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1. Introduction

In this paper we prove two results attributed to us by the senior author in [Hop02]. Namely, we describe
the set of components of the space of E∞ maps from MSpin to KO, and the set of components of the space
of E∞ maps from MO〈8〉 (also called MString) to tmf. As a corollary we show that the Â orientation

MSpin→ KO

of Atiyah-Bott-Shapiro [ABS64] refines to a map of E∞ spectra, and we show that the Witten genus

π∗MString →MF∗
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is the value on homotopy groups of a map of E∞ spectra

MString → tmf.

A precise statement of our results about KO appears in §6, while precise statements about tmf appear in
§12.

This paper is part of a larger project in prepartion, assembling the collaboration of the senior author
and others on the homotopy theory of elliptic cohomology and topological modular forms. We expect
the manuscript to include an overview of the results presented here, and so we provide a relatively brief
introduction. For more information we recommend the lectures [Hop95, Hop02], which describe the results
of the larger project in a broader context.

In the course of giving a physical account of the elliptic genus of Ochanine and Landweber-Ravenel-Stong,
Witten [Wit87] introduced a genus w of Spin manifolds, with KO characteristic series

σ(L, q) = (L1/2 − L−1/2)
∏
n≥1

(1− qnL)(1− qnL−1)
(1− qn)2

.

He gave a physical argument that, if M is a Spin manifold and c2(M) = 0, