k do not, in general have an intrinsic meaning, i.e., their vanishing in
one coordinate system does not imply their vanishing in an overlapping one. For
example, let

ω = Ai dx
i

be a type (1, 0) form on J1(E) and consider the differential operator

P (Y ) = LprY ω = [Y α ∂Ai

∂uα
+DjY

α ∂Ai

∂uαj
] dxi

= Y αQα +Dj

[
Y α ∂Ai

∂uαj

]
dxi,

where

Qα =
[∂Ai

∂uα
−Dk

∂Ai

uαk

]
dxi.

Under the change of coordinates

yj = yj(xi) and vα = uα

one has that

vαj =
∂xi

∂yj
uαi

and

Ah(yj, vα, vαj )
∂yh

∂xi
= Ai(xj , uα, uαj ),

where Ah are the components of ω in the (y, v) coordinate system. A simple calcu-
lation then shows that

Qα =
[∂Ai

∂vα
−Dk

∂Ai

∂vαk

]
dyi

= Qα +
∂Ah

∂vαj

∂2xk

∂yj∂yl
[∂yh
∂xk

∂yl

∂xi
− ∂yl

∂xk
∂yh

∂xi
]
dxi.
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Therefore the zeroth order total differential operator Q defined locally by

Q(Y ) = Y αQα

is not invariantly defined. Notice however, that the second term in the above
equation vanishes if dimM = 1, i.e., if P (Y ) is a top dimensional form. In this
instance one can explicitly verify that Q is a invariantly defined operator in the
sense that under arbitrary changes of coordinates y = y(x) and vβ = vβ(x, uα) the
Qα transform as

Qβ =
∂uα

∂vβ
Qα.

The next proposition shows this to be true in general.

Proposition 2.2. Let P : Ev(J∞(E)) → Ωn,s(J∞(E)), where dimM = n, be

a total differential operator. Then there exists a unique, globally defined, zeroth

order operator

Q : Ev(J∞(E)) → Ωn,s(J∞(E))

with the following property. On each coordinate chart J∞(U) there is a locally

defined total differential operator R : Ev(J∞(U)) → Ωn−1,s(J∞(U)) such that

P (Y ) = Q(Y ) + dHR(Y ). (2.5)

Proof: We first prove the uniqueness of Q(Y ). Suppose then, that in addition to
the decomposition (2.5), we have that

P (Y ) = Q̃(Y ) + dHR̃(Y )

and consequently
Q(Y )− Q̃(Y ) = dH [R̃(Y )−R(Y )]. (2.6)

Since Q and Q̃ are both zeroth order operators, there are type (n, s) forms Σα on
J∞(U) such that

Q(Y )− Q̃(Y ) = Y αΣα.

We prove that Σα = 0 thereby establishing the uniqueness of the operator Q(Y ).
Let Y1, Y2, . . . , Ys be evolutionary vector fields on J∞(U). Inner evaluation of

(2.6) with prY1, prY2, . . . , prYs and repeated application of Proposition 1.16 leads
to

Y αηα = (−1)sdH
{
prY1 prY2 · · ·prYs [R̃(Y )−R(Y )]

}
, (2.7)
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where the ηα are the type (n, 0) forms given by

ηα = prY1 prY2 · · ·prYs Σα.

From (2.7) it is a simple matter to repeat standard, elementary arguments from
the calculus of variations to conclude that Σα = 0. Indeed, pick an open set
W ⊂ π(U) with W compact, pick Y α = Y α(xi) with support V ⊂ W , evaluate
(2.7) on a local section s : π(U) → U and integrate the resulting n form on π(U)
over W . Since the right-hand side of (2.7) is linear in Y , it vanishes outside of the
support of Y . It then follows from Stokes Theorem that∫

W

Y α
{
[j∞(s)]∗ηα

}
= 0.

Since the functions Y α and the local section s are arbitrary, ηα must vanish at each
point at each point in J∞(U). Since the evolutionary vector fields Y1, Y2, . . . , Ys are
arbitrary, Σα must vanish. Alternatively, one can argue formally by recalling that
the Euler-Lagrange operator annihilates Lagrangians which are locally dH exact,
i.e., which are local divergences. Therefore the application to (2.7) of the Euler-
Lagrange operator with respect to the variables Y α leads directly to Σα = 0. This
proves the uniqueness of the operator Q(Y ).
Next we establish the local existence of the operator Q(Y ). Write P (Y ) in the

form (2.2). Since the coefficients QI
α are of top horizontal degree it is a simple

exercise to check that
QI

α = dx(i ∧RI′)
α ,

where I = iI ′ and
RI′ = Dj QjI′

α .

(Recall that Dj = tot
∂

∂xj
is the total vector field defined by (1.38).) Accordingly,

(2.2) becomes

P (Y ) = Y αQα +Di

[ k−1∑
|I′|=0

DI′(dxi ∧ Y αRI′
α )

]
and consequently (2.5) holds with

Q(Y ) = Y αQα, where Qα =
k∑

|I|=0

(−D)IP I
α (2.8)

and
R(Y ) =

k−1∑
|I|=0

DI(Y αRI
α). (2.9)

The local uniqueness and existence of Q(Y ) suffice to imply that this operator is
globally well-defined.
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Definition 2.3. Let P : Ev(J∞(E)) → Ωn,s(J∞(E)) be a total differential oper-

ator described locally by

P (Y ) =
k∑

|I|=0

(DIY
α)P I

α.

Then the associated zeroth order operator E(P ) defined by

E(P )(Y ) = Y αEα(P ), where Eα(P ) =
k∑

|I|=0

(−D)IP I
α (2.10)

is called the Euler operator associated to P .

Before turning to the applications of Propositions 2.1 and 2.2, several remarks
are in order. First, we note that the decomposition (2.5) is not valid (even locally)
for operators P : Ev → Ωr,s for r < n. For example, on E : R2 × R π→ R2 with
coordinates (x, y, u) π→ (x, y), the operator

P (Y ) = Y (ux dy − uy dx)− (DyY )u dx+ (DxY )u dy

mapping Ev to Ω1,0 does not admit such a decomposition. Together with a previous
example, this suggests that for r < n it is not possible to canonically construct, by
some universal formula linear in the coefficients of P , a globally well-defined zeroth
order linear operator Q : Ev → Ωr,s while, for r = n, the only such operator is given
by (2.10).
Secondly, although we have established that E(P ) is a globally well-defined op-

erator, we can assert presently only that the decomposition

P (Y ) = E(P )(Y ) + dHR(Y ) (2.11)

holds locally. The global existence of the operator R has not yet been established.
It is obvious that the operator R is not uniquely determined by this decomposition
(unless n = 1). Hence, without additional restrictions on R, the elementary unique-
ness and local existence arguments of Proposition 2.2 will not prove the global
existence of the operator R. To this end, let

R(Y ) =
l∑

|I|=0

(DIY
α)RI

α (2.12)

be a total differential operator from Ev to Ωr,s. Let p be a point in J∞(E) and
suppose that the order of R is l at p. We say that R is trace-free at p is either l = 0
or for l ≥ 1

Di RiI′
α (p) = 0, |I ′| = l − 1. (2.13)

This is an invariantly defined condition on the symbol of R.
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Proposition 2.4. For r < n, let R : Ev → Ωr,s be a trace-free total differential

operator. If

dH [R(Y )] = 0

for all evolutionary vector fields Y , then R = 0.

Proof: Suppose, in order to derive a contradiction, that there is some coordinate
neighborhood J∞(U) on which R is non-zero and that the order of R equals l ≥ 0
on this neighborhood. Thus, with R is given by (2.12) on J∞(U), (2.13) holds if
l ≥ 1 and RI

α = 0 for |I| = l. An simple calculation shows that

dH [R(Y )] = Y α ∧ dHRα +
k∑

|I|=1

(DIY
α)

[
dxi ∧RI′

α + dHR
I
α

]

+ (Di1i2···iliY
α) dxi ∧Ri1i2···il

α .

Because of the hypothesis, this vanishes for all Y α and hence it follows that

dx(i ∧Ri1i2···il)
α = 0.

Written out in full this equation becomes

dxi ∧Ri1i2···il
α + dxi1 ∧Rii2···il

α + dxi2 ∧Ri1i···il
α + · · · = 0.

On account of the fact that RI
α is trace-free, interior evaluation of this equation

with Di gives rise to
(n+ l − r)Ri1i2···il

α = 0.

Since r < n this contradicts the assumption that the order of R is l on J∞(U) and
proves that R must vanish identically.

If P : Ev → Ωn,s is a second order total differential operator, then R : Ev →
Ωn−1,s, as given by (2.9), is a first order, trace-free operator. Since the difference
of two first order, trace-free operators is again trace-free, Proposition 2.4 can be
used to prove that P decomposes uniquely into the form (2.11), where R is first
order and trace-free. Thus this decomposition holds globally and both operators
E(P ) and R are constructed canonically from P . If P is of order 3 or higher, then
R is of order at least 2 and trace-free. However, the difference of two second order
trace-free operators is no longer necessarily trace-free (if the symbols of the two
operators coincide then the difference is a first order operator which need not be
trace-free) and Proposition 2.4 cannot be used to prove the uniqueness of R. It is
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possible to prove that for operators P of order 3 or higher that there does not exist a
canonical, universal decomposition of the type (2.11). Nevertheless, we shall prove
in Chapter 5 (by a partition of unity argument) that the decomposition (2.11) does
indeed hold globally. Thus the operator R always exists globally — it just cannot
in general be canonically fashioned from the coefficients of P .
If we allow ourselves to interpret (2.11) as a geometric version of the integration by

parts formula, then we can summarize this state of affairs by saying that there exists
a global integration by parts formula for total differential operators P : Ev → Ωr,s

only for r = n which is canonical only for operators P of order two.

B. Euler Operators. For our first application of Propositions 2.1 and 2.2, let
λ = Lν be a type (n, 0) form on J∞(E), i.e., a Lagrangian for a variational problem
on E. We consider the operator P : Ev(J∞(E)) → Ωn,0(J∞(E)) given by

Pλ(Y ) = LprY λ =
k∑

|I|=0

(DIY
α)(∂IαL) ν.

In this instance we shall denote the coefficients QI
α introduced in Proposition 2.1

by EI
α(L) so that

LprY λ =
[
Y αEα(L) +Di(Y αEi

α(L)) +Dij(Y αEij
α (L)) + · · · ] ν

=
[ k∑
|I|=0

DI (Y αEI
α(L))

]
ν, (2.14)

where

EI
α(L) =

k−|I|∑
|J|=0

(|I|+|J|
|I|

)
(−D)J (∂IJα L). (2.15)

When |I| = 0

Eα(L) = ∂αL−Di

(
∂iαL

)
+Dij

(
∂ijα L

) − · · ·

=
k∑

|I|=0

(−D)I(∂IαL) (2.16)

is the classical Euler-Lagrange operator for higher order, multiple integral problems
in the calculus of variations. Aldersley [1 ] refers to the operators EI

α(L), |I| > 0, as
higher Euler operators — we shall refer to them as Lie-Euler operators in order to
emphasize that they arise naturally as the coefficients of the Lie derivative operator
Pλ(Y ) = LprY λ in the representation (2.14) and to distinguish them from another
set of similar operators to be introduced later.
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Definition 2.5. The Euler-Lagrange operator

E : Ωn,0(J∞(E)) → Ωn,1(J∞(E))

is the linear differential operator

E(λ) = Eα(L) θα ∧ ν.

The type (n, 1) form E(λ) is called the Euler-Lagrange form for the Lagrangian λ.

Equation (2.5) can be rewritten in terms of the Euler-Lagrange form as

LprY λ = (prY ) E(λ) + dH [(prY ) σ], (2.17a)

where σ is the type (n− 1, 1) form given locally by

σ =
k−1∑
|I|=0

DI [EjI
α (L) θα ∧ νj ], (2.17b)

where

νj = Dj ν.

Thus, in the context of the present example, Proposition 2.1 leads to the formula for
the first variation in the calculus of variations while Proposition 2.2 asserts that the
Euler-Lagrange operator is globally well-defined. Our earlier remarks concerning
the global validity of (2.5) now imply that there is a global first variational formula
(again, see Chapter 5 for details) in the sense that there exists a type (n − 1, 1)
form β, defined on all of J∞(E), such that

LprY λ = (prY ) E(λ) + dH [(prY ) β].

However, the form β need not, in general, agree with σ on any given coordinate
chart.
From (2.4), we find that

∂Iα =
∞∑

|J|=0

(|I|+|J|
|J|

)
(D)JEIJ

α (2.18a)

and therefore any computation involving the partial differentiation operators ∂Iα
can also be carried out using the Lie-Euler operators. In fact, calculations in the
variational calculus are often simplified by the use of these latter operators.
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We now use Propositions 2.1 and 2.2 to give elementary proofs of two impor-
tant properties of the Lie-Euler operators. Recall that round parenthesis indicate
symmetrization on the enclosed indices so that, for example,

δ
(i
jE

hk)
α =

1
3
(δijE

hk
α + δhjE

ik
α + δkjE

hi
α ).

Proposition 2.6. Let f be an function on J∞(U). The Lie-Euler operators EI
α

and the total differentiation operators Dj satisfy the commutation relations

EI
α(Djf) = δ

(i
jE

I′)
α (f), I = iI ′ (2.19a)

for |I| > 0 and

Eα(Djf) = 0. (2.19b)

proof: On account of the fact that LprY commutes with dH (see Corollary 1.17)
we can conclude that

LprY (Djf) = Dj(LprY f).

Due to (2.14) we can rewrite this equation in the form (assuming that f is of order
k)

k+1∑
|I|=0

DI [Y αEI
α(Djf)] = Dj{

k∑
|I|=0

DI [Y αEI
α(f)]}

=
k+1∑
|I|=1

DI [Y αδ
(i
jE

I′)
α (f)].

By virtue of Proposition 2.1, we can match the coefficients in this equation and
thereby arrive at (2.19).

Corollary 2.7. Suppose f is a local lth order divergence in the sense that there

are functions AJ , |J | = l on J∞(U) for which f = DJA
J . Then EI

α(f) = 0 for all

|I| ≤ l − 1.

Proof: This follows immediately from the repeated application of (2.19). Inciden-
tally, this result first appeared in [45 ].
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Proposition 2.8. Let f and g be two functions on Jk(U). Then the Euler-

Lagrange operator satisfies the local product rule

Eα(fg) =
k∑

|I|=0

[(−D)If ]EI
α(g) +

k∑
|I|=0

EI
α(f)[(−D)I(g)]. (2.20)

Proof: From the product rule for the Lie derivative

LprY (fg) = (LprY f)g + f(LprY g)

and (2.14), we deduce that
k∑

|I|=0

DI [Y αEI
α(fg)]

=
k∑

|I|=0

DI [Y αEI
α(f)] g + f

k∑
|I|=0

DI [Y αEI
α(g)]. (2.21)

Moreover, Proposition 2.1 can be used to infer that

DI [Y αEI
α(f)]g = Y αEI

α(f)[(−D)Ig] +Di[Ri
1(Y )]

and
fDI [Y αEI

α(g)] = Y α[(−D)If ]EI
α(g) +Di[Ri

2(Y )].

for some choice of linear total differential operators Ri
1 and R

i
2. These two equations

are substituted into (2.21). Comparison of the coefficients of Y α yields (2.20).

Had we explicitly exhibited the operators Ri
1 and Ri

2, then we could have com-
pared the coefficients of the higher order derivatives of Y α in (2.21) to recover
Aldersley’s product rule for the Lie-Euler operators EI

α, |I| > 0.

Corollary 2.9. If f is a function on J∞(U) and

Eα(fg) = 0 (2.22)

for all functions g = g(xi) on π(U), then f = f(xi). If (2.22) holds for all functions

g on U , then f = 0.

Proof: First take g = g(xi). Then the product rule (2.20) reduces to

Eα(fg) =
k∑

|I|=0

[(−D)I(g)]EI
α(f) = 0

Since g is arbitrary, this implies that EI
α(f) = 0 for all |I|. In view of (2.18), this

shows that f is a function of the base variables xi alone. The second statement now
follows by letting g = uβ for some β.
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For our next application of Propositions 2.1 and 2.2, let ω be a type (r, s) form
on J∞(E) and let

Pω(Y ) = prY ω =
k∑

|I|=0

(DIY
α)(∂Iα ω).

By Proposition 2.1, we can rewrite this operator in the form

prY ω =
k∑

|I|=0

DI [Y αF I
α(ω)] (2.23)

where the operators F I
α are defined by

F I
α(ω) =

k−|I|∑
|J|=0

(|I|+|J|
|J|

)
(−D)J (∂IJα ω). (2.24)

We call these operators interior Euler operators since they arise from the represen-
tation (2.23) of the interior product operator. Note that F I

α(ω) is a form of type
(r, s− 1). These operators were defined, at least recursively, by Tulczyjew [70 ]. We
shall see in Chapter 4 that they play a key role in the proof of the local exactness
of the interior rows of the variational bicomplex.

Proposition 2.10. Let ω be a type (r, s) form on J∞(U). Then the interior Euler

operators F I
α and the horizontal differential dH satisfy the commutation relations

F I
α(dHω) = F (I′

α (dxi) ∧ ω) (2.25a)

for |I| > 0 and I = I ′i, and

Fα(dHω) = 0. (2.25b)

Moreover, if Y is any evolutionary vector field, then

prY F I
α(ω) = −F I

α(prY ω). (2.26)

Proof: To prove (2.25) we use the commutation relation

prY (dHω) = −dH(prY ω)

and repeat the calculations used in the proof of Proposition 2.6.
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To prove (2.26), let Z be another evolutionary vector field. Since interior evalua-
tion by prY commutes with Di, it follows immediately from the defining relations
(2.23) for the interior Euler operators that

prY (prZ ω) = prY
k∑

|I|=0

DI [ZαF I
α(ω)]

=
k∑

|I|=0

DI [Zα
(
prY F I

α(ω)
)
] (2.27)

and

−prZ (prY ω) = −
k∑

|I|=0

[ZαF I
α(prY ω)]. (2.28)

The left-hand sides of (2.27) and (2.28) are equal and therefore the coefficients on
the right-hand sides must coincide.

With r = n, Proposition 2.2 can be applied to the operator Pω(Y ) to deduce that

prY ω = E(Pω)(Y ) + dH [R(Y )], (2.29)

where E(Pω)(Y ) = Y αFα(ω) is an invariantly defined operator and R(Y ) is the
locally defined, total differential operator

R(Y ) =
k−1∑
|I|=0

DI [Y α
(
Dj F Ij

α (ω)
)
]. (2.30)

Definition 2.11. For s ≥ 1, the linear differential operator

I : Ωn,s(J∞(E)) → Ωn,s(J∞(E))

defined by

I(ω) =
1
s
θα ∧ Fα(ω) =

1
s
θα ∧ [ ∞∑

|I|=0

(−D)I(∂Iα ω)
]

(2.31)

is called the interior Euler operator on Ωn,s(J∞(E)).

Since we have defined I in local coordinates, we need to verify that it is actually
globally well-defined. This can be done in one of two ways. The first way is obtain
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the change of variables formula for the operator Fα(ω). Let (x, u, U) and (y, v, V )
be two overlapping coordinate charts on E. Let ω|U and ω|V be the restrictions of
a type (n, s) form ω on J∞(E) to J∞(U) and J∞(V ). Let

Fα(ω|U ) =
k∑

|I|=0

(−D)I(∂Iα ω|U )

and

Fα(ω|V ) =
k∑

|I|=0

(−D)I(∂
I

α ω|V ),

where Di denotes total differentiation with respect to yi and ∂
I

α is the symmetrized
partial differentiation with respect to vαI . Then, because E(Pω) is an invariant
differential operator, we have, on U ∩ V ,

Y
β
F β(ω|V ) = Y αFα(ω|U )

and hence

F β(ω|V ) =
∂uα

∂vβ
Fα(ω|U ). (2.32)

It is now evident that the form θα ∧ Fα(ω) is a globally well-defined, type (n, s)
form on J∞(E).
The other way to verify that the differential form I(ω) is well-defined globally is

to give a coordinate-free expression for its value on the prolongations of evolutionary
vector fields. For instance, when s = 2, we find, on account of (2.26) and (2.31),
that

I(ω)(prY1, prY2) =
1
2
prY2 prY1 [θα ∧ Fα(ω)]

=
1
2
prY2 [Y α

1 Fα(ω) + θαFα(prY1 ω)]

=
1
2
[−Y α

1 Fα(prY2 ω) + Y α
2 Fα(prY1 ω)]

=
1
2
[−E(Pα)(Y1) +E(Pβ)(Y2)],

where α = prY2 ω and β = prY1 ω. In general, if ω is of type (r, s), if Y1, Y2,
. . . , Ys are evolutionary vector fields, and if we set

ωi = prYs · · ·prYi−1 prYi+1 · · · prY1 ω,

then
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I(ω)(prY1, prY2, . . . , prYs) =
1
s

s∑
i=1

(−1)s+iE(Pωi
)(Yi). (2.33)

Alternatively, we have that

prY I(ω) = E(Pω)(Y ) + I(prY ω) (2.34)

which furnishes us with an inductive definition of I by vertical degree.

Theorem 2.12. The interior Euler operator I : Ωn,s(J∞(E)) → Ωn,s(J∞(E))
enjoys the following properties.

(i) The kernel of I contains all locally dH exact forms in Ωn,s(J∞(E)), i.e.,

I ◦ dH = 0.

(ii) The interior Euler operator I is a projection operator, i.e.,

I2 = I.

(iii) The difference I(ω)− ω is locally dH exact. Thus, on each coordinate chart

J∞(U), there is a type (n− 1, s) form η such that

ω = I(ω) + dH(η). (2.35)

This decomposition is unique in the sense that if

ω = ω̃ + dH(η̃)

and ω̃ is in the image of I, then ω̃ = I(ω).

(iv) The interior Euler operator is a natural differential operator. If φ : E → E

is a fiber-preserving map which prolongs to prφ : J∞(E) → J∞(E), then

I[(prφ)∗(ω)] = (prφ)∗[I(ω)].

(v) If X is a projectable vector field on E, then

I[LprXω] = LprX [I(ω)]. (2.36)
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(vi) The induced differential δ : Fs → Fs+1 defined by δ = I ◦dV satisfies δ2 = 0.

Proof: Property (i) follows immediately from (2.25b). To prove (ii), first observe
that if ω is of vertical degree s, then by virtue of (2.23),

ω =
1
s
[

∞∑
|I|=0

θαI ∧ (∂Iα ω)] =
1
s

∞∑
|I|=0

DI [θα ∧ F I
α(ω)].

Because ω is of top horizontal degree, this equation can be rewritten as (2.35), with

η =
∞∑

|I|=0

DI [θα ∧ F Ij
α (Dj ω)]. (2.37)

To (2.35), apply the interior Euler operator I and invoke property (i) to conclude
that I(ω) = I2(ω). This proves (ii) and then (iii) follows immediately.
Property (iv) follows from the naturality of the operator E(Pω). Property (v) is

simply the infinitesimal version of (iv). We can also give a direct proof of (v) which,
in addition, serves as a good illustration of the variational calculus which we have
developed thus far.
To begin, let the vector field X on E be given locally by

X = ai(x)
∂

∂xi
+ bα(x, u)

∂

∂uα
.

Since
LprX θα = dV b

α =
∂bα

∂uβ
θβ,

it is a straightforward matter to check that (2.36) is equivalent to the commutation
rule

Fα(LprX ω) = LprX

(
Fα(ω)

)
+

∂bβ

∂uα
Fβ(ω). (2.38)

To derive (2.38), let Y be an evolutionary vector field with local components

Y = Y α[x, u]
∂

∂uα
.

Then, on the one hand, since dH commutes with LprX , the application of LprX to
(2.29) gives rise to

LprX(prY ω) = [prX(Y α)]Fα(ω) + Y α[LprXFα(ω)] + dHη1.
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On the other hand, the product rule implies that

LprX(prY ω) = [LprX(prY )] ω + prY [LprX ω]. (2.39)

By virtue of Proposition 1.20,

LprX(prY ) = [prX, prY ] = prZ,

where

Z =
[
prX(Y α)− Y β ∂b

α

∂uβ
]∂
∂uα

.

Note that the generalized vector field Z on E is π vertical but that this would not
have been true had X not been projectable.
To each term on the right-hand side of (2.39) we apply (2.23) to conclude that

[LprX(prY )] ω = ZαFα(ω) + dHη2 (2.40)

and

prY LprXω = Y αFα(LprX ω) + dHη3. (2.41)

The combination of (2.39)–(2.41) leads immediately to (2.38), as required.
Finally, to prove (vi), let ω ∈ Fs(J∞(E)). Then dV ω ∈ Ωn,s+1 and therefore, at

least locally,

dV ω = I(dV ω) + dHη,

for some form η of type (n− 1, s+ 1). The application of dV to this equation leads
to

dV ◦ I ◦ dV (ω) = dHdV (ω)

from which it now follows that

δ2V = I ◦ dV ◦ I ◦ dV = 0.

Corollary 2.13. The Euler-Lagrange operator E : Ωn,0(J∞(E)) → F1(J∞(E))
enjoys the following properties.
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(i) For any Lagrangian λ ∈ Ωn,0(J∞(E)),

E(λ) = I ◦ dV (λ). (2.42)

(ii) For any type (n− 1, 0) form η,

E(dHη) = 0. (2.43)

(iii) If φ : E → E is a fiber-preserving map which prolongs to prφ : J∞(E) →
J∞(E), then

E((prφ)∗λ) = (prφ)∗E(λ).

(iv) If X is a projectable vector field on E, then

E(LprXλ) = LprXE(λ). (2.44)

Proof: Properties (ii)–(iv) follow directly from (i) and the corresponding proper-
ties of the interior Euler operator I. To prove (i), let Y be an arbitrary evolutionary
vector field on J∞(E). Then (2.24) implies that

LprY λ = prY dV λ.

The representation (2.14) of the Lie derivative operator shows that the left-hand
side of this equation equals prY E(λ) + dHη1 while the representation (2.23) of
the interior product operator shows that the right-hand side equals prY I(dV λ)+
dHη2. Equation (2.42) now follows from Proposition 2.2. Alternatively, we find in
local coordinates that

I ◦ (dV λ) = I
[ k∑
|I|=0

(∂IαL) θ
α
I ∧ ν

]

= θα ∧ [ k∑
|I|=0

(−D)I(∂Iα)L
] ∧ ν

= E(λ),

as required.
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C. Some Geometric Variational Problems. In this section we use the varia-
tional bicomplex to compute the Euler-Lagrange forms for some geometric varia-
tional problems for curves and surfaces. The idea is a simple one. In each instance
we use a moving frame adopted to the problem to construct an invariant basis for
the contact ideal and then we compute the components of the Euler-Lagrange form
with respect to this basis. The problems considered here are taken from Griffiths’
book [31 ] on exterior differential systems and the calculus of variations.

Example 2.14. Space curves in R3.

Let E be the trivial bundle E : R×R3 → R with Cartesian coordinates (x,R)→
x, where R = (u1, u2, u3) is the position vector in R3. The two inequalities

|R′| = 0 and |R′ ×R′′| = 0.

define a open subsetR ⊂ J∞(E). A section γ of E is a space curve inR3. The space
curve γ is called regular if j∞(γ)(x) ∈ R for all x. We restrict our considerations
to the variational bicomplex over R.
A Lagrangian for a variational problem on R is a type (1, 0) form

λ = L(x,R,R′, R′′, . . . , R(k)) dx.

For geometric variational problems, we consider only Lagrangians λ which are natu-
ral in the sense that they are invariant under the pseudo-group of local, orientation-
preserving diffeomorphisms of the base R (i.e., under arbitrary reparameterizations
of the curve) and invariant under the group of Euclidean motions of the fiber R3.
Call the group of all such transformations G.

Definition 2.15. The variational bicomplex {Ω∗,∗
G (R), dH , dV } of G invariant

forms on R is called the natural variational bicomplex for regular space curves.

We shall describe the forms in Ωr,s
G (R) explicitly. Let {T,N,B} be the Frenet

frame for a regular space curve. From the jet bundle viewpoint, we treat the frame
{T,N,B} as a smooth map from the infinite jet space R to SO(3). The function T
factors through the first jet bundle while both N and B factor through the second
jet bundle. The curvature κ and torsion τ are G invariant functions on R defined
by the Frenet formula

d

ds


 T
N
B


 =


 0 κ 0
−κ 0 τ
0 −τ 0





 T
N
B


 . (2.45)
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Now define contact one forms Θ1, Θ2, and Θ3 by

θ = Θ1T +Θ2N +Θ3B, (2.46)

where θ = dR − R′dx are the usual, vector-valued contact one forms on R. The
forms Θi, together with all of their derivatives Θ̇i, Θ̈i, . . . with respect to arclength
s form a G invariant basis for the contact ideal — if φ : E → E belongs to G and
prφ : R → R is the prolongation of φ, then

(prφ)∗ Θi = Θi and (prφ)∗ Θ̇i = Θ̇i

and so on. We also define the G invariant horizontal form

σ = |R′| dx, where |R′| =
√
〈R′, R′〉,

and 〈·, ·〉 is the usual inner product on R3. Consequently, every form in Ω∗,∗
G (R)

can be expressed as wedge products of σ, the forms Θi and their derivatives, with
coefficients which are smooth G invariant functions on R. Such coefficients are
necessarily functions of κ, τ and their derivatives. In particular, a Lagrangian
λ ∈ Ω1,0

G (R) assumes the form

λ = L(κ, τ, κ̇, τ̇ , κ̈, τ̈ , . . . , κ(p), τ (p)) σ. (2.47)

The next step in our analysis of the natural variational bicomplex for space curves
is to compute the vertical differentials of σ, Θ1, Θ2, Θ3, κ and τ . To begin, we
totally differentiate (2.46) with respect to s (where d/ds = |R′|d/dt) and apply the
Frenet formula to arrive at

θ̇ = αT + β N + γ B, (2.48)

where

α = Θ̇1 − κΘ2, (2.49a)

β = κΘ1 + Θ̇2 − τΘ3, and (2.49b)

γ = τΘ2 + Θ̇3. (2.49c)

Next we compute the vertical differential of
ds

dt
:

dV
(ds
dt

)
= dV |R′| = 1

|R′| 〈θ
′, R′〉

= 〈θ̇, T 〉 = α. (2.50)
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This formula leads to
dV σ = α ∧ σ (2.51)

and the commutation rule

dV
d

ds
= −α d

ds
+

d

ds
dV . (2.52)

We shall make repeated use of this result.
Indeed, this commutation rule, together with (2.48), immediately yields

dV T = dV
dR

ds
= −αT + θ̇

= βN + γB. (2.53)

Next we apply dV to the first Frenet formula to obtain

dV
dT

ds
= (dV κ)N + κ dVN. (2.54)

To evaluate the left-hand side of this equation, we use the commutation rule (2.52),
(2.53), and the Frenet formula to find that

dV
dT

ds
= −αdT

ds
+
d

ds
(dV T )

= −κβT + (−κα+ β̇ − τγ)N + (τβ + γ̇)B. (2.55)

A comparison of (2.54) and (2.55) implies that

dV κ = −κα+ β̇ − τγ (2.56)

and
dVN = −βT +

1
κ
(τβ + γ̇)B.

Next, the vertical differential dVB can be computed by differentiating the or-
thonormality relations 〈T,B〉 = 〈N,B〉 = 0 and 〈B,B〉 = 1. We conclude that the
vertical differential of the Frenet frame is

dV


 T
N
B


 =


 0 β γ
−β 0 1

κ(τβ + γ̇)
−γ − 1

κ
(τβ + γ̇) 0





 T
N
B


 . (2.57)
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The formula for dV τ can now be derived by differentiating the last Frenet formula
Ḃ = −τN . This gives

dV τ = −τα+ κγ +
d

ds
[
1
κ
(τβ + γ̇)]. (2.58)

Finally, by applying dV to (2.48) and by substituting from (2.57), we conclude that

dV


Θ1

Θ2

Θ3


 =


 0 β γ
−β 0 1

κ(τβ + γ̇)
−γ − 1

κ
(τβ + γ̇) 0


 ∧


Θ1

Θ2

Θ3


 . (2.59)

Equations (2.51), (2.52), (2.56), (2.58) and (2.59) constitute the basic computa-
tional formulas for the variational bicomplex Ω∗,∗

G (R). For the natural variational
bicomplex for regular plane curves, formulas (2.51) and (2.52) remain valid while
the others simplify to

dV κ = −κα + β̇ (2.60)

and

dV

[
Θ1

Θ2

]
=

[
0 β
−β 0

]
∧

[
Θ1

Θ2

]
. (2.61)

We are now ready to compute the Euler-Lagrange form for the natural Lagrangian

λ = L(κ, τ, κ̇, τ̇ , κ̈, τ̈ , . . . , κ(p), τ (p)) σ.

First, let

P (p)
κ =

∂L

∂κ(p)
, P (p)

τ =
∂L

∂τ (p)

and define recursively, for j = p− 1, . . . , 1, 0,

P (j)
κ =

∂L

∂κ(j)
− d

ds

(
P (j+1)
κ

)
, P (j)

τ =
∂L

∂τ (j)
− d

ds

(
P (j+1)
τ

)
.

Define the Euler-Lagrange operators Eκ(L) and Eτ (L) and the Hamiltonian oper-
ator H(L) by

Eκ(L) = P (0)
κ =

∂L

∂κ
− d

ds

(∂L
∂κ̇

)
+
d2

ds2
(∂L
∂κ̈

) − · · · ,

Eτ (L) = P (0)
τ =

∂L

∂τ
− d

ds

(∂L
∂τ̇

)
+
d2

ds2
(∂L
∂τ̈

)
. . . ,

and
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H(L) = −L+ P (1)
κ κ̇+ P (2)

κ κ̈+ · · ·+ P (p)
κ κ(p)

+ P (1)
τ τ̇ + P (2)

τ τ̈ + · · ·+ P (p)
τ τ (p).

Bear in mind that Eκ(L) and Eτ (L) are the Euler-Lagrange expression obtained
from L thorough the variation of κ and τ thought of as new dependent variables
whereas our objective is to compute the Euler-Lagrange expression for L derived
from the variation of the underlying curves on R3. A direct calculation leads to

dH

ds
= −κ̇Eκ − τ̇Eτ . (2.62)

This identity may also be derived from Noether’s theorem (see Theorem 3.24) for
autonomous Lagrangians.
We now compute dV λ:

dV λ =
[∂L
∂κ

dV κ+
∂L

∂κ̇
dV κ̇+ · · ·+ ∂L

∂κ(p)
dV κ

(p)
] ∧ σ

+
[∂L
∂τ

dV τ +
∂L

∂τ̇
dV τ̇ + · · ·+ ∂L

∂τ (p)
dV τ

(p)
] ∧ σ

+Lα ∧ σ. (2.63)

We use the commutation rule (2.52) to “integrate by parts”, that is, to cast off
expressions which are total derivatives and which therefore lie in the kernel of I.
For example,

∂L

∂κ(p)
dV κ

(p) ∧ σ = P (p)
κ dV

(d
ds
κ(p−1)

) ∧ σ

= P (p)
κ

[−κ(p)α+
d

ds
(dV κ

(p−1))
] ∧ σ

=
[−P (p)

κ κ(p)
]
α ∧ σ − [(d

ds
P (p)
κ

)
dV κ

(p−1)
] ∧ σ + dH

[· · · ].
The first term on the right-hand side of this last equation can be combined with
the last term Lα ∧ σ in (2.63) to give two of the terms in the formula for H(L);

the next term is this equation can be combined with the term
∂L

∂κ(p−1)
dV κ

(p−1) in

(2.63) to become P (p−1)
κ dV κ

(p−1). By continuing in this fashion we deduce that

dV λ =
[
Eκ(L)dV κ+ Eτ (L)dV τ −H(L)α

] ∧ σ + dH [· · · ].
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Already, this formula insures that the Euler-Lagrange form E(λ) will be expressed
in terms of the Euler-Lagrange expressions Eκ(L) and Eτ (L) and the Hamiltonian
H(L). To complete the calculation of E(λ), we use (2.53) and (2.48) to evaluate
EκdV κ ∧ σ:

EκdV κ ∧ σ = Eκ[−κα+ β̇ − τγ] ∧ σ = −[κEκα+ Ėκβ + τEκγ] ∧ σ + dH [Eκβ]

= [−κĖκΘ1 − κEκΘ̇1] ∧ σ + [(κ2 − τ2)Eκ − ĖκΘ̇2] ∧ σ

+ [τĖκΘ3 − τEκΘ̇3] ∧ σ + dH [· · · ]

= [κ̇Eκ]Θ1 ∧ σ + [(κ2 − τ2)Eκ + Ëκ]Θ2 ∧ σ + [2τĖκ + τ̇Eκ]Θ3 ∧ σ

+ dH [· · · ].

A similar but slightly longer calculation is required to evaluate EτdV τ ∧ σ and
thereby complete the proof of the following proposition.

Proposition 2.16. Let λ ∈ Ω1,0
G (R),

λ = L(κ, τ, κ̇, τ̇ , κ̈, τ̈ , . . . , κ(p), τ (p)) σ,

be a natural Lagrangian on the variational bicomplex for regular space curves. Let

Eκ, Eτ and H be the Euler-Lagrange expressions and Hamiltonian function for L

viewed as a function of κ, τ and their derivatives. Then

E(λ) = [E1Θ1 + E2Θ2 +E3Θ3] ∧ σ

where

E1 = Ḣ + κ̇Eκ + τ̇Eτ , (2.64a)

E2 = κH + (κ2 − τ2)Eκ + Ëκ + 2κτEτ (2.64b)

+
[κτ̇ − 2τ κ̇

κ2

]
Ėτ + 2

τ

κ
Ëτ ,

and

E3 = τ̇Eκ + 2τĖκ − κ̇Eτ +
[τ2κ2 − κ4 − 2κ̇2 + κκ̈

κ3

]
Ėτ

+ 2
κ̇

κ2
Ëτ − 1

κ

...
Eτ . (2.64c)
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On account of (2.62), the tangential component E1 vanishes identically.

A couple of special cases are noteworthy. First if λ is independent the torsion τ

and its derivatives, then these formula for the Euler-Lagrange form simplify to

E2 = κH + (κ2 − τ2)Eκ + Ëκ,

and

E3 = τ̇Eκ + 2τĖκ.

Since
EκE3 =

d

ds
(τE2

κ)

the Euler-Lagrange equations E2 = E3 = 0 always admit the first integral

τE2
κ = c1,

where c1 is a constant. In particular, for the Lagrangian λ = 1
2
κ2σ, we have that

E2 = κ̈+
1
2
κ3 − τ2κ,

and

E3 = τ̇κ+ 2τ κ̇.

First integrals for this system are

κ̇2 + τ2κ2 +
1
4
κ4 = c2 and τκ2 = c1.

For variational problems in the plane, there is no binormal component ( i.e., Θ3)
for the Euler-Lagrange form and we find that

E(λ) =
[
κH + κ2Eκ + Ëκ

]
Θ2 ∧ σ. (2.65)

For example, the Euler-Lagrange equation for the Lagrangian λ = 1
2 κ̇

2σ is

....
κ + κ2κ̈− 1

2
κκ̇2 = 0.

The Euler-Lagrange form for the Lagrangian λ = κσ vanishes identically as, of
course, it must — the integral of λ around any closed curve is the rotation number
of that curve and this is a deformation invariant of γ.
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Example 2.17. Surfaces in R3.

This example follows the same general lines as the previous one. We now take
as our bundle E : R2 ×R3 → R2 with Cartesian coordinates (xi, R) → (xi), where
i = 1, 2 and R = (u1, u2, u3) is again the position vector in R3. We restrict our
considerations to the open set R ⊂ J∞(E) where the one-jets Ri satisfy

|R1 ×R2| = 0.

A section Σ: R2 → R3 whose infinite jet lies in R defines a regularly parametrized
surface in R3. Furthermore, we shall consider only those forms on R which are
invariant under (i) all local oriented diffeomorphisms of the base R2, and (ii) under
the action of the Euclidean group on the fiber R3.

Defintion 2.18. The bicomplex (Ω∗,∗
G (R), dH , dV ) is called the natural variational

bicomplex for regular surfaces in R3.

Observe that if λ ∈ Ω2,0
G (R), then the integral

I =
∫
M

λ

is well defined for any compact surface M in R3 — the diffeomorphism invari-
ance of λ insures that λ pulls back via the coordinate charts of M in a consistent,
unambiguous fashion.
We now view the local differential geometry of surfaces as being defined over R.

Indeed, the normal vector N , the first and second fundamental forms gij and hij
and the Christoffel symbols Γi

jl, as defined by

N = R1 ×R2/|R1 ×R2|, (2.66a)

gij = 〈Ri, Rj〉, and (2.66b)

Rij = Γl
ijRl + hijN. (2.66c)

are all functions on the second jet bundle of E. Let

hij = gilhjl and hij = gilgjkhlk,

where gil are the components of the inverse of the metric gij . Let ∇j denote
covariant differentiation with respect to the Christoffel symbols in the direction Dj .
Equation (2.66c) can be rewritten as

∇jRi = hijN.
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The Weingarten equations and the Codazzi equations

DjN = −hijRi (2.67)

and

∇khij = ∇jhik (2.68)

are identities on R. Finally, let

H1 = 1
2 trh =

1
2
hii,

and

H2 = 1
2
trh2 = 2H2 −K,

where K = det(hij). Both H and K are G invariant functions on the second jet
bundle of E. On sections Σ of E they are, of course, the mean and Gauss curvatures
of the surface Σ.
We shall compute the Euler-Lagrange form for G invariant Lagrangians λ ∈

Ω2,0
G (R). The invariance of λ under the Euclidean transformations of the fiber R3

implies that λ can be expressed in the form

λ = L(jk(gij , hij)) ν = L(gij, hij , gij,l, hij,l, . . . ) ν (2.69)

for some smooth real-valued function L defined on the k-jet bundle of maps from
R2 to Sym2

+(T
∗(R2))× Sym2(T ∗(R2)). To insure that λ is invariant with respect

to all local diffeomorphism of the base R2, we shall suppose that L is a natural1

Lagrangian in the metric gij and in the symmetric (0, 2) tensor field hij . Examples
of G invariant Lagrangians include the Gauss-Bonnet integrand

λ =
√
gK ν,

the Willmore Lagrangian

λ =
1
2
√
g(H2 −K) ν

as well as higher order Lagrangians such as

λ =
1
2
√
g(∆H)2ν,

1Natural variational principles are discussed in greater detail in Chapter 3C and Chapter 6



Euler Operators 59

where ∆ is the Laplacian computed with respect to the metric g. As a cautionary
note we observe that, because of the Gauss-Codazzi equations, different functions
L can define the same G invariant Lagrangian λ. For example, we can define the
Gauss-Bonnet integrand by either a function on the 2-jets of the metric alone, viz.,

√
gK =

1√
g
R1212,

where Rijhk is the curvature tensor of gij, or alternatively, by a zeroth order La-
grangian in g and h, viz.,

√
gK =

√
g(2H2

1 −H2).

Of course, as functions on the jets of the position vector R both formulas coincide.
We introduce contact one forms Θi and Ξ by

θ = ΘiRi + ΞN, (2.70)

where θ = dR−Ridx
i. The form Ξ is G invariant whereas Θi is invariant under the

group of Euclidean transformations in the fiber but transforms as a vector-valued
form under local diffeomorphisms of the base R2. Differentiation of (2.70) with
respect to Dj leads, by virtue of (2.66b) and (2.67), to

θj = αi
jRi + βjN, (2.71)

where

αi
j = ∇jΘi − hijΞ,

and

βj = hijΘi +DjΞ.

Here the covariant derivative of Θi is the type (1, 1) tensor-valued form defined by

∇jΘi = DjΘi + Γi
ljΘ

l.

Next, we compute dV gij , dVN and dV h
i
j . From (2.67) and (2.71), it immediately

follows that

dV gij = 〈θi, Rj〉+ 〈θj, Ri〉
= gil α

l
j + gjl α

l
i. (2.72)
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From the orthonormality relations 〈N,N〉 = 1 and 〈N,Ri〉 = 0, we deduce that

dVN = −gijβiRj. (2.73)

To compute dV h
i
j , we apply dV to the Weingarten equation (2.67) to obtain

Dj

(
dVN

)
= −(

dV h
i
j

)
Rj − hij θj .

We substitute into this equation from (2.71) and (2.73) to conclude, after some
calculation, that

dV h
i
j = gil(∇jβl)− hlj α

i
l.

This, in turn, gives rise to

dV hij = hlj α
l
i +∇jβi. (2.74)

We are now ready to compute the Euler-Lagrange form for the Lagrangian λ.
Define

Aij = Eij
(g) =

∂L

∂gij
−Dl

(∂L
∂gij,l

)
+ · · · (2.75a)

and
Bij = Eij

(h) =
∂L

∂hij
−Dl

(∂L
∂hij,l

)
+ · · · (2.75b)

and set
Aj

i = gilA
jl and Bj

i = hilB
jl.

Because L is a natural, diffeomorphism invariant Lagrangian Noether’s theorem
implies that the two Euler-Lagrange expressions Aij and Bij are related by the
identity

2∇jA
j
i + 2∇jB

j
i − (∇ihjk)Bjk = 0. (2.76)

We shall give a direct proof of this result in the next chapter.
The same “integration by parts ” argument that we used in the previous example

is repeated here to yield

dV λ =
[
AijdV gij +BijdV hij

] ∧ ν + dH [· · · ]

=
[
2Aj

iα
i
j +Bj

iα
i
j +Bij∇jβi

] ∧ ν + dH [· · · ]

= −[
2∇jA

j
i +∇jB

j
i + hli(∇jB

lj)
]
Θi ∧ ν

+
[∇ijB

ij −Bj
i h

i
j − 2Aj

ih
i
j

]
Ξ ∧ ν + dH [· · · ].

But, by virtue of the Codazzi equations (2.68),[
hli(∇jB

lj)
]
Θi ∧ ν =

[∇j(B
j
i )− (∇ihlj)Blj

]
Θi ∧ ν + dH [· · · ]

and hence, on account of the (2.76), the components of Θi in the foregoing expression
for dV λ vanishes identically.
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Proposition 2.19. The Euler-Lagrange form for the G-invariant Lagrangian λ ∈
Ω2,0
G (R) given by (2.69) is

E(λ) =
[∇ijB

ij −Bj
i h

i
j − 2Aj

ih
i
j

]
Ξ ∧ ν

where Aij and Bij are the Euler-Lagrange expressions (2.75)

For example, with L =
√
gf(H1, H2) we have that

Bij =
√
g
[

1
2f1g

ij + f2h
ij

]
and

Aj
i =

√
g
[

1
2
fδji −

1
2
f1h

j
i − f2(hlih

j
l )

]
,

where f1 and f2 are the partial derivatives of f with respect to H1 and H2 respec-
tively. The Euler-Lagrange form for the Lagrangian

λ =
√
gf(H1, H2) ν

is therefore

E(λ) =
√
g
[
1
2
∆f1 +∇ij(hijf2)− 2H1f +H2f1 + 2H1(3H2 − 2H2

1 )f2

]
Ξ ∧ ν.

With f = 1
2(H2 −H2

1 ), this gives

E(λ) =
√
g
[
1
2∆H −KH2 +H3

]
Ξ ∧ ν

as the Euler-Lagrange form for the Willmore Lagrangian. For the Gauss-Bonnet
integrand f = 2H2

1 −H2, this gives E(λ) = 0.

Example 2.20. Curves on Surfaces.

Let M be a two dimensional Riemannian manifold with metric g and constant
scalar curvature R. In this final example, we wish to compute the Euler-Lagrange
equations for the natural variational problems for curves on such surfaces. The
Lagrangians for such variational problems take the form

λ = L(κg, κ̇g, κ̈g, . . . ) σ, (2.77)

where κg is the geodesic curvature of the curve, computed with respect to the metric
g, and

σ = |u′| dx, where |u′| =
√
gij

dui

dx

duj

dx
.
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To facilitate the calculations for this example, it is very helpful to introduce
covariant horizontal and vertical differential DH and DV . If D denotes the usual
covariant differential defined on tensor-valued forms on J∞(E), then

D = DH +DV .

For example, if A is a type (1, 1) tensor-valued type (r, s) form on J∞(E), then DA
is the type (1, 1) tensor-valued (r + s+ 1) form with components

DAi
j = dAi

j + duk ∧ (Al
j Γ

i
lk − Ai

l Γ
l
jk).

Here Γl
ij are the components of the Christoffel symbols for the metric gij . Since

d = dH + dV and duk = θk + u̇kdx, this equation decomposes by type to give

DHA
i
j = dHA

i
j + dx ∧ u̇k(Al

j Γ
i
lk − Ai

l Γ
l
jk)

and

DVA
i
j = dVA

i
j + θk ∧ (

Al
j Γ

i
lk −Ai

l Γ
l
jk

)
.

Of course, on scalar valued forms dH and DH , and dV and DV , coincide.
The curvature two form Ωi

j decomposes according to

Ωi
j = −1

2Rj
i
hkdu

h ∧ duk

=
[−Rj

i
hku̇

kθh ∧ dx
]
+

[−1
2
Rj

i
hkθ

h ∧ θk
]

=
(1,1)

Ω i
j +

(0,2)

Ω i
j .

Consequently, the Ricci identity

D2Ai
j = Ωi

l ∧Al
j − Ωl

j ∧Ai
l

decomposes by type to yield

D2
HA

i
j = 0, (2.78a)

DVDHA
i
j +DHDVA

i
j =

(1,1)

Ω i
l ∧Al

j −
(1,1)

Ω l
j ∧ Ai

l (2.78b)

and
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D2
V A

i
j =

(0,2)

Ω i
l ∧ Al

j −
(0,2)

Ω l
j ∧Ai

l. (2.78c)

With this formalism in hand, the calculation of the Euler-Lagrange equation for
(2.77) proceeds along the same lines as that of our first example. Let {T,N} be the
Frenet frame and define contact one forms Θ1 and Θ2 by

θ = Θ1T +Θ2N.

The Frenet formula
DT

ds
= κgN (2.79)

leads to
Dθ

ds
= αT + βN,

where
α = Θ̇1 − κgΘ2 and β = κgΘ1 + Θ̇2.

These equations imply that

dV |u′| = α and dV σ = α ∧ σ (2.80)

and

DV

[
T
N

]
=

[
0 β
−β 0

] [
T
N

]
.

To compute dV κg, we apply DV to the Frenet formula (2.79) to obtain

DV

(DT
ds

)
= (dV κ)N − κβT.

To evaluate the left-hand side of this equation, we use (2.78b) and (2.80) to deduce
that

DV

(DT i

ds

)
= DV

(DT i

Dt

1
|u′|

)
= −αDT

i

ds
+
D

ds

(
DV T

i
)
+

(1,1)

Ω i
l T

l. (2.81)

On a two-dimensional manifold the curvature tensor satisfies

Rl
i
hk = R(glhδik − glkδ

i
h).
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and so the curvature term in equation (2.81) simplifies to

(1,1)

Ω i
l T

l = RN iΘ2.

From the normal component of (2.81), we therefore find that

dV κg = −κα+ β̇ +RΘ2.

For the Lagrangian (2.77) we define the Euler-Lagrange operator Eκg
(L) and

the Hamiltonian H(L) as in our first example. The calculations there can now be
repeated without modification.

Proposition 2.21. The Euler-Lagrange form for the natural Lagrangian (2.77)

for curves on a surface of constant curvature R is

E(λ) =
[
Ëκg

(L) +Eκg
(L)(κ2

g +R) + κgH(L)
]
Θ2 ∧ σ.



Chapter Three

FUNCTIONAL FORMS AND COCHAIN MAPS

We begin this chapter by studying the subspaces of functional formsFs(J∞(E)) ∈
Ωn,s(J∞(E)). These spaces were briefly introduced in Chapter One as the image
of Ωn,s(J∞(E)) under the interior Euler operator I:

Fs(J∞(E)) = I
(
Ωn,s(J∞(E))

)
= {ω ∈ Ωn,s(J∞(E)) | I(ω) = ω }.

We give local normal forms for functional forms of degree 1 and 2; for s > 2,
the determination of local normal forms seems to be a difficult problem. As an
elementary application of the theory of functional forms, we show that for

∆ = Pα[x, u] θα ∧ ν ∈ F1(J∞(E))

the equation δV (∆) = I(dV∆) = 0 coincides with the classical Helmholtz conditions
for the inverse problem to the calculus of variations. A simplification of these
conditions is presented in the case of one dependent variable. The problem of
classifying Hamiltonian operators for scalar evolution equations is formulated in
terms of functional 3 forms. Our discussion indicates that the complexity of this
problem is due, in part, to the problem of finding normal forms for functional 3
forms.
In section B, we classify explicitly those maps on the infinite jet bundle J∞(E)

which induce cochain maps for either the vertical or the horizontal subcomplexes in
the variational bicomplex. Attention is also paid to maps which commute with the
interior Euler operator I although only partial results are obtained. We are able,
however, to completely solve the infinitesimal version of these problems, that is,
the characterization of those vector fields on J∞(E) whose Lie derivatives commute
with either dH , dV , or I. As an immediate application of these considerations a
general change of variable formula for the Euler-Lagrange operator is derived.
In section C, we derive a Cartan-like formula for the Lie derivative of functional

forms with respect to a generalized vector field in terms of interior products and
the induced vertical differential δV . Suitably interpreted, this formula yields one
version of Noether’s theorem. To illustrate these results, the problem of finding
conservation laws for the geodesic equation is studied. We also show how Noether’s
second theorem can be derived, at least in the special case of natural variational
principles on Riemannian structures, from the same Lie derivative formula.

65
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A. Functional Forms. Our first task in this section is to explain our nomencla-
ture, that is, to explain why we call type (n, s) forms in Fs(J∞(E)) functional
forms. Let ω be a p-form on J∞(E), where p > n. Then, given a coordinate neigh-
borhood π : U0 → U of E, a compact set V ⊂ U0 and generalized vector fields
X1, X2, . . . , Xq on U , where q = p− n, we can define a functional on local sections
s : U0 → U by

W(X1, X2, . . . , Xq)[s] =
∫
V

[j∞(s)]∗ω(prX1, prX2, . . . , prXq), (3.1)

where

ω(prX1, prX2, . . . , prXq) = prXq . . . prX2 prX1 ω

Observe thatW is R linear and alternating but that it is is not linear over functions
on J∞(E). We call q the degree of the functional W.
In considering functionals of the type (3.1) there are two simplifications that can

be made. First, decompose ω by horizontal and vertical degrees to obtain

ω = ω(n,q) + ω(n−1,q+1) + · · ·+ ω(0,n+q),

where each form ω(r,s) is of type (r, s). Because contact forms are annihilated by
the pullback of the map j∞(s), only the first term ω(n,q) will survive in (3.1) i.e.,

[j∞(s)]∗ω(prX1, prX2, . . . , prXq) = [j∞(s)]∗ω(n,q)(prX1, prX2, . . . , prXq).

Second, decompose the prolongation of each generalized vector field Xi into its
evolutionary and total components (see Proposition 1.20) so that

prXi ω(n,q) = pr(Xi)ev ω(n,q) + totXi ω(n,q).

By Proposition 1.18, the second term on the right-hand side of this equation is of
type (n−1, q) and therefore it too will not contribute to the integrand in (3.1). We
therefore conclude that the functional q form (3.1) is completely determined by the
type (n, q) form ω(n,q) and by its values on arbitrary q-tuples of evolutionary vector
fields.
Thus, with no loss in generality, we can view functionals of the type (3.1) as

multi-linear, alternating maps from the space of evolutionary vector fields on E
to the space of functionals on E. If ω ∈ Ωn,q(J∞(E)), then the corresponding
functional W is given by

W(Y1, Y2, . . . , Yq)[s] =
∫
V

[j∞(s)]∗ω(prY1, prY2, . . . , prYq). (3.2)
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where Y1, Y2, . . . ,Yq are evolutionary vector fields on E.
Now, just as in the calculus of variations where the fundamental integral does not

uniquely determine the Lagrangian, so it is with functional q-forms. Indeed, because
dH and prYi anti-commute, both ω and ω+ dHη, where η ∈ Ωn−1,q, determine the
same functional W. The next proposition shows that this non-uniqueness can be
eliminated if we restrict our attention to type (n, q) differential forms in Fq.

Proposition 3.1. Let ω and ω̃ be two type (n, q) forms in Fq(J∞(E)). Then the

corresponding functionals W and W̃ are equal if and only ω = ω̃.

It is because of the one-to-one correspondence between functionals W of the type
(3.1) and forms ω in Fs(J∞(E)) that we call the latter functional forms.
The proof of Proposition 3.1 rests on the following lemma.

Lemma 3.2. Let ω be a type (n, q) form on J∞(E). Then I(ω) = 0 if and only

if for all evolutionary vector fields Y1, Y2, . . . , Yq the type (n, 0) form

λ = ω(Y1, Y2, . . . , Yq)

is variational trivial, i.e., E(λ) = 0.

Proof: It suffices to work locally. Recall that for ω ∈ Ωn,q(J∞(U)),

I(ω) =
1
q
θα ∧ Fα(ω),

where Fα(ω) is defined by (2.23). Also recall that if Y 1 = Y α
1

∂

∂uα
is any evolution-

ary vector field, then
prY1 ω = Y α

1 Fα(ω) + dHη,

where η is a form of type (n− 1, q). Consequently, we find that

λ = Y α
1 σα + dH η̃,

where
σα = [Fα(ω)](prY2, prY3, . . . , prYq),

and where η̃ is the form of type (n− 1, 0) obtained from η by interior evaluation by
prY2, . . . , prYq. This implies that

E(λ) = E(Y α
1 σα).

If E(λ) = 0 for all Y1, then we can invoke Corollary 2.9 to conclude that σα = 0
and hence that I(ω) = 0.
Conversely, if I(ω) = 0 then ω = dHη for some type (n − 1, q) form η. This

implies that λ is also locally dH exact and so E(λ) = 0.
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Proof of Proposition 3.2: By linearity, it suffices to prove that if ω ∈ Fq and
if the corresponding functional W vanishes identically, then ω = 0. If W ≡ 0, then
standard arguments from the calculus of variations imply that the type (n, 0) form

λ = ω(prY1, prY2, . . . , prYq)

is variationally trivial for all evolutionary vector fields Y1, Y2, . . . , Yq. From the
foregoing lemma we can infer that I(ω) = 0. But, by hypothesis, ω is in the image
of the projection operator I and so ω = 0.

We remark that Takens [65 ] introduced an equivalence relation∼ on Ωn,q(J∞(E))
whereby ω1 ∼ ω2 if for all evolutionary vector fields Y1, Y2, . . . ,Yq the two La-
grangians

λ1 = ω1(prY1, prY2, . . . , prYq)

and

λ2 = ω2(prY1, prY2, . . . , prYq)

have identical Euler-Lagrange expressions. On account of Lemma 3.2 we have that
the quotient spaces Ωn,q/ ∼ are isomorphic, via the map [ω] → I(ω), to the sub-
spaces Fq.
A differential δ can be defined for functionals W of the type (3.2). First, let V

be a functional on degree zero given by

V[s] =
∫
V

[j∞(s)]∗λ,

where λ is a type (n, 0) form. If Y is an evolutionary vector field, then we define
the functional Y (V) by

Y (V)[s] =
∫
V

[j∞(s)]∗
(LprY λ

)
. (3.3)

If W is a functional of degree 1, we define the functional δW of degree 2 by

(
δW)

(Y1, Y2) = Y1

(W(Y2)
) − Y2

(W(Y1)
) −W([Y1, Y2]). (3.4)

The differential of functionals of degree greater than 1 is similarly defined.
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Proposition 3.3. Let ω be a type (n, q) form in Fq(J∞(E)) and let W be the

associated functional q form. The δW is the functional q+1 form associated to the

type (n, q + 1) form δV ω in Fq+1(J∞(E)).

Proof: The proof is based upon the decomposition

dV ω = I(dV ω) + dHη = δV ω + dHη, (3.5)

which we have already established in Theorem 2.12. For simplicity, we consider
only the case q = 1. In view of the definitions (3.1) and (3.4), we find that

(
δW)

(Y1, Y2)[s] =
∫
V

[j∞(s)]∗
{LprY1

(
ω(Y2)

)−LprY2

(
ω(Y1)

)− ω(
[Y1, Y2]

)}
. (3.6)

Since, by Propositions 1.16 and 1.21,

LprY1

(
ω(Y2)

)
=

(LprY1(prY2)
)

ω + prY2

(LprY1ω
)

=
(
pr [Y1, Y2]

)
ω + prY2 prY1 dV ω

+ prY2 dV
(
prY1 ω

)
and

LprY2

(
ω(Y1)

)
= prY2 dV

(
prY1 ω

)
equation (3.6) simplifies to

(
δW)

(Y1, Y2)[s] =
∫
V

[j∞(s)]∗dV ω(Y1, Y2).

Finally, by virtue of (3.5), we can replace the form dV ω in this integral by the form
δV ω.

We now turn to the problem of explicitly describing local basis for the spaces Fs.
The case s = 1 is somewhat special.

Proposition 3.4. Let ω be a type (n, 1) form in F1(J∞(E)). Then, on any

coordinate chart J∞(U), there exist unique functions Pα[x, u] such that

ω = Pα[x, u] θα ∧ ν. (3.7)

Conversely, every type (n, 1) form which is locally of form (3.7) belongs to F1.

Proof: If ω ∈ F1(J∞(E)) then ω = I(σ) for some form σ ∈ Ωn,1(J∞(E)). If, on
J∞(U)

σ =
k∑

|I|=0

BI
α θ

α
I ∧ ν,
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then by direct calculation ω is given by (3.7), where

Pα =
k∑

|I|=0

(−D)IBI
α.

Conversely, if in any coordinate chart ω assumes the form (3.7), then I(ω) = ω and
hence ω ∈ F1(J∞(E)).

This characterization of F1(J∞(E)) shows that this space is a module over C∞

functions on J∞(E). As is easily checked by example, this is not true for the spaces
Fs(J∞(E)) when s > 1. Every form ω ∈ F1(J∞(E)) defines a system of m partial
differential equations on the space of sections on E — if ω is given locally by (3.7)
and is of order k, then in these coordinates the equations are

Pα(jk(s)) = 0.

To distinguish systems of equations which arise in this manner we follow Takens
[65 ] to make the following definition.

Definition 3.5. Forms ω in F1 are called source forms on J∞(E) and the partial

differential equations on E defined by ω are called source equations.

In particular, for a Lagrangian λ = Lν ∈ Ωn,0(J∞(E)), the Euler-Lagrange form

E(λ) = I(dV λ) = Eα(L) θα ∧ ν

is always a source form.
Forms in F2 admit the following local characterization.

Proposition 3.6. Fix |I| = l and let A I
αβ be a collection of smooth functions on

J∞(U) which satisfy

A I
αβ = (−1)l+1A I

βα.

Then the type (n, 2) form ω(l) defined by

w(l) = θα ∧ [A I
αβ θ

β
I +DI(A I

βα θ
β)] ∧ ν (3.8)

belongs to F2(J∞(U)). Furthermore, every form ω ∈ F2(J∞(U)) can be written

uniquely as a sum of such forms, i.e.,

ω = ω(0) + ω(1) + ω(2) + · · ·ω(k). (3.9)
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Proof: We show that I(ω(l)) = ω(l). Write

ω(l) = φ+ ψ,

where

φ = θα ∧ [A I
αβ θ

β
I ] ∧ ν and ψ = θα ∧ [DI(A I

βα θ
β)] ∧ ν.

Direct calculation using the coordinate definition of I leads to

I(φ) =
1
2
θα ∧ [A I

αβ θ
β
I − (−1)lDI(A I

βα θ
β)] ∧ ν

=
1
2
φ+

1
2
ψ.

The easiest way to evaluate I(ψ) is to first “integrate by parts” and rewrite ψ in
the form

ψ = (−1)lθαI ∧ θβA I
αβ + dHη = φ+ dHη.

Then the dHη term does not contribute to I(ψ) and so

I(ω(l)) = 2I(φ) = ω(l),

as required.
It remains to verify (3.9). Any type (n, 2) form ω in F2 locally assumes the form

ω = θα ∧ [ l∑
|I|=0

Pα
I
β θ

β
I

] ∧ ν.
From the coefficient of θα ∧ θβI , |I| = l, in the identity I(ω) = ω we conclude that

Pα
I
β = (−1)l+1Pβ

I
α.

Hence, with Pα I
β =

1
2A

I
αβ and ω

(l) defined by (3.8) we can write

ω = ω̃ + ω(l),

where ω̃ is of order l− 1 in the contact forms. Since both ω and ω(l) belong to F2,
the same is true of ω̃. The validity of (3.9) can now be established by induction on
the order l.
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For s > 2, little general progress has been made towards the explicit local char-
acterization of the spaces Fs. We can, however, offer the following alternative
description of these spaces. First, it is evident from the definition of I that every
form ω ∈ Fs(J∞(E)) must locally assume the form

ω = θα ∧ Pα,

where each Pα is a form of type (n, s− 1). For s > 1 these forms are not arbitrary
and additional conditions must be imposed upon the Pα to insure that the ω belong
to Fs.
Let P be a C∞(J∞(E)) linear map (or equivalently, a zeroth order total differ-

ential operator)
P : Ev(J∞(E))→ Ωn,s−1(J∞(E))

on the space of evolutionary vector fields Ev(J∞(E)). We say that P is formally
skew-adjoint if for every pair of evolutionary vector fields Y and Z and every coor-
dinate chart U on E there is a type (n, s− 2) form ρ on J∞(U) such that

prZ P (Y ) + prY P (Z) = dHρ. (3.10)

Proposition 3.7. A type (n, s) form ω on J∞(E) belongs to Fs(J∞(E)) if and

only if there exists a formally skew-adjoint operator P (Y ) = Y αPα such that in any

coordinate system

ω = θα ∧ Pα. (3.11)

This representation of ω is unique; if P̃ is another linear, formally skew-adjoint

operator and ω = θα ∧ P̃α, then P = P̃ .

Proof: Suppose that ω ∈ Fs. Then I(ω) = ω and so

ω = θα ∧ Pα,

where Pα =
1
s
Fα(ω). Equation (2.29) can therefore be rewritten as

prY ω = sP (Y ) + dHη. (3.12)

Interior evaluate this equation with prZ. Since the left-hand side of the resulting
equation changes sign under the interchange of Y and Z it follows immediately that
P is formally skew-adjoint.
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Conversely, suppose that (3.11) holds where P is formally skew-adjoint. We show

that Pα =
1
s
Fα(ω) which proves that ω ∈ Fs and that the representation (3.11) is

unique. Let Z1, Z2, . . . , Zs−1 be evolutionary vector fields on J∞(E). Because P
is skew-adjoint, we find that

P (Y )(prZ1, prZ2, . . . , prZs−1) + P (Z1)(prY, prZ2, . . . , prZs−1) = dHη1.

Substitution from (3.11) and the repeated use of this equation yields

(prZ1 prZ2 · · · prZs−1)
[
prY ω

]
= P (Y )(prZ1, prZ2, . . . , prZs−1)− P (Z1)(prY, prZ2, . . . , prZs−1)

− · · · − P (Zs−1)(prZ1, prZ2, . . . , prY )

= sP (Y )(prZ1, prZ2, . . . , prZs−1) + dHη2

= (prZ1 prZ2 · · · prZs−1)
[
sP (Y )

]
+ dHη2.

By virtue of Lemma 3.2 (with λ = prY ω − sP (Y ) ) this implies that

prY ω = sP (Y ) + dHη3. (3.13)

But according to Proposition 2.2 and equation (2.29), the Euler operator

E(Pω)(Y ) = Y αFα(ω)

is uniquely defined by this very condition and so sPα = Fα, as required.

Corollary 3.8. The type (n, s) form ω = θα ∧ Pα belongs to Fs if and only if

the coefficients of Pα(Z) = prZ Pα, viz.,

Pα(Z) =
k∑

|I|=0

P I
αβ (DIZ

β)

satisfy the the differential conditions

(−1)|I|+1P I
αβ =

k−|I|∑
|J|=0

(|I|+|J|
|J|

)
(−D)JP IJ

βα (3.14)
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for all |I| = 0, 1, . . . , k.
Proof: Proposition 2.1 implies that

[Y αPα(Z) + ZαPα(Y )] = Y α[Pα(Z) +
k∑

|I|=0

(−D)I(ZβP I
βα )] + dHρ.

Proposition 2.2 then implies that (3.10) holds if and only if the expression in brackets
on the right-hand side of this last equation vanishes for all Z. We set the coefficient
of DIZ

α in the resulting equation to zero to arrive at (3.14).

Example 3.9. We offer the following cautionary example. Let

ω = A[x, u] θ ∧ θx ∧ θxx ∧ dx.

Then, a direct calculation yields

I(ω) =
1
3
θ ∧ [Aθx ∧ θxx +Dx(Aθ ∧ θxx) +Dxx(Aθ ∧ θx] ∧ dx

= ω

so that this type (3, 1) form belongs to F3. According to Proposition 3.7, we can
express this form uniquely in the form

ω = θ ∧ P

where P satisfies (3.10). The apparent choice for P , namely P = Aθx ∧ θxx ∧ dx, is
not formally skew-adjoint and is therefore incorrect. Indeed, P(Z) is a second order
operator in Z therefore cannot satisfy (3.14) with |I| = 2. The correct choice for P
is

P =
1
3
F (ω) =

1
3
[2Aθ ∧ θxxx + 3Aθx ∧ θxx + 3Ax θ ∧ θxx + Axxθ ∧ θx].

This is an appropriate point at which to make a few, relatively elementary remarks
concerning the inverse problem to the calculus of variations. In its simplest form,
the inverse problem is to determine when a given source form ∆ ∈ F1(J∞(E)) is
the Euler-Lagrange form for some Lagrangian λ ∈ Ωn,0(J∞(E)). We have already
observed that a necessary condition for ∆ = E(λ) is given by δV∆ = 0. In the
chapters that follow we shall establish the local sufficiency of this condition and
identify the topological obstructions to the construction of global Lagrangians. For
now, we direct our attention to the nature of these necessary conditions themselves.
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Definition 3.10. A source form ∆ ∈ F1(J∞(E)) is said to be locally variational

if

δV∆ = 0.

This definition reflects the fact, which we shall prove in Chapter Four, that if
δV∆ = 0 then, at least locally there is a Lagrangian λ such that ∆ = E(λ).
To examine the conditions δV∆ = 0 in coordinates, let ∆ = Pα[x, u] θα∧ν. Then

dV∆ =
k∑

|J|=0

(
∂JβPα

)
θβJ ∧ θα ∧ ν

and hence, using the definition of I, we have that

δV∆ =
1
2
θγ ∧ [ k∑

|J|=0

(−D)I [∂Iγ (dV∆)]
]

=
1
2
θγ ∧ [− k∑

|I|=0

(∂IβPγ)θ
β
I +

k∑
|I|=0

(−D)I(∂IγPαθα)
]
ν. (3.15)

But, according to the defining property (2.14) of the Lie-Euler operators EI
β, we

can write
k∑

|I|=0

∂IβPγ θ
β
I =

k∑
|I|=0

DI [EI
β(Pγ) θ

β]

and therefore (3.15) simplifies to

δV∆ =
1
2
θγ ∧ [ k∑

|I|=0

DI(HI
γβ θ

β)
]
,

where

HI
γβ = −EI

β(Pγ) + (−1)|I|∂IγPβ.

Thus the conditions δV∆ = 0 are given explicitly by

(−1)|I|∂Iγ(Pβ) = EI
β(Pγ), (3.16)
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for |I| = k, k−1, . . . , 0. For example, when ∆ is of order 2, this system of equations
becomes

∂ijγ Pβ = ∂
ij
β Pγ , (3.17a)

−∂iγPβ = ∂iβPγ − 2Dj

(
∂ijβ Pγ

)
, (3.17b)

and

∂γPβ = ∂βPγ −Di

(
∂iβPγ

) −Dij

(
∂ijβ Pγ

)
. (3.17c)

Historically, the equations (3.17) were first derived in 1887 by Helmholtz for the
special case of one independent variable and soon thereafter generalized to (3.16)
by [40 ]. Since then, the equations (3.16) have been rederived by many authors. In
any event, we shall call the differential

δV : F1(J∞(E))→ F2(J∞(E))

the Helmholtz operator and refer to the full system of necessary conditions (3.16)
as the Helmholtz equations.

Example 3.11. The Helmholtz conditions for scalar equations.

Because δV∆ ∈ F2, the components HI
γβ of δV∆ are not independent but are re-

lated by the conditions (3.14). These conditions represent certain interdependencies
amongst the Helmholtz conditions themselves. These become particularly manifest
when the number of dependent variables is one. For example, if

∆ = P (xi, u, ui, uij) θ ∧ ν

is a second order source form, then (3.17a) is an identity, (3.17b) reduces to

∂iP = Dj(∂ijP ) (3.18)

and (3.17c) becomes the divergence of (3.18). For higher order scalar equations a
similar reduction occurs but the explicit form of the reduced system does not seem
to have appeared in the literature. The coefficients of the reduced system are given
in terms of the coefficients of the Euler polynomial. The n-th Euler polynomial
En(x) is a polynomial of degree n,

En(x) =
n∑

k=0

(
n
k

)
akx

n−r,
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with generating function
2ext

et + 1
=

∞∑
p=0

En(x)
tn

n!
.

For k > 1, ak = 0 if k is even while

a0 = 1, a1 = −1
2
, a3 =

1
4
, a5 =

1
2
, a7 =

17
8
, . . . .

The coefficients ak are the Taylor series coefficients of the function

2
et + 1

=
∞∑
k=0

ak
tk

k!
.

Proposition 3.12. Let π : E → M be a fibered manifold with one dimensional

fiber and let

∆ = P [x, u(2k)] θ ∧ ν
be a source form of order 2k. Then the 2k + 1 Helmholtz conditions (3.16) are

equivalent to the k conditions

∂IP +
2k−i∑
|J|=0

(|I|+|J|
|J|

)
a|J|DJ

(
∂IJP

)
= 0 (3.19)

for |I| = 2k − 1, 2k − 3, . . . , 1.

Proof: According to Corollary 3.8, the components

HI = −EI(P ) + (−1)|I|∂|I|P
of the functional form δV∆ ∈ F2 are related by the identities (3.14), viz.,

(−1)|I|+1HI =
2k−|I|∑
|J|=0

(|I|+|J|
|J|

)
(−D)JHIJ , (3.20)

for all |I| = 2k, 2k − 1, . . . , 0. For the argument that follows, it is possible to
suppress our multi-index notation and simply write P (l) for ∂IP , Dl for DI , and
H(l) for HI , where |I| = l. In terms of this abbreviated notation, the system of
equations (3.20) can be expressed as

−H(2k) = H(2k),

H(2k−1) = H(2k−1) − 2kD1H
(2k),

−H(2k−2) = H(2k−2) − (2k − 1)D1H
(2k−1) +

(
2k
2

)
D2H

(2k),
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and so on. These equations evidently imply that the Helmholtz condition H(2l) = 0
is a consequence of the conditions H(2l+1) = 0, H(2l+3) = 0, . . . , H(2k−1) = 0.
Hence ∆ is locally variational if and only if

H(2k−1) = 0, H(2k−3) = 0, . . . , H(1) = 0. (3.21)

Written out in full, these equations become

2P (2k−1) =
(
2k
1

)
D1P

(2k), (3.22a)

2P (2k−3) =
(
2k−2

1

)
D1P

(2k−2) − (
2k−1

2

)
D2P

(2k−1) +
(
2k
3

)
D3P

(2k),
(3.22b)

2P (2k−5) =
(
2k−4

1

)
D1P

(2k−2) − (
2k−3

2

)
D2P

(2k−3) +
(
2k−2

3

)
D3P

(2k−2)

+
(
2k−1

4

)
D4P

(2k−1) +
(
2k
5

)
D5P

(2k), (3.22c)

and so on. We substitute (3.22a) into (3.22b) to eliminate the odd derivative term
P (2k−1) from (3.22b). Then we substitute (3.22a) and (3.22b) into (3.22c) in order
to eliminate the odd derivative terms P (2k−3) and P (2k−1). In short, it is clear that
the remaining Helmholtz conditions (3.21) are equivalent to a system of equations
of the form

P (i) +
2k−i∑
j=1
j odd

cijDjP
(i+j) = 0, (3.23)

where i is odd. In anticipation of the result which we wish to prove, let us write
the constants cij in the form

cij = bi+j,j

(
i+j
j

)
.

The index j is also odd and ranges from 1 to 2k− i. To prove (3.19), we must show
that

bi+j,j = aj . (3.24)

To this end, we use the identity

En(x+ 1) + En(x) = 2xn

to deduce that the constants aj satisfy

2aj +
j∑

l=1

(
j
l

)
aj−l = 0.
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This, in fact, provides us with a recursion formula for these constants; we define
a0 = 1, aj = 0 if j > 0 and even, and compute aj for j odd from the formula

2aj + 1 +
j−1∑
l=2
l even

(
j
l

)
aj−l = 0. (3.25)

We prove (3.24) by showing that the coefficients bk,j also satisfy (3.25) for each
fixed k.
We substitute (3.23) back into the original Helmholtz condition

2P (m) +
2k−m∑
l=1

(
l+m
l

)
(−D)lP (m+l) = 0,

where m is odd, in order to eliminate all odd derivatives P (m), P (m+2) . . . . The
result is

2
2k−m∑
j=1
j odd

bm+j,j

(
m+j
j

)
DjP

(m+j) +
2k−m∑
l=1
l odd

(
m+l
l

)
DlP

(m+l)

+
2k−m−1∑

l=2
l even

[2k−l−m∑
j=1
jodd

bm+l+j,j

(
m+l
l

)(
m+l+l

j

)
Dl+jP

(m+l+j)
]
= 0.

We change the sum on l in the second summation to one on j, we change the sum
on j in the fourth summation to one on j′ = j + l and we interchange the order of
the double summation to find that

2k−m∑
j=1
j odd

(
m+j
j

)[
2bm+j,j + 1 +

2k−m∑
l=2
leven

(
j
l

)
bm+j,j−l

]
DjP

(m+j) = 0. (3.26)

We now argue that, because this equation is an identity for all Euler-Lagrange
expressions P = E(L), the expressions in brackets in (3.26) must vanish for each m
odd, m = 1, 3, . . . , 2k − 1 and each j = 1, 3, . . . , 2k −m. But this gives precisely
the same recursion formula as (3.25) for the coefficients aj , as required.
To complete the proof, consider the Lagrangian

L =
1
2
f(x)u2

(q).
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The Euler-Lagrange expression for this Lagrangian is

E(L) = f(x)u(2q) + { lower order terms }.

By successively modifying L we can eliminate all of the lower order, even order
terms to obtain a Lagrangian L̃ whose Euler-Lagrange expression is of the form

E(L̃) = f(x)u(2q) + { odd order terms }.

With P = E(L̃), the only term that survives in (3.26) is that for which j = 2q−m.

This form of the Helmholtz conditions provides us with an explicit form for all
linear, locally variational source forms in one dependent variable. For p even, let
Bp = (Bi1i2...ip) be a collection of smooth functions on Rn and define a linear p-th
order source form ∆Bp

by

∆Bp
=

[
BIuI −

|I|−1∑
|J|=1
|J| odd

(|I|
|J|

)
a|J| (DJB

JK)uK
]
θ ∧ ν, (3.27)

where |K| = p− |J |.
Corollary 3.13. For p even, the linear source forms ∆Bp

are all locally vari-

ational. Moreover, every linear, locally variational source form ∆ of order 2k is a

unique sum of source forms of this type, i.e., there exist functions B2k, B2k−2, . . . ,
B2, B0 such that

∆ = ∆B2k
+∆B2k−2 + · · ·+∆B2 +∆B0 .

In the special case n = 1, this corollary simplifies the formula due to Krall [43 ] for
the most general, linear, formally self-adjoint, scalar ordinary differential operator.

Example 3.14. Hamiltonian operators for scalar evolution equations.

We close this section by briefly describing the role played by functional forms in
the theory of infinite dimensional Hamiltonian systems. For simplicity, we consider
only the case of scalar evolution equations in one spatial variable. Let E : R×R →
R with coordinates (x, u)→ x. Then a Hamiltonian operator can be identified, at
least formally, with a linear differential operator

D : C∞(J∞(E))→ C∞(J∞(E))
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such that the bracket

{· , ·} : C∞(J∞(E))× C∞(J∞(E))→ C∞(J∞(E))

defined by

{P,Q} =
∫
E(P )D(E(Q)) dx,

is a Poisson bracket. Here E(P ) and E(Q) are the Euler-Lagrange expressions of
P and Q. At this point, the integral in this definition need not be taken literally;
rather it simply serves to indicate that we are to calculate modulo exact 1 forms.
Thus D is Hamiltonian if for all functions P , Q, and R

E(P )D (E(Q)) + E(Q)D (E(P )) = dHf1 (3.28)

and
E(P )D (

E(Q)D (E(R)))+ E(Q)D (
E(R)D (E(P )))

+E(R)D (
E(P )D (E(Q))) = dHf2 (3.29)

for some functions f1 and f2 on J∞(E). See Vinogradov [73 ], Kuperschmidt [46 ]
and Kosmann-Schwarzbach [42 ] for more rigorous and general definitions of the
concept of Hamiltonian operator.
For a given operator D, the skew-symmetry condition (3.28) is easily verified but

the Jacobi identity (3.29) can be quite difficult to check directly, even when the
operator D is a simple one. Olver [55 ] (pp. 424–436, in particular Theorem 7.8)
devised a rather simple test to check the Jacobi identity. To each operator D, he
explicitly constructs a certain functional 3 form ωD ∈ F3 and shows, in effect, that
D satisfies the Jacobi identity if and only if I(ωD) = 0.
For example, for the KdV equation with the Hamiltonian operator

D = Dxxx +
2
3
uDx +

1
3
ux

the corresponding functional 3 form is

ωD = θ ∧ θx ∧ θxxx

which is easily seen to satisfy I(ωD) = 0.
Conversely, in order to characterize all Hamiltonian operators and to classify their

normal forms — in other words, to obtain the analogue of the Darboux theorem,
one is confronted with the the analysis of the equation I(ω) = 0 for type (1, 3) forms
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of a certain prescribed form. For a Hamiltonian operator on E of odd order l it so
happens that the relevant (1, 3) form to consider is

ω = θ ∧ [A1θx ∧ θp−1 + A3θxxx ∧ θp−3 + A5θxxxxx ∧ θp−5 + · · ·
+ Alθl ∧ θp−l] ∧ dx+ { lower order terms},

(3.30)

where the coefficients Ai are functions on J∞(E) and p ≥ l + 1. The value of the
integer p is not specified a priori but is to be determined as a consequence of the
equation I(ω) = 0. I conjecture that p ≤ 3l + 1 and that this bound is sharp.
To appreciate the combinatorial complexity of this apparently innocuous problem,

consider the case l = 5. We suppose, therefore, that A5 �= 0 and we must prove that
this is possible only if p ≤ 16. From the coefficients of θ ∧ θk ∧ θp−k in the equation
I(ω) = 0, for k = 1, 2, . . . , 6 we obtain the following system of linear homogeneous
equations for A1, A3, and A5:



(
p−1
1

) − 1 + 2ε (
p−3
1

)
+ ε

(
3
1

) (
p−5
1

)
+ ε

(
5
1

)
(
p−1
2

) − (
p−1
1

) (
p−3
2

)
+ ε

(
3
2

) (
p−5
2

)
+ ε

(
5
2

)
(
p−1
3

) − (
p−1
2

) (
p−3
3

) − 1 + 2ε (
p−5
3

)
+ ε

(
5
3

)
(
p−1
4

) − (
p−1
3

) (
p−3
4

) − (
p−3
1

) (
p−5
4

)
+ ε

(
5
4

)
(
p−1
5

) − (
p−1
4

) (
p−3
5

) − (
p−3
2

) (
p−5
5

) − 1 + 2ε(
p−1
6

) − (
p−1
5

) (
p−3
6

) − (
p−3
3

) (
p−5
6

) − (
p−5
1

)






A1

A3

A5


 = 0.

Here ε = (−1)p+1. To complete this analysis, it therefore suffices to check that
the coefficient matrix of this system has maximum rank only when p > 16 ! For p
odd the determinant formed from columns 1, 2 and 4 has value

−1
6
p(p− 6)(p− 11)(p− 13)

which is non-zero for p > 16. For p even the determinant formed from columns 1,
3 and 5 has values

− 1
360

(p− 3)(p− 5)(p− 10)(p− 12)(p− 14)(p− 16)

which does again not vanish for p > 16.
The form

ω = θ ∧ [ 37
36
θ(1) ∧ θ(15) − 30

13
θ(3) ∧ θ(13) + θ(5) ∧ θ(11)],
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where θ(i) = Diθ, is of the form (3.30) and so, at least when l = 5, the conjectured
bound is sharp.
Once the total order p of ω is determined, the remaining conditions that arise

from the equation I(ωD) = 0 are complicated nonlinear differential conditions which
must solved in order to characterize that particular class of Hamiltonian operators.
Since our purpose here is merely to draw attention to the role that the variational
bicomplex can play in this problem and to highlight some of the complexities of the
action of the interior Euler operator I on functional three forms, it is inappropriate
for us to continue this analysis here. For a complete classification of Hamiltonian
operators of low order on low dimensional spaces see Astashov and Vinogradov [7 ],
Olver [56 ] and Cooke [19 ].

B. Cochain Maps on the Variational Bicomplex. In this section we classify
those maps between infinite jet bundles whose differentials commute with either dV
or dH or δV and thereby define cochain maps on either the vertical subcomplexes
or the horizontal subcomplexes of the variational bicomplex or on the complex of
functional forms.
Let π : E →M and ρ : F → N be two fibered manifolds and let

Φ: J∞(E)→ J∞(F )

be a smooth map.
The map Φ need not be the prolongation of a map from E to F nor do we suppose

that Φ covers a map from E to F or from M to N . Recall that by Proposition 1.1,
there are, for each k = 0, 1, 2, . . . and some mk ≥ k, smooth maps

Φmk

k : Jmk(E)→ Jk(F )

such that
ρ∞k ◦ Φ = Φmk

k ◦ π∞mk
.

If ω ∈ Ωp(J∞(F )) is a differential p form on J∞(F ) which is represented by a
form of order k, then the pullback Φ∗(ω) ∈ Ωp(J∞(E)) is represented by the form
(Φmk

k )∗(ω) of order mk.
In general, the pullback map

Φ∗ : Ωp(J∞(F ))→ Ωp(J∞(E))
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will not preserve the horizontal and vertical bigrading of forms and therefore will not
induce a map from the variational bicomplex on J∞(F ) to the variational bicomplex
on J∞(E). To circumvent this obvious difficulty, let

Φ� : Ωr,s(J∞(F ))→ Ωr,s(J∞(E))

be the map defined, for ω ∈ Ωr,s(J∞(F )), by

Φ�(ω) = πr,s[Φ∗(ω)],

where πr,s is the projection map from Ωp(J∞(E)) to Ωr,s(J∞(E)). We shall give
necessary and sufficient conditions under which the projected pullback Φ� commutes
with either dV or dH .
At first glance, the introduction of the maps Φ� may seem somewhat artificial.

However, in the calculus of variations it is precisely the map Φ�, and not Φ∗, which is
used to pullback Lagrangians. Indeed, suppose that dimM = dimN and that λ is a
Lagrangian on J∞(F ). Then Φ∗(λ) is an n form on J∞(E) but only the type (n, 0)

component of Φ(λ) will contribute to the fundamental integral
∫
M

[j∞(s)]∗Φ∗(λ).

Hence, the transformed Lagrangian is defined to be

Φ�(λ) = πn,0[Φ∗(λ)].

Locally, if (yj, vµ) are adapted coordinates on F and

Φm0
0 [x, u] =

(
f i[x, u], gµ[x, u]

)
,

then (with n=2 for simplicity)

Φ∗(L[y, v] dy1 ∧ dy2
)
= (L ◦ Φ)[df1 ∧ df2]

= (L ◦ Φ)[dHf1 ∧ dHf2 + (dHf
1 ∧ dV f2 + dV f

1 ∧ dHf2)

+ dV f
1 ∧ dV f2]

and thus
Φ�(Ldy1 ∧ dy2) = (L ◦Φ) det(Djf

i) dx1 ∧ dx2.

We emphasize that det(Djf
i) is the Jacobian of the functions f i[x, u] with respect

to the total derivatives Dj .
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Theorem 3.15. Let Φ be a smooth map from J∞(E) to J∞(F ).

(i) The projected pullback Φ� commutes with dV if and only if Φ covers a smooth

map φ0 from M to N , i.e.,

J∞(E)
Φ−−−−→ J∞(F )

π∞
M

� ρ∞N

�
M

φ0−−−−→ N.

(ii) The projected pullback Φ� commutes with dH if and only if Φ∗ is a contact

transformation, i.e., for every ω ∈ C(J∞(F ))

Φ∗(ω) ∈ C(J∞(E)).

(iii) The projected pullback Φ� commutes with both dV and dH if and only if it

coincides with the pullback Φ∗, i.e.,

Φ� = Φ∗.

Proof: (i) First suppose that Φ covers a map φ0 fromM to N . Then the Jacobian
Φ∗ : T (J∞(E))→ T (J∞(F )) satisfies

(ρ∞N )∗ ◦ Φ∗ = (φ0)∗ ◦ (π∞M )∗.

Consequently, if Y is a π∞M vertical vector at a point σ ∈ J∞(E), then Φ∗(Y ) is a
ρ∞N vertical vector at the point σ̃ = Φ(σ). Now consider a p form ω ∈ Ωr,s(J∞(F )).
Then ω ∈ Ωr,pH (J∞(F )) (see §2C). Hence, if X1, X2, . . . , Xp are tangent vectors at
σ, at least s+ 1 of which are π∞M vertical, we can conclude that

[Φ∗(ω)(σ)]
(
X1, X2, . . . , Xp

)
= ω(σ̃)

(
Φ∗(X1),Φ∗(X2), . . . ,Φ∗(Xp)

)
= 0.

This shows that Φ∗(ω) ∈ Ωr,pH (J∞(E)) and therefore

Φ∗Ωr,s(J∞(F )) (3.31)

⊂ Ωr,s(J∞(E))⊕Ωr+1,s−1(J∞(E))⊕ Ωr+2,s−2(J∞(E))⊕ · · · .

From this inclusion we can easily deduce, for a type (r, s) form ω on J∞(F ), that

πr,s+1[dΦ∗(ω)] = dV [Φ
�(ω)]

and
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πr,s+1[Φ∗(dHω)] = 0.

These two equations, together with the fact that Φ∗ commutes with d, lead to

Φ�[dV ω] = π
r,s+1[Φ∗(dV ω)]

= πr,s+1[Φ∗(d ω − dHω)]
= πr,s+1[d (Φ∗ω)] = dV [Φ

�(ω)],

as required.
Conversely, suppose that Φ� commutes with dV . Let (y

a, vµ) be local adapted
coordinates on F and suppose that the map φ0 = ρ∞N ◦Φ is given in these coordinates
by functions fa = ya ◦ φ0, i.e.,

φ0[x, u] = (fa[x, u]).

To complete the proof of (i), we must show that functions fa are independent of all
the fiber variables uαI , |I| ≥ 0.
If g : J∞(F )→ R is any smooth function then, by hypothesis,

Φ�(dV g) = dV (g ◦ Φ).
In particular, if g0 : N → R and g = g0 ◦ ρ∞N , then dV g = 0 and therefore

dV [g0 ◦ ρ∞N ◦ Φ] = 0.
By choosing g0 to be a coordinate function ya, this equation becomes dV f

a = 0
which implies that fa = fa(xi). This completes the proof of (i).
The proof of (ii) is similar. If Φ∗ preserves the contact ideal then, because

Ωr,s(J∞(F )) ⊂ Cs(J∞(F )), we have that

Φ∗Ωr,s(J∞(E)) ⊂ Cs(J∞(E))

and therefore

Φ∗Ωr,s(J∞(F )) (3.32)

⊂ Ωr,s(J∞(E))⊕Ωr−1,s+1(J∞(E))⊕ Ωr−2,s+2(J∞(E))⊕ · · · .
From this inclusion we can deduce, for ω ∈ Ωr,s(J∞(F )), that

πr+1,s[dΦ∗(ω)] = dH [Φ
�(ω)]

and
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πr+1,s[Φ∗(dV ω)] = 0.

It is now a simply matter to verify that

Φ�
(
dHω

)
= dH

(
Φ�ω

)
.

Conversely, suppose that Φ� commutes with dH . Then for every real-valued
function g : J∞(F )→ R we have

(π1,0 ◦ Φ∗)[dHg] = dH [g ◦ Φ].

From this equation it is easily seen that

(π1,0 ◦ Φ∗)[dV g] = 0

and hence
Φ∗[dV g] ∈ Ω0,1(J∞(E)) ⊂ C[J∞(E)].

Since the contact ideal C(J∞(F )) is locally generated by the vertical differentials of
the coordinate functions, viz., dV v

µ
J = θ̄

µ
J , this proves that

Φ∗C(J∞(F )) ⊂ C(J∞(E)).

Finally, the third statement in the proposition is a direct consequence of the two
inclusions (3.31) and (3.32).

Corollary 3.16. Let E, F and G be fibered manifolds and suppose that

Φ: J∞(E)→ J∞(F ) and Ψ: J∞(F )→ J∞(G)

are smooth maps.

(i) If Φ and Ψ both cover maps between the base spaces, then

(Ψ ◦ Φ)� = Φ� ◦Ψ�.

(ii) If Φ and Ψ are contact transformations, then

(Ψ ◦ Φ)� = Φ� ◦Ψ�.

Proof: Suppose that Φ and Ψ cover maps between the base spaces. Let ω be a
type (r, s) form on J∞(G). Then, on account of (3.31),

Ψ∗(ω) = α0 + α1 + α2 + . . . ,
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where αi is a form on J∞(F ) of type (r + i, s− i). For the same reason we obtain
Φ∗(αi) = βi0 + βi1 + βi2 + . . . ,

where βij is a form on J∞(E) of type (r+ i+ j, s− i− j). Thus, on the one hand,
it follows that

(Φ� ◦Ψ�)(ω) = Φ�(α0) = β00

while, on the other hand,

(Ψ ◦ Φ)�(ω) = πr,s ◦ (Ψ ◦ Φ)∗(ω)
= πr,s

[
Φ∗(Ψ∗(ω)

)]
= πr,s

[∑
i,j

βij
]

= β00.

This proves (i). The proof of (ii) is similar.

Proposition 3.15 has an infinitesimal analogue in terms of Lie derivatives. Let X
be an arbitrary vector field on J∞(E). In general, the Lie derivative LX does not
preserve the bidegree of a form on J∞(E) and so we introduce the projected Lie
derivative by defining, for ω ∈ Ωr,s(J∞(E)),

L�
X(ω) = π

r,s[LX(ω)]. (3.33)

Proposition 3.17. Let X be a vector field on J∞(E).

(i) The projected Lie derivative L�
X commutes with dV if and only if X is π∞M

related to a vector field X0 on M .

(ii) The projected Lie derivative L�
X commutes with dH if and only if X is the

prolongation of a generalized vector field on E.

Proof: We cannot appeal directly to the previous theorem since the vector field X
may not define a flow on J∞(E). Nevertheless, the proof is similar and so we shall
omit the details. Let us remark, however, that if (π∞M )∗X = X0 and if ω ∈ Ωr,s,
then LXω ∈ Ωr,pH . To prove this, we use (1.18) and note that if Y is a π∞M vertical
vector field on J∞(E), then the Lie bracket [X, Y ] is also π∞M vertical.

Let us now investigate under what conditions the maps Φ� will induce a cochain
map on the complex of functional forms. Since functional forms are of top horizontal
degree, this problem becomes meaningful only when the dimensions of the base
spaces M and N coincide. This we shall assume for the remainder of this section.
It is obvious that if Φ� commutes with both dV and I, then Φ� will restrict to a
map from Fs(J∞(F )) to Fs(J∞(E)) which will commute with the differential δV .
But, as the next proposition shows, the requirement that Φ� commute with both
dV and I is very restrictive.



Functional Forms and Cochain Maps 89

Proposition 3.18. Let Φ: J∞(E) → J∞(F ) be a smooth map for which Φ�

commutes with both dV and I and for which the map

Φ� : F1(J∞(F ))→ F1(J∞(E))

is injective. Then Φ is the prolongation of a fiber-preserving local diffeomorphism

φ : E → F , i.e., Φ = prφ.

Proof: We work locally. Let (xi, uαI ) and (y
j, vµJ ) be local coordinates around a

point σ ∈ J∞(E) and around the point σ̃ = Φ(σ) ∈ J∞(F ). By Theorem 3.15 the
map Φ covers a map φ0 : M → N and hence Φ is described in these coordinates by
functions

yj = yj(xi) and vµJ = v
µ
J (x

i, uαI ).

To prove the proposition it suffices to show, in view of Proposition 1.6,

(A) that vµ = vµ(xi, uα) so that Φ covers a map φ : E → F ; and

(B) that Φ is a contact transformation. To prove this it suffices to show, in view of
Theorem 3.15, (or more precisely the proof of Theorem 3.15) that Φ commutes
with dH acting on functions, i.e.,

Φ∗(dHf) = dH(f ◦ Φ). (3.34)

To prove (A), let ω = θ̄µ ∧ ν̄, where

θ̄µ = dvµ − vµj dyj and ν̄ = dy1 ∧ dy2 ∧ . . .dyn.

Then I(ω) = ω and therefore, because I commutes with Φ�, we must have

I
(
Φ�(ω)

)
= Φ�(ω) = Φ�(dvµ ∧ ν̄)

= J
[ k∑
|I|=0

(∂Iβv
µ) θβI ∧ ν]. (3.35)

where J = det
(∂yj
∂xi

)
. Since the left-hand side of this equation belongs to F1, the

coefficients of θαI ∧ ν on the right-hand side must vanish for |I| ≥ 1, i.e.,

J
∂vµ

∂uβI
= 0, (3.36)
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in which case equation (3.35) reduces to

I
(
Φ�(ω)

)
= J

∂vµ

∂uα
θα ∧ ν.

The assumption that Φ� is injective on F1 now establishes that the two Jacobians

J and det
(∂vµ
∂uα

)
do not vanish. Consequently, equation (3.36) shows that the

functions vµ are independent of the jet variables uαI and (A) is proved.
To prove (B), we consider the form

ω = f(yk)θ̄µj ∧ ν̄,

where θ̄µj = dv
µ
j − vµjkdyk and the coefficient f is a function of the base coordinates

yk alone. In this case we find, on the one hand, that

I(ω) = − ∂f

∂yj
θ̄µ ∧ ν̄

and
Φ�

(
I(ω)

)
= − ∂f

∂yj
[y(x)]J

∂vµ

∂uβ
θβ ∧ ν. (3.37)

On the other hand,
Φ�(ω) = f

(
y(x)

)
JdV v

µ
j ∧ ν

and consequently

I
(
Φ�(ω)

)
=

k∑
|I|=0

(−D)I
[
f
(
y(x)

)
J∂Iβv

µ
j

]
θβ ∧ ν. (3.38)

Equate the right-hand sides of (3.37) and (3.38). Since the function f is arbitrary,
we can equate the coefficients of the various derivatives of f to obtain

∂Iβv
µ
j = 0 for |I| ≥ 2, (3.39a)

∂vµj

∂uβi
=
∂xi

∂yj
∂vµ

∂uβ
, and J

∂vµj
∂uα

= Di

[
J
∂vµj
∂uαi

]
. (3.39b)

Let

Ci
j =

[
cofactor of

∂yj

∂xi
]
=
∂xi

∂yj
J.
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It is easily seen that this matrix is divergence-free, i.e.,
∂Ci

j

∂xi
= 0.

On combining this fact with (3.39a) and (3.39b), we arrive at

Φ∗(θ̄µj ∧ ν̄) = Di

[
Ci
j

∂vµ

∂uα
θα

] ∧ ν. (3.40)

We shall use this result momentarily.
Finally, consider the form

ω = dH [f θ̄
µ ∧ ν̄j ] = d f

dyj
θ̄µ ∧ ν̄ + f θ̄µj ∧ ν̄,

where f = f(yj, vµJ ) is now an arbitrary function. By using (3.40), we calculate
that

Φ�(ω) =
[( d f
dyj

◦ Φ)∂vµ
∂uα

]
J θα ∧ ν + (f ◦ Φ)Di

[
Ci
j

∂vµ

∂uα
θα ∧ ν]

=
[∂yk
∂xi

( d f
dyk

◦ Φ) − d

dxi
(
f ◦ Φ)]

Ci
j

∂vµ

∂uα
θα ∧ ν

+ dH
[
(f ◦ Φ)Ci

j

∂vµ

∂uα
θα ∧ νi

]
. (3.41)

Since ω is dH exact, I(ω) = 0 and consequently I(Φ�(ω)) = 0. In view of (3.41),
this implies that

∂yk

∂xi
( d f
dyk

◦ Φ)
=
d

dxi
(
f ◦Φ)

.

Because f is arbitrary, this proves that Φ commutes with dH acting on functions.
The map Φ must therefore be a contact transformation. This proves (B) and com-
pletes the proof of Proposition 3.18.

Because of the ubiquitous role that the operator I plays in the development of the
variational bicomplex, it is of some interest to characterize those maps Φ for which
Φ� commutes with I. This condition involves the pullback Φ∗ acting on forms of
total degree n + 1 or higher and is therefore expressed by complicated non-linear
equations in the derivatives of Φ. My attempts to analyze these equations have been
unsuccessful. However, the corresponding infinitesimal problem for the projected
Lie derivative L�

X , whereX is a vector field on J
∞(E), results in linear conditions on

X which are easily solved. It is surprising that the characterization of vector fields
X on the infinite jet bundle J∞(E) for which L�

X ◦ I = I ◦ L�
X coincides precisely

with the characterization of vector fields on the finite dimensional jet bundle Jk(E)
which preserve the contact ideal (see R. Anderson and N. Ibragimov [5 ], pp. 37–46
and, in particular, Theorem 10.1).
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Proposition 3.19. Let X be an arbitrary vector field on J∞(E).

(i) If m > 1, (where m is the fiber dimension of E), then L�
X commutes with I if

and only if X is the prolongation of a vector field on E.

(ii) If m = 1, then L�
X commutes with I if and only if X is locally the prolongation

of a generalized vector field X̃ on E of the form

X̃ = − ∂S
∂ui

∂

∂xi
+

[
S − ui ∂S

∂ui

]∂
∂u
, (3.42)

where S = S(xi, u, ui) is an arbitrary function on J1(U).

Proof: We begin with the proof of sufficiency. This involves a slight generalization
of the calculations presented in the proof of Theorem 2.12, part (v). We assume
that the vector field X is the prolongation of

X̃ = ai
∂

∂xi
+ bα

∂

∂uα
.

In part (i) of the theorem the coefficients ai and bα are functions of the coordinates

xi and uα only while, in part (ii), ai = − ∂S
∂ui

and b = S − ui ∂S
∂ui

. Observe that

π0,1(LXθ
α) = dV b

α − uαi dV ai

and that, in either case (i) or (ii), this simplifies to

π0,1(LXθ
α) = Qα

βθ
β, (3.43)

where

Qα
β =

∂bα

∂uβ
− uαi

∂ai

∂uβ
.

From the definition 2.11 of I in terms of the interior product operator Fα, we
therefore conclude that L�

X will commute with I in either case (i) or (ii) if, for all
type (n, s) forms ω,

Fα(L�
Xω) = Q

β
αFβ(ω) + π

n,s−1[LX

(
Fα(ω)

)
]. (3.44)

To derive this formula, recall that the defining property of Fα(ω) is the relation

prY ω = Y αFα(ω) + dH(η).
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where Y is an arbitrary evolutionary vector field

Y = Y α[x, u]
∂

∂uα
.

To this last equation we apply L�
X . Because X is the prolongation of a generalized

vector field on E, the projected Lie derivative commutes with dH . This gives rise
to

πn,s−1[LX(prY ω)] = X(Y α)Fα(ω) + Y α
[
πn,s−1LXFα(ω)

]
+ dHη1. (3.45)

Expansion of the left-hand side of this equation by the product rule for Lie differ-
entiation yields

πn,s−1
[LX(prY ω)

]
= πn,s−1

[LX(prY ) ω
]
+ prY

(L�
Xω

)
. (3.46)

The next step is to analyze each term on the right-hand side on equation (3.46).
By virtue of the definition of Fα, the second term becomes

prY
(L�

Xω
)
= (Y α)Fα(L�

Xω) + dHη2. (3.47)

To analyze the first term we use Propositions 1.20 and 1.21 to write

LX(prY ) = [pr X̃, prY ] = pr [X̃, Y ]

= pr {[X̃, Y ]ev}+ tot [X̃, Y ].

Since ω is of type (n, s), tot[X̃, Y ] ω is of type (n− 1, s) and therefore

πn,s−1
[LX(prY ω)

]
= {pr [X̃, Y ]ev} ω

= [X̃, Y ]αevFα(ω) + dHη3 (3.48)

=
[
X(Y α)−Qα

βY
β
]
Fα(ω) + dHη3. (3.49)

In deriving (3.48) we have once again used the defining property of Fα(ω). In
deriving (3.49), we have used the definition (1.42) for the bracket of two generalized
vector fields and the special form of X̃, as postulated in cases (i) and (ii).
The combination of (3.45), (3.46), (3.47), and (3.49) leads to (3.44). This proves

sufficiency.
To prove that the vector fields described in cases (i) and (ii) are the only vector

fields on J∞(E) whose projected Lie derivatives commute with I, we need the
following result, valid for any m.
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Lemma 3.20. Let Y be a π∞E vertical vector field on J∞(E). If L�
Y commutes

with I, then Y = 0.

Proof: Let

Y =
∞∑

|I|=1

Y α
I [x, u]∂

I
α

and let ω = f(x, u) θαI ∧ ν, where f is a function on U . We find that

L�
Y [I(ω)] = L�

Y

[
(−1)|I|(DIf) θα ∧ ν] = (−1)|I|LY [DI(f)] θα ∧ ν,

while

LY ω = f(dV Y
α
I ) ∧ ν = f

k∑
|J|=0

(∂JβY
α
I ) θ

β
J ∧ ν,

and thus
I
(L�

Y (ω)
)
= Eβ(fY α

I ) θ
β ∧ ν,

where Eβ is the Euler-Lagrange operator. Hence the hypothesis that L
�
Y commutes

with I leads to the conclusion that

Eβ(fY α
I ) = (−1)|I|LY

[
DI(f)

]
δαβ . (3.50)

When f is a function of the base variables xi alone, the right-hand side of (3.50)
vanishes and so, by virtue of Corollary 2.9, Y α

I = Y α
I (x

j). With f = uγ , (3.50)
becomes

δγβY
α
I = (−1)|I|Y γ

I δ
α
β

from which it readily follows, for m > 1, that Y α
I = 0. When m = 1, the result

follows from (3.50) with f(xi, u) = g(xi)u.

To complete the proof of Proposition 3.19, let X be an arbitrary vector field on
J∞(E) and let

X̃ = (π∞E )∗X = ai[x, u]
∂

∂xi
+ bα[x, u]

∂

∂uα
.

The vector field X̃ is a generalized vector field on J∞(E) so that the coefficients ai

and bα are smooth functions on J∞(U). We shall prove that if L�
X commutes with

I then, for m > 1, X̃ is actually a vector field on E while, for m = 1, X̃ is given by
(3.42) for some choice of function S. In either case, L

pr X̃
commutes with I. The

vector field Y = X−pr X̃ is therefore a π∞E vertical vector field whose Lie derivative
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commutes with I. The previous lemma implies that Y = 0 and so X = pr X̃, as
required.
Let ω = θα ∧ ν. Then I(ω) = ω so that the vector field X must satisfy

I(L�
Xω) = L�

Xω. (3.51)

Since
L�
Xω = dV b

α ∧ ν − uαj dV aj ∧ ν + (Dja
j)θα ∧ ν,

it immediately follows that (3.51) holds if and only if

∂Iβb
α = uαj ∂

I
βa

j (3.52)

for all |I| ≥ 1. With |I| = 1, this equation is

∂bα

∂uβi
= uαj

∂aj

∂uβi
. (3.53)

The analysis of this equation depends on the value of m.
If m > 1, we obtain from (3.53) the integrability condition

δαγ
∂ak

∂uβi
= δαβ

∂ai

∂uγk
. (3.54)

This implies that
∂aj

∂uβj
= 0 in which case (3.53) reduces to

∂bα

∂uβi
= 0. Equation

(3.52) now forces both ai and bα to be independent of the derivatives uαI for all
|I| ≥ 1. This proves that X̃ is a vector field on E.
For the case m = 1, we return to (3.52) which, with |I| > 1, implies that b−ujaj

is independent of the derivatives uI for all |I| > 1, i.e.,

b− ujaj = S(xi, u, ui).

We differentiate this equation with respect to ui and substitute from (3.53) to
deduce that

ai = − ∂S
∂ui

.

This proves (3.54) and completes the proof of Proposition 3.19.
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We began this section with the observation that, for an arbitrary map Φ between
infinite jet bundles, the pullback map Φ∗ does not preserve the bidegree of forms.
To circumvent this problem, we introduced the projected pullback maps Φ�. A
similar problem has now risen in the case of functional forms since, in general, Φ�

does not map Fs(J∞(F )) to Fs(J∞(E)). Accordingly, let us now define

Φ# : Ωn,s(J∞(F ))→ Ωn,s(J∞(E))

by
Φ#(ω) = I[Φ�(ω)] = (I ◦ πn,s)[Φ∗(ω)].

Evidently, Φ# restricts to a map

Φ# : Fs(J∞(F ))→ Fs(J∞(E)).

Likewise, if X is any vector field on J∞(E), then we define, for ω ∈ Ωn,s(J∞(E)),

L#
Xω = (I ◦ πn,s)[LXω].

We now establish the following important result.

Theorem 3.21. Let Φ: J∞(E)→ J∞(F ).
(i) If Φ is a contact transformation, then Φ# commutes with both I and δV .

(ii) Let X be a generalized vector field on E. Then L#
prX commutes with both I

and δV .

Proof: We shall prove (i). The proof of (ii) is similar and is therefore omitted. Let
ω ∈ Ωn,s(J∞(F )). Since ω = I(ω) + dHη (at least locally) and since, by Theorem
3.15, Φ� commutes with dH , we have that

Φ�(ω) = Φ�(I(ω)) + dH(Φ
�η).

To this equation we apply I to conclude, because I ◦ Φ# = Φ#, that Φ# commutes
with I.
To prove that Φ# commutes with δV , let ω ∈ Fs(J∞(F )). Decompose Φ∗ω by

type, i.e., let
Φ∗ω = ω̄0 + ω̄1 + ω̄2 + · · · ,

where ω̄i is a type (n− i, s+ i) form on J∞(E). Note that ω̄0 = Φ�ω. The following
sequence of elementary equalities completes the proof:

Φ#(δV ω) = Φ#(dV ω) = Φ
#(d ω) = (I ◦ πn,s+1

(
d (Φ∗ω)

)
= (I ◦ πn,s+1)

(
d (ω̄0 + ω̄1 + ω̄2 + . . . )

)
= I(dV ω̄

0) = I
(
dV (Iω̄

0)
)
= δV (Φ#ω).



Functional Forms and Cochain Maps 97

Corollary 3.22. (i) If Φ: J∞(E) → J∞(F ) is a contact transformation, then

for any Lagrangian λ̄ ∈ Ωn,0(J∞(F )),

E(Φ�λ̄) = Φ#[E(λ̄)]. (3.55)

(ii) If X is a generalized vector field on E and λ ∈ Ωn,0(J∞(E)), then

E(L�
prXλ) = L#

prX [E(λ)]. (3.56)

(iii) If ∆ ∈ F1(J∞(F )) is a locally variational source form, then so is

∆ = Φ#(∆) = (I ◦ πn,1)(Φ∗(∆)). (3.57)

Part (i) of Corollary 3.22 coincides with the general change of variables formula
discovered by Olver and presented as Exercise 5.59 of [55 ]. To see this explicitly we
define, for functions f and g on J∞(U), the local differential operator

Df : J∞(U)→ F1(J∞(U))

by

Df (g) = Fβ(gdV f) θ
β =

k∑
|I|=0

(−D)I [g∂Iβ(f)] θβ.

Now, with n = 2 for simplicity, and Φ[x, u] = (yi, vµI ) given locally by

yi = P i[x, u] and vµI = Q
µ
I [x, u],

we deduce that

Φ�
(
θ̄µ ∧ dy1 ∧ dy2

)
= πn,1[dVQ

µ ∧ dHP 1 ∧ dHP 2

+ dHQ
µ ∧ dV P 1 ∧ dHP 2 + dHQ

µ ∧ dHP 1 ∧ dV P 2

+ { forms of lower horizontal degree }]

= det



dV P

1 dP 1

dx1

dP 1

dx2

dV P
2 dP 2

dx1

dP 2

dx2

dVQ
α dQµ

dx1

dQµ

dx2


 ∧ dx1 ∧ dx2.
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Consequently if λ̄ = L̄[y, v] ν̄ is a Lagrangian on J∞(V ), then

λ = Φ�(λ̄) = (L̄ ◦ Φ) det(DjP
i) ν

and E(λ) = Φ#(E(λ̄), where

Φ#
(
Ēα(L̄)θ̄α ∧ dy1 ∧ dy2

)
= I

(
det



dV P

1 dP 1

dx1

dP 1

dx2

dV P
2 dP 2

dx1

dP 2

dx2

dVQ
α dQα

dx1

dQα

dx2




(
Eα ◦ Φ) ∧ dx1 ∧ dx2

)

=
(
det



DP 1

dP 1

dx1

dP 1

dx2

DP 2
dP 2

dx1

dP 2

dx2

DQα
dQα

dx1

dQα

dx2




(
Eα ◦ Φ)) ∧ dx1 ∧ dx2.

This shows that (3.55) coincides with Olver’s result.

Example 3.23. Two specific examples illustrate some of the important features of
Corollary 3.22. First let n = m = 1 and consider the Lagrangian λ̄ = 1

2 v̇
2dy and

the contact transformation Φ given by

y = x, v = u̇, v̇ = ü, . . . .

The transform of this Lagrangian is Φ�(λ̄) = 1
2 ü

2dx while the Euler-Lagrange form
E(λ̄) = −v̈ θ̄ ∧ dy transforms under Φ# to

Φ#
(
E(λ)

)
= I(−...u θ̇ ∧ dx) = u(iv)θ ∧ dx.

This trivial example shows that the order of the source form E(λ) will generally
increase when pulled back by the map Φ#. It also highlights the importance of treat-
ing Euler-Lagrange equations as source forms — under the contact transformation
Φ the equation v̈ = 0, which is described by a variational principle, is mapped to
the equation

...
u = 0, which is not variational.

A more interesting illustration of Corollary 3.22 is provided by the contact trans-
formation Φ discussed in Lychagin [47 ]. Here n = 2 and m = 1 and, to second
order, this transformation Φ is given by

(x̄, ȳ, v, vx̄, vȳ, vx̄x̄, vx̄ȳ, vȳ,ȳ) = Φ(x, y, u, ux, uy, uxx, uxy, uyy),
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where

x̄ = ux vx̄ = −x vx̄x̄ = − 1
uxx

ȳ = y vȳ = uy vx̄ȳ =
uxy
uxx

v = u− xux vȳȳ = uyy −
u2
xy

uxx
.

Since Φ∗θ̄ = θ and Φ∗(dx̄) = θx + uxxdx + uyydy, it is easily checked that this
transformation pulls the source form representing Laplace’s equation, viz.,

∆ = (vx̄x̄ + vȳȳ) θ̄ ∧ dx̄ ∧ dȳ
back to the source form for an elliptic Monge-Ampere equation, viz.,

∆ = Φ#∆ = (uxxuyy − u2
xy − 1) θ ∧ dx ∧ dy.

The Lagrangian λ̄ = −1
2 (v

2
x̄ + v

2
ȳ)dx̄ ∧ dȳ for ∆ is pulled back to the Lagrangian

λ = Φ�(λ̄) = π2,0[
1
2
(x2 + u2

y) dux ∧ dy]

= −1
2
(x2 + u2

y)uxx dx ∧ dy.
Obviously, this is not the usual Lagrangian for the Monge-Ampere equation but a
direct calculation confirms that E(λ) = ∆, in accordance with Corollary 3.22.

C. A Lie Derivative Formula for Functional Forms. We begin by computing
the Lie derivative of a functional form with respect to an evolutionary vector field.

Lemma 3.24. Let ω ∈ Fs(J∞(E)) be a functional form. If Y is an evolutionary

vector field on E, then

L#
prY ω = δV (prY ω) + I(prY δV ω). (3.58)

Proof: Since Y is an evolutionary vector field, LprY preserves the bigrading of
forms on J∞(E) (see Proposition 1.16) and hence

L�
prY ω = LprY ω = dV (prY ω) + prY dV ω. (3.59)

Because

prY dV ω = prY
(
δV ω + dHη

)
= prY δV ω − dH(prY η),

the application of the interior Euler operator I to (3.59) yields (3.58).
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Theorem 3.25. Let ω ∈ Fs(J∞(E)). If X is a generalized vector field on E, then

L#
prX ω = δV (prXev ω) + I(prXev δV ω). (3.60)

Proof: By virtue of the lemma, it suffices to show that

L#
prXω = L#

prXev
ω.

This follows immediately from the decomposition prX = prXev + totX and the
following formula for Lie differentiation with respect to total vector fields

L�
totX ω = π

n,s[totX dω + d (totX ω)]

= πn,s[totX dV ω + dH(totX ω) + dV (totX ω)]

= dH(totX ω). (3.61)

Here we used the fact (see Proposition 1.18) that interior evaluation by totX lowers
horizontal degree by 1.

Corollary 3.26. Let ω ∈ Fs(J∞(E)). If X is a projectable vector field on E,

then

LprXω = δV (prXev ω) + I(prXev δV ω). (3.62)

Proof: If X is a projectable vector field on E, then L�
prXω = LprXω and, owning

to Theorem 2.12, I commutes with LprX . Together, these two facts imply that
L#

prXω = LprXω so that (3.62) is a consequence of (3.60).

In order to interpret Theorem 3.25 as Noether’s theorem, we need several defini-
tions.

Definition 3.27. Let ∆ be a source form on J∞(E). A generalized vector field

X on J∞(E) is a distinguished, generalized symmetry of ∆ if

L#
prX∆ = 0. (3.63)

Distinguished generalized symmetries differ from ordinary generalized symmetries
for a source form ∆ in that the Lie derivative of ∆ with respect to the former must
vanish identically whereas the Lie derivative of ∆ with respect to the latter need
only vanish on solutions of the source equations ∆ = 0. The set of all distinguished,
generalized symmetries of a given source form define a subalgebra of the Lie algebra
of generalized symmetries for the corresponding source equation.
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Note that if X is an vector field on E, then it is a distinguished symmetry for ∆
if

I
(LprX∆

)
= 0.

If X is a projectable vector field on E, then it is a distinguished symmetry of ∆ if

LprX∆ = 0.

Also observe that, by virtue of (3.61), equation (3.63) is equivalent to the condition

L#
prXev

∆ = 0,

which in turn is equivalent, at least locally, to the existence of a type (n−1, s) form
η such that

L�
prXev

∆ = dHη. (3.64)

If the source form ∆ is an Euler-Lagrange form, say ∆ = E(λ), then X is called
a generalized Bessel-Hagen symmetry or a divergence symmetry for λ if

L�
prXλ = dHη. (3.65)

By virtue of Corollary 3.22 and the fact that E annihilates dH exact forms this
implies

L#
prX∆ = E

(L�
prXλ

)
= 0.

Thus the algebra of generalized Bessel-Hagen symmetries for a given Lagrangian is
a subalgebra of the algebra of distinguished, generalized symmetries for the Euler-
Lagrange source form ∆ = E(λ). In view of (3.64), we have equality of these two
algebras if we require only that (3.65) hold locally but not if we require (3.65) to
hold globally.

Example 3.28. Distinguished, first order generalized symmetries for geodesic

equations.

Distinguished, generalized symmetries for many equations have been computed
in the literature. It is not our intent to survey these results here or to discuss
any of the techniques available for computing these symmetries. Nevertheless we
will consider the problem of finding distinguished, generalized symmetries for the
geodesic equations for a Riemannian metric ds2 = gijdui⊗duj on a manifold F . This
example will, once again, demonstrate the use moving coframes in computing Euler-
Lagrange forms and will also serve as as important illustration of Noether’s theorem.
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The bundle for this example is R × F → R with local coordinates (x, ui) → (x).
The Lagrangian form for these equations is1

λ =
1
2
gij u̇

iu̇jdx

and the Euler-Lagrange form is

E(λ) = gij∆jθi ∧ dx,

where

∆j =
Du̇j

Dx
= üj + Γjhku̇

hu̇k,

and Γihk are the Christoffel symbols for the metric gij . We derive necessary and
sufficient conditions in order that the evolutionary vector field

Y = Y j(ui, u̇i)
∂

∂uj

be a distinguished symmetry. We have assumed, for the sake of simplicity, that Y
does not depend upon the independent variable x. In order to state the result, let

Yi = gijY j and Yij =
∂Yi
∂u̇j

,

and let

∇jYi =
∂Yi
∂uj

− ΓhijYh − Γhjku̇kYhi.

Note that
DYi
Dx

= u̇j(∇jYi) + Yij∆j .

Proposition 3.29. The evolutionary vector field Y is a distinguished symmetry

for the source form E(λ) if and only if

Yij = Yji, (3.66a)

∇jYi +∇iYj + u̇h∇hYij = 0, (3.66b)

and

1For this Lagrangian to yield the geodesic equations, x must be identified with the arclength

parameter. A more accurate interpretation of this Lagrangian is that for a free particle on F with

kinetic energy
1

2
gij u̇iu̇j .
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u̇hu̇k[∇h∇kYi + YjRh
j
ki] = 0. (3.66c)

In particular, if Y is homogeneous in the derivative variables u̇j of degree p, i.e.,

Yi = Aij1j2...jp
(u) u̇j1 u̇j2 · · · u̇jp ,

then Y is a distinguished symmetry for the geodesic equation if and only if A is a

symmetric rank p+ 1 Killing tensor, i.e., A is symmetric in all of its indices and

∇(j1Aj2j3...jp+1) = 0.

Proof: The second part of the proposition follows easily from the first part. Equa-
tion (3.66a) implies that A is symmetric, (3.66b) implies that A is a Killing tensor,
and (3.66c) holds identically as a consequence of (3.66a) and (3.66b).
To establish the first part of the proposition, we must compute the Euler-Lagrange

form for the second order Lagrangian

Y E(λ) = Yi∆i dx (3.67)

The most efficient way to do this is to introduce a covariant basis for the contact
ideal. Let

Θi = θi = dxi − u̇idx,

Θ̇i =
Dθi

Dx
= θ̇i + Γijku̇

jθk

Θ̈i =
D2θi

Dx2
= θ̈i + 2Γijku̇

j θ̇k +
[
Γijk∆

j − ΓijkΓjhlu̇hu̇l

+ Γijk,lu̇
lu̇j + ΓijlΓ

l
hku̇

j u̇h
]
θk,

and so on. Let πi, π̇i, π̈i . . . be the dual basis for the space of vertical vectors.
These vectors are all projectable and, to second order, are given by

π̈i =
∂

∂üi
,

π̇i =
∂

∂u̇i
− 2Γkij u̇j

∂

∂ük
, and

πi =
∂

∂ui
− Γkij u̇j

∂

∂u̇k
− [
Γkij∆

j − ΓkijΓjhlu̇hu̇l

+ Γkij,lu̇
j u̇l − ΓkjlΓlihu̇j u̇h

]∂
∂ük

.
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With respect to this basis, the vertical differential of a second order Lagrangian

λ = L(ui, u̇i, üi) dx

is given by

dV λ = [πi(L)Θ
i + π̇i(L) Θ̇i + π̈i(L) Θ̈i] ∧ dx.

Therefore the components Ei of the Euler-Lagrange form E(λ) = EiΘi ∧ dx are

Ei = πi(L)− D

Dx

[
π̇i(L)

]
+
D2

Dx2

[
π̈(L)

]
. (3.68)

For the particular Lagrangian (3.67) we calculate that

π̈i(∆j) = δji , π̇i(∆j) = 0,

and

πi(∆j) = −Γjik∆k +Rh
j
kiu̇

hu̇k,

and also that

π̈i(Yj) = 0, π̇i(Yj) = Yji,

and

πi(Yj) =
∂Yj
∂ui

− Γhiku̇kYjh.

When these expressions are substituted into (3.68), it is found that

Ei(Y ∆) = (∇jYi)∆j + YjRh
j
kiu̇

hu̇k − D

Dx

(
Yji∆j

)
+
D2

Dx2

(
Yi

)
=
D

Dx

[
(Yij − Yji)∆j

]
+

(∇jYi +∇iYj + u̇k∇kYij
)
∆j

+
(∇h∇kYi + YjRh

j
ki

)
u̇hu̇k.

For this to vanish identically, the coefficients of
D∆j

Dx
and ∆j must vanish. This

yields (3.66a) and (3.66b) respectively. The vanishing of the remaining terms gives
(3.66c).
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Definition 3.30. Let ∆ = Pα[x, u] θα ∧ ν be a source form on J∞(E). An

evolutionary vector field Y on J∞(E) is a generator of a local conservation law for

∆ if the type (n, 0) form prY ∆ = (Y αPα) ν has vanishing Euler-Lagrange form,

i.e.,
E(prY ∆) = 0. (3.69)

Local exactness of the variational bicomplex will show that if (3.69) holds then
there exists, at least locally, a type (n− 1, 0) form ρ such that

dHρ = Y ∆.

On solutions s : M → E of the source equation ∆ = 0 the n− 1 form (
j∞(s)

)∗
ρ is

d closed and therefore ρ is a local conservation law for the source equation ∆. In
the special case n = 1, ρ is a function on J∞(E) which is constant on solutions of
∆ and the notion of a conservation law becomes synonymous with that of a first
integral.
The following result was established by Takens [65 ] for the case of vector fields

on E.

Proposition 3.31. Let ∆ be a source form on J∞(E). Then the vector space of

generalized vector fields X on J∞(E) which are

(i) distinguished symmetries of ∆; and

(ii) for which the associated evolutionary vector field Xev is a generator of a local

conservation law for ∆

forms a Lie algebra.

Proof: Suppose X and Y are distinguished symmetries of ∆ and that Xev and
Yev are generators of local conservation laws for ∆. We must prove that the same
is true of [X, Y ].
To prove that [X, Y ] is a distinguished symmetry, we need only show that

L#
prY L#

prX∆ = (I ◦ πn,s)[LprY LprX∆] (3.70)

in order to invoke the usual arguments for this kind of result. Equation (3.70) is an
easily consequence of the fact that L#

prY commutes with I (Theorem 3.21) and the
fact that

πn,s
[LprY

(
πn,sLprX∆

)]
= πn,s

[LprY LprX(∆)
]
.

This equation can be verified using the argument presented in the proof of Corollary
3.16.
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To prove that [X, Y ]ev is a generator for a local conservation law for ∆, it suffices
to assume only that X is a distinguished symmetry and that Yev is a generator
for a local conservation law. The assumption that X is a distinguished symmetry
implies that (3.63) holds. We now apply L#

prXev
to the identity E(prYev ∆) = 0

to conclude that
E

(L�
prXev

(prYev ∆
)
] = 0. (3.71)

We use Proposition 1.21 and (3.63) to compute:

L�
prXev

(prYev ∆) = πn,0
[
(LprXev prYev) ∆ + prYev (LprXev∆)

]
= [prXev, prYev] ∆ + Yev (L�

prXev
∆)]

= (pr [X, Y ]ev) ∆− dH(prYev η). (3.72)

Since
pr [X, Y ]ev ∆ = [X, Y ]ev ∆

the combination of (3.71) and (3.72) proves that [X,Y] is a generator for a local
conservation law for ∆.

With these definitions and results in hand we can state our first version of
Noether’s theorem as follows. We emphasize that in this version the conserva-
tion laws are derived from the symmetries of the source form. No reference is made
to the symmetries of the underlying Lagrangian.

Theorem 3.32. Let ∆ be a locally variational source form. Then a generalized

vector field X is a distinguished symmetry for ∆ if and only if Xev is a generator

for a local conservation law for ∆.

Proof: If δV∆ = 0, the Lie derivative formula (3.60) reduces to

L#
prX∆ = E

(
prXev ∆

)
. (3.73)

Throughout this notes we shall give a number of examples of Noether’s theorem
which are intended to illustrate aspects of this theorem which are not adequately
discussed in the literature. Our first example is meant to debunk the usefulness of
Noether’s theorem as a technique for finding all the conservation laws for a given
system of differential equations by first finding all the generalized symmetries. The
point to be made here is that calculation of generalized symmetries is as difficult a
problem as that of directly determining the conservation laws — indeed, for locally
variational equations it is apparent from (3.73) that the two problems are identical.
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Example 3.33. First integrals for Liouville metrics in R3

Consider, as a case in point, the problem of finding the generalized symmetries
and/or first integrals for the geodesic equations — specifically, let us consider the
geodesic equations for the Liouville metric on R3. The Lagrangian is

λ =
1
2
[a(u) + b(v) + c(w)][u̇2 + v̇2 + ẇ2] dx

where a, b and c are positive functions of a single variable. The Euler-Lagrange
form for λ is

E(λ) = (Euθ
u + Evθ

v +Ewθ
w) ∧ dx,

where
Eu = −d

dx

[
(a+ b+ c)u̇

]2 +
1
2
a′(u̇2 + v̇2 + ẇ2),

Ev = −d
dx

[
(a+ b+ c)v̇

]2 +
1
2
b′(u̇2 + v̇2 + ẇ2),

and
Ew = − d

dx

[
(a+ b+ c)ẇ

]2 +
1
2
c′(u̇2 + v̇2 + ẇ2).

In addition to the Hamiltonian function, these source equations also admit the two
quadratic first integrals

I1 =
1
2
[(a+ b+ c)u̇]2 − La

and
I2 =

1
2
[(a+ b+ c)v̇]2 − Lb.

The generators of these two first integrals are the evolutionary vector fields

Y1 = −u̇(b+ c)∂
∂u
+ av̇

∂

∂v
+ aẇ

∂

∂w
and

Y2 = bu̇
∂

∂u
− v̇(a+ c)∂

∂v
+ bẇ

∂

∂w
.

Let X be an arbitrary vector field on E = R ×R3 → R, say

X = α
∂

∂x
+ A

∂

∂u
+B

∂

∂v
+ C

∂

∂w
.

Since the corresponding evolutionary vector field is

Xev = (A− αu̇)∂
∂u
+ (B − αv̇)∂

∂v
+ (C − αẇ)∂

∂w

it is apparent that neither Y1 or Y2 is the evolutionary vector field derived from a
vector field on E.
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In other words, in order to derive the first integrals I1 and I2 from Noether’s
theorem it is necessary to compute the distinguished, generalized symmetries of the
source form E(λ). We proved directly that the generalized vector field

Y = [gij1Aj1j2...jp
u̇j2 u̇j3 · · · u̇jp ]

∂

∂ui

is a distinguished symmetry of the geodesic equation if and only if Aj1j2...jp
are

the components of a symmetric Killing tensor for the given metric. But this is not
a very useful conclusion since it is already well-known, and easily verified, that a
homogenous function

I = Bj1j2...jp
u̇j1 u̇j2 · · · u̇jp

is a first integral for the geodesic equation if and only if Bj1j2...jp
are the components

of a symmetric Killing tensor. Thus, either way, one is confronted with the same,
difficult problem of finding higher rank Killing tensors.

In the case of source equations for partial differential equations this situation
remains the same — for locally variational source forms the determining equations
for distinguished symmetries are same as those for generators of local conservation
laws. However it often happens, although not always, these determining equations
are much more tractable and can often be completely solved. In Chapter Seven we
shall compute all the conservation laws for several well-known equations.
In Noether’s original paper on variational problems with symmetries, two dis-

tinct cases were considered according to whether the Lie algebra of distinguished
symmetries for the given source form is finite dimensional or infinite dimensional
(in the sense that the generators of the Lie algebra depend upon arbitrary smooth
functions). In this latter case, Noether’s theorem states that the coefficients of the
source form are related by certain differential identities. These identities can be
easily derive from our basic Lie derivative formula (3.60). The following well-known
example illustrates this point.

Example 3.34. Noether’s Theorem for natural variational principles on Rieman-

nian structures

Let E = Sym2
+(T

∗M) be the bundle of symmetric, positive definite rank (0, 2)
tensors on a manifold M . A section of E is a choice of Riemannian metric on M .
Any local diffeomorphism φ0 of M lifts to a local diffeomorphism φ of E which in
turn lifts to a local diffeomorphism Φ = prφ of J∞(E). A source form

∆[g] = P ij(xi, gij, gij,h , gij,hk . . . ) dgij ∧ ν
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is called a natural Riemannian source form if for all local diffeomorphism φ0,

∆[g] = Φ∗(∆[Φ(g)]).
Roughly speaking, a natural Riemannian source form is one whose components
P ij are constructed from the metric tensor, the curvature tensor, and covariant
derivatives of the curvature tensor by contraction of indices. We shall treat the
subject of natural Riemannian tensors in greater detail in Chapter Six.
A natural Riemannian source form is said to be conformally invariant if for all

functions h on M ,
∆[g] = ∆[ehg].

Proposition 3.35. If ∆[g] = P ij [g] dgij∧ν is a locally variational, natural source

form, then it is divergence-free, i.e.,

∇jP
ij = 0, (3.74)

where ∇j denotes total covariant differentiation with respect to the symmetric met-

ric connection of g.

Moreover, if ∆ is conformally invariant, then ∆ is trace-free, i.e.,

gijP
ij = 0. (3.75)

Proof: Let X0 = X i∂

∂xi
be any vector field on M . Then X0 lifts to the vector

field
X = X i ∂

∂xi
− 2X l

,i gjl
∂

∂gij
(3.76)

on E. The corresponding evolutionary vector field is

Xev = −(
2X l

,iglj + gil,jX l
)∂
∂gij

= −2(LX0gij
)∂
∂gij

= −2(∇jXi

)∂
∂gij

,

where Xi = gilX l.
The naturality of ∆ implies that LprX∆ = 0 for all vector fields X of the type

(3.76). The Lie derivative formula (3.62) therefore reduces to E(λ) = 0, where
λ = ∇j

(
XiP

ij
)
ν. Since the components P ij are those of a tensor density, we can

rewrite this Lagrangian as

∇j

(
XiP

ij
)
= Dj

(
XiP

ij
) −Xi∇jP

ij
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in order to conclude that
E

(
Xi(∇jP

ij)
)
= 0.

Because the vector field X0 is arbitrary, we can appeal to Corollary 2.9 to deduce
that the ∇jP

ij are constant. There are no non-zero, rank 1 constant natural tensors
and hence (3.74) holds.
The proof of (3.75) is similar since the condition of conformal invariance requires

that LprY∆ = 0, where Y = h(x)gij
∂

∂gij
and h is a arbitrary function on M .

Proposition 3.35 is easily extended to include natural tensors which depend upon
more than just one tensor field. For example, if E = Sym2

+(T
∗M) × Symp(T ∗M)

with local coordinates (xi, gij, ψI), |I| = p, then a natural source form ∆ ∈ F1 is a
type (n, 1) form of the type

∆ =
[
P ij [g, ψ] dgij +BI [g, ψ] dψI

] ∧ ν.
In particular, if λ = L[g, ψ]ν is a Lagrangian n form on J∞(E) and ∆ = E(λ), then
the P ij and the BI are the components of the Euler-Lagrange expressions of L with
respect to the variations of gij and ψI respectively. An arbitrary vector field X0 on
M again lifts to a vector field X on E. The corresponding evolutionary vector field
is now given by

Xev = −2(∇jX
lgil

)∂
∂gij

− (
X i∇iψJ + pψiJ ′∇jX

i
)∂
∂ψJ

.

The same arguments used in the proof of Proposition 3.35 now show that if ∆ is a
locally variational, natural source form, then

∇j(gikP jk) + p∇j(ψJ ′iB
J )− (∇iψJ )BJ = 0. (3.77)

Two special cases of this identity are noteworthy. First, if p = 1, then ψ = ψjdxj

is a one form and (3.77) can be re-expressed as

∇j

(
gikP

jk
)
+ FjiBj + ψi∇jB

j = 0,

where Fji = ψi,j−ψj,i are the components of dHψ. If p = 2, then (3.77) becomes the
identity (2.76) which was needed to simplify the Euler-Lagrange form for geometric
variational problems for surfaces in R3.



Chapter Four

LOCAL PROPERTIES OF THE VARIATIONAL BICOMPLEX

This chapter is devoted to a detailed analysis of the variational bicomplex for the
trivial bundle

E : Rn ×Rm → Rn.

In section A we construct homotopy operators for the augmented variational
bicomplex

�dV

�dV

�δV

0 −−→ Ω0,3 · · · Ωn,3
I−−→ F3 −−→ 0�dV

�dV

�δV

0 −−→ Ω0,2
dH−−→ Ω1,2

dH−−→ · · · Ωn−1,2
dH−−→ Ωn,2

I−−→ F2 −−→ 0�dV

�dV

�dV

�dV

�δV

0 −−→ Ω0,1
dH−−→ Ω1,1

dH−−→ · · · Ωn−1,1
dH−−→ Ωn,1

I−−→ F1 −−→ 0�dV

�dV

�dV

�dV

0 −−→ R −−→ Ω0,0
dH−−→ Ω1,0

dH−−→ · · · Ωn−1,0
dH−−→ Ωn,0�(π∞

M )∗
�(π∞

M )∗
�(π∞

M )∗
�(π∞

M )∗

0 −−→ R −−→ Ω0
M

d−−→ Ω1
M

d−−→ · · · Ωn−1
M

d−−→ Ωn
M

.

(4.1)

This establishes the exactness of (4.1).
The homotopy operator hV constructed for the vertical complexes (Ωr,∗, dV ) is

very similar to the usual homotopy operator used to prove the exactness of the de
Rham complex on Rn. The homotopy operator hH used to prove the exactness
of the augmented horizontal complexes (Ω∗,s, dH) is, for s ≥ 1, a local differential
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operator. Thus, unlike hV , the operator hH can actually be defined on the space
of germs of forms in Ωr,s. The existence of a differential homotopy operator for the
interior horizontal rows of the variational bicomplex was first explicitly observed by
Tulczyjew [70 ]. Tulczyjew makes extensive use of the Frölicher-Nijenhuis theory of
derivations to define hH recursively. We use the theory of Euler operators developed
in Chapter Two to give explicit formulas for hH and to simplify the proof of the
homotopy property. Different proofs of the local exactness of the rows (Ω∗,s, dH),
where s ≥ 1, have been given by Takens [66 ], Tsujishita [68 ] and Vinogradov [75 ].
These authors use induction on the order of the form ω ∈ Ωr,s to infer local exactness
of these complexes from the exactness of either the Kozul complex or the Spencer
sequence. Actually, this inductive approach is already evident in Gilkey’s paper
[28 ] on the classification of the Pontryagin forms.

Homotopy operators are also constructed for the Euler-Lagrange complex E∗ on
J∞(E):

0 −−→ R −−→ Ω0,0
dH−−→Ω1,0

dH−−→ · · · (4.2)

dH−−→ Ωn−1,0
dH−−→ Ωn,0

E−−→ F1
δV−→ F2

δV−→ F3 · · · .

In particular, the homotopy operator

H1 : F1 → Ωn,0

coincides with the Volterra-Vainberg ([76 ], [72 ]) formula for constructing a local
Lagrangian λ for a variationally closed source form ∆ = Pα[x, u] θα ∧ ν, viz.,

H1(∆) =
[∫ 1

0

uαPα[x, tu] dt
]
ν (4.3)

As our first application of the local exactness of the variational bicomplex, we
shall reprove a theorem of Cheung [17 ] concerning variationally trivial natural La-
grangians for either plane or space curves. We also show how the horizontal homo-
topy operators can be used to reproduce Chern’s celebrated proof of the generalized
Gauss-Bonnet theorem.

The horizontal homotopy operators hH will be used extensively in subsequent
chapters. In this chapter we shall exploit the fact that they preserve functional
dependencies on parameters and that they respect the invariance of forms under
a certain class of affine transformations on E. In Chapter Five, we shall see that
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close relationship exists between these homotopy operators and the local theory of
Poincaré-Cartan forms. In special situations we can use these homotopy operators
to explicitly determine the cohomology classes on J∞(E) which represent the ob-
structions to the global exactness of the variational bicomplex. In Chapter Five,
we also show how one can modify hH , given a symmetric connection on the base
manifold M , to arrive at invariantly defined, and therefore global, homotopy opera-
tors for the interior rows of the variational bicomplex. This construction, although
somewhat complicated, really synthesizes many different properties of the varia-
tional bicomplex. In Chapter Six, we again exploit important invariance properties
of these homotopy operators as a first step in the calculation of some equivariant
cohomology of the variational bicomplex. Finally, in Chapter Seven, we use other
elementary properties of these homotopy operators to give a proof of Vinogradov’s
Two Line Theorem.

Unfortunately, the horizontal homotopy operators hH suffer from one, very an-
noying, drawback. If, for instance, ω ∈ Ωr,0 is a dH closed form of order k, then we
have that ω = dHη, where η = hr,0H (ω). However, the order of η is in general much
higher than that of ω and therefore η is not, in this sense, the simplest possible
form whose dH differential equals ω. The same problem occurs with the homotopy
operators Hs for the complex of functional forms. In particular, if ∆ ∈ F1 is a
locally variational source form, then we can write ∆ = E(λ), where λ = H1(∆) is
given by (4.3). It is apparent that if ∆ is of order k, then so is λ. For some source
forms, such as the one defining the Monge-Ampere equation

∆ = det(uij) θ ∧ ν,

(4.3) gives a Lagrangian of least possible order. For other source forms, a Lagrangian
of order as low as [k/2] may exist. In section B of this chapter, the problem of
finding minimal order forms is studied. In fact, by introducing a system of weights
for forms with some polynomial dependencies in the derivative variables, we are
able to obtain fairly detailed information concerning the structure of these minimal
order forms. This, in turn, leads to what is in essence a method of undetermined
coefficients for solving either the equation ω = dHη for η or for solving the equation
∆ = E(λ) for λ. This method is an effective and often superior alternative to
the direct application of the homotopy formulas. As another application of our
system of weights, we completely describe those source forms of order 2k which are
derivable from a Lagrangian of order k. In other words, we characterize the image
in F1 of the space of k-th order Lagrangians under the Euler-Lagrange operator.
This solves a sharper version of the inverse problem to the calculus of variations.
The case k = 1 was treated, by different methods, in Anderson and Duchamp [4 ].
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We have already observed, on numerous occasions, that if ω is a type (r, s) form
of order k, then dHω is in general of form of order k+ 1. This simple fact prevents
us from immediately restricting the variational bicomplex to forms defined on any
fixed, finite jet bundle. In section C we introduce subspaces

J r,s
k ⊂ Ωr,s(J∞(E)) ∩ Ωr+s(Jk+1(E))

with the property that

dHJ r,s
k ∈ J r+1,s

k and dV J r,s
k ∈ J r,s+1

k .

Elements of J r,s
k (J∞(E)) are characterized by the property that their highest

derivative dependency occurs via Jacobian determinants and so, for this reason,
we call the bicomplex (J ∗,∗

k (J∞(E)), dH, dV ) the Jacobian sub-bicomplex of the
variational bicomplex on J∞(E). By using techniques from classical invariant the-
ory and the minimal weight results of section B, we are able to establish the local
exactness of the Jacobian sub-bicomplex. As a corollary to the local exactness of
the Jacobian sub-bicomplex, we re-establish the structure theorem for variationally
trivial kth order Lagrangians (Anderson and Duchamp [4 ], Olver [53 ]) — such La-
grangians are necessarily polynomial in the derivatives of order k of degree ≤ n and,
moreover, this polynomial dependence must occur via Jacobian determinants. The
problem of obtaining a similar structure theorem is for variationally closed source
forms is addressed and a few partial results are obtained. As an application of the
latter, we solve the equivariant inverse problem to the calculus of variations for
natural differential equations for plane curves.

A. Local Exactness and the Homotopy Operators for the Variational
Bicomplex. Let E be the trivial bundle E : Rn × Rm → Rn. Let Ωr,s =
Ωr,s(J∞(E)). In this section we shall proof the local exactness of the variational
bicomplex by establishing the following three propositions.

Proposition 4.1. For each r = 0, 1, 2, . . . ,n, the vertical complex

0 −−→ Ωr
M

(π∞
M )∗

−−−−→ Ωr,0
dV−−→ Ωr,1

dV−−→ Ωr,2 −→ · · · (4.4)

is exact.

Proposition 4.2. For each s ≥ 1, the augmented horizontal complex

0 −−→ Ω0,s
dH−−→ Ω1,s

dH−−→ · · ·Ωn−1,s
dH−−→ Ωn,s

I−−→ Fs −−→ 0 (4.5)
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is exact.

Proposition 4.3. The Euler-Lagrange complex E∗(J∞(E))

0 −−→ R −−→ Ω0,0
dH−−→Ω1,0

dH−−→ · · · (4.6)

dH−−→ Ωn−1,0
dH−−→ Ωn,0

E−−→ F1
δV−→ F2

δV−→ F3 · · · .

is exact.

Proof of Proposition 4.1: The exactness ( in fact, global exactness) of (4.4) at
s = 0 has already been established in Proposition 1.9.

For s ≥ 1, the proof of exactness proceeds along the very same lines as the proof,
of the local exactness of the de Rham complex as found in, for example, Warner
[78 ] (pp. 155-157, §4.18). Let

R = uα
∂

∂uα
(4.7)

be the vertical radial vector field on E. Then the prolongation of R is the radial
vector field

prR = uα∂α + uαi ∂
i
α + uαij∂

ij
α + · · ·

on J∞(E) and the corresponding flow on J∞(E) is the one parameter family of
diffeomorphism

Φε[x, u] = [x, eεu] = (xi, eεuα, eεuαi , e
εuαij , . . . ).

Let ω be a type (r, s) form on J∞(E). Then the Lie derivative formula established
in Proposition 1.16 gives

d

dε

[
Φ∗
ε ω

]
= Φ∗

ε

[LprR , ω
]

= dV
[
Φ∗
ε (prR ω)

]
+ Φ∗

ε

[
prR dV ω

]
.

In this equation we replace ε by log t and integrate the result from t = 0 to t = 1
to arrive at

ω = dV [h
r,s
V (ω)] + hr,s+1

V (dV ω), (4.8)

where the vertical homotopy operator

hr,sV : Ωr,s → Ωr,s−1
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is defined by

hr,sV (ω) =
∫ 1

0

1
t
Φ∗

log t(prR ω) dt. (4.9)

Note that the integrand is a actually smooth function at t = 0. Indeed, let ω[x, tu]
denote the form obtained by evaluating the coefficients of ω at the point [x, tu]. For
instance, if f is a real-valued function on J∞(E) and

ω = f [x, u] γ,

where γ is the wedge product of r of the horizontal forms dxi and s of the vertical
forms θαI , then

ω[x, tu] = f [x, tu] γ

even though the contact forms θαI contain an explicit uαI dependence. With this
convention, the integrand in (4.9) becomes

(1
t
Φ∗

log t(prR ω)
)
[x, u] = ts−2

(
prR ω

)
[x, tu] = ts−1 prR ω[x, tu]. (4.10)

Because s ≥ 1, this is certainly a smooth function of t.

For future use we remark that because dH commutes with Φ∗
s and anti-commutes

with prR , it anti-commutes with hr,sV , i.e.,

dHhr,sV (ω) = −hr+1,s
V (dHω). (4.11)

To prove Proposition 4.2, we need the following identity. Recall that the inner
Euler operators F I

α were defined in Chapter Two by (2.24) and that Dj is the total

vector field Dj = tot
∂

∂xj
as defined by (1.38).

Lemma 4.4. Let ω ∈ Ωr,s and set ωj = Dj ω. Then

(|I|+ 1)F Ij
α (Dj dHω) + |I|F j(I′

α (dxi) ∧ ωj) = (n− r + |I|)F I
α(ω). (4.12)

Proof: From Proposition 2.10, with I replaced by Ij in (2.25a), we find that

(|I|+ 1)F Ij
α (dHω) = F I

α(dx
j ∧ ω) + |I|F j(I′

α (dxi) ∧ ω).

Now inner evaluate this equation with Dj and sum on j. By virtue of the formulas

Dj F I
α(ω) = −F I

α(Dj ω) and Dj (dxi ∧ ω) = δijω − dxi ∧ ωj

the resulting equation reduces to (4.12), as required.
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Proof of Proposition 4.2: For s ≥ 1, the horizontal homotopy operator

hr,sH : Ωr,s → Ωr−1,s

is defined by

hr,sH (ω) =
1
s

k−1∑
|I|=0

|I|+ 1
n− r + |I|+ 1

DI

[
θα ∧ F Ij

α (ωj)
]
. (4.13)

Let ω be a kth order form of type (r, s). To verify that

hr+1,s
H (dHω) + dH [hr,sH (ω)] = ω, (4.14)

for s ≥ 1 and 1 ≤ r ≤ n, we multiple (4.12) by
1

s(n− r + |I|) θ
α, apply the differ-

ential operator DI and sum on |I|. On account of (2.23), we have that

sω =
k∑

|I|=0

DI [θα ∧ F I
α(ω)]

so that the result of this calculation reduces to (4.14).
Equation (4.14) also holds for r = 0 (with the understanding that Ω−1,s = 0)

since Dj ω = 0 for any ω ∈ Ω0,s. With r = n, hn,sH (ω) coincides with the form η

in (2.35) as given by (2.37) and consequently we can rewrite (2.35) as

I(ω) + dH [hn,sH (ω)] = ω. (4.15)

Together equations (4.14) and (4.15) prove the exactness of the horizontal aug-
mented horizontal complex (4.5).

In the next lemma we use the Lie-Euler operators EI
α which were introduced in

Chapter 2B.

Lemma 4.5. Let ω ∈ Ωr,0 be a horizontal, type (r, 0) form and let Y be an

evolutionary vector field on E. Then, for r ≤ n,

LprY ω = Ir+1
Y (dHω) + dH(Ir+1

Y (ω)), (4.16)

where IrY : Ωr,0 → Ωr−1,0 is defined by

IrY (ω) =
k∑

|I|=0

|I|+ 1
n− r + |I|+ 1

DI

[
Y αEIj

α (ωj)
]
. (4.17)
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For r = n,

LprY ω = prY E(λ) + dH [InY (ω)]. (4.18)

Proof: From the defining properties of the Lie-Euler operators and the interior
Euler operators, it is easy verified that for a horizontal form ω

EI
α(ω) = F I

α(dV ω)

and hence
IrY (ω) = −prY hr,1V (ω).

Equation (4.16) now follows directly from Proposition 2.8 and (4.14).
To derive (4.18), it suffices to observe that InY (ω) coincides with the form prY σ

in (2.17b) in which case (2.17a) becomes (4.18).

Since IrY (ω) is linear over R in both Y and ω, since it drops the horizontal degree
by one, and since (4.16) is similar to the usual Cartan formula for Lie derivatives,
one can think of the IrY as a generalized, local inner product operator. We emphasize
that on forms of order k ≥ 1 it is neither C∞(J∞(E)) linear and nor is it invariantly
defined. Still, we find (4.16) to be useful in a various situations.

Proof of Proposition 4.3: It is possible to prove Proposition 4.3 from Propo-
sitions 4.1 and 4.2 using elementary spectral sequence arguments. However, we
shall often use the explicit formulas provided by the homotopy operators for the
Euler-Lagrange complex (4.6). To define these operators, it is necessary to break
the Euler-Lagrange complex into two pieces and to construct different homotopy
operators for each piece. The first piece

0 −−→ R −−→ Ω0,0
dH−−→ Ω1,0

dH−−→ · · ·
dH−−→ Ωn−1,0

dH−−→ Ωn,0
E−→ F1 (4.19)

consists of the spaces of horizontal forms, except for the last term, and the second
piece

Ωn,0
E−−→ F1

δV−→ F2
δV−→ F3

δV−→ · · · (4.20)

consists the spaces of functional forms, except for the first term.
For ω ∈ Ωr,0, let ωs = [j∞(s)]∗(ω) denote the pullback of ω to Ωr(M) by a section

s : M → E. Set ω̃ = ω−ωs, where, by a slight abuse of notation, we have identified
ωs with its image in Ωr,0 under (π∞

M )∗. Notice that dHω = 0 implies that dMωs = 0
and that dH ω̃ = 0. Therefore, if ω is dH closed we can infer from the exactness of
the de Rham complex (Ω∗

M , dM ) for the base space M = Rn that ωs is dM exact
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and therefore, as a form back on J∞(E), dH exact. Consequently in order to prove
the exactness of (4.19) it suffices to prove that the closed forms ω ∈ Ωr,0 are dH
exact, modulo the form ωs.

For r = 0, I0
Y (ω) = 0 and hence, if f ∈ Ω0,0 satisfies dHf = 0, then

LprY f = prY dV f = 0

for all vertical vector fields Y . It thus follows that dV f = 0 and so, by Proposition
4.1, f = f(x) is a function of the base variables alone. By our preliminary remarks,
f is a therefore a constant and the exactness of (4.19) at Ω0,0 is established.

To define the homotopy operators for the first piece of the Euler-Lagrange com-
plex, let J∞(E) × J∞(E) → M be the product of two copies of the infinite jet
bundle over E. Local coordinates on J∞(E) × J∞(E) are [x, v, u] = (xi, vαI , u

α
I ).

Define a bundle map

ρt : J∞(E)× J∞(E)→ J∞(E)

by

ρt[x, v, u] = [x, tu+ (1− t)v].

When t = 0 or t = 1, ρt is the projection onto the first or the second factor of
J∞(E)× J∞(E). Set Y α = uα− vα and evaluate (4.16) and (4.18) at the point ρt.
One readily checks that for all functions f on J∞(E)(

Di(f)
)
[ρt] = Di(f [ρt])

and that for all horizontal forms

d

dt
ω[ρt] = (LY ω)[ρt].

Integration of equations (4.16) and (4.18) with respect to t from 0 to 1 now yields

ω[x, u]− ω[x, v] = hr+1,0
H (dHω) + dH [hr,0H (ω)] (4.21)

for ω ∈ Ωr,0, and

λ[x, u]− λ[x, v] = H1(E(λ)) + dHhn,0H (λ), (4.22)

for λ ∈ Ωn,0. The homotopy operators

hr,0H : Ωr,0(J∞(E))→ Ωr−1,0(J∞(E)× J∞(E))

and
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H1 : F1(J∞(E))→ Ωn,0(J∞(E)× J∞(E))

are defined by

hr,0H (ω) =
∫ 1

0

k∑
|I|=0

|I|+ 1
n− r + |I|+ 1

DI

[
(uα − vα)EIj

α (ωj)[ρt]
]
dt (4.23)

and

H1(∆) =
[∫ 1

0

(uα − vα)Pα[ρt] dt
]
ν (4.24)

for ∆ = Pα θα ∧ ν ∈ F1. With v = j∞(s) for some section s : M → E, ω[x, v] = ωs

and local exactness now follows by virtue of our earlier remarks.
We now turn to the complex of functional forms (4.20). Let ω be a type (n, s)

form in Fs. The vertical homotopy formula gives

ω = dV [h
n,s
V (ω)] + hn,s+1

V (dV ω). (4.25)

The two δV differentials in this equation can be expressed in terms of dV differentials
by

dV ω = δV ω + dHη1

and

dV [h
n,s
V (ω)] = δV [h

n,s
V (ω)] + dHη2.

Apply the interior Euler operator I to (4.25). Because dH anti-commutes with hn,sV

and because I ◦ dH = 0 and I(ω) = ω, we conclude that

ω = dVHs(ω) +Hs+1(dV ω) (4.26)

where Hs : Fs → Fs−1 is defined by

Hs(ω) = (I ◦ hn,sV )(ω). (4.27)

This proves the exactness of the second piece of (4.6).
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Several remarks are in order. Firstly, notice that for a first order form ω, (4.23)
reduces to

hr,0H (ω) =
∫ 1

0

1
n− r + 1

(uα − vα)(
∂

∂uαj
ωj)[x, ρt] dt. (4.28)

Secondly, we could have also arrived at (4.21) and (4.22) (in the special case v = 0)
starting from the homotopy operators used in the Propositions 4.1 and 4.2. If
ω ∈ Ωr,0, then dV ω ∈ Ωr,1 and the horizontal homotopy formula (4.14), as applied
to dV ω leads to

dV ω = dH [hr,1H (dV ω)] + hr+1,1
H (dHdV ω).

To this equation, we now apply the vertical homotopy operator hr,1V . Since hr,1V

anti-commutes with dH , this gives rise to the homotopy formula

ω[x, u]− ω[x, 0] = −dH
[
(hr−1,1

V ◦ hr,1H ◦ dV )(ω)
]− (hr,1V ◦ hr,1H ◦ dV )(dHω). (4.29)

A direct calculation shows that

hr,0H |v=0 = −hr,1V ◦ hr,1H ◦ dV
so that the two formulas (4.21) and (4.29) actually coincide.

Thirdly, in Proposition 3.7 we proved that every type (n, s) functional form ω

can be written uniquely in the form

ω = θα ∧ Pα,

where Pα is formally skew-adjoint. We also showed (see (3.12)) that for any vertical

vector field Y = Y α ∂

∂uα

prY ω = sY αPα + dHη.

By substituting this equation into (4.10), we find that (4.27) becomes

Hs(ω) = I
(∫ 1

0

sts−1uαPα[x, tu] dt
)
. (4.30)

Corollary 4.6. Let ω ∈ Ωr,0 and suppose that dHω = 0 if r ≤ n or that

E(ω) = 0 if r = n. Let st : M → E, 0 ≤ t ≤ 1, be a smooth one parameter family
of sections of E. Then

ω(j∞(s1))− ω(j∞(s0)) = d η, (4.31a)

where
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η =
∫ 1

0

IrYt
(ω)(j∞(st)) dt, (4.31b)

and where Yt is the vertical vector field Yt = u̇αt
∂

∂uα
.

Proof: Since ω is a horizontal form and j∞(s) covers the identity on the base
space Rn, we have written ω(j∞(s)) for the pullback (j∞(s))∗ω. This corollary
also follows from the Lie derivative formula (4.16):

ω(j∞(s1))− ω(j∞(s2)) =
∫ 1

0

d

dt
[(j∞(st))∗ω] dt =

∫ 1

0

(LprYt
ω)(j∞(st)) dt.

Let f [x, u] be a smooth function on J∞(E). We say that f is homogeneous of
degree p if it is homogeneous of degree p in the fiber variables uα, uαi , u

α
ij, . . . , i.e.,

f [x, tpu] = tpf [x, u] for t > 0.

A type (r, s) form ω is said to be homogeneous of degree p if each of its coefficient
functions is homogeneous of degree p, i.e.,

ω[x, tu] = tpω[x, u].

The homotopy operators hr,0H and Hs simplify when applied to homogenous forms.

Corollary 4.7. (i) Let ω ∈ Ωr,0 and suppose that ω is homogeneous of degree

p �= 0. If dHω = 0 for 1 ≤ r ≤ n− 1 or if E(ω) = 0 for r = n, then ω = dHη, where

η =
1
p
IrR(ω), (4.32)

where IrY is the inner product operator (4.17) and where R is the radial vector field

(4.7).

(ii) Let ω = θα ∧ Pα ∈ Fs, where P (Y ) = Y αPα is a formally skew adjoint

operator, and suppose that ω is homogeneous of degree p �= −s. If δV ω = 0, then
ω = δV η, where

η = I
( s

p+ s
uαPα

)
. (4.33)

Proof: If ω ∈ Ωr,s is homogeneous of degree p, then an elementary calculation
shows that

LprR ω = (p+ s)ω.
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Part (i) now follows immediately from (4.16) with Y = R while part (ii) can be
established by repeating the derivation of (4.26) using with the formula

(p+ s)ω = dV (prR ω) + prR dV ω

in place of (4.25)
Alternatively, one can use the homogeneity of ω to explicitly evaluate the integrals

in the homotopy formulas (4.23) ( with v = 0) and (4.30).

We note that Corollary 4.7 even applies with p < 0 — that is, to forms which
are singular at the point uαI = 0. More generally, consider a dH closed horizontal r
form ω which is not defined at uαI = 0. Suppose, however, that for t > 0

ω[x, tu] =
1
tε
ωt[x, u],

where ωt is a smooth function of t. Then

EIj
α (ωj)[x, tu] =

1
tε+1

EIj
α ((ωt)j)

in which case the integrand in the homotopy formula (4.23) (with v = 0) may be
singular at t = 0. If, however, we know that ωt and its derivatives with respect to
all the variables uαI are bounded as t→∞, then we can integrate (4.16), not from
0 to 1, but rather from 1 to ∞ to deduce that

h̃r+1,0
H (dHω) + dH h̃r,0H (ω) = ω[x, u]− ω[x, v] (4.34)

where

h̃r,0H (ω) =
∫ ∞

1

1
tε+1

k∑
|I|=0

|I|+ 1
n− r + |I|+ 1

DI

[
uαEIj

α ((ωt)j)[x, ut]
]
dt. (4.35)

The point to emphasize here is that neither homotopy operator hr,0H nor h̃r,0H is
applicable to forms which are homogeneous of degree zero. Consequently, when we
restrict the variational bicomplex on J∞(E) to the open set

R = { [x, u] | uαI are not all zero },
then the only type (r, 0), homogeneous, dH closed forms which can represent non-
trivial cohomology classes in the Euler-Lagrange complex E∗(R) are those which
are homogeneous of degree zero. Likewise, the only type (n, s), homogeneous,
δV closed functional forms which can represent nontrivial cohomology classes in
Hn+s(E∗(J∞(E))) are those which are homogeneous of degree −s.
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We now describe some invariance properties of our homotopy operators. While
the invariance group under consideration is admittedly small, it is nevertheless
large enough to play an important role in applications. We continue to work on the
trivial bundle E : Rn ×Rm → Rn. Let G be the direct product of the group of
affine transformations of the base (with trivial fiber action) with the group of linear
transformations of the fiber (with trivial action on the base). Thus if ψ ∈ G, then
there are matrices A = (aij) and B = (bαβ) in GL(n) and GL(m) respectively and a
vector x0 = (xi0) in Rn such that

ψ(x, u) = (y, v) = (Ax+ x0, Bu).

The prolonged action on J∞(E) is easily determined to be Ψ[x, u] = [y, v], where

vαI = bαβc
J
I u

β
J , (4.36)

where C = (cji ) = A−1 and where cJI = cj1i1 c
j2
i2
· · · cjk

ik
.

Proposition 4.8. Let ψ ∈ G and let Ψ: J∞(E)→ J∞(E) be the prolongation of
ψ. The homotopy operators hr,sV , hr,sH and Hs all commute with the pullback map

Ψ∗.

Proof: It suffices to check that Ψ∗ commutes with hr,sV and hr,sH , for s ≥ 1, since
the remaining operators hr,0H and Hs are defined in terms of these and dV and I

(which we already know commute with Ψ∗).
To prove that Ψ∗ commutes with the vertical homotopy operator, first note that

ψ commutes with the flow φε of the radial vector field R = uα
∂

∂uα
. This implies

that Ψ commutes with Φε = prφε,

Ψ ◦ Φε = Φε ◦Ψ, (4.37)

and consequently prR is preserved by Ψ∗, i.e.,

Ψ∗(prR) = prR. (4.38)

Let ω ∈ Ωr,s. Since Φ∗
log t(ω[x, u]) = tsω[x, tu], we can also infer from (4.37) that

Ψ∗(ω[x, tv]) = (Ψ∗(ω))[y, tu]. (4.39)

Equations (4.38) and (4.39) imply that

prR (Ψ∗(ω))[y, tu] = prR Ψ∗(ω)[x, tu] = Ψ∗(prR ω[x, tv]).
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This suffices to show that hr,sV commutes with Ψ∗.
We verify that Ψ∗ commutes with hr,sH , s ≥ 1 by calculating the change of variables

formula for the inner Euler operators under the transformation (4.36). Let

ω[y, v] = (Ψ−1)∗ω[x, u].

Let F
I

α be the inner Euler operator in [y, v] coordinates, i.e.,

F
I

α(ω) =
k−|I|∑
|J|=0

(−D)J
(
∂
IJ

α (ω)
)
,

where Di =
d

dyi
and ∂

I

α is the symmetrized partial derivative with respect to

vαI . Because the matrices aji and bβα are constant it is a straightforward matter to
conclude that

∂
I

α = cIJb
β
α∂

J
β , Di = ajiDj , F

I

α(ω) = cIJb
β
αF

J
β (ω)

and

DI [θ̄α ∧ F
Ij

α (ωj)] = DI [θα ∧ F Ij
α (ωj)].

Since hr,sH is a weighted sum of these latter expressions, this proves that

h
r,s

H (ω) = hr,sH (ω),

as required.

Let Ψ : J∞(E)→ J∞(E) be a smooth map. We say that a type (r, s) form ω is
a relative Ψ invariant with character χ if

Ψ∗(ω) = χω.

Let Ωr,s
Ψ (J∞(E)) be the space of type (r, s) relative Ψ invariant forms with a fixed

character.

Corollary 4.9. Let ψ ∈ G and let Ψ: J∞(E)→ J∞(E) be the prolongation of
ψ.

(i) Except for along the bottom edge (s = 0) the relative Ψ invariant, augmented

variational bicomplex (Ω∗,∗
Ψ , dH , dV ) is exact.



126 The Variational Bicomplex

(ii) If ω is a relative Ψ invariant, dH closed, type (r, 0) form, then there is relative
Ψ invariant type (r− 1, 0) form η and an degree r form ω0 on the base manifold M

such that

ω = dHη + ω0.

The form ω0 may not be invariant under the action of ψ restricted to M .

Example 4.10. It is known that the evolutionary vector field

Y = (uxxx +
1
2
u3
x)

∂

∂u
(4.40)

is a distinguished symmetry (see Definition 3.27) for the sine-Gordon equation

∆ = (uxt − sinu) du ∧ dx ∧ dt.

Since this source form is variational, the Lagrangian form

λ = Ldx ∧ dt = Y ∆

= (uxxx +
1
2
u3
x)(uxt − sinu) dx ∧ dt

is variationally trivial and determines the conservation law

Y ∆ = dHη.

The coefficients of the one form

η = P dt−Qdx,

as given by the homotopy operator h2,0
H , are found to be

P =
∫ 1

0

{
Dxx

(
uExxx(L)[su]

)
+Dx(uExx(L)[su]) + uEx(L)[su]

}
ds

and

Q =
∫ 1

0

{
DxE

xt(L)[su] + uEt(L)[su]
}
ds.

From the definition (2.15) of the Euler operators and the definition of the sym-

metrized partial derivative operators (e.g., ∂xt =
1
2
∂

∂uxt
. See (1.15)) we calculate

that
Exxx(L) = uxt − sinu Exx(L) = −3Dx(uxt − sinu),

Ex(L) =
3
2
u2
x(uxt − sinu) + 3Dxx(uxt − sinu)−Dt(uxxx +

1
2
u3
x),

Ext(L) =
1
2
(uxxx +

1
2
u3
x) and Et(L) = −Dx(uxxx +

1
2
u3
x).
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The formulas for the coefficients P and Q of η now yield

η = [−1
2
uxuxxt +

1
2
uxxuxt − uxx sinu+

1
2
u2
x cosu] dt

− [−1
4
uuxxxx +

1
4
uxuxxx+

1
16

u4
x −

3
16

uu2
xuxx] dx.

Observe that this form is of order 4 even though the Lagrangian λ is of order 3.
One easily checks that η differs from the usual expression for the conservation law
for the symmetry Y , viz.,

η̃ = [uxxuxt − uxx sinu+
1
2
u2
x cosu] dt− [−1

2
u2
xx +

1
8
u4
x] dx

by an exact one form. The results of the next section will enable us to either
systematically pass from the form η to η̃ or to obtain η̃ directly via a method of
undetermined coefficients.

Example 4.11. The need for a practical alternative to the homotopy operators is
made even more apparent if one determines, via the Volterra-Vainberg formula, a
Lagrangian for the minimal surface equation. The corresponding source form is

∆ =
(1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy√

(1 + u2
x + u2

y)3
du ∧ dx ∧ dy (4.41)

One computes λ = H1(∆) = Ldx ∧ dy, where

L = u
[∫ 1

0

t√
(1 + t2(u2

x + u2
y))3

dt
]
(uxx + uyy)

+ u
[∫ 1

0

t3√
(1 + t2(u2

x + u2
y)3

dt
]
(u2

yuxx − 2uxuyuxy + u2
xuyy)

= u
(1 + u2

y +
√
1 + u2

x + u2
y)uxx − 2uxuyuxy + (1 + u2

x +
√
1 + u2

x + u2
y)uyy

(
√
1 + u2

x + u2
y)(1 +

√
1 + u2

x + u2
y)2

.

This is a far cry from the usual first order Lagrangian

λ = −
√

1 + u2
x + u2

y dx ∧ dy.



128 The Variational Bicomplex

Example 4.12. Variationally trivial, natural Lagrangians for plane and space

curves.

The following proposition, due to Cheung [17 ], determines the one dimensional
cohomology H1(E∗) for the natural Euler-Lagrange complex for regular plane and
space curves (See §2C).
Proposition 4.13. (i) Let λ = L(κ, κ̇, κ̈, . . . ) ds be a variationally trivial, natural
Lagrangian for plane curves with curvature κ. Then

λ = aκ ds+ dHf,

where a is a constant and f = f(κ, κ̇, κ̈, . . . ) is a natural function.

(ii) Let λ = L(κ, τ, κ̇, τ̇ , . . . ) ds be a variationally trivial, natural Lagrangian for
space curves with curvature κ and torsion τ . Then

λ = dHf,

where f = f(κ, τ, κ̇, τ̇ , . . . ) is a natural function.

Proof: To prove (i), we observe from (2.65) that E(λ) = 0 if and only if

Ëκ + κ2Eκ + κH = 0. (4.42)

Here Eκ and H are respectively the Euler-Lagrange expression and the Hamiltonian
obtained through the variation of the curvature κ. It is easy to see that this equation
implies that

Eκ = constant. (4.43)

Indeed, if Eκ is not a constant, then there is a largest integer l ≥ 0 for which
dEκ

dκ(l)
�= 0. From the identity Ḣ = −κ̇Eκ, we can infer that H is of order at most

l − 1 if l ≥ 1 and order zero if l = 1. Consequently, by differentiating (4.42) with

respect to κ(l+2), it follows that
dEκ

dκ(l)
= 0. This contradiction establishes (4.43).

Denote the constant in (4.43) by a. Then the natural Lagrangian

L̃ = L− aκ

satisfies Eκ(L̃) = 0. We now apply the horizontal homotopy operator h1,0
H to L̃ to

construct a natural function f = f(κ, κ̇, κ̈, . . . ) such that

L = aκ+
df

ds
+ b,
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where b is a constant. Note that because L̃ is independent of the base variable s,
then so is f = h1,0

H (L̃). Although Eκ(b) = 0, we have

E(b ds) = bκΘ2 ∧ ds.

Since L is variationally trivial, this forces b = 0. Part(i) is established.
It is clear that there is no natural function g for which dHg = aκ ds.
We emphasize that we could not have arrived at this result by directly applying

the the homotopy operator to λ, viewed as a Lagrangian on J∞(R2 × R) in the
variables (t, x, y, x′, y′, . . . ). In the first place, the singularities in the curvature κ

at x′ = y′ = 0 prevent us from applying the homotopy operator globally. Secondly,
even if λ[x, y] is a natural Lagrangian, it may not be true that h1,0

H (λ[x, y]) is a
natural function.

In the case of natural Lagrangians for space curves, we use Proposition 2.16 and
a simple generalization of the argument we used in the planar case to conclude that
if λ is variational trivial then both Eκ and Eτ are constant. The third component
E3 of the Euler-Lagrange form E(λ) therefore reduces to

E3 = τ̇Eκ − κ̇Eτ .

This vanishes if and only if Eκ = Eτ = 0. Consequently there is a natural function
f and a constant c such that

L =
df

ds
+ c.

For the same reasons as before, c = 0.

Cheung also considers natural Lagrangians for curves on surfaces of constant
curvature. In view of Proposition 2.21, it is easily seen that if such a Lagrangian is
variationally trivial, then it is the horizontal differential of a natural function.

Example 4.14. The Gauss-Bonnet-Chern Theorem.

Let n = 2m be even and let gl(n) be the Lie algebra ofGL(n). Define a symmetric
multi-linear map

P : [gl(n)]m → R

by

P (a, b, . . . , c) =
1
n!

εi1j1i2j2···imjmai1j1bi2j2 · · · cimjm
.
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The Pfaffian of a ∈ gl(n) is defined to be

Pf(a) = P (a, a, . . . , a).

Ordinarily, the Pfaffian is defined only for skew-symmetric matrices but we shall
need this extension to all of gl(n). Note that only the skew-symmetric part of the
matrix a contributes to Pf(a); if b = 1

2
(a− at) then Pf(a) = Pf(b).

Let M be a compact manifold and let π : E → M be the product bundle of the
bundle of metrics on M with the bundle of connections on M . Let g = gij dx

i⊗dxj

be a metric on M and let ωi
j = Γi

jk dxk be any set of connection one forms for the
tangent bundle TM . Let

Ωj
i = d ωi

j − ωh
j ∧ ωi

h = −1
2
Kj

i
hk dx

h ∧ dxk

be the curvature two-form and let Ωij = gilΩj
l. We define a Lagrangian λ ∈

Ωn,0(J∞(E)) by

λ[g, ω] =
1√
g
Pf(Ωij).

This Lagrangian is first order in the derivatives of the connection and zeroth order
in the derivatives of the metric. Because we wish to compute the Euler-Lagrange
form for λ by varying g and ω independently, we have not restricted the domain of
λ to metric connections. Thus the matrix Ωij may not be skew-symmetric. It is
for this reason that we extended the domain of the Pfaffian. If ω is the Christoffel
connection ωg for g, then a simple calculation shows that

λ[g, ωg] =
1

2mn!
[
1√
g
εi1j1···imjm

1√
g
εh1k1···hmkm ]Ki1j1h1k1

· · ·Kimjmhmkm
(
√
g dx1 ∧ · · · ∧ dxn)

=
√
gKn dx1 ∧ · · · ∧ dxn,

where Kn is the total curvature of g. In other words, λ[g, ωg] is the integrand in
the Gauss-Bonnet-Chern formula.

If g1 and g0 are two metrics on M and ω1 and ω0 are Riemannian connections
for g1 and g0, then it is well known that λ[g1, ω1] − λ[g0, ω0] is exact and hence∫
M

λ is independent of the choice of metric g and Riemannian connection ω. This
proves, albeit indirectly, that the Euler-Lagrange form E(λ)[g, ω] must vanish when
ω is a Riemannian connection for g. In this example, we shall reverse the order
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of this argument. We explicitly commute E(λ) and show that this source form
vanishes whenever ω is a g compatible connection. Our homotopy formula (4.22)
then implies that

λ[g1, ω1]− λ[g0, ω0] = dHη. (4.44)

Because λ is a first order natural Lagrangian, it is easily seen that η is invariantly
defined and consequently (4.44) holds globally. Moreover, if X is vector field on M ,
then away from the zero set of X one can construct a metric connection ω0 for which
λ[g0, ω0] = 0. The explicit formula for η, as provided by the homotopy operator
hn,0H , coincides with that used by Chern in his original proof of the generalized
Gauss-Bonnet theorem.

Set

[Pf′(a)](b) = [
d

dt
[Pf(a+ tb)]|t=0 = mP (b, a, . . . , a) = P ij(a)bij

and

[Pf′′(a)](b, b) = [
d2

dt2
Pf(a+ tb)]|t=0 = P ijhk(a)bijbhk.

Note that

P ij(a) = −P ji(a)

and that

P ijhk(a) = −P jihk(a) = P hkij(a).

In the next lemma Dωgih is the covariant exterior derivative of gih with respect
to the connection ω, viz..

Dωgih = ∇kgih dxk.

Lemma 4.15. The Euler-Lagrange form for λ[g, ω] is

E(λ) = Eg(λ) +Eω(λ),

where

Eg(λ) =
1

2
√
g
griP sj(Ω) ∧ [Ωij +Ωji] ∧ dV grs (4.45)

and

Eω(λ) =
1√
g
griDωgjh ∧ [P iskj(Ω) ∧Ωk

h + gihP js(Ω)− 1
2
gjhP is(Ω)] ∧ dV ωr

s .
(4.46)
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Consequently, the Euler-Lagrange form E[λ)(g, ω] vanishes whenever ω is any Rie-
mannian connection for g.

Proof: The Pfaffian is a relative GL(n) invariant in the sense that for any matrix
M = (mr

s) ∈ GL(n),
Pf(M taM) = detM Pf(a).

Differentiate this identity with respect tomr
s and putM = I to obtain the invariance

condition
P sj(a)arj + P is(a)air = δsr Pf(a). (4.47)

Again we emphasize that this identity holds for all a ∈ gl(n). Differentiation of
(4.47) with respect to ahk yields

P sjhk(a)arj + P ishk(a)air + P sk(a)δhr + P hs(a)δkr = δsrP
hk(a). (4.48)

These identities will be used to simplify the formulas for the Euler-Lagrange forms.
Since λ[g, ω] is of order zero in the metric g, we find that

Eg(λ)[g, ω] =
∂λ

∂grs
dV grs,

= [
∂

∂grs

( 1√
g

)
Pf(Ω) +

1√
g
P ij ∧ ∂Ωij

∂grs
] ∧ dV grs

=
1√
g
[−1

2
grs Pf(Ω) + P rj(Ω) ∧ Ωj

s] ∧ dV grs. (4.49)

By using (4.47), it a simple matter to rewrite (4.49) as (4.45).
In a similar fashion, one finds by virtue of the formulas

∂Ωj
l

∂Γr
st

= (δsjω
l
r − δlrω

s
j ) dx

t and
∂Ωj

l

∂Γs
st,u

= δsjδ
l
r dx

u ∧ dxt, (4.50)

that

Eω(λ) = [
1√
g

∂ Pf(Ω)
∂Γr

st

−Du

( 1√
g

∂ Pf(Ω)
∂Γr

st,u

)
] ∧ dV Γ

r
st

= [− 1√
g
gilP

is ∧ ωl
r +

1√
g
girP

ij ∧ ωs
j + dH

( 1√
g
girP

is
)
] ∧ dV Γ

r
st.

(4.51)
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To evaluate the last term in (4.51), we observe that

dH
( 1√

g

)
= − 1

2
√
g
ghkDωghk − 1

2
√
g
ωl
l ,

and

dH(gir) = Dωgir + gilω
l
r + glrω

l
i.

Moreover, on account of the second Bianchi identity, we conclude

dHP is(Ω) = P ishk(Ω) ∧ dHΩhk

= P ishk[Dωgkl ∧ Ωh
l + ωl

k ∧Ωhl + ωl
h ∧ Ωlk].

These last three equations are substituted into (4.51). The result is simplified using
the invariance identity (4.48) to arrive at (4.46).

Corollary 4.16. If ω1 and ω0 are Riemannian connections for metrics g1 and

g0, then ∫
M

λ[g1, ω1] =
∫
M

λ[g0, ω0]. (4.52)

Proof: Let ωgi
be the Christoffel connection for gi, i = 0, 1. We show that∫

M

λ[g1, ωg1 ] =
∫
M

λ[g0, ωg0 ] (4.53)

and ∫
M

λ[gi, ωi] =
∫
M

λ[gi, ωgi
] (4.54)

for i = 0, 1. Together these three equalities prove (4.52).
Let (gt, ωt), 0 ≤ t ≤ 1, be any curve of metrics and connections. Corollary 4.6

implies that

λ[g1, ω1]− λ[g0, ω0] = d η

+
∫ 1

0

(ġt)ij [Eg(λ)]ij [gt, ωt] dt+
∫ 1

0

(Γ̇)hij [Eω(λ)]
ij
h [gt, ωt] dt,

(4.55)

where, in accordance with (4.28), η is the (n− 1) form defined by

η =
∫ 1

0

(Γ̇t)hijDk

(∂L
∂Γh

ij,k

)
[gt, ωt] dt.
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Since (Γ̇t)hij is the infinitesimal difference of connections, it is a tensor of type (1, 2).
Since λ = Lν is a of first order in the derivatives of Γ, the highest order derivative
∂L

∂Γh
ij,k

is a tensor density of type (3, 1). Thus η is an invariantly defined form and

equation (4.55) holds globally.
To establish (4.53), let

gt = tg1 + (1− t)g0

and let ωt = ωgt
be the Christoffel connection of gt. To establish (4.54), let gt = gi

and let
ωt = tωi + (1− t)ωgi

.

According to Proposition 4.15, the Euler-Lagrange form E(λ)[gt, ωt] vanishes in
either case and so (4.53) and (4.54) follow from (4.55) and an application of Stokes
theorem.

Now we turn to the proof of the generalized Gauss-Bonnet theorem. Fix a metric
g and a Riemannian connection ω on M . Let ∇ denote covariant differentiation

with respect to this connection. Let X = X i ∂

∂xi
be a unit vector defined on some

open set U of M . Introduce the type (1, 1) tensor-valued one form

Ei
j = X iDωXj −XjDωX

i

= (X i∇lXj −Xj∇lX
i) dxl.

Because X is a unit vector field and because ω is a Riemannian connection

XjEi
j = −DωX

i and gihE
i
j + gijE

i
h = 0.

These formulas are needed to check some of the statements in the next paragraph.
Define a curve of connection one forms ωt, 0 ≤ t ≤ 1 by

(ωt)ij = ωi
j + (1− t)Ei

j.

It is easily verified that each ωt is a Riemannian connection for the metric g and
that the associated curvature two-form is

(Ωt)ji = Ωj
i + (1− t)DωE

i
j + (1− t)2Ei

h ∧ Eh
j

= Ωj
i + (1− t)[X iXlΩj

l −XjX
lΩl

i] + (1− t)2[DωX
i ∧DωXj].

(4.56)
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Evidently the skew-symmetric matrix (Ω0)ij has X as a zero eigenvalue and so
Pf(Ω0) = 0. With gt = g, the fundamental variational formula (4.55) reduces to

λ[g, ω] = d η,

where

η = −
∫ 1

0

Eh
ij Dk

(∂L
∂Γh

ij,k

)
[g, ωt] dt. (4.57)

It is not difficult to explicitly evaluate the integral in (4.57).1 Indeed, on account
of (4.50), this formula for η simplifies to

η = −− 2m√
g

∫ 1

0

P (α,Ωt) dt, (4.58)

where α is the matrix (XiDωXj). Now observe that if a = X ∧ Y and b = X ∧ Z,
then Pf(a, b, . . . , c) = 0. Hence the coefficient of (1− t) in the expression (4.56) for
Ωt does not contribute to the integrand in (4.58) and thus

Pf(α,Ωt) =
m−1∑
r=0

(1− t2)r
(
m−1
r

)
Qr(X,Ω), (4.59)

where

Qr(X,Ω) = Pf(α, β, . . .β︸ ︷︷ ︸
r times

, Ω, . . . ,Ω︸ ︷︷ ︸
m−r+1 times

),

and β = (DωXi ∧ DωXj). By substituting (4.59) into (4.58) and evaluating the
resulting integral we arrive at Chern’s original formula for the generalized Gauss-
Bonnet integrand.

Proposition 4.17. Let X be a unit vector field defined on an open set U ⊂ M .

Then , on U

λ[g, ω] = dη,

where

1Since we are ultimately interested in the form of η only when g is flat, this step is, strictly

speaking, unnecessary in our derivation of the generalized Gauss-Bonnet theorem.
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η =
m−1∑
r=0

1√
g
crQ

r(X,Ω) and cr = −22r+1(r!)2

(2r + 1)!
(
m−1
r

)
. (4.60)

The generalized Gauss-Bonnet theorem now follows from Hopf’s formula for the
Euler characteristic χ(M) and the local integral formula for the index of a vector
field. Let X0 be a vector field on M with isolated zeros at points p1, p2, . . . , pk. Let
X = X0/||X0|| be the corresponding unit vector field. Then Hopf’s formula states
that

χ(M) =
k∑

i=0

indexX(pi),

where (see, e.g., Spivak [63 ](Vol. 1, pp. 373-375 and pp. 606-609))

indexX(pi) =
(m− 1)!
(n− 1)!

1
2πm

∫
Sε(pi)

√
gεjj2j3...jn

XjdXj2 ∧ dXj3 · · · ∧ dXjn ,

and Sε(pi) is a (n− 1) dimensional sphere of sufficiently small radius ε around the
point pi.

Since
∫
M

√
gKn ν is independent of g, we are free to pick a metric on M which

is flat around each zero pi. Let Bε(pi) be the ball of radius ε around pi and let
Mε = M −⋃k

i=1 Bε(pi). Then by Stoke’s theorem

∫
M

√
gKn ν = lim

ε→0

∫
Mε

√
gKn ν = −

k∑
i=1

lim
ε→0

∫
Sε(pi)

η. (4.61)

Since the metric is flat around pi, only the term with r = m in (4.61) will contribute
to η and therefore

∫
M

√
gKn ν = −cm

k∑
i=1

lim
ε→0

∫
Sε(pi)

1
n!
√
gεjj2j3...jn

XjdXj2 ∧ dXj3 · · · ∧ dXjn

= − 2πm

n(m− 1)!
cm

k∑
i=1

indexX(pi) =
2nπmm!

n!
χ(M).

This is the celebrated Gauss-Bonnet-Chern formula.
Our objective in establishing this result was simply to focus attention on the role

that the variational calculus can play in the study of characteristic forms. The first
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variational formula (4.22) can also be used to reproduce the calculations of Bott
[12 ] and Baum and Cheeger [9 ] required to compute the Pontryagin numbers of
a compact Riemannian manifold from the zeros of a Killing vector field as well as
the calculations of Chern [14 ] needed to compute the Chern numbers of a complex,
compact manifold from the residues of meromorphic vector fields.

B. Minimal Weight Forms. In this section we introduce a system of well-defined
(i.e., invariant under fiber preserving diffeomorphisms) weights for forms on J∞(E)
which have a polynomial dependence in the fiber variables uαI from some order on.
These weights describe the distribution of derivatives in these polynomial terms.
Given a dH closed form ω ∈ Ωr,s we construct a form η such that ω = dHη and
such that the weights of η are as small as possible. Similar results are obtained for
the complex (F∗, δV ) of functional forms. In particular, the existence of minimal
weight Lagrangians for locally variational source forms is established.

It is convenient to focus on horizontal forms and the complex (4.5). Once the
results are established here the generalization to forms of type (r, s), s ≥ 1, is easily
obtained. Again E is the trivial Rm bundle over Rn.

Let C∞
k = C∞(Jk(E)) be the ring of smooth functions on Jk(E). We let uk

denote all possible kth order derivatives of uα:

uk ∼ uαi1i2···ik .

Let
Pj,k = C∞

j [uj+1, uj+2, . . . , uk]

be the polynomial ring in the variables uj+1, uj+2, . . . , uk with coefficients in C∞
j .

A function P ∈ Pj,k is therefore a smooth function on J∞(E) of order k which is a
sum of monomials

M = A (uj+1)aj+1(uj+2)aj+2 · · · (uk)ak , (4.62)

where A ∈ C∞
j , By convention Pk,k = C∞

k .

Definition 4.18. Let Pj,k[t] be the polynomial ring in the single variable t with

coefficients in Pj,k. For each p = j, j + 1, . . . , k − 1, define

Wp : Pjk → Pjk[t]

by

[Wp(P )](t) = P (uj+1, uj+2, . . . , up, tup+1, t
2up+2, . . . , tk−puk).
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We call the degree of Wp(P )[t] as a polynomial in t the pth weight of P and denote

it by wp(P ).
For p ≥ k, we set Wp(P )[t] = P and wp(P ) = 0.

For example, if P = uxxxy + cos(ux)uyyuxxx, then P ∈ P1,4 and

W1(P )(t) = t3uxxxy + t3 cos(ux)uyyuxxx,

W2(P )(t) = t2uxxxy + t cos(ux)uyyuxxx, and

W3(P )(t) = tuxxxy + cos(ux)uyyuxxx.

The weight wp(P ) counts the total number of derivatives in P in excess of p. For
example, the weights of the monomial M = u2

xxu
3
xyzuzzzz ∈ P0,4 are

w0(M) = 4 + 9 + 4 = 17, w1(M) = 2 + 6 + 3 = 11,

w2(M) = 3 + 2 = 5, w3(M) = 1, and

w4(M) = 0.

The pth weight of the monomial (4.62) is

wp(M) = ap+1 + 2ap+2 + · · ·+ (k − p)ak.

The weight wp(P ) of a polynomial P ∈ Pj,k is the largest pth weight of its mono-
mials. If wp(P ) = 0, then P is independent of all derivatives of order ≥ p + 1 and
hence P ∈ Pj,p.

We now prove some elementary properties of these weights. Evidently, Wp is a
ring homomorphism and consequently, for P and Q in Pj,k,

wp(P +Q) = max{wp(P ), wp(Q) } and wp(PQ) = wp(P ) + wp(Q).

Lemma 4.19. The space of functions Pj,k(J∞(E)) is an invariantly defined sub-
space of C∞(J∞(E)) and the weights wj , wj+1, . . . , wk−1 are numerical invariants.

Thus, if φ : E → E is a fiber-preserving transformation y = y(x), v = v(x, u) whose
prolongation Φ: J∞(E) → J∞(E) transforms Q[y, v] ∈ Pj,k into P [x, u] ∈ Jk(E),
then P ∈ Pj,k and

wp(P ) = wp(Q) for p = j, j + 1, . . . , k − 1.

Proof: A simple induction shows that the prolongation Φ: J∞(E)→ J∞(E) of φ
mapping [x, u] to [y, v] takes the general form

vαI =
∂xJ

∂yI
∂vα

∂uβ
uβJ

+
∑

Aα
I
K1
γ1

K2
γ2

···
···
Kl
γl

uγ1
K1

uγ2
K2
· · ·uγl

Kl
,

(4.63)
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where |I| = |J | = q, where
∂xJ

∂yI
=

∂xj1

∂yi1
∂xj2

∂yi2
· · · ∂x

jq

∂yiq
, where the coefficients A···

···
are functions of the coordinates (x, u) on E alone, and where the summation ranges
over all multi-indices K1, K2, . . . , Kl such that

1 ≤ |K1| ≤ |K2| ≤ · · · ≤ |Kl| ≤ q − 1

and

|K1|+ |K2|+ · · · |Kl| ≤ q.

Let P = Q ◦ Φ. Since the right-hand side of equation (4.63) is a polynomial
in the derivatives of u, it follows that if Q is a polynomial in the derivatives
vj+1,vj+2, . . . , vk, then P is also a polynomial in the derivatives uj+1,uj+2, . . . , uk.
This proves that Pj,k is an invariantly defined subspace of C∞(J∞(E)).

To prove that the weights of P and Q coincide, it suffices to show that the pth

weight of vαI , |I| = q, treated as a polynomial in the derivatives of u, equals the
pth weight of vαI , treated as a polynomial in the derivatives of v, i.e., we must show
that

wp(vαI [x, u]) =
{

q − p if q > p

0 if q ≤ p.

Suppose q > p. Denote one of the terms in the summation in (4.63) by

M = A(u1)a1(u2)a2 · · · (uq−1)aq−1 .

The bounds on the lengths of the indices K1, K2, . . . , Kl imply that

ai ≥ 0 and a1 + 2a2 + · · ·+ (q − 1)aq−1 ≤ q. (4.64)

From these inequalities one can prove, using the fact that the maximum of a linear
function defined on a convex, polygonal region is realized at a vertex, that

ap+1 + 2ap+2 + · · ·+ (q − p− 1)aq−1 ≤ q − p.

This shows that the pth weight of the monomial M is no more that q − p. It
actually equals q − p since the pth weight of uαI , the leading monomial in (4.63), is

q − p and the Jacobians (
∂xj

∂yi
) and (

∂vα

∂uβ
) are non-singular.

The case q ≤ p is similar.
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Lemma 4.20. Let P ∈ Pj,k. If wp(P ) �= 0, then

wp+1(P ) ≤ wp(P )− 1.

In particular, if the weights wj(P ), wj+1(P ), . . . , wk−1(P ) are non-zero, then they
are a strictly decreasing sequence of integers.

Proof: It suffices to check this lemma for monomials

M = (uj+1)aj+1(uj+2)aj+2 · · · (uk)ak

for which, by definition,

wp(P ) = (k − p)ak + (k − p− 1)ak−1 + · · ·+ 2ap+2 + ap+1

and

wp+1(P ) = (k − p− 1)ak + (k − p− 2)ak−1 + · · ·+ ap+2

The assumption that wp(P ) �= 0 requires that k > p and that one of the exponents
al ≥ 1 for l > p. Hence

wp(M)− wp+1(M) = ak + ak−1 + · · ·ap+1 ≥ 1.

For each p ≥ 0, we introduce local, non-invariant differential operators

(D1
p)i =

∂

∂xi
+

p−1∑
|J|=0

uαJi ∂
J
α

and

(D2
p)i =

∞∑
|J|=p

uαJi ∂
J
α .

The sum of these two operators is the total derivative operator

Di = (D1
p)i + (D2

p)i.

We shall suppress the indices in these equations and write D for Di and ∂|J| for ∂Jα .
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Lemma 4.21. Let P ∈ Pj,k. Then DP ∈ Pj,k+1,

Wp(DP )(t) = D1
p[Wp(P )(t)] + tD2

p[Wp(P )(t)], (4.65)

and the weights of DP increase over those of P by one, i.e.,

wp(DP ) = wp(P ) + 1 for p = j, j + 1, . . . , k.

Proof: From the chain rule we deduce immediately that

∂

∂x
[Wp(P )(t)] =Wp(

∂P

∂x
)(t),

∂l[Wp(P )(t)] =Wp(∂lP )(t) for l ≤ p, and (4.68)

∂l[Wp(P )(t)] = tl−pWp(∂lP )(t) for l ≥ p+ 1. (4.69)

We substitute these formulas into the right-hand side of (4.65) to arrive at

D1
p[Wp(P )(t)] + tD2

p[Wp(P )(t)]

=Wp(D1
pP )(t) + t

k∑
l=p

ul+1∂
l[Wp(P )(t)]

=Wp(D1
pP )(t) +

k∑
l=p

tl+1−pul+1Wp(∂lP )(t)

=Wp(D1
pP )(t) +Wp(D2

pP )(t)

=Wp(DP ),

as required.

Lemma 4.22. Let P ∈ Pj,k and let E(P ) be the Euler-Lagrange function computed
from P . Then E(P ) ∈ Pj,l for some l ≤ 2k and the weights of E(P ) are bounded
by those of P according to

wp

(
E(P )

) ≤ wp(P ) + p for p = j, j + 1, . . . , k − 1 . (4.71a)

and

wp

(
E(P )

) ≤ 2k − p for p = k, k + 1, . . . , l − 1. (4.71b)
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Proof: These inequalities follow from (4.65), (4.68) and (4.69) which, in the case
of the Euler-Lagrange operator, leads to

Wp

(
E(λ)

)
(t) =

k∑
i=0

(−D1
p − tD2

p)i{∂i[Wp(P )(t)]}

+
k∑

i=p+1

tp−i(−D1
p − tD2

p)i{∂i[Wp(P )(t)]}.
(4.72)

For p = j, j + 1, . . . , k − 1, the degree of the ith term in the first summation is

deg
[
(−D1

p − tD2
p)i{∂i[Wp(P )(t)]}] ≤ i+ wp(P ) ≤ wp(P ) + p

while the degree of the ith term in the second summation is

deg
[
tp−i(−D1

p − tD2
p)i{∂i[Wp(P )(t)]}] ≤ (p− i) + i+ wp(P ) = wp(P ) + p.

This establishes (4.71a).
For p = k, the second summation in (4.72) is absent. Since Wp(P ) = P , the

degree of the ith term in the first summation is i ≤ k. This proves (4.71b) for
p = k. For p > k, (4.71b) follows from Lemma 4.20.

It is a straightforward matter to check that the bounds on the weights of DP and
E(P ) given in Lemmas 4.21 and 4.22 are sharp.

Let Ωr,0
Pj,k

(J∞(E)) be the space of horizontal r forms on J∞(E) with coefficients

in Pj,k(J∞(E)). We extend the definition of Wp from Pj,k to Ωr,0
Pj,k

by the action

of Wp on the coefficients. If ω ∈ Ωr,0
Pj,k

, then the pth weight wp(ω) is the degree of
the polynomial Wp(ω)(t). The weight of ω is the largest weight of its coefficients.
Lemma 4.21 asserts that dHω ∈ Ωr,0

Pj,k+1
and that

wp(dHω) ≤ wp(ω) + 1 for p = j, j + 1, . . . , k.

Theorem 4.23. For r = 1, 2, . . . , n and 0 ≤ j < k, let ω ∈ Ωr,0
Pj,k

and suppose

that dHω = 0 if r < n or that E(ω) = 0 if r = n. Then there exists a form

η ∈ Ωr−1,0
Pj,k

with weights

wp(η) = wp(ω)− 1 for p = j, j + 1, . . . , k − 1

such that
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ω = dHη.

Proof: Actually, we must prove slightly more, viz., if ω depends polynomially ( or
smoothly) on additional parameters, then so does η. We proceed by induction on r

so that there are two parts to the proof. First we assume that the theorem is true
for r − 1 forms, where 2 ≤ r ≤ n, and prove it true for r forms. Second, a simple
modification of the general argument shows that the theorem holds for one forms.

Let ω be an closed r form on J∞(E) with coefficients in Pj,k. These coefficients
may depend polynomially or smoothly on other parameters. Using the homotopy
operator of §4A we find that there is an horizontal r − 1 form η such that

ω = dHη. (4.73)

It is clear from the homotopy formula that η is polynomial in derivatives of order > j

so that η ∈ Ωr−1,0
Pj,l

for some l > k−1. It is also clear that η will depend parameters
in the same fashion as ω.

The induction hypothesis on r is used to establish the following lemma.

Lemma 4.24. Fix p in the range j ≤ p ≤ l − 1. Then there is an horizontal r − 1
form η∗ ∈ Ωr−1,0

Pj,l
with weights

wp(η∗) =
{

wp(η)− 1, if wp(ω) ≥ 1
0, if wp(ω) = 0

and

wq(η∗) ≤ wq(η) for q = p+ 1, . . . , l − 1

and such that

ω = dHη∗. (4.74)

In other words, for each fixed p, the form η in (4.73) can be replaced by a form

η∗ where the pth weight wp(η∗) can be minimized without increasing the weights
wp+1(η∗), wp+2(η∗), . . . over the initial values wp+1(η), wp+2(η), . . . .
The form η∗ will also depend polynomially (or smoothly) on parameters.

Proof: The proof of this lemma is based upon arguments first presented in Olver
[54 ].

Let a = wp(ω) and let b = wp(η). We can assume that b ≥ a or that b ≥ 1 if
a = 0 since, otherwise, there is nothing to prove — the lemma holds with η = η∗.
To begin, we isolate the terms in η of maximum pth weight by writing

η = α+ β, (4.75)
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where Wp(α)(t) = tbα and wp(β) < b. The form α can be explicitly computed from
the formula

α =
1
b!

db

dtb
[Wp(η)(t)] (4.76)

This shows that, for each q = p, p+ 1, . . . , l − 1,

wq(α) ≤ wq(η)

and consequently

wq(β) ≤ wq(η).

Now apply the weight mapWp to (4.73) and invoke Lemma 4.21 to conclude that

Wp(ω)(t) =Wp(dHη)(t)

= D1
p[Wp(η)(t)] + tD2

p[Wp(η)(t)]

= tb+1D2
pα+ {terms of degree at most b in t}.

Since the left-hand side of this equation is a polynomial in t of degree a ≤ b, this
implies that

D2
pα = 0. (4.77)

The key step in the proof is to use the induction hypothesis to analyze this equa-
tion. Pick a point (y, v, v1, . . . , vp−1) in Jp−1(J∞(E)) and define a new horizontal
r−1 form γ with coefficients in Pj,l and depending on (y, v, v1, . . . , vp−1) as param-
eters by fixing the dependence of α on x, u, u1, . . . , up−1 at x = y, u = v, u1 = v1,
. . . up−1 = vp−1, i.e., set

γ(x, u, u1, . . . , ul, y, v, v1, . . . , vp−1) = α(y, v, v1, . . . , vp−1, up, up+1 . . . , ul). (4.78)

Clearly γ ∈ Ωr−1,0
Pj,l

and
wq(γ) = wq(α) (4.79)

for q = p, p + 1, . . . , l − 1. Furthermore, γ is a polynomial in the parameters
vj+1, vj+2, . . . , vp−1 and varies smoothly in the parameters y, v, v1, . . . , vj .

Equation (4.77) implies that the r − 1 form γ is closed:

dHγ = 0.
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The induction hypothesis now applies to γ. Consequently there is a horizontal r−2
form σ such that

γ = dHσ, (4.80)

where

σ = σ(x, u, u1, . . . , ul, y, v, v1, . . . , vp−1)

belongs to Ωr−2,0
Pj,l

, is a polynomial in vj+1, vj+2, . . . , vp−1 and varies smoothly in
y, v, v1, . . . , vj . The form σ also has the appropriate dependency on any additional
parameters on which γ may depend. Most importantly, the induction hypothesis
also insures that σ is a minimal weight form, i.e.,

wq(σ) = wq(γ)− 1 (4.81)

for q = p, p+ 1, . . . , l − 1.
Put

τ(x, u, u1, . . . , ul) = σ|(y=x, v=u, v1=u1, ... , vp−1=up−1)
. (4.82)

Then, owing to (4.78) and (4.80), we obtain

α = γ|(y=x, v=u, v1=u1, ... ) = [dHσ]|(y=x, v=u, v1=u1, ... )

= dx ∧ [∂σ
∂x

+
∂σ

∂u
u1 +

∂σ

∂u1
u2 +

∂σ

∂ul
ul+1

]∣∣
(y=x,v=u, v1=u1, ... )

= dx ∧ [∂
∂x

(σ|(y=x, v=u, v1=u1, ... ) +
∂

∂u
(σ|(y=x, v=u,v1=u1, ... ) u1 + · · ·

]
− dx ∧ [∂σ

∂y
+

∂σ

∂v
u1 +

∂σ

∂v1
u2 + · · ·

]∣∣
(y=x, v=u, v1=u1, ... )

i.e.,

α = dHτ − µ, (4.83)

where

µ = dx ∧ [∂σ
∂y

+
∂σ

∂v
u1 + · · ·+ ∂σ

∂vp−1
up + · · ·

]∣∣
(y=x, v=u, v1=u1, ... , vp−1=up−1)

Note that
wq(µ) ≤ wq(σ)
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for q = p, p+ 1, . . . , l − 1, and therefore, in view of (4.79)and (4.81),

wq(µ) ≤ wq(α)− 1. (4.84)

On account of (4.75) and (4.83) we can now write

η = dHτ + η∗,
where

η∗ = β − µ (4.85)

and hence, because of (4.73),
ω = dHη∗.

The weights of η∗ are

wp(η∗) ≤ max{wp(β), wp(µ) } = b− 1

and, for q = p+ 1, p+ 2, . . . , l − 1,

wq(η∗) ≤ max{wq(β), wq(µ) } ≤ wq(η).

In summary, if ω = dHη and wp(η) is larger than the minimum possible pth

weight, then η is equivalent to a new form η∗ with strictly smaller pth weight and
no larger qth weights, q = p + 1, p+ 2, . . . , l − 1. This argument can be repeated
until a form η∗ with minimum pth weight is obtained. This proves the lemma.

The proof of Theorem 4.23 can now be completed by repeated use of the lemma,
first with p = l − 1, then with p = l − 2 and so on until p = j. At each step, we
have

ω = dHη

with weights

wq(η) =
{

wq(ω)− 1, or
0, if wq(ω) = 0

(4.86)

for q = p, p + 1, . . . , l − 1. Due to Lemma 4.21, these are the minimal weights
possible. With p = j, this establishes the theorem for l forms, l ≥ 2.

Finally, to check the case l = 1, we observe that α, as define by (4.75), is now a
function and consequently (4.77) implies directly that

α = α(x, u, u1, . . . , up−1).

This immediately reduces the pth weight of the function η in (4.75) without changing
the higher weights. The lemma therefore holds for one forms. The theorem, for
l = 1, again follows from the lemma as above.
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Let ω be a dH closed, horizontal one form. The function f for which ω = dHf is
unique up to an additive constant and therefore a minimal weight function f can
be computed using the horizontal homotopy operator, f = h1,0

H (ω).

Example 4.25. A concrete example helps to clarify the proof of Theorem 4.23 and
to illustrate the constructive nature of the argument. Let E : R2 ×R → R2 and
consider the variational trivial Lagrangian

λ = 2uyyyuxxxx dx ∧ dy. (4.87)

The coefficient of λ belongs to P0,4 and the weights are

w0(λ) = 7, w1(λ) = 5, w2(λ) = 3, and w3(λ) = 1.

According to the theorem, it is possible to write

λ = dHη,

where η ∈ Ω1,0
P0,3

and the weights of η are

w0(η) = 6, w1(λ) = 4, and, w2(η) = 2.

To construct the form η, we first use the horizontal homotopy operator (4.32) to
write λ = η0, where

η0 = (−uuxxxxyy + uyuxxxxy − uyyuxxxx) dx

+ (−uuxxxyyy + uxuxxyyy − uxxuxyyy + uxxxuyyy) dy.

The weights of η0 are far from minimal:

w0(η0) = 6, w1(η0) = 5, w2(η0) = 4, w3(η0) = 3,

w4(η0) = 2, w5(η0) = 1, w6(η) = 0.

To begin, we find a form η1, equivalent to η0, but with w5(η1) = 0. Write

η0 = α0 + β0,

where

α0 = (−uuxxxxyy) dx+ (−uuxxxyyy) dy
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consists of all those terms in η with w5 = 1 and β consists of the remaining terms,

β0 = (uyuxxxxy − uyyuxxxx) dx+ (uxuxxyyy − uxxuxyyy + uxxxuyyy) dy.

In accordance with (4.78), we let

γ0 = (−vuxxxxyy) dx+ (−vuxxxyyy) dy.

This form is dH closed (bear in mind that v is a independent parameter here and
so dHv = 0) and has weights wq(γ0) = 6− q, q = 0, . . . , 6. A minimal order form (
in this case function) σ0 for which dHσ0 = γ0 is

σ0 = −vuxxxyy .

In accordance with (4.82), put

τ0 = −uuxxxyy .

Then
dHτ0 + (uxuxxxyy) dx+ (uyuxxxyy) dy = α0

and so we can replace η0 by

η1 = (uxuxxxyy + uyuxxxxy − uyyuxxxx) dx

+ (uyuxxxyy + uxuxxyyy − uxxuxxyyy + uxxxuyyy) dy.

The weights of this form are

w1(η1) = 6, w1(η1) = 2, w2(η1) = 3

w3(η1) = 2, w4(η1) = 1, w5(η) = 0.

We repeat this process again, this time to reduce the weight w4 to zero. We write

η1 = α1 + β1,

where

α1 = (uxuxxxyy + uyuxxxxy) dx+ (uyuxxxyy + uxuxxyyy) dy.

The form

γ1 = (vxuxxxyy + vyuxxxxy) dx+ (vyuxxxyy + vxuxxyyy) dy
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is dH closed and a minimum order function for γ1 is provided by

σ1 = vxuxxyy + vyuxxxy .

Since

α1 =dH(uxuxxyy + uyuxxxy)− (uxxuxxyy + uxyuxxxy) dx

− (uxyuxxyy + uyyuxxxy) dy

we can replace η1 by the form

η2 = (−uxxuxxyy − uxyuxxxy − uyyuxxxx) dx

+ (−uxyuxxyy − uxxuxyyy − uyyuxxxy + uxxxuyyy) dy.

The weights of this form are

w0(η2) = 6, w1(η2) = 4, w2(η2) = 2,

w3(η2) = 1, w4(η2) = 0.

Finally we reduce the weight w3 to zero. Put

η2 = α2 + β2,

where

α2 = (−uxxuxxyy − uxyuxxxy − uyyuxxxx) dx

+ (−uxyuxxyy − uxxuxyyy − uyyuxxxy) dy.

Since

dH(−uxxuxyy − uxyuxxy − uyyuxxx)

+ (2uxxxuxyy + u2
xxy) dx+ (uxxxuyyy + 2uxxyuxyy) dy = α2

the form η2 is equivalent to

η3 = (2uxxxuxyy + u2
xxy) dx+ (2uxxyuxyy + 2uxxxuyyy) dy.

This is a minimal weight form.
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Let G be the group of affine-linear, fiber-preserving diffeomorphisms introduced
at the end of the previous section. A map ψ ∈ G if

ψ(x, u) = (y, v) = (Ax+ x0, Bu).

Let Ψ be the prolongation of ψ to J∞(E). A form ω ∈ Ωr,s is said to a relative Ψ
invariant with character χ if Ψ∗ω = χω.

Lemma 4.26. The pullback Ψ∗ of the prolongation of any ψ ∈ G commutes with

the weight maps Wp, i.e., if ω ∈ Ωr,0
Pj,k

, then

Wp

(
Ψ∗(ω)

)
(t) = Ψ∗(Wp(ω)(t)

)
for p = j, j + 1, . . . , k − 1. (4.88)

Proof: SinceWp acts on forms by its action on coefficients, it suffices to check the
validity of (4.88) for functions. Let P [y, v] ∈ Pj,k. With Ψ given by (4.36), we find
that

Wp

(
Ψ(P )

)
(t) =Wp

(
P (Ψ[x, u])

)
(t)

=Wp

(
P (Ax+ x0, Bu,BCu1, . . . , BCkuk)

)
(t)

= P (Ax+ x0, Bu, . . . , BCpup, BCp(tup+1), . . . , BCk−p(tk−puk))
(4.89)

while

Ψ∗(Wp(P )(t)
)
= Ψ∗(P (y, v, v1, . . . , vp, tvp+1, . . . , tk−pvk)

)
= P (Ax+ x0, Bu, . . . , BCpu, t(BCp+1up+1), . . . , tk−p(BCkuk)).

(4.90)

Since scalar multiplication of uq by t commutes with matrix multiplication by B

and C = A−1, the arguments in (4.89) and (4.90) coincide. This proves (4.88) for
functions.

A simple example shows that Lemma 4.26 does not hold for more general maps
ψ. Let

y = x and v =
1
2
u2 + x

Then the second prolongation of this map is

vy = uux + 1 and vyy = uuxx + u2
x
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so that

Ψ∗(W1(vyy)(t)
)
= Ψ∗(tvyy) = t(uuxx + u2

x)

while

W1

(
Ψ∗(vyy)

)
=W1(uuxx + u2

x) = tuuxx + u2
x.

In fact, it is not too difficult to prove that if ψ : E → E is a map for which Ψ
commutes with Wp for all p, then ψ is a affine linear transformation on both the
base and the fiber, i.e.,

ψ(x, u) = (Ax+ x0, Bu+ u0).

Corollary 4.27. Let ψ ∈ G and let Ψ be the prolongation of ψ to J∞(E).
Suppose, in addition to the hypothesis of Theorem 4.23, that ω is a relative Ψ
invariant with character χ. Then there exists a minimal weight form η which is also

a relative Ψ invariant with character χ and a form ρ on the base space M such that

ω = dHη + ρ.

Proof: It suffices to check that the various forms introduced in the proof of The-
orem 4.23 are Ψ invariant. By Corollary 4.9, there is a relative Ψ invariant form η

and a form ρ on M such that
ω = dHη + ρ.

From Lemma 4.26 and (4.76), we can deduce that the form α in the decomposition
(4.75) is a relative Ψ invariant. Consequently, the form β in the decomposition
(4.75) is also a relative invariant.

We now extend the action of the group G to the space of parameters and let G

act on (y, v, v1, . . . , vp−1) in the obvious fashion, viz.,

Ψ(y, v, v1, . . . , vp−1) = (Ay + x0, Bv, BCv, . . . , BCp−1vp−1).

With this definition of the group action, it is easily checked that the form γ, as
defined by (4.78), is a relative invariant. The induction hypothesis implies that
the form σ is a relative invariant. We then check that τ , as defined by (4.82), is a
relative invariant in which case it follows immediately that η∗ is a relative invariant.

To check the validity of the corollary for one forms, we simply observe that
the minimal weight form η coincides with the form obtained from the horizontal
homotopy which, as we have already seen, is a relative Ψ invariant.
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Example 4.28. Corollary 4.27 is particularly useful in the case of scaling transfor-
mations. Consider the variationally trivial Lagrangian

λ = (uxxx +
1
2
u3
x)(uxt − sinu) dx ∧ dt

which arises from the distinguished, generalized symmetry (4.40) of the sine-Gordon
equation. In the previous section we used the horizontal homotopy operator to find
the conservation law η associated to this symmetry. Now we use Corollary 4.27.
The weights of the Lagrangian λ are

w0(λ) = 5, w1(λ) = 3, w2(λ) = 1

and hence the weights of a minimal order form η = P dt−Qdx are

w0(η) = 4, w1(η) = 2, w2(η) = 0.

From this weight information we can infer that the coefficients P and Q are linear
combinations, with coefficients that are functions of (x, t, u), of the following terms

u2
xx u2

xt u2
tt uxxuxt uxxutt uxtutt

uxxu
2
x uxxuxuy uxxu

2
t uxxut uxxux

uxtu
2
x uxtuxuy uxtu

2
t uxtut uxtux

uttu
2
x uttuxuy uttu

2
t uttut uttux

u4
x u3

xut u2
xu

2
t uxu

3
t u4

t

u3
x u2

xut uxu
2
t u3

t

u2
x uxut u2

t ux ut 1.

Obviously, the application of the method of undetermined coefficients at this point
would be, at best, unwieldy.

To shorten the above list of terms, we observe that under the transformation

x→ 1
ε
x, and t→ εt

the two form λ transforms as a relative invariant with character χ = ε3. We can
therefore assume that η is a relative invariant with the same character. This implies
that P is a relative invariant with character χ = ε2, and that that Q is a relative
invariant with character χ = ε4. The possibilities for these coefficients are therefore
narrowed to

P = p1uxxuxt + p2uxxuxut + p3uxtu
2
x + p4uxx

+ p5u
3
x + p6u

2
x,

and
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Q = q1u
2
xx + q2uxxu

2
x + q3u

4
x.

Furthermore, because λ is translationally invariant in x and t we assume that the
coefficients pi and qi are functions of u alone. It is now a relatively straightforward
matter to substitute into the equation dHη = λ and determine that

P = uxxutt − sinuuxx +
1
2
cosuu2

x, and

Q = −1
2
u2
xx +

1
8
u4
x.

This is the usual form of the conservation law for the Sine-Gordon equation associ-
ated to to generalized symmetry (4.40).

We now turn to the counterpart of Theorem 4.23 for locally variational source
forms. Let ∆ ∈ F1 be a source form with coefficients in Pj,k, 0 ≤ j < k, and with
weight wk−1(∆) ≥ 0. Since the weights wj(∆), wj+1(∆), . . . , wk−1(∆), wk(∆) = 0
are, by Lemma 4.20, strictly decreasing there exists a first integer l such that

wl(∆) ≤ l. (4.91)

It is not difficult to see, again by Lemma 4.20, that l lies in the range [
k

2
] ≤ l ≤ k.

For example, if the coefficient of ∆ is u2u
2
3 then l = 2. If the coefficient of ∆ is u3

3,
then l = 3.

Theorem 4.29. Let ∆ be a locally variational source form with coefficients in Pjk

and let l be defined by (4.91). Then there is a Lagrangian λ for ∆ with coefficient

in Pj,l and with weights

wp(λ) = wp(∆)− p

for p = j, j + 1, . . . , l − 1.

Proof: The argument is essentially a repetition of that used in Theorem 4.23.
The homotopy H1 provides us with a Lagrangian λ ∈ Ωn,0

Pj,k
for ∆. Now fix p,

j ≤ p ≤ k − 1. We construct an equivalent Lagrangian λ∗ such that

wp(λ∗) =
{

wp(∆)− p if j ≤ p ≤ l − 1, or
0 if l ≤ p ≤ k − 1,

and

wq(λ∗) ≤ wq(λ) for q = p+ 1, p+ 2, . . . , k − 1.
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The theorem can then be proved by downward induction on p, starting with p = k−1
and ending with p = j.

Let wp(∆) = a and wp(λ) = b. If p is in the range j ≤ p ≤ l − 1, we suppose
that b > a − p; if p is in the range l ≤ p ≤ k − 1, we suppose that b > 0. Because
wl(∆) ≤ l, it follows that for p in this latter range,

p ≥ l ≥ wl(∆) ≥ wp(∆) = a

Hence, regardless of the value of p, our suppositions lead to the inequality

b+ p > a.

Decompose λ into the sum
λ = α+ β, (4.92)

whereWp(α)(t) = tbα andW(β)(t) is a polynomial in t of degree < b. Now evaluate
Wp(∆)(t) using (4.72) to arrive at

Wp(∆)(t) =Wp

(
E(λ)

)
=

p∑
i=0

(−D1
p − tD2

p)i{∂i[tbα+Wp(β)(t)]}

+
k∑

i=p+1

tp−i(−D1
p − tD2

p)i{∂i[tbα+Wp(β)(t)]}

= tb+p
[
(−D2

p)p+1∂
p+1α+ (−D2

p)p+2∂
p+2α+ · · ·+ (−D2

p)k∂
kα

]
+ { terms of degree < b+ p in t}.

Since Wp(∆)(t) is a polynomial in t of degree a < b+ p, this implies that

(−D2
p)p+1(∂p+1α) + (−D2

p)p+2(∂p+2α) + · · ·+ (−D2
p)k(∂

kα) = 0.

Define the n form γ as in the proof of Theorem 4.23 by fixing the dependency of
α on (x, u, u1, . . . , up−1) at (y, v, v1, . . . , vp−1). This last equation gives rise to

E(γ) = 0.

By Theorem 4.23, there is a minimal order form σ such that γ = dHσ. We can
now continue with precisely the same arguments used in the proof of Theorem 4.23,
starting from (4.80), to complete the proof of Theorem 4.29 .
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A complete characterization of the image of the Euler-Lagrange operator on finite
order jet bundles is now possible. Let

Ωn,0
k = Ωn,0 ∩Ωn(Jk(E))

and let

F1
l = F1 ∩ Ωn+1(J l(E)).

Corollary 4.30. Let Ek be the image of Ωn,0
k in F1

2k under the Euler-Lagrange

operator,

Ek = {∆ ∈ F1
2k |∆ = E(λ) for someλ ∈ Ωn,0

k };
let V2k be the space of variationally closed source forms in F1

2k,

V2k = {∆ ∈ F1
2k | δV∆ = 0 };

and let

Qk = {∆ ∈ F1
Pk,2k

|wk(∆) ≤ k }.

Then

Ek = V2k ∩Qk.

Proof: If ∆ ∈ Ek, then ∆ is certainly variationally closed and, by Lemma 4.22,
wk(∆) ≤ k. Conversely, if ∆ ∈ V2k ∩Qk then Theorem 4.29 may be invoked ( with
j = k, k replaced by 2k and l = k) to conclude that ∆ ∈ Ek.
Example 4.31. It again seems appropriate to illustrate the algorithm described in
the proof of Theorem 4.29 for constructing minimal order Lagrangians. Consider
the source form on E = R2 ×R→ R2 given by

∆ = (2uyyuxxxy−4uxyuxxyy+2uxxuxyyy+uxxxuyyy−uxxyuxyy) θ∧dx∧dy. (4.93)

It is not difficult to check that ∆ satisfies the Helmholtz conditions. The coefficient
of ∆ belongs to P0,4 and the weights are

w0(∆) = 6, w1(∆) = 4, w2(∆) = 2, and w3(∆) = 1.

In this example l = 2 and, according to the theorem, there is a Lagrangian λ with
coefficients in P0,2 and weights w0(λ) = 6 and w1(λ) = 3.
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To find this minimal weight Lagrangian, we start with the Lagrangian furnished
by the homotopy H1,viz.,

λ0 =
1
3
u(2uyyuxxxy − 4uxyuxxyy + 2uxxuxyyy + uxxxuyyy − uxxyuxyy) dx ∧ dy.

The weights of this Lagrangian are the same as those of ∆ and therefore the first
step in our algorithm is to reduce w3 to zero. In accordance with (4.92), we split λ

into the sum

λ0 = α0 + β0

where

α0 =
1
3
u(2uyyuxxxy − 4uxyuxxyy + 2uxxuxyyy) dx ∧ dy.

The form
γ0 =

1
3
v(2vyyuxxxy − 4vxyuxxyy + 2vxxuxyyy) dx ∧ dy

is variationally trivial. The weights are wq(γ0) = 4− q for q = 0, 1, . . . 4. A minimal
weight one form σ0 for which dHσ0 = γ0 is

σ0 =
2
3
(vvxyuxxy − vvyyuxxx) dx+

2
3
(vvxxuyyy − vvxyuxyy) dy.

Let τ0 be the form obtained from σ0 by setting v = u,vx = ux, vxx = uxx, . . . .
Then

dHτ0−2
3
(uxuxxuyyy + uxxxuyyy − uxuxyuxyy − uuxxyuxyy) dx ∧ dy

−2
3
(−uyuxyuxxy − uuxyyuxxy + uyuyyuxxx + uuyyyuxxx) dx ∧ dy = α0

and hence λ0 is equivalent to the Lagrangian

λ1 = [
2
3
(uyuxyuxxy − uyuyyuxxx − uxuxxuyyy + uxuxyuxyy)

− u(uxxxuyyy − uxxyuxyy)] dx ∧ dy.

The weights of this Lagrangian are

w0(λ1) = 6, w1(λ1) = 4, w2(λ) = 2.
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We repeat this process to reduce w2. For the next step we find that

α1 = −u(uxxxuyyy − uxxyuxyy) dx ∧ dy,

γ1 = −v(uxxxuyyy − uxxyuxyy) dx ∧ dy, and

σ1 = −v(uxxuxyy) dx− v(uxxuyyy)dy,

which yields the equivalent Lagrangian

λ2 =
1
3
(−3uyuxxuxyy + 2uyuxyuxxy − 2uyuyyuxxx

+ uxuxxuyyy + 2uxuxyuxyy) dx ∧ dy.

The weight w2 has been reduce by 1 to 1. One more iteration will be needed to
reduce the weight w2 to zero.

This time α2 = λ2,

γ2 =
1
3
(−3vyuxxuxyy + 2vyuxyuxxy − 2vyuyyuxxx

+ vxuxxuyyy + 2vxuxyuxyy) dx ∧ dy,

σ2 =
1
3
(vyuxxuxy − vxuxxuyy − 3

2
vxu

2
xy) dx

+
1
3
(−2vyuxxuyy + 3

2
vyu

2
xy − vxuxyuyy) dy

and the resulting minimal order Lagrangian is

λ3 = uxy(uxxuyy − u2
xy) dx ∧ dy. (4.94)

Corollary 4.32. Let ψ ∈ G and let Ψ be its prolongation to J∞(E). Suppose,
in addition to the hypotheses of Theorem 4.29, that ∆ is a relative Ψ invariant with

character χ. Then there is a minimal weight, relative Ψ invariant Lagrangian λ for

∆.

Proof: All the forms introduced in the proof of Theorem 4.29 are relative Ψ in-
variants.

Example 4.33. As an alternative to the algorithm described in the proof of The-
orem 4.29, we now use Corollary 4.32 to find a minimal weight Lagrangian for the
source form (4.93). This corollary asserts that there is a Lagrangian λ ∈ Ω2,0

P0,2
with
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weights w0(λ) = 6 and w1(λ) = 3. Since ∆ is homogenous in u of degree 3, we can
assume that λ is also homogenous of degree 3. Therefore λ is a sum of terms of the
type

uaub1u
c
2

where a ≥ 0, b ≥ 0 and c ≥ 0 and

a+ b+ c = 3, b+ 2c ≤ 6 and c ≤ 3.

Since ∆ is translationally invariant in the x and y directions, the coefficients of
these terms are constants. Under the transformation x → εx and y → εy, ∆ is a
relative invariant with character χ = ε−4. For the same to be true of λ, we must
have

b+ 2c = 6.

These equalities and inequalities force a = 0, b = 0 and c = 3. The two form λ is
therefore a constant linear combination of the terms

uxx · {mu2
xx, u2

xy, u2
yy, uxxuxy, uxxuyy, uxyuyy }

uxy · { u2
xx, u2

xy, u2
yy, uxxuxy, uxxuyy, uxyuyy }

uyy · { u2
xx, u2

xy, u2
yy, uxxuxy, uxxuyy, uxyuyy }.

Finally we observe that ∆ is a relative invariant under the transformation x →
ε1x and y → ε2y with character χ = ε−2

1 ε−2
2 . This reduces the form of the trial

Lagrangian to
λ = (auxxuxyuyy + bu3

xy) dx ∧ dy.

From the equation E(λ) = ∆, it follows that a = 1 and b = −1. This agrees with
the Lagrangian (4.94) obtained by our previous method.

Example 4.34. The source form for the Monge-Ampere equation is

∆ = (uxxuyy − u2
xy) dx ∧ dy.

The weights of this form are w0 = 4, w1 = 2 and w2 = 0. Arguments similar to
those of the previous example lead to the minimal weight Lagrangian

λ = −1
6
(u2

xuyy − 2uxuyuxy + u2
yuxx) dx ∧ dy.
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Example 4.35. We return to the minimal surface equation whose source form is
(4.41). Here the coefficient of ∆ belongs to P1,2 and the first weight is w1(∆) = 1.
The corollary implies that there is a first order Lagrangian

λ = L(x, y, u, ux, uy) dx ∧ dy

for ∆. Since ∆ is translationally invariant in the x and y directions, we can assume
that L is independent of x and y. Since ∆ is rotationally invariant in the x–y plane,
we can assume that

L = L(u, ρ), where ρ = u2
x + u2

y. (4.95)

The equation ∆ = E(λ) leads to a system of four equations involving

∂L

∂u
,

∂L

∂ρ
,

∂2L

∂u∂ρ
,

∂L

∂2ρ

whose solution is
∂L

∂u
= 0 and

∂L

∂ρ
= − 1√

1 + ρ
.

The point to be made by this example is that our general theory insures, a priori,
that this overdetermined system is consistent and that a Lagrangian of the form
(4.95) can be found. Of course, these latter two equations integrate to give the
usual Lagrangian for the minimal surface equation.

Example 4.36. In this example M = R3 and the fiber is the space of metrics
g = (gij) on M . We consider the Cotton tensor

C = εihkgjl∇kRhl dgij ∧ dx1 ∧ dx2 ∧ dx3,

where Rhl are the components of the Ricci tensor of gij and ∇k denotes partial
covariant differentiation with respect to xk. The Cotton tensor vanishes if and
only if the metric g is conformally flat. (Recall that the Weyl tensor vanishes
identically when n = 3.) The Cotton tensor was first derived from a variational
principle by Chern and Simons [16 ] . At about the same time Horndeski [35 ],
apparently unaware of the Chern-Simons paper, explicitly verified that C satisfied
the Helmholtz conditions but he was unable to explicitly find a Lagrangian for
C. The techniques afforded by Corollary 4.27 enable us to explicitly construct a
Lagrangian, in fact a special form of the Chern-Simons Lagrangian, without too
much difficulty.
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Since the curvature tensor is linear in the second derivatives of the metric and
quadratic in the first derivatives, the coefficients of the Cotton tensor belong to P0,3

The weights of C are

w0(C) = 3, w1(C) = 2, w2(C) = 1.

In addition, C is a natural Riemannian tensor and, as such, is invariant under the
change of variables

yh = ahi x
i + xh0 and ghk = bihb

j
kgij ,

where (a) ∈ GL(3) and (b) = (a)−1. Observe that this is a subgroup H of G.
Our theory implies that there is anH invariant Lagrangian λ ∈ Ω3,0

P0,2
with weights

w0(λ) = 3 and w1(λ) = 1

whose Euler-Lagrange form is C. The most general Lagrangian with these weights
is

λ =
[
Aabcd,ijhgab,cdgij,h + Aabcdgab,cd +Babc,ijh,rstgab,cgij,hgrs,t

+Babc,ijhgab,cgij,h +Bab,cgab,c +B
]
dx1 ∧ dx2 ∧ dx3,

where the various coefficients A··· and B··· are functions of the metric alone. The
GL(3) invariance of C implies that these coefficients are natural Riemannian tensors
densities. Using Weyl’s classification theorem, we have that each one of these tensors
is a constant coefficient, linear combination of tensor densities formed from the
permutation symbol εrst and the inverse of the metric grs. We immediately conclude
that the tensors with an even number of indices, viz., Aabcd, Babc,ijh and B, are
zero. Moreover, because Bab,c must be a multiple of εabc, this term also vanishes.

At this point it becomes convenient to replace the first derivatives of the metric
by a combination of the Christoffel symbols, viz.,

gij,h = gpjΓ
p
ih + gipΓ

p
jh

and the second derivatives of the metric by a combination of derivatives of the
Christoffel symbols and terms quadratic in the Christoffel symbols. Accordingly,
we can rewrite λ in the form

λ =
[
Aabc,ij

d h Γd
ab,cΓ

h
ij +Bab,ij,rs

c h t Γc
abΓ

h
ijΓ

t
rs

]
dx1 ∧ dx2 ∧ dx3. (4.96)
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We can now proceed in one of two ways. It is possible to directly compute the
Euler-Lagrange form of λ, where the coefficients A and B as taken to be unknown
functions of the metric gij . By matching the coefficients of the various derivatives
of the connection in the equation C = E(λ), one can determine the A and B. If
one adopts this approach, it is helpful to observe that Aabc,ij

d h can be taken to be
skew-symmetric under the interchange of the indices (a, b, d) with (i, j, h) since the
symmetric part can be recast as a divergence plus a term cubic in the connection.

Alternatively, we can use Weyl’s theorem to explicitly describe the the most
general form of the coefficients A and B in terms of arbitrary constants. We then
determine these constants from the equation C = E(λ). However, of the many
possibilities for A the form of coefficient for the second derivatives of the connection
in C suggests that we try an A which is a sum of tensors of the form

εxxx δxy δxy ,

where the upper indices x are chosen from the set { i, j, a, b, c } and the lower indices
y are chosen from { d, h }. Because the Christoffel symbols which are contracted
against A······ are symmetric in the indices ab and ij, the only possibilities for the first
term of λ of this form are

Aabc,ij
d h Γd

ab,cΓ
h
ij =

[
a1ε

aciδbdδ
j
h + a2ε

aciδbhδ
j
d

]
Γd
ab,cΓ

h
ij

= aεaciΓb
ab,cΓ

j
ij + bεaciΓj

ah,cΓ
h
ij ,

where a and b are constants. Since

Γb
ab =

∂

∂xa
(log

√
g)

the coefficient of a vanishes. Likewise, we try a Bab,ij,rs
c h t which is a sum of terms of

the form
εxxx δxy δxy δxy .

A calculation of moderate length shows that the only possible nonzero second term
in (4.96) is

cεairΓj
abΓ

s
ijΓ

a
rs,

where c is a constant.
Thus, the final form of our trial Lagrangian is

λ =
[
bεaciΓj

ah,cΓ
h
ij + cεairΓj

abΓ
s
ijΓ

a
rs

]
dx1 ∧ dx2 ∧ dx3.
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By repeatedly using the formula

dV Γ
k
ij = gkl[∇jθil +∇iθjl −∇lθij ],

where θij = dV gij we can compute E(λ) and conclude that E(λ) = C for

b =
1
2

and c =
1
3
.

Example 4.37. Let M = Rn and let E be the bundle of metrics over M . Consider
the Einstein tensor

G =
√
g(Rij − 1

2
gij) dgij ∧ ν.

Since G is homogeneous of degree
n

2
− 1, the homotopy formula (4.33) leads to the

standard Lagrangian
λ0 = −√gR ν.

On the one hand this is a natural Lagrangian — it is invariant under all orienta-
tion preserving diffeomorphisms of M . On the other hand, λ0 is a second order
Lagrangian and is therefore not a minimal weight Lagrangian. The minimal weight
Lagrangian is the first order Lagrangian

λ1 =
√
g[gjhΓi

hkΓ
k
ij − gijΓh

ijΓ
k
hk] ν,

which, however, is not natural. Thus, a minimal order Lagrangian may not be a
Lagrangian with the largest possible symmetry group. Indeed, the remarks following
Lemma 4.26 suggest that Corollaries 4.27 and 4.32 are sharp in the sense that the
group G is the “largest” group for which one is assured the existence of invariant
minimal weight Lagrangians.

It is simple matter to extend these minimal weight results to forms in Ωr,s, where
s ≥ 1. Given a type (r, s) form ω, we interior evaluate with vertical vector fields

Yi = Y α
i

∂

∂uα
, i = 1, 2, . . . , s in order to pull ω down to the horizontal r form

ω̃ = prYs prYs−1 · · ·prY1 ω

If r < n and ω is dH closed, then ω̃ is dH closed. If r = n and I(ω) = 0, then by
Lemma 3.2 E(ω̃) = 0. We treat ω̃ not as a form on J∞(E) but rather as a form on
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J∞(E ×TV (E)s) — in other words we treat the components Y α
i as new dependent

variables. The pth weight of ω is defined to be the pth weight of ω̃, where we now
include in our derivative count the derivatives of the Y α

i . For instance, the weights
of the type (2, 1) form

ω = uxuxxx θ ∧ θxx ∧ dx

are
w0(ω) = 6, w1(ω) = 3, w2(ω) = 1.

The existence of minimal weight forms now follows from our basic result, Theorem
4.23.

C. The Jacobian Subcomplex. Let E
π→ M be an arbitrary fibered manifold.

All of our considerations thus far have been based upon the variational bicomplex
(Ω∗,∗(J∞(E)), dH, dV ) over the infinite jet bundle of E. In this section we introduce
a subcomplex (J ∗,∗

k , dH , dV ) which is defined over the finite dimensional jet bundle
Jk+1(E) in the sense that

J r,s
k ⊂ Ωr+s(Jr+1(E)). (4.97)

To begin, we define the subring of forms Ω∗
k,

Ω∗
k ⊂ Ω∗(Jk+1(E)) ⊂ Ω∗(J∞(E)),

by

Ω∗
k = { the dV closure of Ω∗(Jk(E)) }.

This ring is generated by the functions f ∈ C∞(Jk(E)), the horizontal differentials
dxi, and the contact forms θαI of order |I| ≤ k. Let

Ωr,s
k = Ωr,s(J∞(E)) ∩Ω∗

k.

Evidently, the double complex (Ω∗,∗
k ) is dV closed but it is not dH closed — for

f ∈ Ω0,0
k = C∞(Jk(E)), dHf ∈ C∞(Jk+1(E)) and dHθαI = −θαIj ∧ dxj , i.e.,

dHΩ∗,∗
k ⊂ Ω∗,∗

k+1.

Suppose, however, that we further restrict our attention to forms in Ωr,s
k for the

which the kth order derivatives uαi1i2...ik and the kth order contact forms θαj1j2...jk

occur only through expressions of the form

J = dHuα1
I1
∧ dHuα2

I2
· · · ∧ dHu

αp

Ip
∧ dHθβ1

J1
∧ dHθβ2

J2
· · · ∧ dHθ

βq

Jq
, (4.98)
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where |Il| = |Jl| = k−1 and p+q ≤ r. The sub-bicomplex consisting of these forms
is now both dH and dV closed. If we write the horizontal form J as

J =
1

(p+ q)!
Ji1i2...ipj1j2...jq

dxi1 ∧ dxi2 · · ·dxip ∧ dxj1 ∧ dxj2 · · ·dxjq

then the coefficient J··· is the (p+ q) dimensional total derivative Jacobian

Ji1i2...ipj1j2...jq
=

D(uα1
I1

, uα2
I2

, . . . , uαp

Ip
, θβ1

J1
, θβ2

J2
, . . . , θβq

Jq
)

D(xi1 , xi2 . . . , xip , xj1 , xj2 , . . .xjq)

of the quantities uα1
I1
, . . . , θβq

Jq
with respect to the variables xi1 , . . . , xjq . For this

reason, we call the subspace of all such type (r, s) forms the space of kth order
Jacobian forms J r,s

k .
Let E : R3 ×R2 → R3 with coordinates (x, y, z, u, v) → (x, y, z). Examples of

Jacobian forms include

ω1 = dHu = ux dx+ uy dy + uz dz ∈ J 1,0
1 ,

ω2 = dHvxx = vxxx dx+ vxxy dy + vxxz dz ∈ J 1,0
3 ,

ω3 = dHux ∧ dHuy

=
∣∣∣∣uxx uxy
uxy uyy

∣∣∣∣ dx ∧ dy +
∣∣∣∣uxy uxz
uyx uyz

∣∣∣∣ dy ∧ dz +
∣∣∣∣uxx uxz
uyx uyz

∣∣∣∣ dx ∧ dz,

and
ω4 = dHux ∧ dHvx ∧ dz + dHux ∧ dHvy ∧ vz

=
{∣∣∣∣uxx uxy

vxx vxy

∣∣∣∣ +
∣∣∣∣∣∣
uxx uxy uxz
vxy vyy vyz
vxz vyz vzz

∣∣∣∣∣∣
}
dx ∧ dy ∧ dz.

Here ω3 and ω4 belong to J 2,0
2 and J 3,0

2 respectively. We emphasize that the first
term in ω3, viz., ∣∣∣∣uxx uxy

uxy uyy

∣∣∣∣ dx ∧ dy

is not a Jacobian form on J∞(E) in its own right but it would be if the base space
were R2. The vertical derivative of any of these forms is also a Jacobian form. For
example,

ω5 = ω2 ∧ dV ω2 ∧ dz

=
∣∣∣∣ vxxy vxxz

θvxxy θvxxz

∣∣∣∣ dx ∧ dy ∧ dz
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belongs to J 3,1
3 . We also remark that if ω ∈ J r,s

k and f is a C∞ function on
Jk−1(E), then fω ∈ J r,s

k .
We can describe the Jacobian subcomplex (J ∗,∗

k , dH , dV ) intrinsically as follows.
Recall that πr,s : Ωr+s(J∞(E))→ Ωr,s(J∞(E)) is the projection map. Note that if
ω ∈ Ωr(Jk(E)), then πr,0(ω) ∈ Ωr,0

k+1.

Lemma 4.38. Let

Ω̃∗
k = { the dV closure of π∗,0[Ω∗(Jk−1(E))] }

as a C∞(Jk−1(E)) module. Then the space of kth order, type (r, s) Jacobian forms
is

J r,s
k = Ωr,s ∩ Ω̃∗

k. (4.99)

Proof: Observe that Ω∗(Jk−1(E)) is generated by functions f ∈ C∞(Jk−1(E),
and by the forms dxi and duαI , |I| ≤ k−1. Hence π∗,0[Ω∗(Jk−1(E))] is generated by
the functions f ∈ C∞(Jk−1(E)) and by the forms dxi and dHuαI = uαIjdx

j , where
|I| = k − 1. The dV closure of π∗,0[Ω∗(Jk−1(E))] is generated by the functions
f ∈ C∞(Jk−1(E)), and by the forms dxi, θαJ for |J | ≤ k − 1, and dHuαI and dHθαI
for |I| = k − 1. This proves (4.99).

Since πr,0 ◦ d = dH acting on horizontal forms, it follows that π∗,0[Ω∗(Jk−1(E))]
is dH closed and therefore Ω̃∗

k is both dH and dV closed. Thus (J r,s
k , dH , dV ) is

indeed a sub-bicomplex of the variational bicomplex on J∞(E).
The property of being dH closed provides another intrinsic characterization of

the space of Jacobian forms.

Theorem 4.39. For r < n, J r,s
k consists of those froms whose order is not in-

creased by dH , i.e.,
J r,s
k = {ω ∈ Ωr,s

k | dHω ∈ Ωr+1,s
k }.

Outline of Proof: We first establish the theorem for horizontal forms. Let

ω = AI [x, u(k)] dxI

be a type (r, 0) form of order k. If dHω = 0, then the dual tensor

B =
1
|I|! [ε

IJAI ]
∂

∂xI
(4.100)

is a skew-symmetric rank p = n− r tensor which is divergence-free, i.e.,

DjB
jj2j3...jp = 0. (4.101)
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Note that (4.100) can be inverted to give

ω =
1
|J |! [εIJB

J ] dxI . (4.102)

Since B is of order k, we may equate the coefficients of the (k+1)st order derivatives
in (4.101) to zero. This yields

∂(i1i2...ik
α Bik+1)j2...jp = 0. (4.103)

The theorem follows from a careful analysis of this symmetry condition. Specifi-
cally, we first prove that B is a polynomial of degree m ≤ n− p = r. Accordingly,
we may write

BJ =
r∑

l=0
|Ih|=k

BJI1
α1

I2
α2

···
···
Il
αl
uα1
I1

uα2
I2

. . .uαl

Il
, (4.104)

where the coefficients B···
··· are functions of order k − 1. We then show, again on

account of (4.103), that there are (k− 1) order functions Q···
··· such that B···

··· can be
expressed in the form

Bj1...jpI1
α1

···
···
Il
αl

= sym I1 · · · sym Il ε
j1...jpi1...ilk1...ktQk1...kt

I′1
α1

···
···
I′l
αl , (4.105)

where t = r − l and Ih = ihI
′
h. When (4.104) and (4.105) are substituted into

(4.102), it is found that

ω =
r∑

l=0
|I′h|=k−1

Qk1...kt

I′1
α1

···
···
I′l
αl dHuα1

I′1
∧ · · · ∧ dHuαl

I′
l
∧ dxk1 ∧ · · · ∧ dxkp .

This proves that ω ∈ J r,0
k .

To prove the theorem for type (r, s) forms, s ≥ 1, let ω ∈ Ωr,s
k and suppose

dHω = 0. Then for arbitrary vertical vector fields Y1, Y2, . . . ,Ys, the form

ω̃ = prYs prYs−1 · · · prY1 ω

is a dH closed horizontal form which is of order k in both the derivatives of uα and
in the derivatives of the the components Y α

i of Yi. By what we have just proved,
this kth order dependence must occur via the Jacobians

J̃ = J1 ∧ J2,

where
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J1 = dHuα1
I1
∧ dHuα2

I2
· · · ∧ dHu

αp

Ip
,

and

J2 = dH(Yh1)
β1
J1
∧ dH(Yh2)

β2
J2
· · · ∧ dH(Yhq

)βq

Jq
,

and where the length of each multi-index |Il| = |Jl| = k − 1. This shows that the
kth order derivatives uαI and the kth order contact forms θαI present in ω must occur
via the Jacobians (4.98) and proves the theorem for s ≥ 1. Actually, to make this
last statement more precise, observe that ω̃ is alternating in the variables Y1, Y2,
. . . , Ys so that the Jacobian J2 must occur in ω̃ as a term in the alternating sum

J̃2 =
∑
σ∈Sq

dH(Yhσ(1))
β1
J1
∧ dH(Yhσ(2))

β2
J2
∧ · · · ∧ dH(Yhσ(q))

βq

Jq

= ±prYh1 prYh2 · · · prYhq
{dHθβ1

J1
∧ dHθβ2

J2
∧ . . .dHθ

βq

Jq
}.

To prove that (4.103) implies (4.104) and (4.105) some results from multi-linear
algebra are needed. Let V = Rn and let Sq(V ) be the vector space of symmetric,
rank q tensors on V . If X ∈ V , we let X be the q-tuple X = (X,X, . . . , X). By
polarization, the values of a tensor T ∈ Sq(V ) are uniquely determined by the values
of T (X ) for all X ∈ V . More generally, if

T ∈ SQ(V ) = Sq1(V )⊗ Sq2(V )⊗ · · · ⊗ Sqm(V )

and, for Xj in V , we let X j be the qj -tuple X j = (Xj, Xj, . . . , Xj), then the values
of T are uniquely determined by the values of

T (X 1;X 2; . . . ;Xm).

Here, and in the sequel, we use a semicolon to separate the arguments belonging to
the different factors of SQ(V ).

Definition 4.40. A tensor T ∈ SQ(V ) is said to have symmetry property A if

T (X 1;X 2; . . . ;Xm) = 0 (4.106)

whenever the vectors X1, X2, . . . Xm are linearly dependent.

The next lemma will be used to prove that l-fold derivatives of B with respect to
the variables uαI , |I| = k have property A.
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Lemma 4.41. Suppose that q1 = 1 and that

T (X1;X 2; . . . ;Xm) = 0 (4.107)

whenever X1 = X i for each i = 2, 3, . . . , m. Then T has property A.
Proof: In order to establish (4.106), we consider two cases.

Case 1. X1 is a linear combination of {X2, X3, . . . , Xm }.
Case 2. For some j ≥ 2, Xj is a linear combination of

{X1, . . . , Xj−1, Xj+1, . . . , Xm }.

Equation (4.106) follows immediately from (4.107) in Case 1. If X1 =
m∑
j=2

cjX
j

then, owing to the linearity of T in its first argument,

T (X1;X 2; . . . ;Xm) =
l∑

j=2

cjT (Xj ;X 2; . . . ;Xm) = 0.

For Case 2, let us suppose, merely for the sake of notational simplicity, that j = 2.
Then, again using the multi-linearity of T , we find that

T (X1;X 2; . . . ;Xm) =
∑
Y

cYT (X
1;Y ;X 3; . . . ;Xm),

where the cY are constants and the sum ranges over all q2-tuples

Y = (Y 1, Y 2, . . . , Y q2) where each Y k ∈ {X1, X3, . . . , Xm }.
To complete the proof of the lemma we must prove that

T (X1;Y ;X 3; . . . ;Xm) = 0. (4.108)

Let Yk be the q2-tuple obtained from Y by replacing Y k by X1. The symmetry
condition (4.107) implies that

T (X1;Y ;X 3; . . . ;X l) +
q2∑
k=1

T (Y k;Yk;X 3; . . . ;Xm) = 0. (4.109)

If Y k = X1, then obviously

T (Y k;Yk;X 3; . . . ;Xm) = T (X1;Y ;X 2; . . . ;Xm),

while if Y k = X i, i = 3, . . . , m, then because of property A,
T (Y k;Yk;X 3; . . . ;Xm) = T (X i;Yk;X 3; . . . ;Xm) = 0.

In short, (4.109) reduces to a multiple of (4.108) and the lemma is established.
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Proof of (4.104): Given the horizontal form ω define a tensor

(∂lB) ∈ S1 ⊗ · · · ⊗ S1︸ ︷︷ ︸
p copies

⊗Sk ⊗ . . .Sk︸ ︷︷ ︸
l copies

the components of which are the lth order derivatives of B with respect to uαI ,
|I| = k, at any point fixed in J∞(E). For example, with l = 2,

(∂2B)(X1;X2; . . . ;Xp;X p+1;X p+2)

= X1
j1
X2

j2
· · ·Xp

jp
Xp+1

i1
· · ·Xp+1

ik
Xp+2

h1
· · ·Xp+2

hk
(∂i1...ikα ∂h1...hk

β Bj1j2...jp).

Let X1, X2, . . . , Xp+l ∈ V and consider the value

b = (∂lB)(X1;X2; . . .Xp;X p+1; . . . ;X p+l).

Because (∂lB) is skew-symmetric in its first p arguments, b = 0 if X1 = Xj , for
j = 2, . . . , p. Moreover, the symmetry condition (4.103) implies that b = 0 if
X1 = Xj, j = p + 1, . . . , p + l. Thus ∂lB satisfies the hypothesis of Lemma 4.41
and hence ∂lB has property A. Since the vectors X1, X2, . . . , Xp+l are always
linearly dependent if p+ l = n− r+ l > n, this proves that ∂lB vanishes identically
if l > r. This establishes (4.104).

To prove (4.105), we need the structure theorem for tensors with property A.
To this end, it is convenient to temporarily adopt a slightly different viewpoint.
Let Mm,n be the ring of real m × n matrices and let R[X ] be the polynomial
ring in the m × n matrix of indeterminants X = (xij). Denote the rows of X

by X i = (xi1, xi2, . . . , xin). Then for each tensor T ∈ SQ(V ), we can construct a
polynomial T̂ ∈ R[X ] by setting

T̂ (xij) = T (X 1;X 2; . . . ;Xm).

Note that T̂ is homogenous in the variables X i of degree qi.
Now let Ir be the ideal in R[X ] generated by all the r × r minors of X and let

Vr be the variety in Mm,n which vanishes on Ir, i.e.,

Vr = {A ∈Mm,n |P (A) = 0 for all P ∈ Ir}.

Theorem 4.42. If Q ∈ R[X ] and Q(A) = 0 for all A ∈ Vr, then Q ∈ Ir.

De Concini, Eisenbud and Procesi [20 ] prove this theorem using the Straightening
Theorem for Young tableaus. Another proof, based the Cappelli identity from
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classical invariant theory, can be found in Anderson [3 ]. Actually we need a version
of this theorem which accounts for dependencies on parameters — if Qt ∈ R[X ]
depends smoothly on a parameter t and Qt(A) = 0 for all t and all A ∈ Vr, then

Qt(X) =
∑
k

Mk(X)P k
t (X)

where each Mk ∈ Ir and each P k
t ∈ R[X ] depends smoothly on t. However, owing

to the constructive nature of the above proofs, this is immediate.

Proof of (4.105): It is now easy to complete the derivation of (4.105). If T ∈ SQ

has property A, then the polynomial

T̂ (X) = T (X 1;X 2; . . . ;Xm)

vanishes whenever rank(X) < m. Theorem 4.42 implies that T̂ ∈ Im. Since the
m×m minors of X can be expressed in the form

Mk1...kt(X) = εk1...ktj1...jmX1
j1 . . .X

m
jm

, (4.110)

this shows that T can be expressed in the form

T (X 1;X 2; . . . ;Xm) = Mk1...kt(X1, X2, . . . , Xm)Qk1...kt
(X 1;X 2; . . . ;Xm). (4.111)

Here each Q... ∈ Sq1−1 ⊗ Sq2−1 ⊗ Sqm−1. With T = ∂lB, (4.111) becomes (4.105),
as required.

Corollary 4.43. Let E
π→ M be the trivial Rm bundle over Rn. For each

k = 1, 2, . . . , the Jacobian bicomplex (J ∗,∗
k , dH , dV ) is exact.

Proof: Let ω ∈ J r,s
k . Then ω is a polynomial in the uαI , θαI , where |I| = k, of

degree ≤ r, i.e., the highest weights of ω are wk−1(ω) ≤ r and wk(ω) = 0. By
the minimal weight results of the previous section, there is form η ∈ Ωr−1,s

k such
that dHη = ω. Since the order of η is the same as that of dHη, we can infer from
Theorem 4.39 that η ∈ J r−1,s

k . This proves the exactness of the rows.
Let ω ∈ J r,s

k . Since prR θαIjdx
j = uαIjdx

j, it is apparent that hr,sV (ω) ∈ J r,s−1
k .

This observation suffices to prove the exactness of each column. Alternatively,
for r < n, it suffices to recall that dH anti-commutes with hV and to note that
hr,sV : Ωr,s

k → Ωr,s−1
k so that

dHhr,sV (ω) = −hr+1,s
V (dHω) ∈ Ωr+1,s−1

k .

Owing to Theorem 4.39, this shows that hr,sV (ω) ∈ J r,s−1
k .
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Corollary 4.44. Let E
π→M be the trivial Rm bundle over Rn. If ω ∈ Ωn,s

k and

E(ω) = 0 if s = 0 or I(ω) = 0 if s ≥ 1, then ω ∈ J n,s
k and ω = dHη for η ∈ J r−1,s

k .

Proof: Since ω is of order k, our minimal order results show that ω = dHη, where
η is also of order k. This implies that η ∈ J n−1,s

k and so ω ∈ J n,s
k .

Corollary 4.45. For r < n, let ω ∈ Ωr,s
l and suppose that dHω ∈ Ωr+1,s

k , where

k ≤ l. Then there are forms ω̃ ∈ J r,s
k and η ∈ J r−1,s

l such that

ω = ω̃ + dHη. (4.112)

Proof: Let ρ = dHω ∈ Ωr+1,s
k . Then ρ is closed in the appropriate sense, i.e.,

dHρ = 0 if r ≤ n− 2, or I(ρ) = 0 if r = n− 1 and s ≥ 1, or E(ρ) = 0 if r = n− 1
and s = 0. In any case, we can conclude that there is a form ω̃ ∈ J r,s

k such that
dH ω̃ = ρ, or

dH(ω − ω̃) = 0.

Since ω − ω̃ ∈ Ωr,s
l , there must be a form η ∈ J r−1,s

l such that (4.112) holds.

Example 4.46. Local Exactness of the Gauss-Bonnet Lagrangian.

Let E be the trivial bundle R2 ×R3 → R2 with coordinates (x, y, R)→ (x, y),
where R = (u, v, w) is the position vector in R3. We restrict our attention to the
open set R ⊂ J∞(E) defined by

R = { (x, y, R,Rx, Ry, . . . ) |Rx ×Ry �= 0 }.
Sections of E are the graphs of regular parametrized surfaces in R3. In this example
we do not restrict to the bicomplex on R of forms which are parameter invariant,
i.e., invariant under diffeomorphism of the base R2.

Let
E = 〈Rx, Rx〉, F = 〈Rx, Ry〉, G = 〈Ry, Ry〉

be the components of the first fundamental form. Let D =
√
EG− F 2 and let

K be the Gaussian curvature. The Gauss-Bonnet integrand is the second order
Lagrangian λ ∈ Ω2,0(R), where λ = Ldx ∧ dy and L = KD. Struik [64 ](p. 112)
gives the following explicit formula for L:

L =
1
D3
·

{∣∣∣∣∣∣∣
〈Rxx, Ryy〉 〈Rxx, Rx〉 〈Rxx, Ry〉
〈Rx, Ryy〉 E F

〈Ry, Ryy〉 F G

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
〈Rxy, Rxy〉 〈Rxy, Rx〉 〈Rxy, Ry〉
〈Rxy, Rx〉 E F

〈Rxy, Ry〉 F G

∣∣∣∣∣∣∣
}
.
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This enables us to rewrite λ in the form

λ =
1
D
〈dHRx ∧ dHRy〉

+
1
D3

[−E〈Ry, dHRx〉 ∧ 〈Ry, dHRy〉+ F 〈Rx, dHRx〉 ∧ 〈Ry, dHRy〉
+ F 〈Ry, dHRx〉 ∧ 〈Rx, dHRy〉 −G〈Rx, dHRx〉 ∧ 〈Rx, dHRy〉

]
The Lagrangian λ is variational trivial. To find a one form η ∈ Ω1,0(R) such that

λ = dHη (4.113)

we first observe that λ has the following properties:

(i) λ ∈ Ω2,0
P1,2

and w1(λ) = 2;

(ii) λ ∈ J 2,0
2 ;

(iii) λ is invariant under the group SO(3) acting on the fiber; and
(iv) λ is invariant under the group of translations in the base.

By our minimal weight results of §4B, we can assume that η ∈ Ω1,0
P1,2

, that w1(η) = 1,
and that η is both SO(3) and translational invariant. By property (ii) and Theorem
4.39, we know that η ∈ J 1,0

2 and that the second derivative dependencies of η must
occur via the degree 1 Jacobians dHRx and dHRy. Thus η is of the form

η =a 〈Rx, dHRx〉+ b 〈Ry, dHRx〉+ e 〈N, dHRx〉
c 〈Rx, dHRy〉+ d 〈Ry, dHRy〉+ f 〈N, dHRy〉+ η0,

where N is the unit normal vector, where the coefficients a, b, . . . , f are, a priori,
SO(3) invariant functions of R, Rx and Ry, and where η0 is a first order one form.
From the form of λ, it seems reasonable to suppose that e = f = 0 and that
the coefficients a, . . . , d are independent of R. This implies that these coefficients
can now be considered to be functions of E, F , and G. With the R dependence
eliminated from a, . . . , d, there is no way that the first order form η0 can contribute
to the solution of the equation (4.113) and therefore we assume that η0 = 0.

We now compute dHη and match coefficients in (4.113) to arrive at the following
system of equations:

c− b =
1
D

, −2 ∂a

∂G
+ 2

∂d

∂E
=

F

D3
, 2

∂c

∂G
=

∂d

∂F
,

∂a

∂F
− 2

∂c

∂E
=

G

D3
,

∂b

∂G
− ∂c

∂F
=

E

D3
, 2

∂b

∂E
=

∂a

∂F
.



Local Properties 173

This system has many solutions, one of which is

a =
F

ED
, b = − 1

D
, c = 0, d = 0.

This gives

η =
〈RxRy〉〈Rx, dHRx〉 − 〈Rx, Rx〉〈Ry, dHRx〉

〈Rx, Rx〉D .

For this choice of η, Struik [64 ](p. 114) attributes the formula dHη = KDdx ∧ dy

to Liouville.

In analogy with Corollary 4.45, let us now consider Lagrangians λ ∈ Ωn,0
l whose

Euler-Lagrange form ∆ = E(λ) ∈ F1
k , where k ≤ 2l. Since the Lagrangian λ̃ =

H1(∆) is of order k and E(λ̃) = ∆, we can conclude that

λ = λ̃+ dHη,

where η ∈ J n−1,0
l . The problem now becomes that of characterizing the functional

dependencies of Lagrangians of order k whose Euler-Lagrange forms are also of order
k. In view of the Volterra-Vainberg homotopy operator H1, this is tantamount to
the problem of classifying the functional dependencies of source forms of order k

which satisfy the Helmholtz conditions. This is the problem to which we now turn.
Suppose that ∆ ∈ F1

k is a source form of order k ≥ 1 and that δV∆ = 0.
Since dV ω ∈ Ωn,2

k , the condition I(dV∆) = 0 implies that dV∆ ∈ J n,2
k and hence

∆ ∈ J n,1
k . Therefore, if ∆ is a locally variational source form of order k, then it

must be a polynomial in the kth order derivatives of degree ≤ n. This, however, is no
means a full characterization of the functional dependence of a locally variational
source form. Considerably more structure is imposed by the Helmholtz equations.

To begin to uncover this structure, let ∆ = Pα[x, u(k)] θα ∧ ν be a locally varia-
tional source form of order k. By differentiating the Helmholtz equation

∂j2j3...jk

β Pα = (−1)k[∂j2j3...jk
α Pβ − kDj∂

jj2j3...jk
α Pβ

]
(4.114)

with respect to uγi1i2...ik+1
we deduce that

∂(i1i2...ik
γ ∂

ik+1)j2j3...jk

β Pα = 0. (4.115)

Although this symmetry condition appears to be the same as (4.103), it is in fact
a much stronger condition because, in this instance, (4.115) is symmetric in the
indices j2j3 · · · jk.



174 The Variational Bicomplex

Definition 4.47. Let T ∈ Sq1 ⊗ Sq2 · · · ⊗ Sqm . The tensor T has symmetry

property B if for each qi-tuple Y = (Y 1, Y 2, . . . , Y qi), i = 1, 2, . . . , m

T (X 1; . . .X i−1;Y ;X i+1; . . . ;Xm) = 0 if some Y j = X i, j �= i.

Equation (4.115) implies that ∂mP enjoys property B. To analyze this symmetry
property, it is convenient to assume that the factors of the tensor product SQ are
ordered according to length, i.e., q1 ≤ q2 ≤ · · · ≤ qm.

Lemma 4.48. If T ∈ SQ has property B, then T vanishes whenever any qj + 1 of
its first q1 + q2 · · ·+ qj arguments coincide.

Proof: Suppose a vector X occurs qj + 1 times amongst the first q1 + q2 · · ·+ qj
arguments of T , say

t = T (X,X, . . . ;X,X, . . . ; . . . ;X, . . . ; . . . )

By repeated using the symmetry property B, t can be expressed as a sum of terms,
where all the X arguments have been gathered together into a single factor Sql ,
l ≤ j with at least one additional X amongst the arguments of X , i.e.,

t =
∑

T (. . . ;X, . . . ;X,X, . . . , X︸ ︷︷ ︸
lth factor

; . . . ).

By property B, this vanishes.
For example, if T ∈ S2 ⊗ S4 ⊗ S4, then

T (X,W ;X,X,U, V ;X,X, Y, Z)

= −1
3
[
T (X,W ;X, Y, U, V ;X,X,X, Z) + T (X,W ;X,Z, U, V ;X,X,X, Y )

]
=

1
6
T (X,W ;Z, Y, U, V ;X,X,X,X) = 0.

Let A = (ai) ∈ V . Define

(∇j
AT )(X 1;X 2; . . . ;Xm) = ai

∂

∂Xj
i

[T (X 1;X 2; . . . ;Xm)]

= qjT (X 1; . . . ;X j−1;Y ;X j+1; . . . ;Xm),

where Y = (Xj, Xj, . . . , Xj, A).
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Lemma 4.49. Suppose T ∈ SQ has property B. Fix p ≤ q1 − 1 and let A1, A2,

. . . , Ap ∈ V . Then

(∇j1
A1
∇j2

A2
. . .∇jp

Ap
T )(X 1;X 2; . . . ;Xm) = 0, (4.116)

whenever {X1, X2, . . . , Xm } are linearly dependent.
Proof: The left-hand side of (4.116) is a sum of terms of the form

T (X1, X1, . .︸ ︷︷ ︸
r1

. . ;X2, X2, . .︸ ︷︷ ︸
r2

. . ; . . . ;X l, X l, . .︸ ︷︷ ︸
rl

. . ; . . . ;Xm, Xm, . .︸ ︷︷ ︸
rm

. .), (4.117)

where each ri ≥ 1. and
∑

ri =
∑

qi − p.
Now suppose that X l is a linear combination of the forms X1, . . . , X l−1, X l+1,

. . . , Xm. Then (4.117) becomes a sum of terms of the form

T (X1, X1, . .︸ ︷︷ ︸
r1

. . ;X2, X2, . .︸ ︷︷ ︸
r2

. . ; . . . ;

lth factor︷ ︸︸ ︷
X1, X1, . . ,︸ ︷︷ ︸

s1

X2, X2, . .︸ ︷︷ ︸
s2

. . . , Xm, Xm, . .︸ ︷︷ ︸
sm

; . . . ; Xm, Xm, . .︸ ︷︷ ︸
rm

. .),

(4.118)

where sl = 0 and
m∑
j=1

sj = rl. I claim that for some j �= l,

sj + rj > qj . (4.119)

Suppose the contrary. Then for all j �= l, sj + rj ≤ qj and therefore

p =
m∑
j=1

(qj − rj) = ql − rl +
m∑
j=1
j �=l

(qj − rj) ≥ ql − rl +
m∑
j=1

sl

= ql − rl + rl = ql ≥ q1.

This contradicts the hypothesis that p ≤ q1 − 1 and proves (4.119). Lemma 4.48
now shows that the expression in (4.118) is zero.

We revert once again to the algebraic viewpoint introduced earlier. Let Ipr be the
pth power of the the ideal Ir in R[X ] — each polynomial P ∈ Ipr is a finite sum

P =
∑
k

MkQk,
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where each Qk ∈ R[X ] and each Mk is a p-fold product of r×r minors. If P ∈ R[X ],
let Df denote the matrix of partial derivatives of P with respect to the variables
xij . The pth symbolic power of Ir is

I(p)
r = {P ∈ R[X ] |P , DP , . . . , Dp−1P ∈ Ir }.

Theorem 4.50. If r = m, then the pth power and the pth symbolic power of the
ideal Ir coincide,

Ipr = I(p)
r .

The proof of this theorem can also be found in [20 ] or [3 ].
We use this theorem to complete the analysis of symmetry property B as follows.

Let T ∈ SQ be a tensor with property B and let

T̂ (xij) = T (X 1;X 2; . . . ;Xm).

Lemma 4.49 shows that T̂ ∈ I
(q1)
m and thus, on account of Theorem 4.50, T̂ ∈ Iq1m .

This implies that

T (X 1;X 2; . . . ;Xm) =
∑

MK1MK2 · · ·MKq1QK1K2...Kq1
(X 1;X 2; . . . ;Xm),

(4.120)
where each MKi is an r × r minor of X , as defined by (4.110). Since

∂mP ∈ Sk ⊗ Sk · · · ⊗ Sk (m factors)

has property B, ∂mP must be of the form (4.120) with q1 = k. To convert this
result into a statement describing the functional dependences of ∆ on its kth order
derivatives, it is helpful to introduce Olver’s [53 ] notion of hyperjacobians.

Definition 4.51. A hyperjacobian Jq(u1, u2, . . . , up) of degree p and order q is a
multi-linear, alternating sum of the qth order derivatives of the p functions u1, u2,
. . . ,up. Specifically, fix multi-indices K1, K2, . . . , Kq of length |Ki| = n− p. Then
the hyperjacobians of degree p and order q are

JK1K2...Kq
q (u1, u2, . . . , up) =

εIK1εJK2 · · · εTKq u1
i1j1...t1

u2
i2j2...t2

· · ·upipjp...tp
,

(4.121)

where I = i1i2 . . . ip, J = j1j2 . . . jp, . . . , T = t1t2 . . . tp are a set of q multi-indices
of length p.

For example, when q = 1,

JK
1 (u1, u2, . . . , up) = εKi1i2...ipu1

i1
u2
i2
. . .upip
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is just the ordinary Jacobian of u1, u2, . . . up with respect to the p variables
{ xi | i /∈ K}. For p = n = 2,

J1(u, v) = uxvy − uyvx,

J2(u, v) = uxxvyy − 2uxyvxy + uyyvxx,

J3(u, v) = uxxxvyyy − 3uxxyvxyy + 3uxyyvxyy − uyyyvxxx,

and so on. If p = n and u1 = u2 = · · · = up = u, then Jq(u, u, . . . , u) is the
generalized determinant of the rank q symmetric form ∂qu.

We combine (4.120) and (4.121) to arrive the following characterization of the
kth order derivative dependencies of a locally variational source form of order k.

Proposition 4.52. Let ∆ be a locally variational source form of order k. Then
the components of ∆ are linear combinations over C∞(Jk−1(E)) of the kth order
hyperjacobians of the dependent variables uα of degree 0,1, . . . ,n.

Example 4.53. Let Jn(uk, uk . . . , uk) be the kth, k even, order hyperjacobian of
degree n. For instance, with n = 2 and k = 4 we have

J2(u4, u4) = εi1i2εj1j2εh1h2εk1k2ui1j1h1k1ui2j2h2k2

= 2(uxxxxuyyyy − 4uxxxyuxyyy + 3u2
xxyy). (4.122)

Since Dj∂
jj2j3...jkJn = 0, it follows that the source form

∆ = Jn θ ∧ ν, (4.123)

which depends exclusively on kth order derivatives, satisfies the Helmholtz condi-
tions. Since ∆ is homogenous of degree n, the Lagrangian λ = H1(∆) is given by
(4.33), viz

λ =
1

n+ 1
uJn(uk, uk, . . . , uk) ν

The equation E(λ) = ∆ is equivalent to

Jn =
1
n
DI(u∂IJn), |I| = k

which makes explicit the fact (Olver [52 ], [53 ]) that Jn is a k-fold divergence.

Since the proof of Proposition 4.52 depends only on the highest derivative terms
of the single Helmholtz equation (4.114), it should not be too surprising to find
that this proposition fails in general to give a sharp description of the possible
functional dependencies of a locally variational source form. In this regard, we have
the following conjecture.
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Conjecture 4.54. Let ∆ ∈ F1
k be a locally variational source form of order

k = 2l if k is even, or k = 2l−1 if k is odd. Then ∆ ∈ F1
Pl,k

, i.e., ∆ is a polynomial

in derivatives of order > l, and the weights of ∆ are bounded by

wp(∆) ≤ (k − p)n for p = l, l + 1, . . . , k − 1. (4.124)

The source form (4.123) shows that the bounds (4.124) are sharp. It is undoubt-
edly true that terms in ∆ of weight wp > k − p must occur via hyperjacobians of
some type but I have been unable to even formulate a good conjecture along these
lines.

Although many authors have, in recent years, rederived the Helmholtz equations
it is disappointing to find that none have attempted to uncover the general structure
of locally variational differential equations. Historically, this has not always been the
case. Before the introduction of the Volterra-Vainberg formula, the local sufficiency
of the Helmholtz conditions was established though a detailed analysis of these
equations. This approach is still a valuable one and should not be dismissed for
its inefficiencies. For example, in the case of second order ordinary differential
equations, the direct analysis of the Helmholz equations enables one to correctly
guess the possible global obstructions to the solution of the inverse problem. As the
final example of this chapter will show, the detailed structure of locally variational
source forms is needed to solve an equivariant version of the inverse problem where
the Volterra-Vainberg formula fails to furnish us with a Lagrangian with the sought
after symmetries.

The next three examples establish special cases of the above conjecture.

Example 4.55. Structure of locally variational, ordinary differential equations.

In the case of ODE, that is, when E : R × Rm → R, the above conjecture
completely characterizes the functional dependencies of locally variational source
forms. Let

∆ = Pα(x, uβ, u̇β, . . . ,
(k)
u α) θβ ∧ dx

be a locally variational source form of order k. We know that there is a Lagrangian
λ = L[x, u(k)] of order k for ∆. Since Eα(L) = Pα is only of order k, we must have
that

E
(2k)
β (Eα(L)) =

∂2L

∂
(k)
u α∂

(k)
u β

= 0

and so
L = Aα

(k)
u α + L̃,

where Aα and L̃ are of order k − 1. From the equation

E2k−1
β (Eα(L)) =

∂2L

∂
(h)
u α∂

(k)
u β

− ∂2L

∂
(h)
u β∂

(k)
u α

= 0,
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where h = k − 1, we can deduce that

Aα =
∂f

∂
(h)
u α

for some function f of order k − 1. Since

df

dx
=

∂f

∂
(h)
u α

(k)
u α + { terms of order k − 1},

this shows that the original Lagrangian L is equivalent to a Lagrangian of order
k − 1.

We can repeat this argument to further reduce the order of the Lagrangian for
∆. If k = 2l or k = 2l− 1, this reduction stops when the order of the Lagrangian is
l; moreover, if k = 2l−1, then the Lagrangian is linear in the derivatives of order l.
When taken in conjecture with Lemma 4.22, this proves the following proposition.

Proposition 4.56. Let E : R ×Rm → R and suppose that ∆ is a source form
for a system of kth order ordinary differential equations on E. Let k = 2l, or 2l− 1
according to whether k is even or odd. Then ∆ is a polynomial in derivatives of
order > l with weights

wp(∆) ≤ k − p, j = l, l + 1, . . . , k − 1.

In particular, ∆ is linear in derivatives of order k, i.e.,

Pα = Aαβ
(k)
u α + P̃α[x, u(k−1)],

where the coefficients Aαβ are functions of order k − l.

Now consider the case of scalar partial differential equations.

Example 4.57. Structure of locally variational, second order scalar equations.

For second order scalar equations, Proposition 4.52 completely characterizes the
functional form of locally variational source forms. Indeed, if B(u, ui) is any smooth
function on J1(E) and Jn = Jn(u2, u2, . . .u2) is the second order hyperjacobian of
degree n (in this case Jn is, apart from a numerical factor, the Hessian detuij),
then it is not difficult to verify that

P (u, ui, uij) = [(n+ 1)B + (ui∂iB)]Jn + (∂uB)uiuj∂ijJn

satisfies the Helmholtz equations

∂rP = Ds∂
rsP.
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With B =
∫ 1

0
tnA(u, tui) dt, P becomes

P = AJn + (∂uB)uiuj∂ijJn.

This proves that the coefficient A = A(u, ui) of the highest weight term J2 can be
arbitrarily specified. No further constraints on the possible functional dependencies
of the the coefficients of ∆ are imposed by the Helmholtz conditions.

We know that there are no third order scalar equation solutions to the Helmholtz
equations so that following example describes the next simplest, non-trivial case to
consider.

Example 4.58. Structure of locally variational, fourth order scalar equations in
two independent variables.

Let E : R2 ×R→ R2. Let

∆ = P (xi, u, ui, uijuijh, uijhk) θ ∧ dx ∧ dy

be a locally variational source form. Our starting point is Proposition 4.52 which,
in this case, asserts that

P = AJ +Bijhkuijhk + C,

where J = 1
2J4(u4, u4) is the 4th order hyperjacobian of degree two given by (4.122)

and where A, B···, and C are third order functions. The problem to be addressed
here is the extent to which the coefficient A of the highest weight term J is arbitrary.

The derivative of P with respect to uI , |I| = q will be denoted by ∂qP ∈ Sq, for
example

(∂3∂4P )(X,X,X ;Y, Y, Y, Y ) = Xi1Xi2Xi3Yj1Yj2Yj3Yj4∂
i1i2i3∂j1j2j3j4P.

The tensor ∂4∂4P = ∂4∂4J ∈ S4 ⊗ S4 is given by

(∂4∂4P ) = A det 4(X, Y ). (4.125)

This tensor has symmetry property B. If R ∈ Sq, then its total divergence belongs
to Sq−1 and shall be denoted by

R(X, . . . , X,∇) = Xi1Xi2 . . .Xiq−1(DjR
i1i2...ip−1j).

With these notational conventions the first Helmholtz condition on ∆ can be ex-
pressed as

(∂3P )(X,X,X) = 2(∂4P )(∇, X,X,X). (4.126)
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We shall make use of the higher Euler operators

E(p)(Z,Z, . . . , Z) = Zi1Zi2 · · ·ZipE
i1i1...ip ,

defined by (2.15) and the commutation rule (2.18), viz., if R ∈ Sq, then

Ep(Z,Z, . . .Z)T (∇, X, . . . , X) = Ep−1(Z,Z, . . . )T (Z,X, . . .X). (4.127)

We first show that A is of second order. We apply apply E4(Y, Y, Y, Y ) to (4.126),
use the commutation rule (4.127) and the symmetry property B to deduce that

(∂3∂4P )(XXX ;Y Y Y Y )

= 2[(∂3∂4P )(Y Y Y ;Y XXX) + (∂4∂4P )(XXX∇;Y Y Y Y )].
(4.128)

Here, and in what follows, it is convenient to suppress the commas that separate
the arguments within a single factor for a tensor T ∈ Sq1 ⊗ Sq2 ⊗ · · · . By replacing
one of the vectors X in (4.128) by the vector Y , we find that

(∂3∂4P )(XXY ;Y Y Y Y ) = 2(∂3∂4P )(Y Y Y ;Y Y XX).

This, in turn, leads to
(∂3∂4P )(XY Y ;Y Y Y Y ) = 0. (4.129)

Since
(∂3∂4∂4P )(XXX ;Y Y Y Y ;ZZZZ) = (∂3A)(XXX) det 4(Y, Z)

we can conclude that

(∂3∂4∂4T )(XY Y ;Y Y Y Y ;ZZZZ) = (∂3A)(XY Y ) det 4(Y, Z) = 0

which proves that
∂3A = 0. (4.130)

Next we show that B··· is at most quadratic in the third order derivatives. By
virtue of Theorem 4.50, equation (4.129) implies that there exists a tensor E ∈
S1 ⊗ S2 for which

(∂3∂4P )(XXX ;Y Y Y Y ) = E(X ;Y Y ) det 2(X, Y ).

From the integrability condition

(∂3∂3∂4P )(XXX ;ZZZ;Y Y Y Y ) = (∂3∂3∂4P )(ZZZ;XXX ;Y Y Y Y )
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we can prove that there is a symmetric tensor F ∈ S2 for which

(∂3∂3∂4P )(XXX ;ZZZ;Y Y Y Y ) = F (XZ) det 2(X, Y ) det 2(Z, Y ). (4.131)

The application of E3(ZZZ) to (4.128) gives rise to

(∂3∂3∂4P )(XXX ;ZZZ;Y Y Y Y )

= 2[(∂3∂3∂4P )(Y Y Y ;ZZZ;XXXY ) + (∂2∂4∂4P )(ZZ;ZXXX ;Y Y Y Y Y )]

Into this equation we substitute from (4.125) and (4.131) to conclude that

F = 2∂2A. (4.132)

Since A is of second order, the same must be true of F and hence

∂3∂3∂3∂4P = 0.

By applying the third Euler operator three times to (4.126), we can also prove that
C is at most quartic in third order derivatives.

At this point we have verified the foregoing conjecture in the case of fourth order
scalar equations; ∆ is polynomial in the third and fourth derivatives of u with
weights w2 ≤ 4 and w3 ≤ 2.

Proposition 4.59. Let ∆ = P [x, u(4)] θ ∧ dx ∧ dy be a locally variational source
form in two independent and one dependent variables. Then

P = AJ +Bijhkuijhk + C, (4.133)

where J = 1
2J4(u4, u4). The coefficient A is a function of order 2; the coefficients

B··· are polynomials of degree two in the third derivatives of u and C is a polynomial
of degree at most four in the third derivatives of u.

To complete this example, we must exhibit a Lagrangian whose Euler-Lagrange
expression has AJ as its leading term. This would show that the coefficient A in
(4.133) is arbitrary and not subject to any further constraints. I have not been able
to find such a Lagrangian. However, if we suppose that A is a function of uxx alone,
then the Lagrangian

L = u[(uxxxxuyyyy − 4uxxxyuxyyy + 3u2
xxyy)A +

(u2
xyyuxxxx − 4uxyyuxxyuxxxy + (2uxyyuxxx + 4u2

xxy)uxxyy

− 4uxxxuxxyuxyyy + u2
xxxuyyyy)A

′

+ (u2
xxxu

2
xyy − 2uxxxuxyyu2

xxy + u4
xxy)A

′′].

does have the property that AJ is the leading term of E(L). This at least shows
that A need not be a polynomial in the second derivatives of u.
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Example 4.60. The inverse problem to the calculus of variations for natural
differential equations in the plane.

Let
λ = L(κ, κ̇, κ̈, . . . ) ds (4.134)

be a natural Lagrangian for curves in the (x, y) plane with curvature κ. In Section
2C, we computed the Euler-Lagrange form for λ to be

E(λ) = [Ëκ(L) + κ2Eκ(L) + κH(L)] Θ2 ∧ ds, (4.135)

where the contact form Θ2 is defined by

Θ2 = −v̇θu + u̇θv. (4.136)

In this example, we solve the inverse problem for natural differential equations for
plane curves. Specifically, the problem now at hand is to determine when a natural
source form

∆ = P (κ, κ̇, . . . , κ(p))Θ2 ∧ ds (4.137)

is the Euler-Lagrange form obtained from a natural Lagrangian (4.134) through
the variation of the curve in the (x, y) plane with curvature κ. The Helmholtz
conditions (3.16), as they now stand, are in expressed in terms of the original
variables (t, x, y, x′, y′, . . . ) and accordingly are of little use. The first step in the
solution to this inverse problem is then to re-derive these conditions in terms of the
Lie-Euler operators ( or partial derivatives) with respect to the variables (κ, κ̇, . . . ).
We shall then use our structure theorem for locally variational ODE to integrate the
Helmholtz equations and thereby determine the obstructions to the construction of
natural Lagrangians.

Since δV (∆) = I(dV∆) the first step in the determination of the Helmholtz
conditions is the evaluation of dV ∆. By repeating the calculations presented in
Section 2D, it is not difficult to show that

dV∆ = Θ2 ∧ [Ëκ(P Θ2) + κ2Eκ(P Θ2) +H(P Θ2)] ∧ ds+ dHη.

Here Eκ(P Θ2) and H(P Θ2) are the Euler-Lagrange expression and Hamiltonian
for the contact form P Θ2 as formally defined in the usual fashion but with the
understanding that

∂

∂κ(p)
(P Θ2) =

∂P

∂κ(p)
Θ2.

For example, if P = κ̈ then

Eκ(κ̈Θ2) = Θ̈2 and H(κ̈Θ2) = −κ̇ Θ̇2

and
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dV∆ = Θ2 ∧ [
(iv)

Θ 2 + κ2Θ̈2 − κκ̇ Θ̇2] ∧ ds. (4.138)

The next step is to expand the operators Eκ(P Θ2) and H(P Θ2) so as to express
dV∆ in the form

dV∆ = Θ2∧[Q(p+2) D(p+2)Θ2+Q(p+1) D(p+1)Θ2+· · ·+Q2 Θ̈2+Q1 Θ̇2] ds, (4.139)

where the coefficients Qi = Qi(P ) are various total differential combinations of the
Lie-Euler operators E

(j)
κ (P ). Explicit formulas for the Qi(P ) can be obtained by

using the product rule (Proposition 2.8) for the Euler-Lagrange operator to expand
Eκ(P Θ2) and by the using the identity

d

ds
H(P Θ2) = −κ̇Eκ(P Θ2)− P Θ2

to determine the expansion of H(P Θ2). Given the coefficients Q(i)(P ), the Helm-
holtz conditions can be explicitly obtained by applying the interior Euler operator

I =
p+2∑
j=0

Θ2 ∧ [
dj

dsj
(∂
∂

(j)

Θ2

)
]

to (4.139) and setting the result to zero. As in the derivation of (3.12), this leads
to the system of equations

(−1)kQ(k)(P ) =
p+2−k∑
j=0

(−1)j(j+k
j

)dj
dsj

[Q(j+k)(P )].

As we observed in Proposition 3.12, there is considerable redundancy in this system.
For example, if P = κ̈, then (4.138) shows that

Q(4) = 1, Q(3) = 0, Q(2) = κ2, and Q(1) = −κκ̇.

The first Helmholtz condition
Q(3) = 2Q̇(4)

holds, but the second one
Q(1) = Q̇(2) − ...

Q
(4)

does not and hence the source form

∆ = κ̈Θ2 ∧ ds

is not locally variational.
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Proposition 4.61. Let ∆ = P [κ] Θ2 ∧ ds be a natural, locally variational source
form for plane curves with curvature κ. Let ∆0 = Θ2 ∧ ds. Then there is a natural
Lagrangian λ = L[κ] ds and a constant a such that

∆ = E(λ) + a∆0. (4.140)

The decomposition (4.140) is unique in that there is no natural Lagrangian whose
Euler-Lagrange form is ∆0.

Proof: Let us assume that ∆ is of order p in the derivatives of κ. Since

Q(p+2)(P ) =
∂P

∂κ(p)
,

the first Helmholtz condition

(−1)pQ(p+2) = Q(p+2)

is an identity if p is even and implies that P is of order p − 1 if p is odd. Thus,
without loss of generality, we can assume that p = 2q is even.

Since ∆ is locally variational, we know that there is a Lagrangian

λ0 = L0(x, u, v, u′, v′, . . . ) ds,

defined at least locally in the neighborhood of each point [t, x, y], for which

E(λ0) = [Eu θu +Ev θ
v] ∧ ds = ∆

In view of (4.136), this implies that

Eu = −v̇P and Ev = u̇P. (4.141)

Now we use the structure theorem, Proposition 4.56, for locally variational ODE.
Since P is of order 2q in the derivatives of κ, the components Eu and Ev are of
order 2q + 2 in the derivatives of u and v. They are necessarily linear in these top
derivatives, i.e.,

Eu = au(2q+2) + bv(2q+2) + { lower order terms }
Ev = bu(2q+2) + cv(2q+2) + { lower order terms }

(4.142)

and, moreover, the coefficients a, b and c are of order at most q + 1. A comparison
of (4.141) with (4.142) shows that P must have the form

P = Mκ(2q) + { lower order terms }
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where, and this is the crucial point, M is of order at most q − 1 in the derivatives
of κ.

Now consider the Lagrangian

λ1 = L1(κ, κ̇, . . . , κ(l−1)) ds,

where the Lagrange function L1 is any solution to the equation

∂2L

∂κ(l−1)∂κ(l−1)
= M(κ, κ̇, . . . , κ(l−1)).

From (4.135) it follows that

E(λ1) = [Mκ(2q) + { lower order terms }] Θ2 ∧ ds

and therefore
∆ = E(λ1) + ∆1,

where ∆1 is of order no more that 2q− 1. In fact, because ∆1 is locally variational,
its order is no more that 2q − 2.

An easy induction argument now proves that

∆ = E(λ) +N(κ)Θ2 ∧ ds, (4.143)

where λ is a natural Lagrangian and N is of order zero. For the source form
∆̃ = N Θ2 ∧ ds, one computes that

dV ∆̃ = Θ2 ∧ [
d2

ds2
(N ′ Θ2) + κN ′ Θ2 + κN Θ2] ∧ ds

so that Q(2)(N) = N ′ and Q(1)(N) = 2
d

ds
N ′. The Helmholtz equation Q(1) = Q̇(2)

implies that
d

ds
N ′ = 0

and therefore
N = bκ+ a,

where a and b are constants. Since the source form bκΘ2∧ds is the Euler-Lagrange
form for the natural Lagrangian b ds, (4.143) can be re-expressed as (4.140).

The same arguments used in the proof of Proposition 4.13 can be repeated here
to prove that ∆0 is not the Euler- Lagrange form of a natural Lagrangian.
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Consider the source form ∆ whose source equation is the natural equation for
circles of a fixed radius, viz.,

∆ = (κ− a)Θ2 ∧ ds.

This source form is locally variational and, in fact, is the Euler-Lagrange form for
the Lagrangian

λ = [1− a

2
(−xẏ + yẋ)] ds.

However, according to Proposition 4.61, ∆ is not the Euler-Lagrange form of a
natural Lagrangian.



Chapter Five

GLOBAL PROPERTIES OF THE VARIATIONAL BICOMPLEX

In this chapter we explore some of the global aspects of the variational bicomplex
on the infinite jet bundle J∞(E) of the fibered manifold π : E → M . We begin in
section A by proving that the interior rows of the augmented variational bicomplex

0 −−→ Ω0,s(J∞(E))
dH−−→Ω1,s(J∞(E))

dH−−→ Ω2,s(J∞(E))
dH−−→ · · ·

dH−−→ Ωn,s(J∞(E))
I−−→ Fs(J∞(E)) −−→ 0,

(5.1)

with s ≥ 1, are globally exact. This is a fundamental property of the variational
bicomplex and is an essential part of our variational calculus. We use this result to
prove the global direct sum decomposition

Ωn,s(J∞(E)) = Bn,s(J∞(E))⊕ Fs(J∞(E)),

for s ≥ 1, where Bn,s(J∞(E)) = dH [Ωn−1,s(J∞(E))] and Fs(J∞(E)) is the sub-
space of type (n, s) functional forms. This decomposition leads immediately to the
global first variational formula — for any Lagrangian λ ∈ Ωn,0(J∞(E)), there is a
type (n − 1, 1) form η such that

dV λ = E(λ) + dHη.

The exactness of (5.1) also implies, by standard homological algebra arguments,
that the cohomology of the Euler-Lagrange complex E∗(J∞(E)):

0 −−→ R −−→Ω0,0(J∞(E))
dH−−→ Ω1,0(J∞(E))

dH−−→ Ω2,0(J∞(E)) · · ·
dH−−→ Ωn,0(J∞(E))

E−−→ F1(J∞(E))
δV−→ F2(J∞(E))

δV−→ · · ·
(5.2)

is isomorphic to the de Rham cohomology of J∞(E), i.e.,

H∗(E∗(J∞(E))) ∼= H∗(Ω∗(J∞(E))). (5.3)

November 13, 1989
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We actually show that the projection map

Ψp : Ωp(J∞(E)) → Ep(J∞(E))

defined by

Ψp(ω) =

{
πp,0(ω), for p ≤ n, and

I ◦ πn,s(ω), if p = n+ s and s ≥ 1.

is a cochain map which induces this isomorphism. Numerous examples illustrate
this result. Let E : Rn×F → Rn and G be the group of translations on Rn. As an
application of the isomorphism (5.3), we compute the cohomology of the G invariant
Euler-Lagrange complex E∗

G(J
∞(E))). This generalizes the work of Tulczyjew [71 ].

In section B we analyze the vertical cohomology H∗,∗
V (Ω∗,∗(J∞(E)), dV ) of the

variational bicomplex. We first prove, as a consequence of the homotopy invariance
of the vertical cohomology, that

Hr,s
V (Ω∗,∗(J∞(E))) = 0 if s > m,

where dimE = m + n and dimM = n. To proceed further, we suppose that
π : E → M is a fiber bundle with m dimensional fiber F . We also suppose that
there are p forms on E, for p = 1, 2, . . . , m, which form a basis for the pth de Rham
cohomology of each fiber of E. Because these forms need not themselves be closed
on E, this assumption holds for a variety of bundles of practical interest. We prove
that

Hr,s
V (Ω∗,∗(J∞(E))) ∼= Ωr(M) ⊗ Hs(F ).

Thus, under the above hypothesis, the vertical cohomology of the variational bi-
complex agrees with the E1 term of the Serre spectral sequence for the bundle
E.

The material in section C is motivated, in part, by the observation that for first
order, single integral Lagrangians

λ = L(x, uα, u̇α) dx

the well-known Poincaré-Cartan form

ΦP.C.(λ) = λ+
∂L

∂u̇α
θα = (L − ∂L

uα
) dx+

∂L

∂u̇α
duα

induces an isomorphism H1(E∗(J∞(E))) → H1(Ω∗(J∞(E))). (In fact, ΦP.C. is the
inverse to Ψ1.) We try to generalize this property of the Poincaré-Cartan form to
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more general Lagrangians as well as to other terms in the Euler-Lagrange complex
by finding maps

Φp : Ep(J∞(E)) → Ωp(J∞(E))

which will induce the isomorphism (5.3). We are specifically interested in maps Φp

which, like the Poincaré-Cartan map ΦP.C., are natural (or universal) differential
operators but we are forced to conclude, albeit tentatively, that such maps exist in
general only when the base space is 1 dimensional. Our basic variational calculus
on J∞(E) is enhanced by these maps when dimM = 1. This conclusion also un-
derscores, once again, the deep differences between the geometric analysis of single
and multiple integral variational problems and of ordinary and partial differential
equations.

Let ∇ be a symmetric, linear connection on the base manifold M of the fibered
manifold π : E → M . In section D we use such a connection to construct another
set of homotopy operators hr,s∇ for the augmented horizontal complexes (5.1) for
s ≥ 1. These operators are defined by local formulas on the adapted coordinate
charts of E but in such a fashion that the invariance of these operators under
change of coordinates is manifest. Accordingly, these invariant homotopy operators
have a number of applications. First, since the base manifold M always admits a
symmetric, linear connection ∇, we can always construct these invariant homotopy
operators for any fibered manifold π : E → M . Their invariance under change of
coordinates insures that the hr,s∇ patch together to give global homotopy operators

hr,s∇ : Ωr,s(J∞(E)) → Ωr−1,s(J∞(E)). (5.4)

This immediately furnishes us with another, quite different, proof of the global
exactness of the horizontal complexes (5.1). These operators can also be used to
construct cochain maps

Φ∇ : E∗(J∞(E)) → Ω∗(J∞(E))

from the Euler-Lagrange complex to the de Rham complex on J∞(E) which induce
the isomorphism (5.2). Finally, and perhaps most significantly, the local, invari-
ant character of the homotopy operators hr,s∇ provide us with an effective means
of studying the equivariant cohomology of the variational bicomplex over certain
tensor bundles. As a simple application in this direction, we establish the exactness
(i.e., triviality) of the Taub conservation law in general relativity. Other essential
applications of these operators will be found in the Chapter Six.
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A special case of the invariant homotopy operators (5.4) can be found, at least
implicitly, in Gilkey’s paper [28 ] on smooth invariants of Riemannian metrics. In
the study of divergence-free, natural tensors, Anderson [2 ] explicitly constructed
similar invariant homotopy operators, although only for second order forms. Our
work here also generalizes the work of Ferraris [24 ] Kolar [41 ], and Masqué [49 ]
who use connections in a similar fashion to define global Lepage equivalents and
Poincaré-Cartan forms. Ideas from all these papers, as well as from §3.A, are
needed here to carry out our construction of the invariant homotopy operators hr,s∇ .
Although this construction is rather complicated, the mere fact that these invariant
homotopy operators exist really embodies many of the salient global and equivariant
properties of the variational bicomplex.

A. The Horizontal Cohomology of the Variational Bicomplex. We begin
by proving that the interior horizontal rows of the augmented variational bicomplex
are exact.

Theorem 5.1. Let π : E → M be a fibered manifold. Then, for each s ≥ 1, the
augmented horizontal complex

0 −−→ Ω0,s(J∞(E))
dH−−→Ω1,s(J∞(E))

dH−−→ Ω2,s(J∞(E))
dH−−→ · · ·

dH−−→ Ωn,s(J∞(E))
I−−→ Fs(J∞(E)) −−→ 0

(5.5)

is exact.

Proof: The exactness of (5.5) at Ωr,s(J∞(E)) is established by using a standard
partition of unity argument together with induction on r. For small values of r, say
r = 1 or r = 2, the induction step is simple enough to present directly. This we shall
do. For larger values of r, the induction argument remains basically unchanged but
some additional machinery, as provided by the generalized Mayer-Vietoris sequence,
is needed to complete all the details.

Let U = {Uα }α∈J be a countable open cover of E consisting of adapted coordi-
nate neighborhoods

Uα

�−−−−→ Rn ×Rm

π

� �
U0
α

�−−−−→ Rn.

The index set J is assumed to be ordered. No other assumptions are made here
concerning the nature of the cover U . We do not require that this cover be finite
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nor is it necessary to suppose that U is a good cover in the sense that all non-empty
intersections diffeomorphic to Rn+m . By Proposition 4.2, we are assured that the
augmented horizontal complex (Ω∗,s(J∞(Uα), dH) is exact.

The global exactness of (5.5) at Ω0,s is a trivial consequence of the local exactness
at Ω0,s. Therefore, let us take ω ∈ Ω1,s(J∞(E)) and suppose that that dHω = 0.
Each restriction of ωα = ω |J∞(Uα) of ω is dH closed and hence, by local exactness,

there are forms ηα ∈ Ω0,s(J∞(Uα)) such that

ωα = dHηα. (5.6)

On non-empty double intersections Uαβ = Uα ∩ Uβ , ωα = ωβ and therefore

dH(ηβ − ηα) = 0. (5.7)

The exactness of (5.5) on the infinite jet bundle J∞(Uαβ) at Ω0,s(J∞(Uαβ)) now
implies that ηα = ηβ . This proves that the forms ηα must be the restriction to
Uα of a global form η ∈ Ω0,s(J∞(E)). Equation (5.6) shows that ω = dHη. This
establishes the exactness of (5.5) at Ω1,s(J∞(E)).

To prove the exactness of (5.5) at Ω2,s(J∞(E)), we now assume horizontal ex-
actness of the variational bicomplex at Ω1,s(J∞(E′)), where π′ : E′ → M ′ is any
fibered manifold. Let ω ∈ Ω2,s(J∞(E)) be a dH closed form. Then, as before,
equations (5.6) and (5.7) hold but now the forms ηα ∈ Ω1,s(J∞(Uα)). By assump-
tion, the variational bicomplex over the fibered manifold Uαβ is horizontally exact
at Ω1,s(J∞(Uαβ)) and therefore (5.7) implies that there are type (0, s) forms σαβ
on J∞(Uαβ) such that

ηβ − ηα = dHσαβ. (5.8)

We emphasize that local exactness cannot be used to justify (5.8) since the double
intersections Uαβ will not, in general, be adapted coordinated neighborhoods for
E. We are free to suppose that σβα = −σαβ . The next step is to use the forms
σαβ to modify the ηα in such a way that (i) (5.6) remains valid, and (ii) that these
modified forms agree on double intersections and are therefore the restriction of a
global form.

On non-empty triple intersections Uαβγ = Uα ∩ Uβ ∩ Uγ , (5.8) gives rise to

dH(σβγ − σαγ + σαβ) = 0 (5.9)

and hence, because the forms σβγ − σαγ + σαβ are of type (0, s),

σβγ − σαγ + σαβ = 0. (5.10)
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Let { fγ } be a partition of unity on E subordinate to the cover U . Define new type
(1, s) forms η̃α on J∞(Uα) by

η̃α = dH
[∑
γ∈J

fγ σγα
]
. (5.11)

Then, on account of (5.10), we find that on any double intersection Uα ∩ Uβ ,

η̃α − η̃β = dH
[∑
γ∈J

fγ(σγα − σγβ
]

= −dH
[∑
γ∈J

(fγ)σαβ
]
= −dHσαβ

= ηα − ηβ .

This proves that the type (1, s) forms τα = ηα − η̃α coincide on all double intersec-
tions, i.e., τα = τβ on Uαβ , and are therefore the restriction of a global, type (1, s),
form τ . Since η̃α is a dH exact form on J∞(Uα),

dH(τ |Uα
) = dHηα = ω |Uα

and so ω = dHτ is exact.
To repeat this proof of exactness for (5.5) at Ωr,s(J∞(E)), r > 2, it is necessary

to formalize each of the above individual steps. To begin, denote the non-empty
(p+ 1)-fold intersections of the cover U by

Uα0α1···αp
= Uα0 ∩ Uα1 ∩ · · · ∩ Uαp

.

Let Kp,r,s be the Cartesian product

Kp,r,s =
∏

α0<α1<···<αp

Ωr,s(J∞(Uα0α1···αp
)).

An element ω of Kp,r,s is an ordered tuple of type (r, s) forms ωα0α1···αp
defined on

J∞(Uα0α1···αp
). Let

r : Ωr,s(J∞(E)) →
∏
α∈J

Ωr,s(J∞(Uα)) = K0,r,s

be the restriction map
(r(ω))α = ω |Uα

,
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and let

δ : Kp,r,s → Kp+1,r,s

be the difference map

(δω)α0α1···αp+1 =
p+1∑
i=0

(−1)iω
α0α1··· α̂i ···αp+1

. (5.12)

Clearly, δ ◦ r = 0 and a standard calculation shows that δ2 = 0. The complex

0 −→ Ωr,s(J∞(E))
r−→ K0,r,s

δ−→ K1,r,s
δ−→ K2,r,s

δ−→ · · ·

is called the generalized Mayer-Vietoris sequence of type (r, s) forms on J∞(E) with
respect to the cover U .

It is not difficult to prove that this sequence is exact. Indeed, if ω ∈ K0,r,s

satisfies δω = 0, then the components ωα ∈ Ωr,s(J∞(Uα)) of ω all agree on double
intersections Uα ∩ Uβ and therefore the ωα are the restrictions to Uα of a global
type (r, s) form on J∞(E). Furthermore, the operator

K : Kp,r,s → Kp−1,r,s

defined by

[K(ω)]α0α1···αp−1 =
∑
γ∈J

fγωγα0α1···αp−1 ,

where { fγ } is the partition of unity subordinate to U , is a homotopy operator for
the Mayer-Vietoris sequence, i.e., for any ω ∈ Kp,r,s,

K(δω) + δK(ω) = ω. (5.13)

In terms of the Mayer-Vietoris sequence, the forms η and σ used in the foregoing
proof of exactness of (5.5) at Ω2,s belong to K0,1,s and K1,0,s. Equations (5.8),
(5.10), and (5.11) become δη = dHσ, δσ = 0, and η̃ = dH [K(σ)].

Evidently, the horizontal differential dH maps Kp,r,s to Kp,r+1,s and commutes
with both r and δ. This gives us the double complex
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0 −−→ Ω3,s(J∞(E))

r−−→ K0,3,s −−→
dH

	 dH

	 	
0 −−→ Ω2,s(J∞(E))

r−−→ K0,2,s
δ−−→ K1,2,s −−→

dH

	 dH

	 dH

	 	
0 −−→ Ω1,s(J∞(E))

r−−→ K0,1,s
δ−−→ K1,1,s

δ−−→ K2,1,s −−→
dH

	 dH

	 dH

	 dH

	
0 −−→ Ω0,s(J∞(E))

r−−→ K0,0,s
δ−−→ K1,0,s

δ−−→ K2,0,s −−→	 	 	 	
0 0 0 0 .

We are now prepared to complete the proof of the theorem by induction on r. The
induction hypothesis asserts that the variational bicomplex for any fibered manifold
E′ → M ′ is horizontally exact at Ωp,s(J∞(E′)) for all p ≤ r, where r ≤ n − 1 and
s ≥ 1. This implies, in particular, that the interior rows of the variational bicomplex
on each (p + 1)-fold intersection Uα0α1...αp

are exact up to and including the rth

column. Let ω ∈ Ωr+1,s(J∞(E)) and suppose that dHω = 0 if r+1 < n or I(ω) = 0
if r + 1 = n. We prove that ω is dH exact.

To begin, we use the local horizontal exactness of the variational bicomplex to
deduce that r(ω) ∈ K0,r+1,s is dH exact, i.e.,

r(ω) = dHη0,

where η0 ∈ K0,r,s. Since δ ◦ r = 0 and dH commutes with δ this, in turn, implies
that

dH(δη0) = 0. (5.14)

By the induction hypothesis, dH closed forms in K1,r,s are dH exact and therefore

δη0 = dHη1, (5.15)
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where η1 ∈ K1,r−1,s. This argument can be iterated to obtain a sequence of forms
ηp ∈ Kp,r−p,s, for p = 1, 2, . . . , r − 1 which satisfy

δηp = dHηp+1 for p = 0, 1, . . . , r − 1, and

δηr = 0.
(5.16)

These equations can be represented schematically as

ω
r−−→ "	dH

η0
δ−−→ "	dH

η1
δ−−→ "	dH

η2 · · · .
Now we use the partition of unity { fα } and the homotopy operator K to define

another sequence of forms τp ∈ Kp,r−p,s for p = r, r − 1, . . . , 1, 0 by

τ r = ηr

and
τp = ηp − dH(Kτp+1) for p = r − 1, r − 2, . . . , 0.

On account of (5.13) and (5.16), these forms satisfy

δτp = δηp − dH [δ(Kτp+1)]

= dHηp+1 − dH [τp+1 − K(δτp+1)]

= dHK(δτp+1).

Because δτ r = 0, this shows that the forms τp are all δ closed. In particular, since
τ0 ∈ K0,r,s, τ0 is the restriction of a global type (r − 1, s) form τ on J∞(E). Since

r(dHτ) = dH(r(τ)) = dH(τ0)

= dHη0 = r(ω)

we must have that dHτ = ω on all of J∞(E). Therefore, ω is exact. This proves that
the horizontal complex (5.5) is exact at Ωr,s(J∞(E)) and completes the induction
proof.
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In Chapter Two we introduced the spaces of functional forms Fs(J∞(E)) as
subspaces of Ωn,s(J∞(E)) and proved the local direct sum decomposition

Ωn,s = dHΩn−1,s ⊕ Fs.

Our first corollary to Theorem 5.1 asserts that this decomposition holds globally.
This is a fundamental result.

Corollary 5.2. Let Bn,s(J∞(E)) = dH
[
Ωn−1,s(J∞(E))

]
be the space of dH

exact, type (n, s) forms. For each s ≥ 1, the space of type (n, s) forms on J∞(E)
admits the global, direct sum decomposition

Ωn,s(J∞(E)) = Bn,s(J∞(E))⊕ Fs(J∞(E)).

Proof: If ω ∈ Ωn,s(J∞(E)), then

ω = I(ω) + (1− I)(ω).

By definition, we have I(ω) ∈ Fs(J∞(E)) and, because I2 = I, the type (n, s) form
β = (1 − I)(ω) satisfies I(β) = 0. Theorem 5.1 implies that β = dHσ for some
σ ∈ Ωn−1,s(J∞(E)) and hence

ω = I(ω) + dH(σ).

That this is a direct sum decomposition follows from the fact that I is a projection
operator which satisfies I ◦ dH = 0.

In Chapter Two, we also derived the local, first variational formula for the calculus
of variations, viz. (2.17). We emphasized that this analysis is insufficient to establish
the global validity of this formula because, in general, the type (n − 1, 1) form
σ, defined by the local formula (2.17b), does not transform properly under fiber-
preserving change of variables. The global validity of the first variational formula
follows easily from Theorem 5.1, or more precisely, from Corollary 5.2.

Corollary 5.3. There exists a global first variational formula. Specifically, given

a Lagrangian λ on J∞(E), there is a type (n − 1, 1) form σ on J∞(E) such that

dV λ = E(λ) + dHσ. (5.17)

If dimM = 1, then for a given Lagrangian λ, the type (0, 1) form σ is unique.
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If X is any generalized vector field on E and Xev its associated evolutionary

vector field, then there is a type (n − 1, 0) form η on J∞(E) such that

L�
prXλ = Xev E(λ) + dHη. (5.18)

Proof: Since I(dV λ) = E(λ), the application of the previous corollary to the type
(n, 1) form dV λ yields (5.17). If n = 1, σ is of type (0, 1). If σ̃ also satisfies (5.17),
then dH(σ − σ̃) = 0 and therefore σ = σ̃.

To prove (5.18), we write, in accordance with Proposition 1.20,

prX = prXev + totX (5.19)

and compute
L�

prXλ = πn,0[LprXevλ+ LtotXλ].

Since Xev is an evolutionary vector field we find, using (5.17) and Proposition 1.16,
that

πn,0 [LprXevλ] = πn,0[prXev dV λ]

= πn,0 [prXev E(λ) + prXev dHσ]

= Xev E(λ)− dH [πn−1,0(prXev σ)].

Moreover, since interior evaluation by a total vector field lowers horizontal degree
by one,

πn,0 [LtotXλ] = πn,0[d(totX λ) + totX dV λ]

= dH(totX λ).

Consequently (5.18) holds with

η = −πn−1,0 [prXev σ] + totX λ.

Equation (5.18) furnishes us with a global version of Noether’s Theorem. Note
that in this version the generalized vector field X is a symmetry of the Lagrangian
λ whereas in Theorem 3.13, X is a symmetry of the source form ∆ = E(λ).
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Corollary 5.4. Let λ be a Lagrangian on J∞(E). Then every global, general-

ized symmetry X of λ generates a global conservation law for the Euler-Lagrange

equations E(λ).

Proof: If L�
prXλ = 0, then (5.18) reduces to

−Xev E(λ) = dHη

so that η is the global conservation law with generator −Xev.

Let Λ be an n form on J∞(E). The form Λ is called Lepagean if, for all π∞
E

vertical vector fields Y on J∞(E),

πn,0[Y dΛ] = 0. (5.20)

Given a Lagrangian λ ∈ Ωn,0(J∞(E)), an n form Λ on J∞(E) is called a Lepagean
equivalent if Λ is a Lepagean form and

πn,0Λ = λ. (5.21)

This latter condition implies that for any local section s : U → E,

[j∞(s)]∗Λ = [j∞(s)]∗λ,

and therefore Λ and λ determine the same fundamental integral. For example, if
dimM = 1 and

λ = L(x, uα, u̇α)dx

is a first order Lagrangian, then the Poincaré-Cartan form

Λ = λ+
∂L

∂u̇α
θα

is easily seen to be a Lepagean equivalent to λ. Thus, the notion of Lepagean
equivalents furnishes us with one possible means by which the classical Poincaré-
Cartan form in mechanics can be generalized to arbitrary variational problems.
The theory of Lepage equivalents and their role in the calculus of variations have
been extensively. The review article by Krupka [44 ] describes this work. The
global existence of Lepage equivalents can be established by various means; see, for
example, [34 ], [41 ], [49 ], and [48 ].
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Corollary 5.5. Every Lagrangian λ admits a Lepagean equivalent Λ. If n = 1,
Λ is unique.

Proof: First observe that if Y is a π∞
E vertical vector field on J∞(E) and ω is a

type (r, s) form on J∞(E), then Y ω is of type (r, s − 1). If ω is of type (n, 1)
and Y ω = 0 for all π∞

E vertical vector fields, then ω ∈ F1(J∞(E)).
Every n form Λ on J∞(E) can be written uniquely in the form

Λ = Λ0 + Λ1 +Λ2 + · · · ,

where Λi is of type (n − i, i). The condition (5.21) evidently requires that Λ0 = λ

so that, by the first variational formula (5.17),

dΛ = (dV λ+ dHΛ1) + (dV Λ1 + dHΛ2) + · · ·
= (E(λ) + dH(σ +Λ1)) + ξ2 + ξ3 + · · · , (5.22)

where ξi is of type (n − i, i). Hence, if Y is any π∞
E vertical vector field,

πn,0[Y dΛ] = Y dH(Λ1 + σ)

and thus, by virtue of our earlier remark, Λ is Lepagean if and only if

dH(Λ1 + σ) ∈ F1(J∞(E)).

But by Corollary 5.2 this is possible if and only if

dH(Λ1 + σ) = 0. (5.23)

This proves that the n form
Λ = λ − σ

is a Lepage equivalent for λ. When n = 1, Λ1+σ is of type (0, 1) and (5.23) holds if
and only if Λ1 = −σ. The uniqueness of the Lepage equivalent Λ now follows from
that of σ.

Two further remarks concerning Lepagean equivalents are in order. First, if Λ
is any Lepage equivalent for λ and if Y is any π∞

M vertical vector field, then (5.22)
and (5.23) show that

Y dΛ = Y E(λ) + (Y ξ2) + (Y ξ3) + · · · .
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Thus, a local section s : U → E is a solution to the Euler-Lagrange equations for λ

if and only if
[j∞(s)]∗(Y dΛ) = 0

for all π∞
M vector fields Y . Second, observe that we used the first variational formula

(5.17) to establish the existence of Lepage equivalents. This can easily turned
around — that is, given a Lepage equivalent, one immediately derives the first
variational formula. These two remarks illustrate an important point in Krupka’s
work — that a general, differential geometric treatment of the calculus of variations
can be based entirely on the theory of Lepage equivalents.

Let β be a closed p form on a manifold M and let X be a vector field on M . Since
Lie differentiation commutes with d, LXβ is also closed. Moreover, by Cartan’s
formula,

LXβ = d(X β) +X dβ = d(X β)

it follows that LXβ is exact. Furthermore, LXβ is naturally exact since the p − 1
form α = X β is a natural form (or concomitant) constructed solely from X

and β. The next corollary describes analogous results for forms on the variational
bicomplex.

Corollary 5.6. Let ω ∈ Ωr,s(J∞(E)).
(i) Suppose ω is dV closed. Let X be a vector field on J∞(E) which is π∞

M related

to a vector field X0 on M . Then L�
X ω is dV closed but not, in general, dV exact.

If, however, X is π∞
M vertical, then L�

Xω is naturally exact:

L�
X ω = dV (X ω). (5.24)

(ii) Suppose ω is dH closed. Let X be a generalized vector field on E. Then

L�
prXω is dH exact but not naturally so.

Proof: (i) That L�
Xω is dV closed is simply a restatement of Proposition 3.17. To

show that L�
X need not be dV exact, consider E : R × S1 → R, let ω be the type

(1, 1) form

ω = dx ∧ θ = dx ∧ du, and let X = x
∂

∂x
.

Then the form L�
X ω = ω is dV closed but not dV exact.

To prove (5.24), we simple note that if X is π∞
M vertical, then X ω is of type

(r, s − 1) and hence

L�
Xω = πr,s[dH(X ω) + dV (X ω) +X dHω]

= dV (X ω),
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as required.
(ii) Again Proposition 3.17 shows that L�

prXω is dH closed. In view of (5.19),
it suffices to evaluate L�

prXev
ω and L�

totXω separately. Since totX ω is of type
(r − 1, s), the same calculation as above gives

L�
totXω = πr,s[dH(totX ω) + dV (totX ω) + totX dV ω]

= dH(totX ω).

Now consider the evolutionary vector field Y = Xev. If s ≥ 1, then by Theorem
5.1, ω is dH exact, say ω = dHη, and

L�
prY ω = dH(L�

prY η).

If s = 0, then dV ω is a dH closed form of type (r, 1) and so dV ω = dHη. We now
use Proposition 1.16 to conclude that

L�
prY ω = dV (prY ω) + prY dV ω

= prY dHη = −dH(prY η).

This proves (ii). Observe that in this latter case L�
prY ω is not naturally exact since

prY η is not a natural concomitant of X and ω — the partition of unity used in
the proof of Theorem 5.1 is needed to construct the form η from ω.

In Chapter Four, we introduced a system of invariantly defined weights for forms
in Ωr,s

Pj,k
(J∞(E)). Recall that these are forms in Ωr,s

k (J∞(E)) whose coefficients are
polynomial in the derivatives of the independent variables of order j+1, j+2, . . . , k.
We proved in Theorem 4.23 that if ω ∈ Ωr,s

Pj,k
is dH closed then, locally, ω = dHη

where η is a minimal weight form. We also introduced the Jacobian subcomplex
(J ∗,∗

k , dH , dV ) of the variational bicomplex. Corollary 4.43 asserts that the Jacobian
subcomplex is locally exact. Now if f is any function on E, then the weights of
ω and fω are the same at points where f is non-zero; also if ω ∈ J r,s

k (J∞(E)),
then fω ∈ J r,s

k (J∞(E)). Consequently, the Mayer-Vietoris argument used to prove
Theorem 5.1 can be repeated, without change, to prove the existence of global
minimal weight forms and to prove the global exactness of the interior rows of the
Jacobian subcomplex.

Corollary 5.7. (i) For s ≥ 1, let ω ∈ Ωr,s
Pj,k

(J∞(E)) and suppose that dHω = 0

if r < n or I(ω) = 0 if r = n. Then there is a form η ∈ Ωr−1,s
Pj,k

(J∞(E)) with weights

wp(η) = wp(ω)− 1
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for p = j, j + 1, . . . , k − 1 such that ω = dHη.

(ii) The horizontal Jacobian subcomplex

0 −−→ J 0,s
k (J∞(E))

dH−−→ J 1,s
k (J∞(E)) · · ·

dH−−→ J n,s
k (J∞(E))

I−→ Fs(J∞(E))

is exact. In addition, if ω ∈ J n,s
k (J∞(E)) and I(ω) = 0, then there is a form

η ∈ J n−1,s
k such that ω = dHη.

Theorem 5.1 also enables us to compute the cohomology of the Euler-Lagrange
complex E∗(J∞(E)). We shall need the following lemma.

Lemma 5.8. Let γ be a d closed p form on J∞(E). If p ≤ n and πp,0(γ) = 0 or if

p = n+ s and (I ◦ πn,s)(γ) = 0, then γ is d exact.

Proof: For p ≤ n, write

γ = −γ1 + γ2 − · · ·+ (−1)pγp,

where γi is of type (p − i, i). Since γ is d closed, these forms satisfy

dHγ1 = 0, dV γi = dHγi+1 for i = 1, 2, . . . , p, and dV γp = 0.

On account of Theorem 5.1, these equations imply that there are type (p− i− 1, i)
forms ρi on J∞(E) such that

γ1 = dHρ1, γi+1 = −dV ρi + dHρi+1 for i = 1, 2, . . . , p − 2, and dV ρp−1 = 0.

It now follows that

d (ρ1 − ρ2 + · · ·+ (−1)p−1ρp−1) = γ,

which proves that γ is d exact.
For p = n+ s, the proof is similar except that now the condition (I ◦πn,s)(γ) = 0

implies, by Theorem 5.1, that πn,s(γ), the type (n, s) component of γ, is dH exact.

Theorem 5.9. The cohomology of the Euler-Lagrange complex E∗(J∞(E))

0 −−→ R −−→Ω0,0(J∞(E))
dH−−→ Ω1,0(J∞(E))

dH−−→ Ω2,0(J∞(E)) · · ·
dH−−→ Ωn,0(J∞(E))

E−−→ F1(J∞(E))
δV−→ F2(J∞(E))

δV−→ · · ·
(5.25)
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is isomorphic to the de Rham cohomology of the total space E, that is

Hp(Ω∗,0(J∞(E)), dH) ∼= Hp(Ω∗(E), d), (5.26a)

for p ≤ n, and

Hs(F∗(J∞(E)), δV ) ∼= Hp(Ω∗(E), d), (5.26b)

for p = n+ s and s ≥ 1.

Proof: In view of Theorem 5.1, this theorem is a standard, elementary result in
homological algebra which is established by diagram chasing. We present the details
of this chase because they are important in their own right as part of the variational
calculus.

We begin with the observation that the projection map π∞
E : J∞(E) → E is a

homotopy equivalence ( see Lemma (5.25)) and therefore the de Rham cohomology
of J∞(E) is isomorphic to that of E. Consequently the theorem can be established
by constructing an isomorphism from H∗(Ω∗(J∞(E)), d

)
, the de Rham cohomology

of J∞(E), to the cohomology of the Euler-Lagrange complex H∗(E∗(J∞(E))
)
.

Since the projection map πr,s : Ωr+s(J∞(E)) → Ωr,s(J∞(E)) satisfies

πr+1,0 ◦ d = dH ◦ πr,0, for r ≤ n − 1

I ◦ πn,1 ◦ d = E ◦ πn,0, and

I ◦ πn,s+1 ◦ d = δV ◦ I ◦ πn,s, for s ≥ 1

the map
Ψ: Ω∗(J∞(E)) → E∗(J∞(E))

defined, for ω ∈ Ωp(J∞(E)), by

Ψ(ω) =

{
πp,0(ω), for p ≤ n and

I ◦ πn,s(ω), if p = n+ s and s ≥ 1.

is a cochain map from the de Rham complex on J∞(E) to the Euler-Lagrange
complex on J∞(E). Note that if ω̃ is a p = n+ s form on E then ω = (π∞

E )∗(ω̃) is
a p form on J∞(E) whose projection πn,s(ω) already lies in Fs(J∞(E)), i.e.,

Ψ(ω) = πn,s(ω). (5.27)

The the induced map in cohomology will be denoted by

Ψ∗ : Hp
(
Ω∗(J∞(E))

) → Hp
(E∗(J∞(E))

)
.
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We prove that Ψ∗ is an isomorphism in cohomology by constructing the inverse
map

Φ : Hp
(E∗(J∞(E))

) → Hp
(
Ω∗(J∞(E))

)
. (5.28)

To define Φ, it is convenient to consider separately the two pieces of the complex
E∗(J∞(E)), the first piece being the horizontal edge

0 −−→ R −−→ Ω0,0
dH−−→ Ω1,0

dH−−→ · · ·
dH−−→ Ωn−1,0

dH−−→ Ωn,0
E−−→ F1.

Let [ω] ∈ Hp
(E∗(J∞(E))

)
for p ≤ n. Put ω0 = ω ∈ Ωp,0(J∞(E)). Then the type

(p, 1) form σ0 = dV ω satisfies dH(σ0) = −dV dHω0 = 0 if p < n and I(σ0) = E(ω) =
0 if p = n. By Theorem 5.1, the form σ0 is dH exact. Let dHω1 = σ0.

Now repeat this process to obtain a sequence of forms ωi ∈ Ωp−i,i(J∞(E)) and
σi ∈ Ωp−i,i+1(J∞(E)) satisfying

dHωi = σi−1 and σi = dV ωi for i = 1, 2, . . . , p, (5.29)

that is, · · · σ2	dV

ω2

dH−−→ σ1	dV

ω1

dH−−→ σ0	dV

ω0.

Since σp is a type (0, p + 1) form, the equation dHσp = 0 implies that σp = 0,
i.e., dV ωp = 0. We define the form β ∈ Ωp(J∞(E)) by

β = ω0 − ω1 + ω2 − · · ·+ (−1)pωp. (5.30)

A simple calculation, based upon (5.29), shows that dβ = 0. Moreover, it is not
difficult to check that the cohomology class [β] ∈ Hp

(
J∞(E))

)
is independent of
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the choice of the representative ω0 for the class [ω] and independent of the choices
taken for the ωi in (5.29). The map Φ is defined by

Φ([ω]) = [β].

Note that while Ψ is defined on forms, Φ is only well-defined in cohomology. In §5C
and §5D, we shall consider circumstances under which there are maps defined on
forms which induce the map Φ in cohomology.

Evidently, for [ω] ∈ Hp
(
Ω∗,0(J∞(E))

)
, we have

Ψ∗ ◦ Φ([ω]) = Ψ∗([β]) = [ω].

Accordingly, it remains to show that Φ◦Ψ∗ is the identity map on Hp
(
Ω∗(J∞(E))

)
.

To this end, let α ∈ Ωp(J∞(E)) be a d closed form. Decompose α by type into the
sum

α = α0 − α1 + α2 − · · ·+ (−1)pαp,

where αi is of type (p − i, i). Since dα = 0, these forms satisfy

dHα0 = 0, dV αi = dHαi+1 for i = 0, 1, . . . , p − 1, and dV αp = 0.

Let ω be the dH closed, type (p, 0) form α0 and define the p form β by (5.30). Then

Φ ◦ Ψ∗([α]) = Φ([ω]) = [β]

and hence, to complete the proof of the theorem, we must show that α and β define
the same cohomology class on J∞(E). But, since the type (p, 0) components of α
and β coincide, the difference γ = β − α satisfies the hypothesis of Lemma 5.8 and
is therefore d exact. This proves that [β] = [α], as required.

The proof of (5.26) for the case p = n+ s is similar — the inverse map Φ can be
defined exactly as above since, for ω ∈ Fs(J∞(E)), the condition δV ω = 0 implies
that dV ω = dHω1 for some type (n − 1, s+ 1) form ω1.

The explicit nature of the isomorphism from H∗(Ω∗(E)) to H∗(E∗(J∞(E))
)

should be emphasized — if ω ∈ Ωp(E) represents a nontrivial cohomology class
on E and if we identify ω with its pullback to J∞(E) via π∞

E , then the projection

Ψ(ω) =

{
πp,0(ω), if p ≤ n

πn,s(ω), if p = n+ s, s ≥ 1

is a nontrivial cohomology class in the Euler-Lagrange complex. This observation
enables us to readily construct examples of variationally trivial Lagrangians which
are not globally exact and examples of locally variational source forms which are
not the Euler-Lagrange forms of global Lagrangians.
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Example 5.10. Let E be the product bundle

E : S2 × S1 × S1 → S2.

Now H2(E) is the two dimensional vector space generated by ν, the volume form
on S2, and by µ = du∧ dv, where du and dv are the standard angular one forms on
the fiber S1 × S2. Thus H2(E∗) is generated by the two Lagrangians

λ1 = π2,0(ν) = ν

and

λ2 = π2,0(du ∧ dv)

= π2,0[(θu + ux dx+ uy dy) ∧ (θv + vx dx+ vy dy)]

= (uxvy − uyvx) dx ∧ dy.

Here (x, y) are arbitrary coordinates on the base manifold S2. Theorem 5.9 states
that every variationally trivial Lagrangian λ on J∞(E) can be expressed uniquely
in the form

λ = dHη + c1λ1 + c2λ2,

where η ∈ Ω1,0(J∞(E)) and c1 and c2 are constants.
The Lagrangian λ2 has a particularly interesting property. Let

s : S2 → E

be a section of E. Then the pullback of λ2 by s to S2 is

j∞(s)∗λ2 = s∗(du ∧ dv) = α ∧ β, (5.31)

where α = s∗(du) and β = s∗(dv). Since H1(S2) = 0, and α is closed on S2 it
follows that α is exact; say α = df , where f is a real-valued function on S2. Since
β is closed on S2, we can rewrite (5.31) as

j∞(s)∗(λ2) = d(fβ). (5.32)

Thus, on every section of E, the Lagrangian λ2 pulls back to an exact form on the
base manifold every though λ2 itself, as a Lagrangian in the variational bicomplex
is not exact. The point here is that the one form fβ in (5.32) and in particular the
function f , can not be computed at any given point from the knowledge of the jet
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of s at that point. In general then, the condition that ω ∈ Ωr,0(J∞(E)) be exact
on all sections of E is a necessary condition for ω to be dH exact but it is not a
sufficient condition.

Since H3(E) is spanned by the two 3 forms du ∧ ν and dv ∧ ν, the source forms

π2,1(du ∧ ν) = θu ∧ ν and π2,1(dv ∧ ν) = θv ∧ ν

are locally variational ( local Lagrangians are −u ν and −v ν, respectively) but not
globally variational. Admittedly, these source forms don’t determine very reason-
able source equations but bear in mind that these forms are simply representatives
of the cohomology of the Euler-Lagrange complex at F1(J∞(E)). For example, let
g be a Riemannian metric on S2 and let ∆g be the real-valued Laplacian on S2.
Then the source form

∆ = (∆gu+ a)θu ∧ ν + (∆gv + b)θv ∧ ν,

where a and b are constants, is always locally variational. The source form ∆ is
globally variational if and only if the constants a and b vanish; a global Lagrangian
being

λ =
1
2
(gijuiuj + gijvivj)

√
gdx1 ∧ dx2.

Example 5.11. Now consider the bundle

E : M × S1 × S1 → M,

where M = R3 − { 0 }. The total space E is homotopic to that of the previous
example; the de Rham cohomology ring is generated by the angular one forms du

and dv and the two form

σ =
z dx ∧ dy − y dx ∧ dz + x dy ∧ dz

(x2 + y2 + z2)3/2
=

1
r3

R ν,

where ν = dx ∧ dy ∧ dz, R is the radial vector field R = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
and

r2 = R · R. However, because we have changed the dimension of the base manifold
from 2 to 3, the interpretations of these cohomology classes on E as cohomology
classes in the variational bicomplex has changed. The obstructions to writing a
variationally trivial Lagrangian as a dH exact form have now shifted to H3(E)
and, likewise, the obstructions to finding global Lagrangians for locally variational
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source forms have shifted to H4(E). The generators of the cohomology of the Euler-
Lagrange complex at Ω3,0(J∞(E)) are therefore

λ1 = π3,0(du ∧ σ) = (ux dx+ uy dy + uz dz) ∧ σ

=
1
r3

(R · ∇u) ν (5.33a)

and

λ2 = π3,0(dv ∧ σ) = (vx dx+ vy dy + vz dz) ∧ σ

=
1
r3

(R · ∇v) ν, (5.33b)

while the single generator of the cohomology at F1 is

∆ = π3,1(du ∧ dv ∧ σ)

=
1
r3

[(R · ∇u) θu − (R · ∇v)θv] ∧ ν. (5.34)

This source form merits further discussion. The source equations defined by ∆
are

xux + yuy + zuz = 0 and xvx + yvy + zvz = 0. (5.35)

These equations are now defined on all of R3; however, by dropping the factor of
1
r3

, these equations are no longer the components of a locally variational source

form. It is natural to ask if (5.35) is equivalent to some system of locally variational
equations defined on all of R3. Let

∆̃ = ∆1 θ
u ∧ ν +∆2 θ

v ∧ ν,

where
∆1 = A(R · ∇u) +B(R · ∇v),

∆2 = C(R · ∇u) +D(R · ∇v),
(5.36)

and A, B, C, and D are functions on R3 ×S1 ×S1 with AD−BC �= 0. This latter
condition insures that the system of equations ∆1 = 0 and ∆2 = 0 is equivalent to
(5.35). We now substitute (5.36) into the Helmholtz conditions (see (3.16))

∂∆1

∂ui
= 0,

∂∆1

∂vi
= −∂∆2

∂ui
,

∂∆2

∂vi
= 0,

and
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∂∆1

∂v
=

∂∆2

∂u
− Di(

∂∆2

∂ui
)

to deduce that A = D = 0, B = −C, and

xi
∂B

∂xi
+ 3B = 0. (5.37)

The source form (5.36) simplifies to

∆̃ = B[(R · ∇v) θu − (R · ∇u) θv] ∧ ν.

Since the only smooth solution to (5.37), defined on all of R3 × S1 × S1, is B = 0,
we conclude that the system (5.35) is not globally equivalent to a system of locally

variational equations. Of course, B =
1
r3

is the solution to (5.37) on E from which

we recover the the original source form (5.34).
We now examine the possibility of using Noether’s theorem, in the form of The-

orem 3.32, to find global conservation laws for ∆. Let

X = −y
∂

∂x
+ x

∂

∂y
.

Then it is easily verified that LprX∆ = 0 and therefore X is a distinguished sym-
metry for ∆. By Theorem 3.32, the Lagrangian λ = Xev ∆ is variationally trivial
and so, at least locally, we obtain a conservation law λ = dHη. However, in this
instance, the cohomology class of λ, viz. [λ] ∈ H3(E∗), vanishes and consequently
the symmetry X gives rise to a global conservation law. Indeed, a straightforward
calculation shows that

Xev = −(X · ∇u)
∂

∂u
− (X · ∇v)

∂

∂v

and that

λ =
1
r3

[(R · ∇u)(X · ∇v) − (R · ∇u)(X · ∇v)] ν

=
(R × X)

r3
· [∇u × ∇v] ν

=
1
r3

[−xz dx − yz dy + (x2 + y2) dz] ∧ dHu ∧ dHv

= dH(
z

r
dHu ∧ dHv).
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Thus the conservation law for ∆ generated by the rotational symmetry X is

η =
z

r
dHu ∧ dHv.

The form η is defined on all on J∞(E).
Consider next the vector field

Y =
∂

∂u
.

This vector field is also a distinguished symmetry of ∆ and therefore the Lagrangian
λ = Yev ∆ is variationally trivial. But in this case

Yev ∆ =
1
r3

(R · ∇u) ν = λ1,

where λ1 is defined by (5.33a). Since [λ1] ∈ H3(E∗) is not zero, the global, dis-
tinguished symmetry Y generates a local conservation law for ∆ but not a global
one. This example highlights an important aspect of Noether’s Theorem as we have
formulated it. Given a locally variational source form, a global conservation law
can sometimes be constructed from a distinguished symmetry even in the absence of
a global variational principle. The obstructions to constructing global conservation
laws and global Lagrangians lie in different cohomology groups, viz., Hn(E) and
Hn+1(E) respectively.

Example 5.12. Now take M = (R3 − { 0 })×R and let

E : M × S1 × S1 → M.

Again E is homotopic to the total spaces in the previous two examples but now,
because dimM = 4 and H5(E) = 0, there are no obstructions to the construction
of global variational principles.

Example 5.13. Let E : R2 × F → R2, where

F = { (R1, R2) |R1, R2 ∈ R3 and R1 �= R2 }.

A section s of E of the special form

s(x, y) = (x, y, R1(x), R2(y)) (5.38)

defines a pair of smooth, non-intersecting space curves. By using coordinates

S = R2 − R1 and T = R2 +R1,
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on the fiber F , we see immediately that the 8 dimensional manifold E is homotopy
equivalent to R3 − { 0 }. Thus the de Rham cohomology of E is generated by the
single two form

α =
1
4π

−s3 ds1 ∧ ds2 + s2 ds1 ∧ ds3 − s1 ds2 ∧ ds3

[(s1)2 + (s2)2 + (s3)2]3/2
,

where (s1, s2, s3) are the components of S. The projection λ = π2,0(α) is a first
order, variationally trivial Lagrangian on E. If γ1 and γ2 are smooth, regular non-
intersecting closed curves parametrized by maps R1, R2 : I → R3 and if s is the
section (5.38) then

L(γ1, γ2) =
∫∫
I×I

(j1(s))∗(λ) =
1
4π

∫∫
I×I

S · (Ṙ1 × Ṙ2)
||S||3 dx ∧ dy

is the linking number of the two space curves γ1 and γ2 (see, for example, Dubrovin,
Fomenko, and Novikov [22 ]). The fact that L(γ1, γ2) is a deformation invariant of
the pair of curves γ1 and γ2 (through smooth, non-intersecting deformations) is a
consequence of the first variational formula established in Corollary 4.6.

Example 5.14. Let M = R, F = R2 − { 0 }, and let E : M × F → M. It is easy
to check that the source form

∆ = [ü − a(u, v)] du ∧ dx+ [v̈ − b(u, v)] dv ∧ dx (5.39)

is locally variational if and only if

∂a

∂v
=

∂b

∂u
.

Since H2(E) = 0, all locally variational source forms are globally variational and
indeed, a global Lagrangian λ for ∆ is given by

λ = [−1
2
u̇2 − 1

2
v̇2 + x(au̇+ bv̇)] dx.

Note that although ∆ is autonomous (considering the base coordinate x to be
time), the Lagrangian λ explicitly contains the independent variable x. As our next
theorem will show, ∆ admits an autonomous Lagrangian if and only if the one form

ρ = a du+ b dv

is exact on R2 − { 0 }.
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Example 5.15. Translational invariant variational principles for translational in-

variant differential equations.

Let F be any M dimensional manifold and let E : Rn × F → Rn. Let x = (xi)
denote Cartesian coordinates on Rn. For the purposes of this example, we restrict
the admissible class of transformations on E to those induced by maps on the fiber,
that is, a map φ : E → E is a admissible if φ(x, u) = (x, f(u)), where f : F → F .
Let G denote the group of all translations on the base space Rn and let

Ωr,s
G (J∞(E)) = {ω ∈ Ωr,s(J∞(E)) |ω is G invariant}.

A type (r, s) form ω is G-invariant if and only if its coefficients do not depend
explicitly on the independent variables xi. The edge complex

0 −−→ R −−→Ω0,0
G (J∞(E))

dH−−→ Ω1,0
G (J∞(E))

dH−−→ · · ·
dH−−→ Ωn−1,0

G (J∞(E))
dH−−→ Ωn,0

G (J∞(E))
E−−→ F1

G(J
∞(E))

δV−→,

is called the translational invariant Euler-Lagrange complex and is denoted by
E∗
G(J

∞(E)).
The following theorem generalizes the work of Tulczyjew [71 ].

Theorem 5.16. The cohomology of the translational invariant Euler-Lagrange

complex on E : Rn × F → Rn is

H∗(E∗
G(J

∞(E))
)
= H∗(Tn × F, d),

where Tn = S1 × S1 × · · · × S1 is the n-torus. In particular, if n = 1, then

Hp
(E∗

G(J
∞(E))

)
= Hp−1(F )⊕ Hp(F ).

Proof: Our proof is based upon Theorem 5.9. We begin with two observations.
Firstly, let E′ : Tn × F → Tn and let φ : E → E′ be the bundle map induced from
the standard covering map from Rn → Tn. The group G also acts on E′. By
Theorem 3.15 and Proposition 3.18, the prolongation of φ,

prφ : J∞(E) → J∞(E′),

induces a cochain map

(prφ)∗ : E∗(J∞(E′)) → E∗(J∞(E)).
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Not all forms in E∗(J∞(E′)) pullback by (prφ)∗ to G invariant forms on J∞(E).
However, elementary covering space arguments show that for each ω ∈ E∗

G(J
∞(E)),

there is a unique form ω′ ∈ E∗(J∞(E′)) such that

ω = (prφ)∗(ω′).

Secondly we know, by virtue of the Kunneth formula, that the de Rham co-
homology of E′ = Tn × F has representatives obtained by wedging the standard
angular forms dxi on Tn with forms representing the cohomology classes of F . Let
{α′

1, α
′
2, . . . , α

′
q} be a collection of p forms of this type which represent a basis for

Hp(Tn × F ). We identify the forms α′
i with their pullbacks to J∞(E′) via π∞

E′ .
Then, by Theorem 5.9, the forms

β′
i =

{
πp,0(α′

i) if p ≤ n

πn,p−n(α′
i) if p ≥ n+ 1

on J∞(E′) represent a basis for Hp
(E∗(J∞(E′)

)
. Because each of the forms α′

i is
G invariant, the forms

βi = (prφ)∗(β′
i)

are G invariant and therefore βi ∈ Ep
G(J

∞(E)).
We complete the proof of the theorem by proving that the forms βi represent a

basis for Hp
(E∗

G(J
∞(E))

)
. Since the forms α′

i are d closed on Tn ×F , the forms βi
are closed in E∗

G(J
∞(E)). The forms βi represent independent cohomology classes

in E∗
G(J

∞(E)) — if a constant linear combination
∑

aiβi is exact on E∗
G(J

∞(E)),
then

∑
aiβ

′
i is exact on E∗(J∞(E′)) and therefore the constants ai vanish.

It remains to prove that the representatives βi span Hp
(E∗

G(J
∞(E))

)
. Let ω

be any closed form in Ep
G(J

∞(E)). Then the form ω′ ∈ Ep(J∞(E′)), defined by
ω = (prφ)∗(ω′), is closed (prφ is a local diffeomorphism) and hence

ω′ = dHη′ +
∑

aiβ
′
i. (5.40)

(Here we are assuming that p ≤ n. If p ≥ n + 1, then the differential dH in this
equation is replaced by δV .) The form η′ ∈ Ep−1(J∞(E′)) may not be G invariant
and consequently η′ may not lift to a G invariant form on J∞(E). However, if we
average (5.40) over Tn by integrating, then we can replace the form η′ in (5.40) by
a G invariant form τ ′. Let τ = (prφ)∗(τ ′) ∈ Ep−1

G (J∞(E)). Then the pullback of
(5.40) to J∞(E) gives

ω = dHτ +
∑

aiβi.
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This proves that the βi span Hp
(E∗

G(J
∞(E))

)
.

In integrating (5.40), we used the fact that because ω′ and β′
i are G invariant,∫

y∈Tn

(prLy)∗ω′ = ω′ and
∫

y∈Tn

(prLy)∗β′
i = β′

i,

where Ly : E′ → E′ is the prolongation of left multiplication (translation) by y ∈ Tn

to J∞(E′), i.e.,
Ly([ex, u]) = [ex+y, u].

We also used the fact that because the differentials dH and δV of the Euler-Lagrange
complex commute with (prLy)∗, they commute with integration over Tn.

Another proof for the special case dimM = 1 will be given in the next section.

Example 5.17. For locally variational, autonomous ordinary differential equations
(n = 1), the obstructions to finding autonomous Lagrangians lie in H1(F )⊕H2(F ).
For example, consider the locally variational source form on E : R×F → R, where
F = R2 − {0}, as given by (5.39). Since

dV∆ = (θ̈u − ∂a

∂v
θv) θu ∧ dx+ (θ̈v − ∂b

∂v
θu) θv ∧ dx

= dH(θ̇u ∧ θu + θ̇v ∧ θv),

the form

β = ∆− (θ̇u ∧ θu + θ̇v ∧ θv)

= d (−u̇ du+
1
2
u̇2 dx − v̇ dv +

1
2
v2 dx) − (a du+ b dv) ∧ dx

is a d closed, G invariant two form on J∞(E). In accordance with the proof of
Theorem 5.16, we pull β back to the form β′ ∈ Ω2(J∞(E′)), where E′ = S1 × F .
Since β′ is cohomologous on J∞(E′) to the two form

γ′ = −(a du+ b dv) ∧ dx,

we deduce that ∆ admits a global, autonomous variational principle if and only if
γ′ is d exact on J∞(E′). But, as a form on E′, γ′ is exact if and only if the one
form

ρ = −(a du+ b dv)

on the fiber F is exact.
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We now consider some examples where the cohomology of the variational bicom-
plex arises, not from the topology of E, but rather from open restrictions on the
derivatives of local sections of E. Let Jk

0 be any open submanifold of Jk(E). For
example, to study regular plane curves we take E : R × R2 → R and restrict the
one jets on E to the open set

J1
0 = { (x, u, v, u̇, v̇) | u̇2 + v̇2 �= 0 }.

In this example the projection map π1
E : J1

0 → E is still surjective — in general we
need not impose this condition on the set Jk

0 . Given an open set Jk
0 ⊂ Jk(E), define

R = (π∞
k )−1(Jk

0 ). (5.41)

Theorems 5.1 and 5.9 immediately generalize to the variational bicomplex restricted
to the open set R ⊂ J∞(E).

Theorem 5.18. Let R be an open set in J∞(E) of the type (5.41).
(i) For s ≥ 1, the augmented horizontal complex

0 −−→ Ω0,s(R)
dH−−→ Ω1,s(R)

dH−−→Ω2,s(R)
dH−−→ · · ·

dH−−→ Ωn,s(R)
I−−→ Fs(R) −−→ 0

(5.42)

is exact.

(ii) The cohomology of the Euler-Lagrange complex E∗(R) is isomorphic to the

cohomology of the de Rham complex of Jk
0 .

Proof: For every point q ∈ Jk
0 , there is an open neighborhood V k

q of q such that
the augmented horizontal complex on V ∞

q = (π∞
k )−1(V k

q ) is exact. Let V = {Vα }
be a cover of R by such neighborhoods and let {Fα } be a partition of unity on R
subordinate to this cover.

The proof of exactness of (5.42) now follows that of Theorem 5.1 with the cover
V on R used in place of the cover U on E.

The same homological algebra used to prove Theorem 5.9 proves (ii).

Example 5.19. Let E : R×R2 → R and let

J1
0 = { (x, u, v, u̇, v̇) | u̇2 + v̇2 �= 0 }.

Then the cohomology of the Euler-Lagrange complex on R = (π∞
1 )−1(J1

0 ) is iso-
morphic to the de Rham cohomology of J1

0 . Since the latter is generated by

α =
u̇ dv̇ − v̇ du̇

u̇2 + v̇2
,
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the former is generated by

ω = π1,0(α) =
u̇dH v̇ − v̇dH u̇

u̇2 + v̇2
=

u̇v̈ − v̇ü

u̇2 + v̇2
dx.

The integral of this cohomology class around a closed curve γ is the rotation index
of γ.

In this particular instance, ω happens to be invariant under the group G of
isometries of the fiber R2 and under arbitrary oriented diffeomorphisms of the base
R. Thus ω also defines a cohomology class in E∗

G(R). In fact, by Proposition 4.13,
we know that ω generates the only cohomology class in H1(E∗

G(R)) and therefore

H1(E∗(R)) = H1(E∗
G(R)).

It must, however, be emphasized that this equality is purely coincidental — by
Theorem 5.18

H2(E∗(R)) = 0,

while by Proposition 4.61,
H2(E∗

G(R)) = R

is the one dimensional vector space generated by Θ2 ∧ ds.

Example 5.20. Now let E : R×R3 → R and let

J1
0 = { (x,R, Ṙ) | ρ2 = 〈Ṙ, Ṙ〉 = u̇2 + v̇2 + ẇ2 �= 0 }.

The single generator for the de Rham cohomology of J1
0 is the two form

α =
1
ρ2

(u̇ dv̇ ∧ dẇ − v̇ du̇ ∧ dẇ + ẇ du̇ ∧ dv̇).

The projection of α to a form in the Euler-Lagrange complex gives rise to the source
form

∆ = I(π1,1α))

= I
( 1
ρ3

[(ẇv̈ − v̇ẅ) θ̇u + (u̇ẅ − ẇü) θ̇v + (v̇ü − u̇v̈) θ̇w] ∧ dx
)

=
{d

dx
[
1
ρ3

(v̇ẅ − ẇv̈)] θu +
d

dx
[
1
ρ3

(ẇü − u̇ẅ)] θv +
d

dx
[
1
ρ3

(u̇v̈ − v̇ü)] θw
} ∧ dx.
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Therefore the system of third order ordinary differential equations

d

dx
[
1
ρ3

(Ṙ × R̈)] = 0 (5.43)

is locally, but not globally, variational.
Note that

1
ρ3

Ṙ × R̈ = κB, (5.44)

where κ is the curvature and B the unit binormal. If the initial conditions at x = x0

for the system of equations (5.43) are such that (Ṙ× R̈)(x0) = 0, then the solutions
are straight lines. If (Ṙ × R̈)(x0) �= 0, then the solutions are circles.

Now replace the open set J1
0 by

J2
0 = { (x,R, Ṙ, R̈) | Ṙ × R̈ �= 0 }.

The open set J2
0 ⊂ J2(E) has the same homotopy type as the Steifel manifold of 2

frames inR3 which, in turn, is homotopy equivalent to the special orthogonal group
SO(3). Since H2(SO(3)) = 0, the locally variational source form (5.43) must now
admit a global Lagrangian.

A Lagrangian for (5.43) is easily found by using the moving frame formalism
developed in §2D. By virtue of (5.44), the Frenet formula (2.45) and (2.46), we can
re-write the source form ∆ as

∆ =
d

ds
[κB] · θ ∧ σ = [−κτΘ2 + κ̇Θ3] ∧ σ.

Assume that ∆ admits a natural Lagrangian

λ = L(κ, τ, κ̇, τ̇ , . . . ) σ.

(We have not yet computed the 2 dimensional equivariant cohomology of the Euler-
Lagrange complex for space curves so there could be obstructions here and ∆ might
not admit a natural Lagrangian.) Then by (2.64) we must have that

−κτ = κH + (κ2 − τ2)Eκ + Ëκ + 2κτEτ +
[κτ̇ − 2τ κ̇

κ2

]
Ėτ + 2

τ

κ
Ëτ ,

and

−κ̇ = τ̇Eκ + τĖκ − κ̇Eτ +
[τ2κ2 − κ4 − 2κ̇2 + κκ̈

κ3

]
Ėτ + 2

κ̇

κ2
Ëτ − 1

κ

...
Eτ .

By inspection we see that a Lagrangian λ which satisfies these equations is

λ = −τ σ = − Ṙ · (R̈ × ...
R)

||Ṙ × R̈|| ||Ṙ|| dx.
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Example 5.21. Let U be an open domain in R2, let E : U ×R2 → U and let

J1
0 = { (x, y, u, v, ux, uy, vx, vy) | det

[
ux uy
vx vy

]
> 0 }.

Sections of E whose one jets lie in J1
0 are orientation preserving local diffeomor-

phisms from R2 to R2. The open submanifold R = (π∞
1 )−1(J1

0 ) has the same
homotopy type as Gl+(2,R) which is homotopy equivalent to the circle S1. In fact,
if we set

ux = r + s uy = p − q

vx = p+ q vy = r − s

then

det
[
ux uy
vx vy

]
= r2 + q2 − s2 − p2,

and consequently we can conclude that a generator for the de Rham cohomology of
R is given by

α =
r dq − q dr

r2 + q2

=
(ux + vy) d(vx − uy) − (vx − uy) d(ux + vy)

(ux + vy)2 + (vx − uy)2
.

Therefore, for p > 1, Hp(E∗(R)) = 0 while for p = 1 the cohomology is represented
by the one form

ω =
(ux + vy) dH(vx − uy) − (vx − uy) dH(ux + vy)

(ux + vy)2 + (vx − uy)2
.

This form has the following geometric interpretation.

Proposition 5.22. Let φ : U → R2 be a local diffeomorphism and let prφ be the

prolongation of φ to R. Let γ be any smooth closed curve in U and let γ̃ = φ ◦ γ

be the image curve under φ. Then

1
2π

∫
γ

(prφ)∗(ω) = [ rotation index of γ̃ ] − [ rotation index of γ ].
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Proof: Let γ(t) = (x(t), y(t)), let γ̃(t) = ((u(t), v(t)) where u(t) = u(x(t), y(t))
and v(t) = v(x(t), y(t)), and let

σ = (prφ)∗(ω)− ( u̇v̈ − v̇ü

u̇2 + v̇2

)
dt+

( ẋÿ − ẏẍ

ẋ2 + ẏ2

)
dt.

We prove the proposition by showing that σ is a d exact one form. We know that
on its domain of definition, the function

f(t) =
(
arctan

(vx − uy
ux + vy

))
(x(t), y(t))− arctan

( v̇
u̇

)
(t) + arctan

( ẏ
ẋ

)
(t)

satisfies

d f = σ.

That f can be defined globally follows from the identity

tan f =
(vx − uy)(u̇ẋ+ v̇ẏ) − (ux + vy)(v̇ẋ − ẏu̇)
(vx − uy)(v̇ẋ − ẏu̇) + (ux + vy)(u̇ẋ+ v̇ẏ)

and the fact that the denominator Q of this rational function is the positive definite
quadratic form

Q = [ ẋ ẏ ]
[
u2
x + u2

y + (uxvy − vxuy) uxvy − vxuy
uxvy − vxuy v2

x + v2
y + (uxvy − vxuy)

] [
ẋ
ẏ

]
.

Observe that when φ : R2 − { 0 } → R2 is complex analytic,

1
2π

∫
γ

(prφ)∗(ω) =
1
2πi

∫
γ

φ′′ dz
φ′ .

Consequently, if γ surrounds the origin and mz and mp denote the multiplicities of
the zeros and poles of φ′ at 0, then by the argument principle (see, e.g., Conway
[18 ])

1
2π

∫
γ

(prφ)∗(ω) = mz − mp

For example, under the maps z → ez, z → zn or z → z−n the rotation index of the
curve γ is left unchanged, is increased by n, or is decreased by n respectively.
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Example 5.23. Let E : R2 ×R3 → R3 and let

J1
0 = { (x, y, R,Rx, Ry) |Rx × Ry �= 0 }.

A section of E whose one jet lies in J1
0 defines a regularly parametrized surface in

R3. The Gauss-Bonnet integrand

λ = K dA

is a closed, type (0, 2) form on R but in view of the Liouville formula derived in
Example 4.46, λ is dH exact and so does not determine a non-trivial cohomology
class in E∗(J∗

0 ). Indeed, since J1
0 is homotopy equivalent to the rotation group

SO(3), we deduce that

Hp(E∗(R)) =

{
0, if p > 0 and p �= 3, and

R, if p = 3.

If {E1, E2, E3 } is an orthonormal frame on R3 with

E3 =
Rx × Ry

||Rx × Ry|| ,

and E1 and E2 depending smoothly on the jets of R, and if

αij = 〈Ei, dEj〉

denote the Mauer-Cartan forms on SO(3), then a representative of this class is the
source form

∆ = I ◦ π2,1(α12 ∧ α13 ∧ α23).

I have been unable to attach any special geometric significance to the partial dif-
ferential equations defined by this source form.

If G is the group of isometries of the fiber R3 and orientation preserving dif-
feomorphism of the base R2, then one can prove that the Gauss-Bonnet integrand
represents the sole equivariant cohomology class in H2(E∗

G(R)).

Example 5.24. There are differential-topological invariants which do not seem to
arise as cohomology classes in an appropriate Euler-Lagrange complex. Perhaps the
most famous of these is the Hopf invariant for smooth maps φ : S3 → S2. If ν is
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the volume form on S2, then φ∗(ν) is an closed two form on S3 and therefore there
is a one form α on S2 such that dα = φ∗(ω). The Hopf invariant is

H(φ) =
∫
S3

α ∧ dα.

One cannot expect the integrand λ = α ∧ dα to arise as a cohomology class in the
Euler-Lagrange complex on E : S3×S2 → S3 since λ cannot be computed pointwise
from the jets of φ.

Another invariant to be mentioned in this regard is the self-linking number of
a smooth, regular curve γ imbedded in R3 (Pohl, [58 ]). One ought not to expect
this invariant to arise as a cohomology class in the variational bicomplex since
the condition that γ be non-self intersecting is a global condition which cannot be
expressed as an open restriction on the jets of γ.

B. The Vertical Cohomology of the Variational Bicomplex. In this section
we compute the cohomology of the vertical complexes (Ωr,∗(J∞(E)), dV ).

Let α be a p form on the base manifold M . We shall identify α with its pullback
by π∞

M to J∞(E). Then dV α = 0 and hence, if ω represents a cohomology class
in Hr,s

V

(
Ω∗,∗(J∞(E))

)
, then α ∧ ω represents a class in Hr+p,s

V . In particular, the
vertical cohomology spaces Hr,s

V

(
Ω∗,∗(J∞(E))

)
are modules over the ring C∞(M)

of smooth functions on M .
Now consider two fibered manifolds

π : E → M and π′ : E′ → M ′

and maps

Φ,Ψ: J∞(E) → J∞(E′).

We suppose that Φ and Ψ cover maps φ0 and ψ0 from M to M ′. According the
Theorem 3.15, this condition is both necessary and sufficient for the projected pull-
back maps Φ� and Ψ� to define cochain maps

Φ�,Ψ� :
(
Ωr,∗(J∞(E′)

)
, dV ) → (

Ωr,∗(J∞(E)), dV
)
,

for r = 0, 1, 2, . . . ,n. We begin this section by showing that if Φ and Ψ cover the
same map, i.e., if φ0 = ψ0, and are homotopic in the sense below, then the cochain
maps Φ� and Ψ� induce the same map in vertical cohomology.
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Definition 5.25. Two maps Φ and Ψ from J∞(E) to J∞(E′) which cover the

same map h : M → M ′, that is

J∞(E)
Φ,Ψ−−−−→ J∞(E′)

π∞
M

� �π∞
M′

M
h−−−−→ M ′,

are homotopic if there is an open interval I ⊃ [0, 1] and a smooth map H such that

J∞(E)× I
H−−−−→ J∞(E′)

π∞
M

� �π∞
M′

M
h−−−−→ M ′,

and

H(q, 0) = Φ(q) and H(q, 1) = Ψ(q)

for all q ∈ J∞(E).

As in Proposition 1.1, the map H is smooth if and only if for each k = 0, 1, 2, . . . ,
there exists an integer mk and a smooth map

Hmk

k : Jmk(E)× I → Jk(E′)

such that π′∞
k ◦ H = Hmk

k ◦ π∞
mk

.

Proposition 5.26. The projection map π∞
E : J∞(E) → E is a homotopy equiva-

lence over the identity on M .

Proof: It suffices to show that if σ : E → J∞(E) is any fixed section, then the
map

Φ = σ ◦ π∞
E : J∞(E) → J∞(E)

is smoothly homotopic to the identity on J∞(E). Let U = {Uγ } be a cover of E
by adopted coordinate neighborhoods and let { fγ } be a partition of unity on E

subordinate to U . With

σ |Uγ
(xi, uα) = (xi, uα, σαI (x, u)),

define, for t ∈ I,
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Hγ
t : J

∞(Uγ) → J∞(Uγ)

by

Hγ
t [x, u] = (xi, uα, tσαI (x, u) + (1− t)uαI ).

The maps Hγ
t are projectable and hence smooth. When t = 0, Hγ

t is the identity
on J∞(U) and when t = 1, Hγ

t is the restriction of Φ to J∞(U). The required
homotopy

Ht : J∞(E) → J∞(E)

can then be defined by

Ht =
∑
γ

fγH
γ
t . (5.45)

Theorem 5.27. Let π : E → M and π′ : E′ → M ′ be two fibered manifolds and

let Φ and Ψ be two smooth maps,

Φ,Ψ: J∞(E) → J∞(E′),

which cover the same map from M to M ′. If Φ and Ψ are homotopic, then the

projected pullback maps Φ� and Ψ� define the same map in vertical cohomology.

In fact, there are homotopy operators

Hr,s
V : Ωr,s(J∞(E′)) → Ωr,s−1(J∞(E)),

depending on Φ and Ψ, and such that for any ω′ ∈ Ωr,s(J∞(E′))

Ψ�(ω′) − Φ�(ω′) = Hr,s+1
V (dV ω′) + dV Hr,s

V (ω′). (5.46)

Proof: Given the homotopyH from Φ to Ψ, there is a standard homotopy operator

Kp : Ωp(J∞(E′)) → Ωp−1(J∞(E))

for the de Rham complex on J∞(E), i.e., for ω′ ∈ Ωp(J∞(E′)),

Ψ∗(ω′) −Φ∗(ω′) = dKp(ω′) +Kp+1(d ω′). (5.47)
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In particular, we have that
πr+1,s(K(ω′)) = 0.

Then, given ω′ ∈ Ωr,s(J∞(E′)), where r + s = p, we show that

Kp(ω′) ∈ Ωr,s−1 ⊕ Ωr+1,s−2 ⊕ · · · . (5.48)

By applying the projection map πr,s to (5.47), we immediately arrive at (5.46), with

Hr,s
V = πr,s−1 ◦ Kr+s.

The definition of Kp and proof of (5.47) are identical to that given for differential
forms on finite dimensional manifolds by Spivak [63 ](Vol. 1, pp. 304–306). We need
the formula for Kp in order to verify (5.48). To this end, we first define the inclusion
map

it : J∞(E) → J∞(E)× I

by

it(j∞(s)) = (j∞(s), t)

for all t ∈ I. If ω ∈ Ωp(J∞(E)×I), then there are unique forms ω1 ∈ Ωp(J∞(E)×I)
and ω2 ∈ Ωp−1(J∞(E)× I) such that

ω = ω1 + dt ∧ ω2

and
∂

∂t
ω1 = 0 and

∂

∂t
ω2 = 0.

With
Ip : Ωp(J∞(E)× I) → Ωp−1(J∞(E))

defined by

Ip(ω) =
∫ 1

0

i∗t (ω2) dt

it is not difficult to show that

i∗1(ω)− i∗0(ω) = d Ip(ω) + Ip+1(d ω).
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Consequently, for ω′ ∈ Ωr,s(J∞(E′)),

Ψ∗(ω′) − Φ∗(ω′) = (H ◦ i1)∗(ω′) − (H ◦ i0)∗(ω′)

= (i1)∗(H∗(ω′))− (i0)∗(H∗(ω′))

= d [(Ip ◦ H∗)(ω′)] + (Ip+1 ◦ H∗)(d ω′).

This establishes the homotopy formula (5.47), where

Kp(ω′) = Ip ◦ H∗(ω′) =
∫ 1

0

i∗t [
∂

∂t
H∗(ω′)] dt.

In order to prove (5.48), we must show that

Kp(ω′)(X1, X2, . . . , Xp−1) = 0 (5.49)

whenever any s of the tangent vectors X1, X2, . . . , Xp−1 to J∞(E) are π∞
M vertical.

Since

Kp(ω′)(X1, . . . , Xp−1) =
∫ 1

0

H∗(ω′)
(∂
∂t

, (it)∗X1, . . . , (it)∗Xp−1

)
dt

=
∫ 1

0

ω′(H∗
(∂
∂t

)
, Z1, Z2, . . . , Zp−1

)
dt, (5.50)

where Zj = (H ◦ it)∗Xj, equation (5.49) follows from the following observations.
First, let f : M ′ → R be any smooth function. Then, because h does not depend
upon the homotopy parameter t,

[(π∞
M ′)∗(H∗

∂

∂t
)](f) =

∂

∂t
(f ◦ h ◦ π∞

M ) = 0. (5.51)

This shows that H∗
(∂
∂t

)
is a π∞

M ′ vertical vector on J∞(E′). Thus, because ω′ is

of type (r, s), the integrand in (5.50) will vanish whenever any s of the vector fields
Z1, Z2, . . . , Zp−1 vanish. But, because H covers the map h : M → M ′,

(π∞
M ′)∗(Zj) = (π∞

M ′)∗
(
(H ◦ it)∗Xj

)
= h∗

(
(π∞

M )∗Xj

)
and therefore Zj is π∞

M ′ vertical whenever Xj is π∞
M vertical.
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A simple example shows that the hypothesis

φ0 = ψ0,

used in proving (5.51), is essential to the validity of Theorem 5.27. Let E be the
product R1 × S1 → R1, let φ : E → E be the identity map and let ψ : E → E be
the map ψ(x, u) = (x + 3, u). Let Φ = prφ and Ψ = prψ be the prolongations of
these maps to J∞(E). Evidently ψ and φ are homotopic and therefore Φ and Ψ
are homotopic although not in the sense of Definition 5.25. The maps Φ� and Ψ�

are not the same in cohomology. Indeed, let f : R → R be a smooth function with
supp f ⊂ (−1, 1) and with f(0) = 1. The form ω = f(x) dθ, where θ is the zeroth
order contact one form on E, defines a non-trivial cohomology class in H0,1

V . The
difference

η = Ψ�(ω)− Φ�(ω) = [f(x+ 3)− f(x)] θ

is not dV exact ( at x = 0, η = −θ = −du) and so the maps Φ� and Ψ� are not the
same in cohomology.

Corollary 5.28. Let π : E → M be a fibered manifold of dimension m + n,

where n = dimM . Then, for all s > m,

Hr,s
V

(
Ω∗,∗(J∞(E))

)
= 0.

Proof: Observe that if α is any p form on E, then

πr,s[(π∞
E )∗(α)] = 0

whenever s > m and r + s = p. Indeed, since α is locally a linear combination of
forms containing at most m wedge products of the fiber differentials duα,

(π∞
E )∗(α) ∈

⊕
r+s=p

Ωr,s(J∞(E))

is a linear combination of at most m wedge products of the contact forms θα ( and
no higher order contact forms θαI , |I| ≥ 1). Alternatively, it is easily seen that

[(π∞
E )∗(α)](X1, X2, . . . , Xp) = α

(
(π∞

E )∗X1, (π∞
E )∗X2, . . . , (π∞

E )∗Xp

)
vanishes, for dimensional reasons, whenever any s > m of the vectors Xi on J∞(E)
are π∞

M vertical.
Now let σ : E → J∞(E) be any section and define Φ: J∞(E) → J∞(E) by

Φ = σ ◦ π∞
E . Then, with Ψ the identity on J∞(E) and H the homotopy (5.45), the

homotopy formula (5.46) becomes

ω − πr,s[(π∞
E )∗(σ∗(ω))] = dV Hr,s

V (ω) + Hr,s+1
V (dV ω).

Since σ∗(ω) is a form on E this shows, in view of the above observation, that if ω
is dV closed and s > m, then ω is dV exact.
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Without imposing additional structure on the fibered manifold π : E → M , it
seems unlikely that much more can be said in general about the vertical cohomology
of the variational bicomplex on J∞(E). Accordingly, we now suppose that π : E →
M is a fiber bundle with m dimensional fiber F and structure group G. In addition,
we shall assume that F admits a finite cover V = {Vσ} with the property that each
Vσ, as well as all non-empty intersections

Vσ0σ1...σp
= Vσ1 ∩ Vσ2 ∩ · · · ∩ Vσp

are diffeomorphic to Rm. Such a cover is called a good cover. Good covers exist
whenever F is compact. The existence of a finite good cover for the fiber F insures
that the de Rham cohomology of F is finite dimensional. (See Bott and Tu [13 ] p.
43).

Definition 5.29. Let π : E → M be a fiber bundle with fiber F . A collection of s

forms { β1, β2, . . . , βd } on E are said to freely generate the s dimensional de Rham

cohomology of each fiber of E if for every point x ∈ M , the restriction of these

forms to the fiber Fx = π−1(x) (i.e., the pullback of these forms by the inclusion

map ix : π−1(x) → E) are closed forms on F whose cohomology classes [i∗x(β
i)],

i = 1, 2, . . . , d, form a basis for the vector space Hs(Fx).

Two aspects of this definition should be emphasized. First, the forms βi need not
be closed on E — in other words, the forms βi do not have to satisfy the hypothesis
of the well-known Leray-Hirsch theorem. Secondly, the cohomology classes [i∗x(β

i)]
in Hs(Fx) must be independent at every point x ∈ M . It is always possible to
construct forms on E which freely generate the cohomology of any single fiber but
such forms are of little use to us here.

Many fiber bundles admit forms which freely generate the cohomology of each
fiber.

Example 5.30. Let E : M × F → M and let p : E → F be the projection onto
the fiber F . If γ1, γ2, . . . , γd are closed s forms on F whose cohomology classes [γi]
form a basis for Hs(F ), then βi = p∗(γi) are forms on E which freely generate the
cohomology of each fiber. In this instance, the forms βi are closed on E.

Example 5.31. Let π : E → M be an oriented sphere bundle with fiber F = Sm.
According to Bott and Tu [13 ] (pp. 116–122), it is always possible to construct an
m form β on E, called a global angular form, with the following properties

(i) β |Fx
is a non-zero multiple of the volume form on Sm. Therefore β |Fx

generates the top dimensional cohomology of the fiber.
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(ii) There is an m form χ on the base space M such that

dβ = −π∗χ.

The form χ is closed on M and the cohomology class [χ] ∈ Hm+1(M) is called the
Euler class of the sphere bundle E. The bundle E admits a closed angular form if
and only if the Euler class of E vanishes.

Example 5.32. Let G be a connected Lie group, let H be a closed subgroup of
G and let M be the homogeneous space G/H. Then π : G → M is a fiber bundle
with fiber H. Suppose H is compact and semi-simple. Let γ1, γ2, . . . , γd be a basis
for the vector space of harmonic s forms on H. These forms are closed and left
invariant and generate the s dimensional cohomology of H. Define left invariant
forms βi on G by

βi(g) = (L∗
g−1(γi(e))(g),

where Lg : G → G is left multiplication by g ∈ G and e is the identity of H. Let
h ∈ H and let gh ∈ G denote a point in the fiber over [g] ∈ M . Since

βi |π−1[g](h) = βi(gh) = (Lg−1)∗(γi(h)),

it follows that the forms βi freely generate the cohomology of each fiber.

Example 5.33. Let π : P → M be a principal fiber bundle with fiberG. We assume
that G is a compact, connected Lie group. Let γ be a connection one form on P and
let Ω be the associated curvature two form. Let I be an adG invariant polynomial
on the Lie algebra g of G, homogenous of degree l. Then, as is well-known (see,
e.g., Chern [15 ]) the characteristic form

Ξ = I(Ω,Ω, . . . ,Ω)

is exact on P . Indeed, with

Ωt = tΩ+
1
2
(t − t2)[γ, γ]

and

β = l

∫ 1

0

I[γ,Ωt, . . . ,Ωt] dt,

it follows from the Bianchi identity for Ω and the invariance identity for I that

dβ = Ξ.
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Since the curvature forms Ω are horizontal, their restriction to each fiber vanishes
and therefore β | π−1(x) is a closed, 2l − 1 form on each fiber Gx = π−1(x) of P .

Let Xa, a = 1, 2, . . . , m be a basis for g. Then we can write

γ |Gx
=

m∑
a=1

Xaω
a,

where the one forms ωa are the Maurer-Cartan forms on Gx associated to the left-
invariant vector fields X̃a = (Lg)∗(Xa) on G. This proves that

β |Gx
= clI(ω, [ω, ω], . . . , [ω, ω])

where

cl = l

∫ 1

0

(t − t2)l−1 dt �= 0.

Finally, as the polynomial I ranges over a a generating set for the ring of adG

invariant polynomials on g, the forms β |Gx
will generate a basis for the cohomology

ring H∗(Ω∗(Gx)).

Example 5.34. If π : E → M is a fiber bundle over a simply connected base
manifold M then, by a monodromy argument, there are forms on E which will
freely generate the cohomology of each fiber. Let U = {Uα, }α∈J be a good cover
of M . Let Uα and Uβ belong to U . Because Uα, Uβ and Uα ∩ Uβ are contractible,
the bundles π−1(Uα), π−1(Uβ) and π−1(Uα ∩ Uβ) are all trivial bundles and the
restriction maps ρααβ and ρβαβ from π−1(Uα) to π−1(Uα ∩Uβ) and from π−1(Uβ) to
π−1(Uα ∩ Uβ) induce isomorphisms

(ρααβ)
∗ : Hp(π−1(Uα)) → Hp(π−1(Uα ∩ Uβ))

and

(ρβαβ)
∗ : Hp(π−1(Uβ)) → Hp(π−1(Uα ∩ Uβ)).

We now define an isomorphism

φαβ : H
p(π−1(Uα)) → Hp(π−1(Uβ))

by

φαβ = ((ρβαβ)
∗)−1 ◦ (ρααβ)

∗.
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The map φαβ is only defined in cohomology — it is not induced from a map from
π−1(Uβ) to π−1(Uα).

Now pick a fixed open set U0 in U and define, for each α ∈ J , an isomorphism

Υα : Hp(π−1(U0)) → Hp(π−1(Uα))

by

Υα = φαk
α ◦ · · · ◦ φα1

α2
◦ φ0

α1
,

where U0Uα1Uα2 · · ·Uαk
Uα is a “chain” from U0 to Uα (more precisely, 0α1α2 · · ·αkα

is an edge path in N(U), the nerve of the cover U). Under the hypothesis that M is
simply connected, one can prove that Υα is well-defined, that is, independent of the
choices Uα1 , Uα2 , . . . , Uαk

. This, for us, is the essence of the monodromy theorem
presented in Bott and Tu [13 ](pp. 141–152).

Finally, let βi, i = 1,, 2, . . . , d be a set of closed s forms on F which determine
a basis for Hs(F ). We pull these forms back to π−1(U0) using a local trivialization
of E on U0 to obtain a basis βi0 for Hs(π−1(U0)). For each α ∈ J , pick forms βiα on
π−1(Uα) such that

[βiα] = Υα[βi0].

Because Υα′ = φαα′ ◦ Υα, it follows that if x ∈ Uα ∩ Uα′ then

[(βiα′) |Fx
] = [(βiα) |Fx

].

Thus, if fα is a partition of unity on M subordinate to the cover {Uα }, then

βi =
∑
γ

fγβ
i
γ

are globally defined s forms on E which freely generate the cohomology of each
fiber.

Example 5.35. The Klein bottle π : K → S1 is perhaps the simplest example of a
fiber bundle for which the cohomology of the fibers cannot be freely generated by
forms on the total space. To show this, we represent the Klein bottle as the unit
square with the sides appropriately identified and we let K = U ∪V be the standard
trivialization of K, where U = (0, 1)× S1 → U0 = (0, 1) has coordinates (x, u) → x

and where V = (0, 1)× S1 → V0 = (0, 1) has coordinates (y, v) → y:
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−−−→

−−−→
0 1

U

−−−→

↑
↑

↓
↓

−−−→
1
2 1 0

1
2

V
0 1

W1 W2

The intersection U ∩V of these two coordinate charts consists of two disjoint open
sets W1 and W2. On W1, the two sets of coordinates are related by

y = x+ 1
2 for 0 < x < 1

2 and v = u

while, on W2, the change of coordinates is

y = x − 1
2

for 1
2
< x < 1 and v = 1 − u.

Now let α be any one form on K. We prove that there is a point q ∈ V0 such
that α |π−1(q) is exact thereby showing that cohomology of the fibers of K cannot

be freely generated by a form on K.
Without a loss in generality, we can suppose that at one point p on the base

space S1, say p ∈ U0 with x(p) = 1
2 , α |π−1(p) is the standard generator of the fiber

cohomology, i.e., α |π−1(p) = du. Write

α |U = a(x, u) dx+ b(x, u) du

and

α |V = c(x, u) dy + d(y, v) dv.

Then, in view of the above change of variables formula, the functions b and d are
related by

b(x, u) = d(x+ 1
2
, u) for 0 < x < 1

2

and

− b(x, u) = d(x − 1
2 , 1− u) for 1

2 < x < 1.
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We have assumed that b( 1
2 , u) = 1 and therefore, for all sufficiently small ε > 0,

d(1 − ε, u) > 0 and d(ε, u) < 0.

This implies that∫ 1

0

d(1 − ε, u) du > 0 and
∫ 1

0

d(ε, u) < 0.

and consequently, for some q ∈ (ε, 1− ε) ⊂ V0∫ 1

0

d(q, u) du = 0.

This condition is both necessary and sufficient for the one form α to be exact on
the fiber π−1(q).

Our next theorem shows that if there are forms on E which freely generate the
fiber cohomology, then the vertical cohomology of the variational bicomplex agrees
with the E1 term of the Serre spectral sequence for the bundle E.

Theorem 5.36. Let π : E → M be a fiber bundle with fiber F . If there are forms

on E which freely generate the cohomology of each fiber, then

Hr,s
V

(
Ω∗,∗(J∞(E))

) ∼= Ωr(M)⊗ Hs(Ω∗(F )). (5.52)

Specifically, let β1, β2, . . . , βd be degree s forms on E which freely generate the

s dimensional cohomology of each fiber. Then the forms

αi = π0,s[(π∞
E )∗(βi)] (5.53)

are type (0, s), dV closed forms on J∞(E). If ω ∈ Ωr,s(J∞(E)) is any dV closed

form, then there are forms ξi ∈ Ωr(M), i = 1, 2, . . . , d and a type (r, s− 1) form η

on J∞(E) such that

ω =
d∑

i=1

ξi ∧ αi + dV η. (5.54)

The forms ξi are unique in that the form ω is dV exact if and only if the forms ξi
all vanish.

Proof: The proof of this theorem consists of two steps. First, we use a generalized
Mayer-Vietoris sequence to prove the theorem for product bundles E : M×F → M ,
where the base space M is diffeomorphic to Rn. We then use a partition of unity
argument to prove the theorem for bundles with arbitrary base manifolds. Since
the second step is the easier of the two, we dispose of it first.
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Step 2. Suppose that the theorem is true for all bundles of the form Rn×F → Rn.
Let π : E → M be any fiber bundle and let U = {Uσ } be a cover of M by local
trivializations, i.e., each Uσ is diffeomorphic to Rn and π−1(Uσ) ∼= Uσ × F . Since
the restrictions βiσ = βi|Uσ

of the forms βi freely generate the cohomology of each

fiber in π−1(Uσ), the theorem applies, by assumption, to each fiber bundle π−1(Uσ)
over Uσ

Let ω ∈ Ωr,s(J∞(E)) be a dV closed form. Then the restriction ωσ of ω to
J∞(π−1(Uσ)) can be expressed in the form

ωσ =
d∑

i=1

ξi,σα
i
σ + dV ησ, (5.55)

where ξi,σ are r forms on Uσ and ησ is a type (r, s − 1) form on J∞(π−1(Uσ)).
Consequently, if { fσ } is a partition of unity on M subordinate to the cover U , then

ω =
∑
σ

fσωσ = ξi ∧ αi + dV η, (5.56)

where ξi =
∑

σ fσξi,σ and η =
∑

σ fσησ . (Multiplication by the functions fσ com-
mutes with dV because the fσ are functions on M). As we shall see, (5.55) always
holds for some choice of forms αi

σ on J∞(π−1(Uσ)) but this partition of unity ar-
gument fails unless the forms αi

σ are known to be the restrictions of global forms.
The uniqueness of the forms ξi,σ implies, on overlapping trivializations Uσ and

Uτ , that
ξi,σ = ξi,τ on Uσ ∩ Uτ .

Hence the forms ξi,σ are already the restrictions of global forms ξi on M . This
proves the uniqueness of the forms ξi in (5.54).

Step 1. Now let E : M × F → M , where M = Rn and let V = {Vσ} be a good
cover for F . Let { fσ} now denote a partition of unity on F subordinate to the cover
V. To prove the theorem for the bundle E, we show that the same combinatorics
of the cover V which determines H∗(Ω∗(F )) also determines H∗,∗

V (Ω∗,∗(J∞(E)).
Since V is a good cover, each element Vσ and each non-empty intersection

Vσ0σ1···σp
= Vσ0 ∩ Vσ1 · · · ∩ Vσp

is diffeomorphic to Rm. Consider the bundles

Eσ0σ1···σp
: M × Vσ0σ1···σp

→ M.
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Each Eσ0σ1...σp
is a trivial bundle overM = Rn with fiber F = Rm and consequently

we can introduce the variational bicomplex Ω∗,∗(J∞(Eσ0σ1...σp
)). Set

Kp,r,s =
∏

σ0<σ1<σ···<σp

Ωr,s(J∞(Eσ0σ1...σp
)).

An element of Kp,r,s is a p cochain ω on the cover V whose “components” ωσ0σ1...σp

are type (r, s) forms on J∞(Eσ0σ1...σp
). Let

r : Ωr,s(J∞(E)) → K0,r,s

be the restriction map and let

δ : Kp,r,s → Kp+1,r,s

be the difference map as defined by (5.12). The vertical differential dV and the
difference map δ commute. The kernel of the differential

dV : Kp,r,0 → Kp,r,1

is, by Proposition 1.9, a p cochain on V with values in Ωr(M), that is, an element
of

Cp = Cp(V,Ωr(M)).

In summary, given the good cover V of the fiber F , we can construct the following
double complex:

	 	
0 −−→ Ωr,3(J∞(E))

r−−→ K0,r,3 −−→
dV

	 dV

	 	
0 −−→ Ωr,2(J∞(E))

r−−→ K0,r,2
δ−−→ K1,r,2 −−→

dV

	 dV

	 dV

	 	
0 −−→ Ωr,1(J∞(E))

r−−→ K0,r,1
δ−−→ K1,r,1

δ−−→ K2,r,1 −−→
dV

	 dV

	 dV

	 dV

	
0 −−→ Ωr,0(J∞(E))

r−−→ K0,r,0
δ−−→ K1,r,0

δ−−→ K2,r,0 −−→
(π∞

M )∗
	 (π∞

M )∗
	 (π∞

M )∗
	 (π∞

M )∗
	

0 −−→ Ωr(M)
r−−→ C0

δ−−→ C1
δ−−→ C2 −−→ .

(5.57)
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By Proposition 4.1, the interior columns of this double complex are exact. The
operator

K : Kp,r,s → Kp−1,r,s

defined by
[K(ω]σ0σ1···σp−1 =

∑
σ

fσ ωσσ0σ1···σp−1

is a homotopy operator for the interior rows of (5.57). Consequently, the cohomology
of each edge complex of (5.57) is isomorphic to the cohomology of the total complex
with differential δ + d±V where, for ω ∈ Kp,r,s, d±V (ω) = (−1)pdV ω. This implies
that the edge complexes are isomorphic to each other, i.e.,

Hr,s
V

(
Ω∗,∗(J∞(E))

) ∼= Hs
(
C∗(V,Ωr(M))

)
. (5.58)

In fact, it follows from the general collocation formula (Bott and Tu [13 ](pp. 102–
105) that the isomorphism (5.58) is induced by the map

ΨJ∞(E) : Cs(V,Ωr(M)) → Ωr,s(J∞(E))

defined by

ΨJ∞(E)(γ) = (−1)s(d±V ◦ K)s(γ),

where γ is an s cochain on V with values in Ωr(M). ( The subscript J∞(E) attached
to Ψ distinguishes it from another similar map to be introduced momentarily.) Note
that if the components of γ are the r forms γσ0σ1···σp

on M , then ΨJ∞(E)(γ) is the
global form on J∞(E) whose restriction to J∞(Eσ0) is

[ΨJ∞(E)(γ)]σ0 =
∑

σ1,σ2,...,σs

dV fσ1 ∧ dV fσ2 ∧ · · · ∧ dV fσs
∧ γσ0σ1···σs

. (5.59)

In Bott and Tu [13 ](pp. 89–104), this Mayer-Vietoris argument is applied in
the same way to show that for any manifold F with good cover V, the de Rham
cohomology of F can be computed from the combinatorics of the cover by the
isomorphism

Hs(Ω∗(F )) ∼= Hs(C∗(V,R)). (5.60)

Since the cover V is finite, Hs(C∗(V,R)) is a finite dimensional real vector space
and accordingly we can endow it with the structure of a free, finite dimensional
C∞(M) module. Since Ωr(M) is also a free, finite dimensional C∞(M) module, we
have that

Hs
(
C∗(V,Ωr(M))

) ∼= Hs(C∗(V,R)) ⊗Ωr(M).
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This isomorphism, together with (5.58) and (5.60), proves (5.52).
It remains to verify (5.54). We first observe that if we identify a s− 1 form η on

F with its pullback to E = M × F , then

[π0,s ◦ (π∞
E )∗](dFη) = dV [(π

0,s−1 ◦ (π∞
E )∗)η]. (5.61)

Secondly, the isomorphism (5.60) is induced by the map

ΨF : Cs(V,R) → Ωs(F )
defined by

ΨF (γ) = (−1)s(d±F ◦ K)s(γ)

=
∑

σ1,σ2,...,σs

dF fσ1 ∧ dF fσ2 ∧ · · · ∧ dF fσs
∧ γσ0σ1···σs

.
(5.62)

Extend ΨF by linearity to a C∞(M) module map

ΨF : Cs(V,Ωr(M)) → Ωs(F ) ⊗Ωr(M).

A comparison of (5.59) and (5.62) shows that

[πr,s ◦ (π∞
E )∗] ◦ ΨF = ΨJ∞(E). (5.63)

Pick s forms β1, β2, . . . , βd on F which generate the s dimensional cohomology
Hs(F ). Let γi be corresponding s dimensional cochains in Cs(V,R), i.e.,

ΨF (γi) = βi + dF τ i, (5.64)

where each τ i is a s− 1 form on F . The cochains γi form a basis for Hs(C∗(V,R))
as a real vector space. They also form a basis for Hs

(
C∗(V,Ωr(M))

)
as a Ωr(M)

module. In view of (5.53) and (5.63), (5.64) implies that for any r form ξ on M ,

ΨJ∞(E)(γiξ) = αi ∧ ξ + dV (η
i
1 ∧ ξ), (5.65)

where ηi1 = π0,s−1((π∞
E )∗(τ i)). Finally, let ω be any type (r, s), dV closed form on

J∞(E). The isomorphism (5.58) proves that there are r forms ξi on M such that

ω =
d∑

i=1

[
ΨJ∞(E)(ξiγi)

]
+ dV η2.

On account of (5.65), this yields (5.54) with

η = η2 +
d∑

i=1

η̃i1 ∧ ξi,

as required
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In Chapter Four we introduced an invariant system of weights for forms on J∞(E)
with polynomial dependencies in the derivative variables. We proved that if ω is
either dV or dH closed then there exist, at least locally, a minimal weight form η

such that dV η = ω or dHη = ω. In the previous section we showed that there are no
obstructions to the global construction of minimal weight forms for the interior rows
of the variational bicomplex. Now we prove that there are no further obstructions,
other than those identified in Theorem 5.36, to the construction of minimal weight
forms on the vertical complexes of the variational bicomplex. With this result in
hand it will be a simple matter to obtain global minimal weight results for the
Euler-Lagrange complex.

Proposition 5.37. Let ω ∈ Ωr,s
Pj,k

(J∞(E)), s > 1, and suppose that ω is dV

exact. Then there is a form η ∈ Ωr,s−1
Pj,k

(J∞(E)) such that η has the same weights

as ω and

ω = dV η.

Proof: We first remark that because the weights wp satisfy

wp(η) ≥ wp(dV η),

a form η with the same weights as ω and satisfying dV η = ω is necessarily a minimal
weight form for ω. Secondly, if f is any function on M then the weights of fη are no
more than those of η ( at points where f is nonzero, the weights coincide). Hence,
just as in the proof of Theorem 5.36, it suffices to prove this proposition for product
bundles E = M × F → M , where M = Rm.

Let V be a good cover of F and let {Kp,r,s, δ, dV } be the double complex (5.57).
Define a sequence of forms ω0, ω1, . . . , ωs and η0, η1, . . . , ηs−1, where ωi ∈ Ki,r,s−i

and ηi ∈ Ki,r,s−i−1 by r(ω) = ω0,

dV ηi = ωi and δηi = ωi+1 s = 0, 1, 2, . . . , s − 1.

By virtue of the local existence of minimal weight forms, we can assume that that
each ηi is a minimal weight form for ωi. This implies that the weights of each ηi

coincide with that of ω. Since dV ωs = 0, the components of ωs are the pullbacks
of forms on M , i.e., ω ∈ Cs(V,Ωr(M)). Because ω is dV exact, ωs must be δ exact
and hence there is a cochain γs−1 ∈ Cs−1(V,Ωr(M)) such that δγs−1 = ωs. Define
another sequence of forms τ s−1, τ s−2, . . . , τ0, where τ i ∈ Ki,r,s−i by

τ s−1 = ηs−1 − γs−1 and τ i = ηi − dV Kτ i+1. i = s − 2, s − 3, . . . , 0.



Global Properties 239

Here K is the homotopy operator for the generalized Mayer-Vietoris sequence. Since
τ s−1 is δ exact, it follows that each τ i is δ exact. In particular, τ0 is the restriction
of a global form τ satisfying dV τ = ω. Finally, since weights are not increased by
either the homotopy operator K or by dV the weights of τ i are those of ωi and
therefore τ is a minimal weight form for ω.

The next theorem completes our analysis of minimal weight forms in the varia-
tional bicomplex.

Theorem 5.38.

(i) Let ω ∈ Ωr,0
Pj,k

(J∞(E)). If ω is exact, then ω = dHη, where η is a minimal

weight form.

(ii) Let ∆ be a source form in F1
Pj,k

(J∞(E)). If ∆ is the Euler-Lagrange form for

some Lagrangian on J∞(E), then∆ = E(λ), where λ is a minimal order Lagrangian.

Proof: The proof of this theorem involves a simple modification of the proof of
Theorem 5.9. To prove (i), we first invoke Corollary 5.7 and Proposition 5.37 to pick
minimal order forms ωi in (5.29). Secondly, the form β defined by (5.30) is d exact
because ω is dH exact. By appealing once again to Corollary 5.7 and Proposition
5.37, a minimal order form α on J∞(E) can be constructed such that dα = β. The
proof of (ii) is similar.

Corollary 5.39. Let ∆ ∈ F1(J∞(E)) be a source form of order 2k. Then ∆ is

the Euler-Lagrange form of a Lagrangian of order k if and only if

(i) δV∆ = 0, i.e., ∆ is locally variational;

(ii) ∆ ∈ F1
Pk,2k

(J∞(E)) and wk(∆) ≤ k; and

(iii) the cohomology class [∆] ∈ Hn+1(J∞(E)) vanishes.

Our next goal is to compute the cohomology of the complex

{H∗,s
V

(
Ω∗,∗(J∞(E))

)
, dH}.

This is the so-called E2 term of the (second) spectral sequence for the variational
bicomplex, defined by

Er,s
2 (J∞(E)) =

ker {dH : Hr,s
V (Ω∗,∗(J∞(E))) → Hr,s+1

V (Ω∗,∗(J∞(E)))}
im {dH : Hr,s−1

V (Ω∗,∗(J∞(E))) → Hr,s
V (Ω∗,∗(J∞(E)))} .

If we let

Zr,s
2 (J∞(E)) = {ω ∈ Ωr,s(J∞(E)) | dV ω = 0, dHω = dV β }

and
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Br,s
2 (J∞(E)) = {ω ∈ Ωr,s(J∞(E)) |ω = dHβ − dV γ, dV β = 0 }.

then it is easy to see that

Er,s
2 (J∞(E)) ∼= Zr,s(J∞(E))

Br,s(J∞(E))
. (5.66)

Lemma 5.40. Let s ≥ 1 and suppose that β is an s form on π : E → M with the

property that

dβ = π∗χ (5.67)

for some (s+ 1) form χ on M . Then the pullback of β to Ω0,s(J∞(E)), viz.,

α = π0,s
(
(π∞

E )∗(β)
)

is a dV closed form which belongs to Z0,s
2 (J∞(E)).

Proof: Apply (π∞
E )∗ to (5.67) to arrive at

d [(π∞
E )∗(β)] = (π∞

M )∗(χ). (5.68)

Since (π∞
E )∗(β) is an s form on J∞(E), it can be decomposed into the sum

(π∞
E )∗(β) = α+ β1 + β2 + · · ·+ βs,

where βi is a form on J∞(E) of type (i, s − i). Equation (5.68) becomes

dV α+ (dHα+ dV β1) + (dHβ1 + dV β2) + · · · = (π∞
M )∗(χ).

Because (π∞
M )∗(χ) is of type (s + 1, 0), the (0, s+ 1) and (1, s) components of this

equation are dV α = 0 and dHα+dV β1 = 0. This proves that α ∈ Z0,s
2 , as required.

Theorem 5.41. Let π : E → M be a fiber bundle with fiber F . Suppose, for

s ≥ 1, that there are d type (0, s) forms {α1, α2, . . . , αd} on J∞(E) which

(i) freely generate the vertical cohomology H∗,s
V on J∞(E); and

(ii) belong to Z0,s
2 (J∞(E)).
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Then

Er,s
2 (J∞(E)) ∼= Hr(M)⊗ Hs(F ). (5.69)

Proof: This is strictly an exercise in homological algebra based upon Theorem
5.36 and (5.66). Let ω ∈ Zr,s

2 (J∞(E)). Since ω is dV closed, there are d degree r

forms ξi on M and a type (r, s − 1) form η on J∞(E) such that

ω =
d∑

i=1

ξi ∧ αi + dV η. (5.70)

There is also a type (r + 1, s − 1) form γ1 for which

dHω = dV γ1. (5.71)

Since the generators αi belong to Z0,s
2 , there are type (1, s− 1) forms γi2 such that

dHαi = dV γi2. (5.72)

Now apply the horizontal differential dH to (5.70) and substitute from (5.71) and
(5.72) to arrive at

d∑
i=1

dHξi ∧ αi = dV γ3.

This implies, by the uniqueness statement in Theorem 5.36, that dHξi = 0. Thus,
the forms ξi are closed on M .

It is an easy exercise to verify that map

Ψ: Er,s
2 (J∞(E)) → Hr(M)⊗ Hs(F )

defined by

Ψ([ω]) =
d∑

i=1

[ξi]⊗ [αi]

is both well-defined and an isomorphism.

Our earlier remarks show that Theorem 5.41 applies if π : E → M is either an
oriented sphere bundle or a principal fiber bundle with compact fiber G. Theorem
5.41 also applies whenever the base manifold M is simply connected.
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Proposition 5.42. Let s ≥ 1 and suppose {α1, α2, . . . , αd} are dV closed, type

(0, s) forms on J∞(E) which freely generate the s dimensional vertical cohomology

on J∞(E). If M is simply-connected, then there are forms {α̃1, α̃2, . . . , α̃d} in

Z0,s
2 (J∞(E)) which also freely generate the s dimensional vertical cohomology on

J∞(E).

Proof: Since the forms αi are dV closed, the type (1, s) forms dHαi are also dV
closed. Because the forms αi freely generate the vertical cohomology of J∞(E),
there are one forms ξij on M and (1, s − 1) forms ηi such that

dHαi =
d∑

j=1

ξij ∧ αj + dV ηi.

To this equation we apply dH to conclude that

d∑
j=1

(dξij −
d∑

k=1

ξik ∧ ξkj ) ∧ αj = dV σi. (5.73)

In this equation we have identified dξij with dHξij. On account of Theorem 5.36,
equation (5.73) implies that

dξij =
d∑

k=1

ξik ∧ ξkj . (5.74)

To prove the proposition, it suffices to construct functions f ij on M , for i, j = 1,
2, . . . , d, such that det(f ij) �= 0 and such that the forms

α̃i =
d∑

j=1

f ijα
j

belong to Z0,s
2 . Since the f ij are functions on M , dV α̃ = 0. Since

dH α̃i =
d∑

j=1

(d f ij +
d∑

k=1

f ik ξ
k
j ) ∧ αj + dV (

d∑
k=1

f ikη
k))

the forms α̃i belong to Z0,s
2 if and only if

d f ij +
d∑

k=1

f ik ξkj = 0. (5.75)
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It is a simple matter to check that the integrability conditions for (5.75) are
(5.74). Fix a point x0 ∈ M . Then there is a unique solution f ij to (5.75), defined
on all of M with f ij(x0) = δij . Moreover, det(f ij) �= 0 on all of M .

This is easily proved from first principles. Let γ : [0, 1] → M be a smooth curve
with γ(0) = x0 and γ(1) = x. Let y = (yij) : [0, 1] → Rd2

be the unique solution to
the system of ordinary differential equations

ẏij +
d∑

k=1

yikγ
∗(ξkj ) = 0 yij(0) = δij .

Because this is a linear system of equations the solution exists over the entire interval
[0, 1]. The integrability conditions (5.74) and the fact that M is simply connected
enable one to prove that yij(1) is independent of the path γ. See T. Y. Thomas
[67 ]. The solution to (5.75) is then f ij(x) = yij(1). Finally, along γ, det(yij) satisfies
a differential equation which insures that this determinant does not vanish.

In many instances, knowledge of this E2 term of the variational bicomplex is
sufficient to compute, by spectral sequence methods, the de Rham cohomology

H∗(Ω∗(J∞(E)), d) ∼= H∗(Ω(E), d).

For examples, see McCleary [50 ].

C. Generalized Poincaré-Cartan Forms and Natural Differential Opera-
tors on the Variational Bicomplex. In Theorem 5.9, we established the exis-
tence of a vector space isomorphism

Φ : H∗(E∗(J∞(E))) → H∗(Ω∗(J∞(E))). (5.76)

Despite the importance of this result, its direct applications are somewhat limited
because the map Φ, as things now stand, is rather difficult to evaluate. First,
as we pointed out in the proof of Theorem 5.9, the map Φ is only well-defined in
cohomology; it is not defined as the induced map of a cochain map on the underlying
complexes of forms. Second, to compute

Φ([ω0]) = ω0 − ω1 + ω2 − · · · (5.77a)

it is necessary to solve successively the equations

σi = dV ωi and dHωi+1 = σi (5.77b)
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for i = 0, 1, 2, . . . , a task which generally is not easily accomplished. (Indeed,
throughout all the examples in §5A we assiduously avoided using the map Φ in
favor of its inverse Ψ, the projection map from Ω∗ to E∗.) This raises the problem
of whether or not there is in fact a cochain map

Φ: E∗(J∞(E)) → Ω∗(J∞(E)) (5.78)

which will induce the isomorphism Φ in cohomology.
This problem is motivated by two different considerations. First, given such a

map Φ, one can use it to immediately translate questions concerning the Euler-
Lagrange complex to questions on the de Rham complex of J∞(E). Such a map,
in effect, completely geometrizing the formal aspects of the calculus of variations.
Consider, as an illustration, the autonomous inverse problem to the calculus of
variations which we solved in Example 5.15. Here, for reasons which will become
apparent later, we restrict our attention to the autonomous inverse problem for
ordinary differential equations. Let E : R × F → R and let ∆ be an autonomous,
locally variational source form on J∞(E). Then, with the map (5.78) in hand, we
have that Φ(∆) is a two form on J∞(E) and, as such, can be decomposed uniquely
into the form

Φ(∆) = Φ2(∆) + Φ1(∆) ∧ dx,

where Φ2(∆) is a two form satisfying
d

dx
Φ2(∆) = 0 and Φ1(∆) is a one form.

Because ∆ is locally variational and because Φ is a cochain map, Φ(∆) is a d closed
form on J∞(E). This, in turn, implies that

dΦ2(∆) = 0 and dΦ1(∆) = 0.

Thus every autonomous, locally variational source form ∆ determines a pair of
cohomology classes

([Φ1(∆)], [Φ2(∆)]) ∈ H1(J∞(E))⊕ H2(J∞(E)).

Now suppose that there is an autonomous Lagrangian λ for ∆. Then

Φ(λ) = Φ1(λ) + Φ0(λ) ∧ dx

and, because d(Φ(λ)) = Φ(E(λ)), we must have that

Φ2(∆) = d (Φ1(λ)) and Φ1(∆) = d (Φ0(λ)).
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Therefore, if ∆ admits an autonomous Lagrangian, the forms Φ2(∆) and Φ1(∆)
must be exact. This proves, consistent with the results of Theorem 5.16, that the
obstructions to the solution to the autonomous inverse problem to the calculus of
variations lie in H1(J∞(E))⊕H2(J∞(E)). Note that we have tacitly assumed that
the forms Φ1(∆) and Φ2(∆) are themselves autonomous differential forms. We shall
address this assumption momentarily.

The second, and I think more compelling, reason for seeking cochain maps (5.78)
comes from the observation that the Poincaré-Cartan form in mechanics determines
just such a map. For the first order Lagrangian

λ = L(x, uα, u̇α) dx

the associated Poincaré-Cartan form is

ΦP.C.(λ) = λ+
∂L

∂u̇α
θα. (5.79)

A simple calculation shows that ΦP.C.(λ) is d closed if and only if E(λ) = 0 and,
moreover, that λ is a global total derivative if and only if ΦP.C. is exact. For example,
on R × S1 → R, the Lagrangian λ = u̇ dx is not exact because the the one form
ΦP.C.(λ) = du is not exact on R× S1. The Poincaré-Cartan form ΦP.C.(λ) has two
other properties which contribute to its importance. It is computable locally from
λ in that ΦP.C.(λ)(j∞(s)) is depends smoothly on only the jets of the Lagrangian
L at j∞(s). Furthermore, the Poincaré-Cartan form is invariant under all local,
fiber-preserving diffeomorphisms of E.

Because of the ubiquitous role that the Poincaré-Cartan form plays in mechanics,
it is important to seek appropriate generalization of this form for general variational
principles. One approach to this problem is via the theory of Lepagean equiva-
lents which we briefly touched upon in §A of this chapter. The Poincaré-Cartan
form in mechanics also emerges immediately from the application of the Cartan
method of equivalence (Gardner [26 ]) and this provides a second means by which
generalizations of (5.79) can be obtained. Here we propose to generalize (5.79) by
characterizing cochain maps (5.78). This approach insures that the our generalized
Poincaré-Cartan form Φ(λ) will change by an exact form whenever the Lagrangian
is modified by a divergence.

Accordingly, in an attempt to emulate all of the above properties of the Poincaré-
Cartan form, we look for maps

Φp : Ep(J∞(E)) → Ωp(J∞(E)) (5.80)
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which are natural differential operators in the sense that

(P1) for any ω ∈ Ep, Φp(ω)(j∞(s)) is a smooth function of the coefficients of ω
and their derivatives to some finite order evaluated at j∞(s); and

(P2) for all local diffeomorphisms φ : E → E with prolongation prφ : J∞(E) →
J∞(E)

Φp
(
(prφ)∗ω

)
= (prφ)∗

(
Φ(ω)

)
. (5.81)

Properties P1 and P2 insure that Φp(ω) is given by some local formula in the
coefficients of ω which patches together under change of coordinates on E to define
a global form on J∞(E). Equation (5.81) also implies that Φ(ω) inherits the sym-
metries of ω. For example, in our foregoing discussion of the autonomous source
form ∆, we are assured that the coefficients of the forms Φ1(∆) and Φ2(∆) contain
no explicit x dependence. The infinitesimal version of (5.80) is the Lie derivative
commutation formula

Φp(LprXω) = LprXΦp(ω),

where X is any projectable vector field on E. This naturality property is not in
general enjoyed by the Lepagean forms constructed in §5A. The maps Φp are also
required to satisfy

(P3) Ψ ◦ Φp = identity on Ep(J∞(E)); and

(P4) d
(
Φp(ω)

)
= 0 whenever ω is closed in E∗(J∞(E)).

The condition P4 is weaker than the cochain condition

dΦp(ω) = Φp+1(δω) (5.82)

but, because of property P3 and the fact that Ψ induces an isomorphism in cohomol-
ogy, P4 is still sufficient to insure that Φp induces a well-defined map in cohomology.
Indeed, since Ψ

(
Φp(ω)

)
= ω, it follows that Φp(ω) must be exact whenever ω is ex-

act. Condition P4 has the advantage that it decouples the problem of constructing
the maps Φp for different values of p whereas (5.82) represents an equation for Φp+1,
given that Φp has already been found. Actually, with regards to the specific goal of
finding maps on forms which will induce the isomorphism (5.76), it suffices to find
maps Φp whose domain need not be all of Ep(J∞(E)) but rather any subspace of
Ep(J∞(E)) which contains all the closed forms.

We are able to construct maps satisfying P1–P4 when the dimension of the base
manifold M is n = 1 and we conjecture that such maps do not exist when n ≥ 2.
For n ≥ 2, partial results are possible if we restrict the domain of the maps Φp to
first order forms.
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Our construction of maps Φp satisfying properties P1–P4 depends upon the fol-
lowing observation. The horizontal homotopy operators hr,sH introduced in Chapter
4A are local differential operators for s ≥ 1. Suppose that these operators are nat-
ural differential operators. We could then define maps Φp with all the prescribed
properties by using equations (5.77), where the homotopy operators are used to
solve the second of (5.77b) for the forms ωi+1 in terms of σi, i.e., given ω0 we
inductively define the forms ωi+1 by

ωi+1 = hr,sH (dV ωi) (5.83a)

and compute

Φp(ω) = ω0 − ω1 + ω2 − · · · . (5.83b)

Accordingly, we are lead to the problem of finding conditions under which the
horizontal homotopy operators satisfy

hr,sH ◦ (prφ)∗ = (prφ)∗ ◦ hr,sH

for all local diffeomorphisms φ of E. Again, this naturality condition implies that

hr,sH ◦ LprX = LprX ◦ hr,sH (5.84)

for all projectable vector fields X on E.
To describe circumstances where (5.84) holds, we define subspaces

Wr,s(J∞(E)) ⊂ Ωr,s(J∞(E))

as follows. A form ω ∈ Ωr,s(J∞(E)) belongs to Wr,s(J∞(E)) if for any vector field
X on J∞(E) such that (π∞

2 )∗(X) = 0,

(W1) X ω = 0, and (W2) X dHω = 0.

In local coordinates these two conditions become

∂Iα ω = 0 for |I| > 3, (5.85)

and

(n − r + 2)∂ hk
α ω + dxh ∧ ∂ ki

α ωi + dxk ∧ ∂ hi
α ωi = 0, (5.86)
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where ωi = Di ω. This latter equation follows easily from W1 and Proposition 2.10
with I = ihk. Condition W1 simply states that ω belongs to the ideal generated
by the forms dxi, θα, θαi and θαij . No contact forms of order 3 or higher can occur
although the coefficients of ω may depend upon higher order derivatives. Note that
condition W2 holds automatically when ω lies in the ideal generated by the forms
dxi, θα and θαi and also when dHω = 0.

Conditions W1 and W2 are “generically” necessary conditions for hr,sH to act
naturally. To see this, consider first the type (2, 1) form

ω = θxxx dx ∧ dy = dH(−θx ∧ dy), (5.87)

which does not satisfy W1, and the vector field

X = x2 ∂

∂x
.

Then a series of elementary calculations show that

h2,1
H (ω) = −θxx ∧ dy

and

LprX

(
h2,1
H (ω)

) − h2,1
H

(LprXω
)
= θx ∧ dx+ θy ∧ dy.

This shows that with n = 2, h2,1
H does not in general act naturally — even on the

subspace of dH closed forms. Next, let X be an vector field on a fixed chart (x, u, U)
of E which is of the form

X = ai(x)
∂

∂xi
.

Suppose ω ∈ Ωr,s(J∞(U)) satisfies W1. Then a lengthy calculation shows that

LprX

(
hr,sH (ω)

) − hr,sH
(LprXω

)
=

1
s(n − r + 1)(n − r + 2)

σ, (5.88)

where

σ = (Dhka
p) θα ∧ {Dp [(n − r + 2)∂ hk

α ω + 2dx(h ∧ ∂ k)i
α ωi]}.

Consequently, if hr,sH is to act naturally, σ must vanish. For s = 1 this implies W2.
The next proposition (part(ii)) establishes the sufficiency of the conditions W1

and W2.
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Proposition 5.43.

(i) Let Zr,s
H (J∞(U)) ⊂ Ωr,s(J∞(U)) be the subspace of dH closed forms. Then,

for s ≥ 1,
h1,s
H : Z1,s

H (J∞(U)) → Ω0,s(J∞(U))

is a natural differential operator.

(ii) For s ≥ 1, the maps

hr,sH : Wr,s(J∞(U)) → Ωr−1,s(J∞(U))

are natural differential operators.

Proof: (i) Recall that if η1 and η2 are two type (0, s) forms on J∞(U), where
s ≥ 1, then dHη1 = dHη2 implies that η1 = η2. Let f : U → V be a local (fiber-
preserving) diffeomorphism between two coordinate charts U and V of E and let
F = pr f . Since

dH
(
F ∗h1,s

H (ω)
)
= F ∗(dHh1,s

H (ω)
)
= F ∗(ω) = dH

(
h1,s
H (F ∗(ω)

)
we conclude that

F ∗(h1,s
H (ω)

)
= h1,s

H

(
F ∗(ω)

)
for all ω ∈ Z1,s(J∞(U)), as required.

(ii) Given ω ∈ Wr,s(J∞(U)), define a second order total differential operator

P : Ev(J∞(E)) → Ωr,s−1(J∞(E))

on the space of evolutionary vector fields by

P (Y ) = prY ω.

Because of conditions W1 and W2, it is a simple matter, using (2.23), to write this
operator in the form

P (Y ) = Q(Y ) + dH [R(Y )], (5.89)

where Q and R are the first order operators defined by

Q(Y ) = Y αFα(ω) +Di[Y α
(
F i
α(ω)−

1
n − r + 1

dxi ∧ F j
α(ωj)

)
],

and
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R(Y ) =
1

n − r + 1
Y αF j

α(ωj) +
2

n − r + 2
Di[Y αF ij

α (ωj)]. (5.90)

Note that both Q and R are trace-free (see Proposition 2.4).
The decomposition (5.89) of P into the sum of two first order trace-free operators

is unique. Indeed, suppose that Q̃ and R̃ are two first order, trace-free operators,
i.e.,

Q̃(Y ) = Y αAα +Di(Y αBi
α), Di Bi

α = 0

and

R̃(Y ) = Y αCα +Di(Y αDi
α), Di Di

α = 0

and that
Q̃(Y ) + dHR̃(Y ) = 0 (5.91)

for all evolutionary vector fields Y . By setting the coefficient of Y α
ij in (5.91) to

zero, it is found that
dxi ∧ Dj

α + dxj ∧ Di
α = 0.

Because the coefficients Di
α is trace-free, the inner evaluation of the equation with

the total vector field Di yields Di
α = 0. The coefficient of Y α

i in (5.91) now reduces
to

Bi
α + dxi ∧ Cα = 0,

from which it follows, again by inner evaluation with Di, that Cα = 0. This proves
that R̃ = 0 and therefore Q̃ = 0. This suffices to prove the uniqueness of the
decomposition (5.89).

This also suffices to prove that for ω ∈ Wr,s(J∞(E)) the operators Q(Y ) and
R(Y ) are invariantly defined, e.g., F ∗[R(F∗(Y ))] = R(Y ). Finally, with Y replaced
by

Y = θα ⊗ ∂

∂uα
,

we find, on comparing (4.13) with (5.90), that

hr,sH (ω) = R(Y )

and the invariance, or naturality, of the horizontal homotopy operators is estab-
lished.

Of course, one could also prove (ii) by a direct change of variables calculation.
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We now use Proposition 5.43 to establish the naturality of the map (5.83) in two
special cases.

Example 5.44. Here we take dimM = 1. In this case the augmented variational
bicomplex collapses to the three column double complex

	 	 	
0 −−−−→ Ω0,2

dH−−−−→ Ω1,2
I−−−−→ F2 −−−−→ 0	dV

	dV

	δV

0 −−−−→ Ω0,1
dH−−−−→ Ω1,1

I−−−−→ F1 −−−−→ 0	dV

	dV

R −−−−→ Ω0,0
dH−−−−→ Ω1,0.

By Proposition 5.43(i), the homotopy operators

h1,s
H : Ω1,s(J∞(E)) → Ω0,s(J∞(E))

are all natural differential operators and hence the maps

Φp : Ω1,p(J∞(E)) → Ωp+1(J∞(E))

defined by

Φp(ω) = ω − h1,p+1
H (dV ω)

are natural. In this case the maps Φp also determine a cochain map Φ from the
Euler-Lagrange complex to the de Rham complex.

Proposition 5.45. For any λ ∈ Ω1,0(J∞(E)) and any ω ∈ Fp(J∞(E)), Φ satisfies

d (Φ(λ)) = Φ(E(λ)) and d (Φ(ω)) = Φ(δV (ω)). (5.92)

Proof: We first note that the two type (0, p+ 2) forms

dV h1,p+1
H (dV ω) and h1,p+2

H (dV IdV ω)
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have the same horizontal exterior derivative and are therefore equal. To prove this
we use the identity (4.15), i.e.,

η = I(η) + dHh1,s
H (η),

first with η = dV ω and then with η = dV IdV ω to find that

dHdV h1,p+1
H (dV ω) = −dV [dV ω − I(dV ω)] = dV IdV ω,

and (recall that δV = I ◦ dV )

dHh1,p+2
H (dV IdV ω) = dV IdV ω − δ2

V (ω) = dV IdV ω.

Consequently, we deduce that

d [Φ(ω)] = dV ω − dHh1,p+1
H (dV ω)− dV h1,p+1(dV ω)

= dV ω − (dV ω − IdV ω)− h1,p+2
H (dV IdV ω)

= δV ω − h1,p+2
H (dV δV ω)

= Φp+1(δV ω),

as required. The proof of the first equation in (5.92) is the same.

Corollary 5.46. Let E : R× F → R and let G be the group of translations on

the base space R. Then

H∗(E∗
G(J

∞(E))) ∼= H1(F )⊕ H2(F ).

Proof: The proof of this result was outlined in our introductory remarks at the
beginning of this section.

For a kth order single integral Lagrangian λ = L[x, u(k)] dx in Ω1,0(J∞(E)) it
readily follows from the formula (4.13) for h1,1

H that

Φ(λ) = λ+
k∑

j=0

P (j)
α θ α

(j),

where

P (j)
α =

k−j∑
l=0

(−1)l
dl

dxl
(∂L
∂uαj+l+1

)
.
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This is the standard Poincaré-Cartan form for higher order, single integral problems
in the calculus of variations. See, e.g., Krupka [44 ] or Hsu [37 ].

For a source form ∆ ∈ Ω1,1(J∞(E)) described locally by

∆ = Aα[x, u] duα ∧ dx,

we obtain what one might call the Poincaré-Cartan two form Φ(∆) for ordinary
differential equations. For a third source form, Φ(∆) is explicitly given by

Φ(∆) = ∆+
1
2
[∂Aα

∂u̇β
− d

dx

∂Aα

∂üβ
+

d2

dx2

∂Aα

∂
...
uβ

]
θα ∧ θβ

+
1
2
[(∂Aα

∂üβ
+

∂Aβ

∂üα
) − d

dx

(∂Aα

∂
...
uβ

+ 2
∂Aβ

∂
...
uα

)]
θα ∧ θ̇β

+
1
2
[∂Aα

∂
...
uβ

− ∂Aβ

∂
...
uα

]
θα ∧ θ̈β − 1

2
[∂Aα

∂
...
uβ

]
θ̇α ∧ θ̇β.

We emphasize that this is an invariant defined two form for any third order source
form ∆ which is d closed if and only if ∆ is locally variational.

Example 5.47. Let F be any open domain in Rm and let E : R × F → R. Let
ηαβ = diag[±1,±1, . . . ,±1] and let

Pα = ηαβ ü
β − Aαβu̇

β − Bα,

where the coefficients Aαβ = −Aβα andBα are smooth functions on F . For instance,
when m = 4, when ηαβ = diag[1, 1, 1,−1], and when Bα = 0, the source equations
Pα = 0 become the Lorentz source equations in electrodynamics. The Poincaré-
Cartan two form for the second order source form ∆ = Pα θα ∧ dx is

Φ(∆) = ∆+
1
2
[∂Pα

∂u̇β
− d

dx

∂Pα

∂üβ
]
θα ∧ θβ

+
1
2
[∂Pα

∂üβ
+

∂Pβ

∂üα
]
θα ∧ θ̇β

= α+ β ∧ dx+ dγ,

where
α = −1

2
Aαβ duα ∧ duβ , β = −Bα duα,

and η = ηαβ ü
β duα. Thus, in the notation introduced at the beginning of this

section, Φ1(∆) = β and Φ2(∆) = α+dγ. Therefore, ∆ admits a global, autonomous
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Lagrangian if and only if α and β are exact on F . In fact, if α = d f and β = dη,
then

Φ(∆) = d (f dx+ η + γ)

and an autonomous Lagrangian for ∆ is given by

λ = π1,0(f dx+ η + γ).

Example 5.48. Let Ωr,s
1 (J∞(E)) denote the space of type (r, s) forms which lie

in the ideal generated by dxi, θα, and θαi with coefficients which depend only upon
the first order variables (xi, uα, uαi ). As we remarked in Chapter 4C, this is a well-
defined subspace of Ωr,s(J∞(E)) and

dV : Ωr,s
1 → Ωr,s+1

1 .

Forms in Ωr,s
1 all satisfy conditions W1 and W2 and therefore belong to the subspace

Wr,s(J∞(E)). By Proposition 5.43 (ii)

hr,sH : Ωr,s
1 → Ωr−1,s

1

is a natural differential operator and so the map

Φr : Ωr,0
1 → Ωr(J∞(E)),

as defined by (5.83), is natural. If we bear in mind that, for ω ∈ Ωr,0
1 , the partial

derivative
∂ω

∂uαi
transforms tensorial under coordinate transformations, then this

naturality is manifest in the explicit formula

Φ(ω) =
r∑

k=0

ck θα1 ∧ θα2 · · · ∧ θαk ∂ i1
α1

∂ i2
α2

· · ·∂ ik
αk

ωi1i2...ik (5.93)

where ck =
1

(k!)2
(
n−r+k

k

) and ωi1i2...ik = Dik Dik−1 · · · Di1 ω.

For λ ∈ Ωn,0(J∞(E)), the form Φn(λ) coincides with the generalized Poincaré-
Cartan form introduced independently by Rund [61 ] and Betounes [10 ]. Betounes’
result, that E(λ) = 0 if and only if d [Φ(ω)] = 0 is clear from our general con-
struction. Because of the naturality of this construction it is also immediate that
symmetries of λ are also symmetries of Φn(λ). We remark that the generalized
Poincaré-Cartan form Φn(λ) is different from that introduced by Goldschmidt and
Sternburg [30 ] in their study of the Hamilton-Jacobi theory for first order multiple
integral problems. Their form retains only the terms in Φn(λ) which are linear in
the contact forms. It is a Lepagean equivalent for λ but it need not be closed when
λ is variationally trivial.
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The two cases presented here may well be the only instances where mapping
Φp satisfying properties (P1)–(P4) are possible. Specifically, we have the following
conjectures.

Conjecture 5.49. Let k > 2 and suppose

Φ∗ : E∗
k (J

∞(E)) → Ω∗(J∞(E))

is a natural differential cochain map defined on the entire Euler-Lagrange complex

E∗(J∞(E)). The n = 1 and Φ∗ is the cochain map described in Example 5.44.

Conjecture 5.50. Suppose that

Φr : Ωr,0
k (J∞(E)) → Ωr(J∞(E))

satisfies properties P1–P4. Then either r = 0 and Φ0 is the identity map or else

k = 1 and Φr is the map presented in Example 5.48.

Example 5.51. Under additional hypothesis, it is possible to find isolated situa-
tions where maps satisfying properties (P1)–(P4) exist. Again, these depend upon
showing that if dV ωi ∈ Wr,s+1 , then with ωi+1 defined by (5.83a), dV ωi+1 ∈
Wr−1,s+2 so that by Proposition 5.43 the map (5.83) is natural. This is the case,
for example, on quasi-linear, second order variationally closed source forms

∆ = [Aij
αβu

α
ij +Bα] θα ∧ ν

where the coefficients Aij
αβ and Bα are first-order functions. Equation (5.83) be-

comes

Φn+1(∆) =
n∑

k=0

∆k

with
∆k =

1
(k + 1)! k!

[∂ i1
α1

∂ i2
α2

· · ·∂ ik
αk

∆α] θα ∧ θα1 ∧ θα2 ∧ · · · ∧ θαk ∧ νi1i2...ik

− 2k
(k + 1)! k!

[∂ hi1
α1

∂ i2
α2

· · ·∂ ik
αk

∆α] θαh ∧ θα1 ∧ θα2 ∧ · · · ∧ θαk ∧ νi1i2...ik

We stress that this form is not invariantly defined unless ∆ is locally variational.
This map satisfies

Φn+1(E(λ)) = dΦn(λ)

for λ ∈ Ωn,0
1 and Φn defined by (5.93).
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Conjectures 5.49 and 5.50 have been verified for small, specific values of r and k.
Their proof in general may simply be more tedious than difficult. These conjectures
are part of the more general program of characterizing all natural, linear differen-
tial operators on the variational bicomplex. This project is more complicated that
the analogous problem solved by Palais [57 ] for the standard de Rham complex on
finite dimensional manifolds. There are two reasons for this. Firstly, in the present
context, naturality refers not to all local diffeomorphisms of the underlying space
J∞(E) but only to those local diffeomorphisms induced by maps on E. This pre-
cludes the use of the normal form arguments developed by Palais. Secondly, a really
satisfactory characterization of natural differential operators on the variational bi-
complex ought to describe for the various exceptional natural operators that arise
when the domain of definition is restricted to Ωr,s

k for small values for k. But, at
this time, this seems to be akin to the opening of Pandora’s box.

One characterization of natural differential operators on the variational bicomplex
is given the following.

Proposition 5.52. The only R linear, natural differential operator

Φ: Ωn,0(J∞(E)) → F1(J∞(E))

is a constant multiple of the Euler-Lagrange operator.

Sketch of Proof: The symbols of natural differential operators are natural
tensors. Natural tensors are readily classified by classical invariant theory and it
not difficult to show that the only natural tensor which can arise as the symbol of
a natural differential operator from Ωn,0 to F1 is a multiple of the symbol of the
Euler-Lagrange operator.

Another problem along these lines is the characterization of natural Lepagean
equivalents.

Proposition 5.53. Let

Φ: Ωn,0
k (J∞(E)) → Ωn(J∞(E))

be a natural differential operator such that for any λ ∈ Ωn,0
k , Φ(λ) is a Lepagean

equivalent to λ. Then k ≤ 2 and

Φ(λ) = λ − hn,1H (dV λ)

= Lν + [
∂L

∂uαj
− Di

∂L

∂uαij
] θα ∧ νj + [

∂L

∂uαij
] θαi ∧ νj .

(5.94)
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In particular, there are no natural Lepagean equivalents for third order Lagrangians.

Sketch of Proof: The naturality of (5.94) follows from Proposition 5.43 (ii) and
the fact that if λ is any second order Lagrangian, then dV λ ∈ Wn,1.

Suppose that
Φ: Ωn,0

3 (J∞(E)) → Ωn(J∞(E))

is a natural Lepagean equivalent. Then

(πn−1,1 ◦ Φ): Ωn,0
3 (J∞(E)) → Ωn−1,1(J∞(E))

is a natural differential operator. It is not hard to show that the only such operator
invariant under general affine linear changes of coordinates and compatible with the
Lepagean condition (5.20) and (5.21) is a constant multiple of

(πn−1,1 ◦ Φ)(λ) = −hn−1,1
H (dV λ)

= [
∂L

∂uαk
− Di(

∂L

∂uαik
) +Dij(

∂L

∂uαijk
)] θα ∧ νk

+ [
∂L

∂uαik
− Dj(

∂L

∂uαijk
)] θαi ∧ νk + [

∂L

∂uαijk
] θαij ∧ νk.

But in view of (5.88) this map is not invariant under all (fiber-preserving) changes
of variables and so no natural Lepagean form exists.

This work leaves open the even more general problem of finding non-linear natural
operators on, in particular, the space of kth order Lagrangians Ωn,0

k (J∞(E)). One
such natural differential operator, defined for non-zero first order Lagrangians

λ = L(xi, uα, uαi ) ν

is

Φ(λ) =
1

Ln−1
σ1 ∧ σ2 ∧ · · · ∧ σn,

where

σi = Ldxi − ∂L

∂uαi
θα.

This form was first introduced by Rund [61 ] as the generalization of the Poincaré-
Cartan form appropriate for Carathéodory’s approach to the Hamilton-Jacobi the-
ory for first order multiple integral problems. While it is not closed on variationally
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trivial Lagrangians, it does have the important geometric property of being a decom-
posable n form. This form also arises directly though the application of the Cartan
equivalence algorithm, see Garnder [27 ]. In fact, Cartan’s method provides a sys-
tematic way for characterizing the invariants (under any prescribed transformation
group) of a given class (i.e., with order and number of dependent and independent
variables prescribed) of Lagrangians. For example, in solving the equivalence prob-
lem defined for second order Lagrangians in the plane, i.e., for Lagrangians of the
type

λ = L(x, u, u̇, ü) dx,

Kamran and Olver [39 ] discovered the new natural differential operator

D(λ) = Dx(L
∂L

∂ü
)− L

∂L

∂u̇

∂L

∂ü
.

D. Invariant Horizontal Homotopy Operators on Manifolds with Sym-
metric Connections. Let ∇ be a symmetric, linear connection on the base man-
ifold M of the fibered manifold π : E → M . We first show that the connection
∇ induces a process of covariant total differentiation of certain tensor-valued, type
(r, s) forms on J∞(E). This construction is, in itself, noteworthy since one might
have anticipated that additional geometric structures (such as connection on the
bundle of vertical vectors on E) would be required.

Let T p,q(J∞(E)) be the bundle of type (p, q) tensors on J∞(E). Let σ = j∞(s)
be a point in J∞(E). We call a tensor Tσ ∈ T p,q horizontal if

T (α1, α2, . . . , αp, X1, X2, . . . , Xq) = 0

whenever either,

(i) one of the covectors αi, 1 ≤ i ≤ p, belongs to the ideal C of contact forms at
σ, or

(ii) one of the vectors Xj , 1 ≤ j ≤ q, is a π∞
M vertical vector at σ.

In local coordinates [x, u] = (xi, uα, uαi , . . . ) around σ, T assumes the form

Tσ = T
i1i2···ip
j1j2···jq

Di1 ⊗ Di2 · · · ⊗ Dip ⊗ dxj1 ⊗ dxj2 · · · ⊗ dxjq , (5.95)

where, as usual, Di denotes the total vector field

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · .
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Denote the bundle of horizontal type (p, q) tensors on J∞(E) by T p,q
H (J∞(E)).

Sections of this bundle are locally of the form (5.95), where the coefficients T ···
··· are

smooth functions of the variables [x, u].
Let T p,q(M) be the bundle of type (p, q) tensors on M . Then T p,q

H (J∞(E)) can
be identified with the induced bundle

T p,q
H (J∞(E))

π̂∞
M−−−−→ T p,q(M)� �

J∞(E) −−−−→
π∞

M

M .

If Tσ is a type (p, q) horizontal tensor at σ = j∞(s)(x), then π̂∞
M (Tσ) is the type

(p, q) tensor on M at x defined by

π̂∞
M (Tσ)(α1, α2, . . . , αp, X1, X2, . . . , Xq) = (Tσ)(α̃1, α̃2, . . . , α̃p, X̃1, X̃2, . . . , X̃q)

for covectors αi and vectors Xj at x ∈ M , where α̃i = (π∞
M )∗(αi) and X̃j = totXj.

Let π : U → U0 be an adapted coordinate chart on E. If T is a horizontal type (p, q)
tensor field on J∞(U) and s : U0 → U is a local section of E, then π̂∞

M [T (j∞(s))] is
a type (p, q) tensor field on U0.

Denote by S p,0
H (J∞(E)) the bundle of horizontal, symmetric type (p, 0) tensors

on J∞(E).
The connection ∇ on M induces a process of total covariant differentiation on

sections of T p,q
H (J∞(E)). If X is a generalized vector field on M and T is a hori-

zontal, type (p, q) tensor field on J∞(E) then at a point σ = j∞(s), where s is a
local section on E,

(∇totXT )(j∞(s)) = ∇X0{π̂∞
M [T (j∞(s))]},

where X0(x) = X(j∞(s)(x)). In coordinates, if X = Xh ∂

∂xh
is a generalized vector

field on M , then (see (1.38))
totX = XhDh

is the associated total vector field on J∞(E). If T is, say, a type (1, 1) horizontal
tensor field on J∞(E) with components

T = T i
j Di ⊗ dxj ,
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then the components of ∇totXT are

∇totXT = Xh[DhT
i
j + ΓilhT

l
j − ΓljhT

i
l ]Di ⊗ dxj.

A routine change of coordinates calculation, based on the fact that our coordinate
transformations

yj = yj(xi) and vβ = vβ(xi, uα)

are projectable and therefore satisfy

Dh[
∂yj

∂xi
] =

∂2yi

∂xi∂xh

directly verifies the tensorial character of ∇totXT . Total covariant differentiation

with respect to the coordinate vector field
∂

∂xh
will be denoted by ∇h. If T i

j are the

components of a type (1, 1) horizontal tensor field, then ∇hT
i
j are the components

of a type (1, 2) horizontal tensor field on J∞(U).
Now consider a p form Ξ on J∞(E) which takes its values in T p,q

H , i.e., Ξ is a
section of Λp(J∞(E)) ⊗ T p,q

H (J∞(E)). If Ξ is a p form of type (r, s), then for all
evolutionary vector fields Y1, Y2, . . . , Ys on J∞(E)

Ξ̃ = Ξ (prY1, prY2, . . . , prYs)

is a type (p, q + r) horizontal tensor field on J∞(E). We define the total covariant
derivative of Ξ to be the type (r, s) form with values in T p,q

H as given by

(∇totX Ξ)(prY1, prY2, . . . , prYs) = ∇totX [ Ξ̃ ]. (5.96)

For example, if Ξ is a type (r, s) form with values in T 1,0
H which is given locally by

Ξ = T i
j ⊗ Di ⊗ dxj,

where each component T i
j is a type (r, s) form, then

∇totX Ξ = Xh[DhT
i
j + ΓilhT

l
j − ΓljhT

i
l − γlh ∧ (Dl T i

j )]⊗ Di ⊗ dxj .

Here γl
h are the connection one forms

γl
h = Γlhk dx

k.
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This formula follows from the definition (5.96) and the fact (see Proposition 1.16)
that total differentiation commutes with inner evaluation by the prolongation of
arbitrary evolutionary vector fields, i.e.,

Dh(prY Ξ) = prY (Dh Ξ).

We write
∇totX Ξ = Xh[∇hT

i
j ] ⊗ Di ⊗ dxj

and observe that ∇hT
i
j are the components of a type (r, s) form with values in

T 1,2
H (J∞(E)).
We remark that if Ξ = T i⊗Di is a vector-valued type (n, s) form (where dimM =

n), then
γl
h ∧ (Dl T i) = ΓlhlT

i

and hence
∇hT

h = DhT
h. (5.97)

Because the connection ∇ is assumed to be symmetric, it also follows that for
ω ∈ Ωr,s(J∞(E)),

dHω = dxh ∧ Dhω = dxh ∧ ∇hω = d∇
Hω, (5.98)

that is, the covariant horizontal exterior derivative d∇
H on forms coincides with the

ordinary horizontal exterior derivative. Note too that

∇h(dxh ∧ ω) = dxh ∧ (∇hω).

In this equation, dxh ∧ω is properly viewed as the components of a a vector-valued
type (r + 1, s) form.

Next we use the connection ∇ to construct invariant counterparts of the Lie-Euler
operators EI

α and interior evaluation operators F I
α introduced in Chapter Two. The

construction of these operators is based upon the systematic replacement of total
derivatives Dh by total covariant derivatives ∇h.

Let P be a total differential operator as defined in §2.A, i.e.,

P : Ev(J∞(E)) → Ωr,s(J∞(E))

where, for an evolutionary vector field Y = Y α ∂

∂uα
,

P (Y ) =
k∑

|I|=0

(DIY
α)P I

α.
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According to Proposition 2.1, P (Y ) may be rewritten in the form

P (Y ) =
k∑

|I|=0

DI [QI(Y )], (5.99)

where

QI(Y ) = Y αQI
α = Y α

[k−|I|∑
|J|=0

(|I|+|J|
|J|

)
(−D)JP IJ

α

]
.

Recall that the QI(Y ) are assumed to be symmetric in the indices I. Because the
operator P is of order k, the Qi1i2···ik(Y ) are the components of a type (r, s) form
with values in T k,0

H or, to be more specific, with values in Sk,0
H . This type (r, s)

form is the symbol of P . Because of the tensorial character of the symbol, we may
successively replace all the total derivatives in the expression Di1i2...ikQ

i1i2...ik by
total covariant derivatives and write

Di1i2...ik [Q
i1i2...ik(Y )] = ∇i1i2...ik [Q

i1i2...ik(Y )] +
k−1∑
|I|=0

DI [
(k)

Γ I(Y )], (5.100)

where each
(k)

Γ I , |I| = 0, 1, 2, . . . , k − 1, is a sum of products of Qi1i2···ik(Y ) with
the connection coefficients Γijk and their partial derivatives to order k − 1.

For example, with k = 2, a straightforward calculation shows that

Dij [Qij(Y )] = ∇ij [Qij(Y )] +Di[
(2)

Γ i(Y )] +
(2)

Γ(Y ),

where
(2)

Γ i(Y ) = −ΓijaQ
aj(Y ) + 2ΓjjaQ

ai(Y ) + 2 γpj ∧ Qij
p (Y ),

and
(2)

Γ(Y ) = Γiia,jQ
aj(Y ) − γp

i,j ∧ Qij
p (Y ) − ΓiiaΓ

a
jbQ

bj(Y ) − ΓiiaΓ
j
jbQ

ab(Y )

+ 2Γiiaγ
p
j ∧ Qaj

p (Y ) + Γijaγ
p
i ∧ Qaj

p (Y ) − Γqjpγ
p
i ∧ Qij

q (Y )

− γp
i ∧ γq

j ∧ Qij
qp(Y ).

Here, and the sequel, we write

QI
p(Y ) = Dp QI(Y ) and QI

qp(Y ) = Dq QI
p(Y ).
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When (5.100) is substituted into (5.99), it is found that

P (Y ) = ∇i1i2···ik [Q
i1i2···ik(Y )] + P̃ (Y ),

where

P̃ (Y ) =
k−1∑
|I|=0

DI [QI(Y ) +
(k)

Γ I(Y )].

Since both P (Y ) and ∇i1i2···ik [Q
i1i2···ik(Y )] are invariantly defined total differen-

tial operators, the same must be true of P̃ (Y ). Note that P̃ is of order k − 1. We
now repeat this process of successively replacing the total derivatives of the symbol
by total covariant derivatives of the symbol plus a lower order operator until the
original operator P is expressed in the form

P (Y ) =
k∑

|I|=0

∇I [Q∇
I(Y )]. (5.101)

Each coefficient Q∇
I(Y ) = Y αQ∇

I
α represents the components of a type (r, s) form

Q(l)
∇ (Y ), l = |I|, with values in Sl,0

H (J∞(E)). We pause to formally record this
result.

Proposition 5.54. Let ∇ be a symmetric connection on M and let

P : Ev(J∞(E)) → Ωr,s(J∞(E))

be a kth order total differential operator. Then, for each l = 0, 1, 2, . . . , k, there
exists a unique, zeroth order map

(l)

Q∇ : Ev(J∞(E)) → Ωr,s(J∞(E))⊗ Sl,0
H (J∞(E))

with components

(l)

Q∇(Y ) = Y αQ∇
i1i2...il
α Di1 ⊗ Di2 · · · ⊗ Dil

such that P(Y) takes the form (5.101).

We call
(l)

Q∇ the lth invariant symbol of P with respect to the connection ∇. For
a second order operator

P (Y ) = Q(Y ) +Di[Qi(Y )] +Dij [Qij(Y )],
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one can show that

Q∇
ij(Y ) = Qij(Y ),

Q∇
i(Y ) = Qi(Y ) − ΓijaQ

aj(Y ) − 2 ΓjjaQ
ia(Y ) + 2 γpj ∧ Qij

p (Y ), and

Q∇(Y ) = Q(Y ) − ΓiibQ
b(Y ) + γq

i ∧ Qi
q(Y ) − Γiia,jQ

aj(Y )

+ γp
i,j ∧ Qij

p (Y ) + ΓiibΓ
j
jaQ

ab(Y ) − 2 Γjjaγ
q
i ∧ Qia

q (Y )

+ Γpjqγ
q
i ∧ Qij

p (Y ) + γp
i ∧ γq

j ∧ Qij
qp(Y ).

(5.102)

Needless-to-say, these formulas for the invariant symbols
(l)

Q∇ of P become increas-
ing complex as the order of P increases. However, owing largely to (5.97), some
simplifications arise when r = n. Indeed, for r = n and k = 3 we find that

Q∇
ijh(Y ) = Qijh(Y ),

Q∇
ij(Y ) = Qij(Y ) − 3

2
(
ΓiahQ

jah(Y ) + ΓjahQ
iah(Y )

)
,

Q∇
i(Y ) = Qi(Y ) − ΓiajQ

aj(Y ) + (Γija,h + ΓibjΓ
b
ah)Q

ajh(Y ), and

Q∇(Y ) = Q(Y ).

(5.103)

This last formula is of particular interest. It shows that the zeroth order invariant

symbol
(0)

Q∇ coincides with the Euler operator E(P )(Y ) = Q(Y ) of P ( see Definition
2.3) and is therefore independent of the connection ∇. This is true generally.

Proposition 5.55. Let P : Ev(J∞(E)) → Ωn,s(J∞(E)) be a total differential

operator, where n = dimM . Then the Euler operator E(P ) of P and the zeroth

order invariant symbol
(0)

Q∇ of P with respect to any connection ∇ coincide.

Proof: Equation (5.101) implies that

P (Y ) =
(0)

Q∇(Y ) + ∇i[T i(Y )], (5.104)

where

T i(Y ) =
k−1∑
|I|=0

∇I [Q∇
iI(Y )].
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Since each component T i(Y ) is a type (n, s) form, it follows that

T i(Y ) = dxi ∧ [Dj T j(Y )] = dxi T̃ (Y ),

where T̃ (Y ) is a type (n − 1, s) form. Owing to (5.98), (5.104) can be rewritten as

P (Y ) =
(0)

Q∇(Y ) + dH [T̃ (Y )].

The proposition now follows from the uniqueness of this decomposition of P as
established in Proposition 2.2.

We continue, in the spirit of §2A, by applying Propositions 5.54 and 5.55 first to
the operator

P (Y ) = LprY λ,

where λ ∈ Ωn,0(J∞(E)) is a Lagrangian on J∞(E), and then to the operator

P (Y ) = prY ω,

where ω ∈ Ωn,s(J∞(E)). In the first instance, we deduce that

LprY λ = Y E(λ) + dHη, (5.105)

where E(λ) is the Euler-Lagrange form of λ and

η =
k−1∑
|I|=0

∇I [Y αE∇
Ij
α (Dj λ)]. (5.106)

The tensors

(
(l)

E∇)(λ) = E∇
i1i2···il
α (λ) ⊗ θα ⊗ Di1 ⊗ Di2 ⊗ · · · ⊗ Dil

are called the invariant Lie-Euler operators of λ with respect to the connection
∇. To third order, these operators are given by (5.103) with QI(Y ) = Y αEI

α(λ),
where EI

α(λ) are the ordinary Lie-Euler operators defined by (2.15). The form η is
manifestly invariantly defined. Thus, (5.105) immediately establishes the existence
of a global first variational formula for the calculus of variations (see also Corollary
5.3).

In the second instance, Proposition 5.54 leads to the decomposition

prY ω =
k∑

|I|=0

∇I [Y αF∇
I
α(ω)].
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The tensors
(l)

F∇ = F∇
i1i2···il
α (ω) ⊗ θα ⊗ Di1 ⊗ Di2 ⊗ · · · ⊗ Dil

are the invariant interior Euler operators of ω with respect to the connection ∇.
Proposition 5.55 now implies that F∇α(ω) = Fα(ω) and hence the interior Euler
operator (2.14) coincides with

I(ω) =
1
s
θα ∧ F∇α(ω).

Consequently, for ω ∈ Ωn,s(J∞(E)), it follows that

ω =
1
s

k∑
|I|=0

DI [θα ∧ F I
α(ω)] =

1
s

k∑
|I|=0

∇I [θα ∧ F∇
I
α(ω)],

and therefore

ω = I(ω) + dH [hn,s∇ (ω)],

where

hn,s∇ (ω) =
1
s

k−1∑
|I|=0

∇I{Dj [θα ∧ F∇
Ij
α (ω)]}.

This is the sought after invariantly defined horizontal homotopy operator on
Ωn,s(J∞(E)). Note that this operator is obtained, at least formally, from its local
“non-invariant” counterpart hr,sH (see (4.13)) by replacing the interior product oper-
ators F Ij

α by their invariant counterparts F∇
Ij
α and by replacing the total derivatives

DI by total covariant derivatives ∇I . This suggests that for r ≤ n, hr,s∇ might be
similarly defined. In fact, the formulas for hr,s∇ will contain the invariant analogue
of our previous homotopy operator hr,sH although additional terms, involving the
curvature tensor of the connection ∇, must be introduced to compensate for the
fact that repeated covariant derivatives do not commute.

Theorem 5.56. Let ∇ be a symmetric connection on M . Let π : U → U0 be an

adapted coordinate neighborhood of E. Then, for 1 ≤ r ≤ n and s ≥ 1, there exists
invariantly defined operators

hr,s∇ : Ωr,s(J∞(U)) → Ωr−1,s(J∞(U))

such that, for 1 ≤ r ≤ n − 1 and ω ∈ Ωr,s(J∞(U)),

ω = dH [hr,s∇ (ω)] + hr+1,s
∇ (dHω), (5.107a)

while, for ω ∈ Ωn,s(J∞(U)),
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ω = dH [hn,s∇ (ω)] + I(ω). (5.107b)

Before presenting the proof of Theorem 5.56, we give an alternative proof of
Proposition 4.1 wherein our original, non-invariant homotopy operators hr,sH were
introduced. This alternative proof is inductive in nature and, although somewhat
more complicated than the one already given in §4A, it serves to motivate (and actu-
ally simplify) the approach required to construct the invariant homotopy operators
hr,s∇ .

For s ≥ 1, let Dr,s(J∞(E)) be the vector space of all total differential operators

P : Ev(J∞(E)) → Ωr,s−1(J∞(E)).

For P ∈ Dr,s(J∞(E)), define DP ∈ Dr+1,s(J∞(E)) by the rule

(DP )(Y ) = −dH [P (Y )]. (5.108)

If P is a total differential operator of order k, then DP is a total differential operator
of order no larger than k + 1.

Given a kth order form ω ∈ Ωr,s(J∞(E)), we define the associated kth order
operator Pω ∈ Dr,s(J∞(E)) by

Pω(Y ) = prY ω.

The sign convention adopted in (5.108) is such that, in accordance with (1.35),

DPω = Pτ where τ = dHω. (5.109)

Conversely, given an operator P ∈ Dr,s(J∞(E)), we can define a form ω
P

∈
Ωr,s(J∞(E)) by

ω
P
(prY1,prY2, . . . , prYs)

=
1
s

s∑
i=1

(−1)i+1P (Yi)(prY1, prY2, . . . , p̂rY i, . . . , prYs),

where Y1, Y2, . . . , Ys are evolutionary vector fields. It is readily checked that

ω = ω
P

where P = Pω (5.111a)

and
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dH(ω
P
) = ω

R
where R = DP. (5.111b)

Because D(DP ) = 0 the vector spaces Dr,s(J∞(E)), together with the maps
D : Dr,s(J∞(E)) → Dr+1,s(J∞(E)), form a differential complex. Let π : U → U0

be an adapted coordinate neighborhood of E. We prove this complex is locally
exact by constructing homotopy operators

Jr,s : Dr,s(J∞(U)) → Dr−1,s(J∞(U)), (5.112a)

so that, for all P ∈ Dr,s(J∞(U)),

P = dH [Jr,s(P )] + Jr+1,s(dHP ). (5.112b)

With this result in hand, homotopy operators for the interior horizontal complexes
(Ω∗,s(J∞(U)), dH) are easily obtained by setting, for ω ∈ Ωr,s(J∞(U)),

h̃r,sH (ω) = ωR where R = Jr,s(Pω).

From equations (5.109) and (5.111), it is a simple matter to check that

ω = dH [h̃r,sH (ω)] + h̃r+1,s
H (dHω),

as required. While not for a priori reasons, it turns out that h̃r,sH = hr,sH .
We define the maps Jr,s by induction on the order of the operators P . Let

Dr,s
k (J∞(E)) be the subspace of Dr,s(J∞(E)) consisting of all total differential

operators of order k. We construct maps

Jr,s
k : Dr,s

k (U) → Dr−1,s
k−1 (U) (5.113a)

such that, for k ≥ 1 and all Pk ∈ Dr,s
k (J∞(U)),

Pk = D[Jr,s
k (Pk)] + Jr+1,s

k+1 (DPk). (5.113b)

In addition, these maps have the property that for Pk ∈ Dr,s
k and l ≥ k,

Jr,s
l (Pk) = Jr,s

k (Pk).

Thus, (5.112) can be derived from (5.113) by taking inverse limits.
To begin the inductive process, let P2 ∈ Dr,s

2 (J∞(U)) be given by

P2(Y ) = Q(Y ) +Di[Qi(Y )] +Dij [Qij(Y )].
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We define

[Jr,s
2 (P2)](Y ) = − 1

n − r + 1
Qi
i(Y )− 2

n − r + 2
Dj [Q

ij
i (Y )], (5.114)

where QI
j (Y ) = Dj QI(Y ). Implicit in this definition of Jr,s

2 is the definition of
Jr,s

1 — if P1 ∈ Dr,s
1 (J∞(U)) is given by

P1(Y ) = S(Y ) +Di[Si(Y )],

then

[Jr,s
1 (P )](Y ) = − 1

n − r + 1
Si
i(Y ).

Now suppose that DP1 = P2. Then

Qij(Y ) =
1
2
[dxi ∧ Sj(Y ) + dxj ∧ Si(Y )]

Qi(Y ) = −dxi ∧ S(Y ) and Q(Y ) = 0,

and a straightforward calculation, identical to that given in Lemma 4.5 and the
original proof of Proposition 4.2, leads to

P1 = D[Jr,s
1 (P1)] + Jr+1,s

2 (DP1).

This proves (5.113) for k = 1.
Now decompose each Pk ∈ Dr,s

k (J∞(U)) into the sum

Pk(Y ) =
k∑

|I|=0

DI [QI(Y )] = σPk
(Y ) + ρPk

(Y ),

where

σ
Pk
(Y ) = DI [QI(Y )] for |I| = k,

and

ρ
Pk
(Y ) =

k−1∑
|I|=0

DI [QI(Y )].

Note that ρ
Pk

is an operator of order k − 1. We define Jr,s
k in terms of Jr,s

k−1, for
k = 2, 3, . . . , by

[Jr,s
k (Pk)](Y ) = [Jr,s

k−1(ρPk
)](Y ) − k

n − r + k
DI′ [Q

jI′
j (Y )],
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where |I ′| = k − 1. Fix k ≥ 2. We assume that Jr,s
k−1 and Jr,s

k satisfy (5.113b) with
k replaced by k − 1.

To prove that Jr,s
k and Jr,s

k+1 satisfy (5.113b), decompose the two total differential
operators Pk and Rk′ = DPk, k′ = k + 1 into the sums

Pk(Y ) = σ
Pk
(Y ) + ρ

Pk
(Y )

and

(DPk)(Y ) = σ
R

k′
(Y ) + ρ

R
k′
(Y )

where, just like σ
Pk
, σ

R
k′

is of the form

σ
R

k′
(Y ) = DI [SI(Y )] = DI [Y αSI

α] for |I| = k + 1,

and where ρ
R

k′
of order k′ − 1 = k. It is easily seen that

(Dρ
Pk
)(Y ) = ρ

R
k′
(Y ) and (Dσ

Pk
)(Y ) = σ

R
k′
(Y ). (5.115)

This latter equation implies that

SI(Y ) = −dx(i ∧ QI′)(Y ) for |I| = k + 1.

The induction hypothesis implies that

ρ
Pk
(Y ) = D[Jr−1,s

k−1 (ρ
Pk
)](Y ) + (Jr,s

k (Dρ
Pk
))(Y ), (5.116)

while a calculation identical to that given in the proof of Proposition 4.2 shows that,
for I = k,

σ
Pk
(Y ) = DI [QI(Y )]

= dH
{ k

n − r + k
DI′ [Q

jI′
j (Y )]

} − { k + 1
n − r + k

DI [S
jI
j (Y )

}
.

(5.117)

Now add (5.116) to (5.117). The left-hand side of this sum equals Pk(Y ). The
sum of the first terms on the right is

(
D[Jr,s

k (Pk)]
)
(Y ) and the sum of the second

terms is [Jr+1,s
k+1 (DPk)](Y ). This proves (5.113).
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Proof of Theorem 5.56: Since we have already established (5.107b), we re-
strict our considerations to the case 1 ≤ r ≤ n − 1. We proceed just as above by
constructing operators

Jr,s
∇ k : Dr,s

k (J∞(U)) → Dr−1,s
k−1 (J∞(U))

such that, for all Pk ∈ Dr,s
k (J∞(U)),

Pk = D[Jr,s
∇ k(Pk)] + Jr+1,s

∇ k+1 (DPk). (5.118)

Then, just as above, the required homotopy operator hr,s∇,k is defined by

hr,s∇,k(ω) = ω
R
, where R = Jr,s

∇ k(Pω).

The maps Jr,s
∇ k are defined inductively. In fact, the complicated nature of these ho-

motopy operators really precludes the possibility of giving explicit general formula.
For k = 2 and P2 ∈ Dr,s

2 (J∞(U)) given by

P2(Y ) = Q(Y ) +Di[Qi(Y )] +Dij [Qij(Y )]

= Q∇(Y ) + ∇i[Q∇
i(Y )] + ∇ij [Q∇

ij(Y )],

we set

[Jr,s
∇ 2 (P2)](Y ) = − 1

n − r + 1
[Di Q∇

i(Y )] − 2
n − r + 2

∇j [Di Q∇
ij(Y )].

Clearly, Jr,s
∇ 2 is invariantly defined. The invariant symbols Q∇

i(Y ) and Q∇
ij(Y ) of

P2 are given explicitly in terms of the coefficients Qi(Y ) and Qij(Y ) by (5.102). By
virtue of these equations, a straightforward calculation shows that

[Jr,s
∇ 2 (P2)](Y ) = [Jr,s

2 (P2)](Y ) (5.119)

− 1
n − r + 1

{
ΓlijQ

ij
l (Y ) − 2

n − r + 2
[ΓlliQ

ij
j (Y ) + γli ∧ Qij

lj (Y )]
}
,

where Jr,s
2 is the non-invariant homotopy operator defined by (5.116). Consequently,

if P1 ∈ Dr,s
1 (J∞(U)) is a first order total differential operator, then

Jr,s
∇ 1 (P1) = Jr,s

1 (P1).

Moreover, if the second order operator P2 is D closed then

dxh ∧ Qij(Y ) + dxj ∧ Qhi(Y ) + dxi ∧ Qjh(Y ) = 0
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and therefore

(n − r + 2)Qij(Y ) = dxi ∧ Qhj
h (Y ) + dxj ∧ Qhi

h (Y ).

Interior evaluation of this equation by Dl and multiplication of the result by Γlij
shows that the terms in braces in (5.119) vanish. This proves that if DP2 = 0, then

Jr,s
∇ 2 (P2) = Jr,s

2 (P2).

We remark that this result is consistent with the findings of the previous section
(see Proposition 5.43). In particular, for a first order operator P1 we deduce that

Jr,s
∇ 2 (DP1) = Jr,s

2 (DP1).

Owing to (5.113), we therefore conclude that

D[Jr,s
∇ 1 (P1)] + Jr,s

∇ 2 (DP1) = D[Jr,s
1 (P1)] +D[Jr,s

2 (DP1)]

= P1.

This proves (5.118) for k = 1.
Before defining Jr,s

∇ k for k = 3, 4, . . . , it is necessary to introduce certain auxiliary
operators. Let Pk ∈ Dr,s

k (J∞(U)) be given by

Pk(Y ) =
k∑

|I|=0

∇I [Q∇
I(Y )].

Define

σ
Pk
(Y ) = ∇I [σPk

I(Y )],

where k = |I| and σ
Pk

I(Y ) = Q∇
I(Y ), and

ρ
Pk
(Y ) =

k−1∑
|I|=0

∇I [Q∇
I(Y )].

Clearly both σ
Pk

and ρ
Pk

are invariantly defined total differential operators and

Pk(Y ) = σ
Pk
(Y ) + ρ

Pk
(Y ).

Both of these operators depend on the connection ∇ although, in view of (5.100),

σPk

I(Y ) = QI(Y ) for |I| = k
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is independent of ∇. The operator ρ
Pk

is of order k − 1. Next set

µ
Pk
(Y ) = ∇j∇I [dxj ∧ σ

Pk

I(Y ) − dx(j ∧ σ
Pk

I)(Y )] for |I| = k (5.120)
and

τ
Pk
(Y ) = ∇j∇I′ [dxj ∧ σ

Pk

I′i
i (Y ) − dx(j ∧ σ

Pk

I′)i
i (Y )], for |I ′| = k − 1.

(5.121)

The operators µPk
and τPk

are also invariantly defined. Were it the case that the total
covariant derivatives with respect to ∇ commuted, then µ

Pk
and τ

Pk
would vanish

identically. Thus we can interpret the presence of these operators in our subsequent
formulas as the correction terms needed to compensate for the non-commutativity
of covariant derivatives.

By virtue of the Ricci identities, it is possible to prove that τPk
is of order k − 2.

Consider, for example, the case k = 3. If, for the sake of notational convenience we
write

T jhk(Y ) = dxj ∧ σ
P3

hki
i (Y ) = dxj ∧ Qhki

i ,

we find that

τ
P3
(Y ) = ∇j∇h∇k[T jhk(Y ) − 1

3
(
T jhk(Y ) + Thkj(Y ) + T kjh(Y )

)
]

= ∇j∇h∇k[
2
3
(
T jhk(Y ) − Thkj(Y )

)
+

1
3
(
Thkj(Y ) − T kjh(Y )

)
]

(5.122)

=
2
3
[(∇j∇h − ∇h∇j)(∇kT

jhk(Y ))] +
1
3
∇j [(∇h∇k − ∇k∇h)Thkj(Y )].

At this point it is apparent that τ
P3

is indeed a first order operator. However, for a
subsequent calculation, we need to simplify this last equation. To this end, let us
temporarily assume that the connection ∇ is the Riemannian connection for some
metric g on M . This allows us to utilize the maximum possible symmetries of the
curvature tensor. We denote the curvature tensor of the connection ∇ by Rl

j
hk

where, for any vector field X l on M ,

Rl
j
hkX

l = ∇h∇kX
j − ∇k∇hX

j.

The Ricci tensor is Rhk = Rh
l
kl and Ωl

j =
1
2
Rl

j
hk dxh ∧ dxk is the curvature 2

form. We now apply the Ricci identities to each of the two expressions in brackets
in (5.122). When the first set of terms is “integrated by parts”, we arrive at

τ
P3
(Y ) = ∇j [Rhk dx

h ∧ Qkji
i (Y ) +

1
3
Rl

j
hk dx

h ∧ Qkli
i (Y )− 1

2
Ωh

l ∧ Qhji
li (Y )]

− 2
3
(∇jRhk) dxh ∧ Qkji

i (Y )− 1
3
(∇jΩh

l) ∧ Qhji
li (Y ). (5.123)
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Finally, in way of preparation, we compute Dτ
Pk
:

[Dτ
Pk
](Y ) = −dH [τ

Pk
(Y )]

= −dH
{
dH

[∇I′ [σPk

I′i
i (Y )]

] − ∇j∇I′dx
(j ∧ σ

Pk

I′)i
i (Y )

}
= ∇j∇I [dxj ∧ dx

(i ∧ σ
Pk

I′)h
h (Y )]. (5.124)

For each k = 3, 4, . . . , define Jr,s
∇ k as follows. Let Pk ∈ Dr,s

k (J∞(U)) and let
σ
Pk

∈ Dr,s
k (J∞(U)) and ρ

Pk
, τ

Pk
∈ Dr,s

k−1(J
∞(U)) be the associated operators as

defined above. Set

[Jr,s
∇ k(Pk)](Y ) (5.125)

= − k

n − r + k

{∇I [σPk

Ii
i (Y )] +

(
Jr,s
∇ k−1(τPk

)
)
(Y )

}
+ Jr,s

∇ k−1(ρPk
)(Y ),

where |I| = k. To prove (5.118), let Pk ∈ Dr,s
k (J∞(U)). Decompose Pk and

Rk′ = DPk, where k′ = k + 1, into the sums

Pk(Y ) = σ
Pk
(Y ) + ρ

Pk
(Y )

and

Rk′(Y ) = σ
R

k′
(Y ) + ρ

R
k′
(Y ).

Since

(DPk)(Y ) = −dH [Pk(Y )] = (Dρ
Pk
)(Y ) − Dj{dxj ∧ ∇I [σPk

I(Y )]}
= [(Dρ

Pk
) − µ

Pk
](Y ) − ∇jI [dx(j ∧ σ

Pk

I)(Y )]

it follows that

σ
R

k′
iI(Y ) = −dx(i ∧ σ

Pk

I)(Y ), for k = |I|, (5.126)

and

ρ
R

k′
= Dρ

Pk
− µ

Pk
. (5.127)

(Compare with (5.115).) From (5.126), it is found that

k + 1
n − r + k

σ
R

k′
Ii
i (Y ) = −σ

Pk

I(Y ) +
k

n − r + k
dx(i ∧ σ

Pk

I)j
j (Y ). (5.128)
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By virtue of (5.124), substitution of this formula into (5.121) leads to

k + 1
n − r + k

τ
R

k′
(Y ) = −µ

Pk
(Y ) +

k

n − r + k
[Dτ

Pk
](Y ). (5.129)

We now substitute these last three equations, (5.127), (5.128) and (5.129) into
the definition (5.125) of Jr+1,s

∇ k+1 , as applied to the operator R′ = DP . The two terms
involving µ

Pk
(Y ) cancel to yield

[Jr+1,s
∇ k+1 (DPk)](Y ) = ∇I [σPk

I(Y )] + [Jr,s
∇ k(DρPk

)](Y ) (5.130)

− k

n − r + k

{
Jr+1,s
∇ k (Dτ

Pk
)](Y ) +∇I [dx(i ∧ σ

Pk

I)j
j (Y )]

}
.

Furthermore, from the definition of Jr,s
∇ k(Pk), we find that

[D
(
Jr,s
∇ k (Pk)

)
](Y ) = − k

n − r + k

{−∇j∇I′ [dxj ∧ σ
Pk

I′i
i (Y )] + [DJr,s

∇ k−1(τPk
)](Y )

}
+ [DJr,s

∇ k−1(ρPk
)](Y ). (5.131)

Equations (5.130) and (5.131) are now added together. The terms in braces
vanish on account of the induction hypothesis, as applied to the operator τ

Pk
. By

applying the induction hypothesis again, this time to the operator ρ
Pk
, we deduce

that

[Jr+1,s
∇ k+1 (DPk)](Y ) + [DJr,s

∇ k (Pk)](Y )

= ∇I [σPk

I(Y )] + [Jr+1,s
∇ k (DρPk

)](Y ) + [DJr,s
∇ k−1(ρPk

)](Y )

= ∇I [σPk

I(Y )] + ρ
Pk
(Y ) = Pk(Y ).

This establishes the homotopy formula (5.118) and completes the proof of Theorem
5.56.

Example 5.57. If P3 ∈ Dr,s
3 (J∞(U)) is a third order operator, then it follows from

(5.123), and (5.125) that

[Jr,s
∇ 3 (P3)](Y )

= − 3
n − r + 3

∇hk[Q∇
hkj
j (Y )]− 2

n − p+ 2
∇h[Q∇

hj
j (Y )] − 1

n − r + 1
Q∇

j
j(Y )

+
1

n − r + 1
{ 2
n − r + 3

[RhkQ∇
hkj
j (Y ) − (Rh

p
kldx

l) ∧ Q∇
hkj
pj (Y )]

}
.

(5.132)
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The first three terms in this formula are precisely the invariant analogs of the three
terms defining original homotopy Jr,s

3 (P3). The last two terms are the correction
terms needed to compensate for the non-commutativity of the total covariant deriva-
tives. As we shall see, this rather complicated formula simplifies rather dramatically
when P3 is D closed.

Corollary 5.58. The augmented interior rows of the variational bicomplex, viz.

0 −−→ Ω0,s(J∞(E))
dH−−→Ω1,s(J∞(E))

dH−−→ Ω2,s(J∞(E))
dH−−→ · · ·

dH−−→ Ωn,s(J∞(E))
I−−→ Fs(J∞(E)) −−→ 0

for s ≥ 1, are exact.

Proof: Because of their invariance under change of coordinates, the local invariant
homotopy operators

hr,s∇ : Ωr,s(J∞(U)) → Ωr−1,s(J∞(U))

patch together to determine global homotopy operators

hr,s∇ : Ωr,s(J∞(E)) → Ωr−1,s(J∞(E)).

The invariant homotopy operators Jr,s
∇ constructed in the the proof of Theorem

5.56 have an addition property which actually uniquely characterizes them. Let
Pk ∈ Dr,s

k (J∞(E)) be a kth order total differential operator, say

P (Y ) =
k∑

|I|=0

∇I [Q∇
I(Y )].

We say that P is trace-free with respect to the connection ∇ if all of its invariant
symbols Q∇

I are trace- free, i.e.,

Di Q∇
I′i(Y ) = 0, for |I ′| = 0, 1, . . . , k − 1.

Since Jr,s
∇ 2 (P2) is a trace-free operator ( whether or not P2 itself is trace-free), it is

easily verified, by induction, that Jr,s
∇ k (P ) is trace-free for any k. Consequently, the

arguments presented in Proposition 2.4 can now be extended to arbitrary order total
differential operators. Thus, if P, P̃ ∈ Dr,s(J∞(E)) are two trace-free differential
operators, with r < n, and DP = DP̃ , then P = P̃ .
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Corollary 5.59. Suppose that P ∈ Dr,s
k (J∞(E)), where r < n, and that

DP = 0.

Then there is a unique operator R∇ ∈ Dr−1,s
k−1 (J∞(E)) which is trace-free with

respect to the connection ∇ and such that

DR∇ = P.

Proof: In fact, R must coincide with Jr,s
∇ (P ).

Example 5.60. Corollary 5.59 can now be used to construct directly local, invariant
solutions R to the equation DR = P and thereby circumvent the direct use of the
operators Jr,s

∇ . For example, suppose that

P3(Y ) = Q(Y ) +Di[Qi(Y )] +Dij [Qij(Y )] +Dijh[Qijh(Y )].

According to the corollary, we may take

R2(Y ) = S∇(Y ) + ∇i[S∇
i(Y )] +∇ij [S∇

ij ]

= S(Y ) +Di[Si(Y )] +Dij [Sij(Y )].

The equation DR2 = P3 implies that

−dx(h ∧ Sij) = Qijh, −dx(h ∧ Si) = Qij , (5.134a)

dxi ∧ S = Qi, and 0 = Q, (5.134b)

while the trace-free conditions on R2 imply, in view of the formulas (5.102) for the
invariant symbols of R, that

Sij
j = 0 and Si

i + ΓpijS
ij
p = 0. (5.134c)

Equations (5.134) can now be solved uniquely for the coefficients S, Si and Sij in
terms of the coefficients QI , the result being that

R2 = Jr,s
3 (Q) +DQ̃, (5.135)

where
Q̃(Y ) =

3
(n − r + 2)(n − r + 3)

ΓpijQ
ijh
ph (Y ).

Thus, for a third order D closed operator P3, DQ̃ is the single correction term
that must be added to Jr,s

3 (P3) to obtain an invariantly defined operator. One can
check directly, by a rather tedious calculation, that the two formulas for R, viz.,
(5.132) and (5.135) coincide — not identically but rather by virtue of the condition
DP3 = 0.
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Example 5.61. Similar trace-free conditions were introduced by Kolar [41 ] in
his construction of global Lepage equivalents. For example, if λ ∈ Ωn,0(J∞(E))
is a third order Lagrangian, then it readily follows from (5.135) (with r = n and
P = P(d

V
λ)) that

hn,1∇ (dV λ) = θα ∧ Ei
α(λi) +Dj [θα ∧ Eij

α (λi)] +Djh[θα ∧ Eijh
α (λi)]

+
1
2
dH [ Γpij θ

α ∧ ∂ijhα (λph)].

The global Lepage equivalent

Θ(λ) = λ+ hn,1∇ (dV λ)

therefore coincides with that defined by Kolar [41 ], at least for third order La-
grangians.

Corollary 5.62. Let ∇ be a connection on M . Then there exists a cochain map

Φ∇ : E∗(J∞(E)) → Ω∗(J∞(E))

from the Euler-Lagrange complex on J∞(E) to the de Rham complex on J∞(E)
which induces an isomorphism in cohomology.

If ∇ and ∇̃ are two connections on M , then Φ∇ and Φ̃∇ induce the same isomor-

phism.

Proof: In accordance with the spectral sequence argument used in the proof of
Theorem 5.9, the required map is easily constructed from the iterates of the map
hr,s∇ ◦ dV . For instance, if r ≤ n and ω ∈ Er(J∞(E)) = Ωr,0(J∞(E)), then

Φ∇(ω) =
r∑

k=0

(−1)rωr

where ω0 = ω and, for k = 1, 2, . . . , r, ωk = hr+1−k,k
∇ (dV ωk−1).

The inverse isomorphism Ψ∗ from the de Rham cohomology on J∞(E) to the
cohomology of the Euler-Lagrange complex on J∞(E) is induced by the projection
maps Ψ∗ = πr,0 and Ψ∗ = I ◦ πn,s. Since Ψ∗ is the inverse to both Φ∇ and Φ̃∇,
these maps must coincide in cohomology.
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One final remark concerning our invariant-theoretical constructions is in order.
As we have seen, any total differential operator P ∈ Dr,s(J∞(E)) may be described
in a variety of ways, viz.,

P (Y ) =
k∑

|I|=0

(DIY
α)P I

α =
k∑

|I|=0

DI [Y αQI
α] =

k∑
|I|=0

∇I [Y αQ∇
I
α]. (5.136)

Each of these representations is unique in the sense that P = 0 if and only if the
coefficients P I

α, QI
α and Q∇

I
α in each representation vanish. Suppose now that, in

addition to the linear connection ∇ on M we have a connection ∇′ on the bundle
Ev → J∞(E) of evolutionary vector fields. Specifically, ∇′ assigns to each total
vector field Z = totX , where X is a generalized vector field on M , and to each
evolutionary vector field Y , an evolutionary vector field ∇′

ZY . By definition ∇′
ZY

is linear (over C∞ functions on J∞(E)) in the argument Z and a derivation in the
argument Y . In local coordinates [x, u] on J∞(U), ∇′ is given by

∇′
ZY = X i[DiY

α + ΓαβiY
β ]

∂

∂uα
.

The connection coefficients Γαβi, defined by

∇Di

(∂
∂uα

)
= Γαβi

∂

∂uα
,

are the components of an evolutionary vector field and therefore, as such, are func-
tions on J∞(U). Under the change of coordinates vβ = vβ(xi, uα) and yj = yj(xi)
these connection coefficients transform according to

Γαβi =
∂vγ

∂uβ
∂uα

∂vδ
∂yj

∂xi
Γ
δ

γj + [Di(
∂vδ

∂uβ
)]
∂uα

∂vδ
.

Let T (p′,q′)
V (J∞(E)) → J∞(E) denote the bundle of type (p′, q′) tensors associated

to the vector bundle Ev(J∞(E)) → J∞(E) of evolutionary vector fields. The total
covariant derivative of “mixed tensor fields”, i.e., sections of T p,q

H ⊗ T p′,q′
V , can then

be constructed using both connections ∇ and ∇′. For example, if T is a mixed
tensor of types (p, q) = (1, 0) and (p′, q′) = (0, 1) then, in components,

∇′
jT

α
i = DjT

α
i + ΓαβjT

β
i − ΓlijT

α
l .

We have allowed ourselves an abuse of notation here by writing ∇′
j to denote a

process of covariant differentiation which depends upon both connection ∇ and ∇′;
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we retain the notation ∇j for covariant differentiation involving only the connection
∇.

The total derivatives DIY
α in the first representation in (5.136) can now be

systematically replaced by total covariant derivatives ∇′
IY

α. This leads to another
expression for P of the form

P (Y ) =
k∑

|I|=0

(∇′
IY

α)P∇′Iα,

where the coefficients P I
∇′ depend upon both connections ∇ and ∇′. Upon repeated

integration by parts, this can be recast into the form

P (Y ) =
k∑

|I|=0

∇I [Y αQ∇′
I
α], (5.137a)

where, just as in the proof of Proposition (2.1),

Q∇′
I
α =

k−|I|∑
|J|=0|

(|I|+|J|
|I|

)
(−1)|J|∇′

J (P∇′
IJ
α ). (5.137b)

The connection coefficients Γβαi enter into in the formula for Q∇′Iα twice — first
in the formulas for the P∇′Iα in terms of the original coefficients P I

α and then in the
calculation of the covariant derivatives ∇′

J . However, a comparison of (5.137b) and
the last representation in (5.136) shows that

Q∇
I
α = Q∇′

I
α

i.e., all the terms in the coefficient Q∇′Iα involving the connection coefficients Γβαi
must vanish! A similar situation is described by Masqué [49 ] who used a pair of
connections to construct global Poincaré-Cartan forms but concluded that the forms
so constructed are actually independent of one of the connections.

In the special case where the total differential operator P ∈ Dr,0(J∞(E)) is de-
fined by Lie differentiation, i.e., P (Y ) = LprY ω, we have that P I

α = ∂Iα(ω). The
operators P∇′(ω) are the so-called tensorial partial derivatives of ω with respect
to uαI and the connections ∇ and ∇′. The concept of tensorial partial differenti-
ation was first introduced by Rund[60 ] and subsequently developed by du Plessis
[23 ], Wainwright [77 ] and Horndeski [36 ]. We denote these tensorial derivatives by
∇′I

α(ω) — they are defined by

LprY ω =
k∑

|I|=0

(∇′
IY

α)∇′I
α(ω).
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For second order forms ω we find, after some straightforward calculation, that

∇′ij
α (ω) = ∂ijα ω

∇′i
α (ω) = ∂iα ω − 2Γβαj∂

ij
β ω + Γijh∂

jh
α ω, and

∇′
α (ω) = ∂α ω − Γβαi∂

i
β ω + ΓβαiΓ

γ
βj∂

ij
γ ω − Γβαi,j∂

ij
β ω.

The operators Q∇
I
α = Q∇′Iα become the tensorial Lie-Euler operators

E∇′
I
α(ω) =

k−|I|∑
|J|=0

(|I|+|J|
|I|

)
(−1)|J|∇′

J [∇′IJ
α (ω)].

These first appeared, albeit in a somewhat specialized context, in Horndeski’s [35 ]
analysis of variational principles on Riemannian structures. Note that when r =
n and |I| = 0, we obtain the following manifestly invariant expression for the
components of the Euler-Lagrange form

Eα(λ) =
k∑

|I|=0

(−1)|I|∇′
I [∇′I

α(λ)].

Example 5.63. Exactness of the Taub conservation law in general relativity.

Let g = gij dx
i⊗dxj be a metric ( of any signature) on an n dimensional manifold

M . Let Ri
j
hk be the curvature tensor of g, Rih = Ri

k
hk the Ricci tensor and

R = gijRij the curvature scalar. We denote covariant differentiation defined in
terms of the Christoffel symbols of g by either ∇j or |j.

The Euler-Lagrange equations derived from the second order Lagrangian

λ[g] =
√
g R ν

are the vacuum Einstein field equations

Gij = 0 where Gij = Rij − 1
2
gijR. (5.138)

Because of the general coordinate invariance of λ, Noether’s Theorem (see Example
3.34) implies that the Einstein tensor Gij is divergence-free, i.e.,

∇jG
ij = 0.



282 The Variational Bicomplex

Consequently, if X is any vector field on M , then the divergence of the vector
density

S = [
√
gXjG

ij ]
∂

∂xi
is given by

divS = DiS
i = ∇iS

i =
√
g (∇iXj)Gij . (5.139)

Therefore, if X is a Killing vector field of g, i.e.,

LX gij = ∇jXi +∇iXj = 0,

then S is divergence-free. This is a trivial conservation law in the sense that it holds
independent of the fields equations (5.138).

Now let y = yij dx
i⊗dxj be any symmetric, type (0, 2) tensor field, let Y = yij

∂

gijand let
T (Y ) = LprY S. (5.140)

The Lie derivative of (5.139) with respect to prY gives

div [T (Y )] = (∇iXj)LprY

(√
g Gij

)
+

(LprY (∇iXj)
)√

g Gij .

Thus T (Y ) is a divergence-free vector if

(i) g is a solution to the Einstein field equations, and

(ii) X is a Killing vector field for the metric g.

The conservation law T (Y ) is called the Taub conservation law for the Einstein field
equations.

To obtain an explicit expression for T (Y ), we first compute

LprY Rr
t
su = ∇u[LprY Γtrs] − ∇s[LprY Γtru]

=
1
2
gtp[yrp|s + ysp|r − yrs|p]|u − 1

2
gtp[yrp|u + yup|r − yru|p]|s

=
1
2
[yts|ru − ytu|rs − yrs

|t|u + yru
|t|s − ytqRr

q
us − yrqR

tq
us].

Here y
|t
rs = gtuyrs|u. Let y = gijyij . Then, because (5.139) implies that Rij = 0

and R = 0, it is not difficult to show, under the hypothesis that g is a solution to
the Einstein field equations, that

T j =
√
gXsgjt[LprY Grs]

=
1
2
√
g gjtXs[gabysa|tb − y|ts − gabyts|ab + gabyta|bs

− gtsh
ab|ab + gtsg

aby|ab − yabRt
b
as].

(5.141)
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The vector density T j(Y ) is an example of a natural tensor — it is constructed
from the metric gij, the curvature tensor Ri

j
hk, the tensor yij and its covariant

derivatives and the vector field Xs by the natural operations of forming tensor
products and taking contractions of indices. More formally, let

E = S0,2
+ (M)⊕ S0,2(M)⊕ TM → M

be the direct sum of the bundle S0,2
+ of metrics, the bundle S0,2 of symmetric type

(0, 2) tensors, and the tangent bundle of M . Then T is a weight 1, horizontal type
(1, 0) tensor on J∞(E) which is invariant under the induced action of the group
of orientation preserving diffeomorphism of M . We apply our invariant homotopy
operator to prove that T is naturally exact. In the present context (of vector densi-
ties and divergences) this means that there is a natural type (2, 0) skew-symmetric
tensor density

P = P ij [g, h,X ]
∂

∂xi
∧ ∂

∂xj

on J∞(E) such that

divP = [∇jP
ij ]

∂

∂xi
= T. (5.142)

To begin, we first recall the relationship between the divergence operator and the
exterior derivative. Let

T = T i1i2···ip ∂

∂xi1
∧ ∂

∂xi2
∧ · · · ∧ ∂

∂xip

be a skew-symmetric, type (p, 0) horizontal tensor density on J∞(E). Define, for
q = n − p, a type (q, 0) form T 4 by

T 4 =
1

p! q!
εi1...ipj1...jq

T i1...ip dxj1 ∧ . . .dxjq

Conversely, given a type (q, 0) form

ρ = Aj1j2...jq
dxj1 ∧ dxj2 ∧ . . .dxjq

we define a horizontal type (p, 0) skew-symmetric tensor density ρ� by

ρ� = εi1...ipj1...jqAj1...jq

∂

∂xi1
∧ · · · ∧ ∂

∂xip
.
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A standard calculation shows that (T 4)� = T . In addition, if T is a vector density
and P is a horizontal, type (2, 0) skew-symmetry tensor density, then div T = 0 if
and only if dHT 4 = 0 and divP = T if and only if dH(P 4) = T 4.

In light of (5.140), the Taub conservation law can be viewed as a vector density
valued total differential operator and so, in accordance with 5.54, we can write

T (Y ) =
[
Q∇

j(Y ) + ∇h[Q∇
hj(Y )] +∇hk[Q∇

hkj(Y )
] ∂

∂xj

where Q∇
Ij(Y ) = yabQ∇

abIj . The components Q∇
Ij are symmetric in the indices I,

but need not have any further symmetries. From the explicit formula (5.141), it is
not difficult to deduce that

Q∇
kj(Y ) = −2∇h[Q∇

hkj(Y )] (5.143a)

and

Q∇
hkj =

1
4
[gjhX lykl + gjkX lyhl − ghjXky − gjkXhy − 2ghkX lyjl

+Xkyhj +Xhyjk − 2Xjyhk + 2Xjghky].
(5.143b)

Since T (Y ) is divergence-free, T 4(Y ) is a dH closed and therefore, by (5.112),

T 4(Y ) = dH [Jn−1,1
∇ 2 (T 4)(Y )] (5.144)

where Jn−1,1
∇ 2 is given by (5.114). The key point to make here is that ∇ be now

taken to be the metric connection of g. The coordinate invariance of Jn−1,1
∇ 2 implies,

because T 4(Y ) is natural form on J∞(E), that Jn−1,1
∇ 2 (T 4)(Y ) is also a natural form.

When (5.144) is rewritten back in terms of T (by applying O), it is found that

T (Y ) = div [P (Y )],

where the components of P are given by

P jk(Y ) =
1
2
[Q∇

jk(Y ) − Q∇
kj(Y )] +

2
3
∇h[Q∇

hjk(Y ) − Q∇
hkj(Y )].

Into this equation we substitute from (5.143) to arrive at, after some simplification,

P jk = [(Xjy|k − Xky|j) − Xj|ky + (X ly
k|j
l − X ly

j|k
l )

+ (Xkyj|l|l − Xjykl|l) + (X l|khjl − X l|jhkl )].
(5.145)
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This agrees with the result presented in Arms and Anderson [6 ] where (5.142) was
verified using (5.145) by direct calculation.

The triviality of the Taub conservation law plays a crucial role in the analysis by
Fisher, Marsden and Moncreif [25 ] of the linearization stability of solutions to the
Einstein field equations.

With our invariant homotopy operators in hand, we immediately arrive at the fol-
lowing generalization of the above result. Let λ = L[g] ν be any natural Lagrangian
in the metric g, and let

S =
[
XiE

ij(L)[g]
] ∂

∂xj
.

The generalized Taub conservation law

T = LprY S

is a natural tensor. If g is any solution to the Euler-Lagrange equations

Eij(L)[g] = 0

and if X is a Killing vector field of g, then T is the divergence of a type (2, 0)
skew-symmetric natural tensor.
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Birkäuser, Boston, 1983.
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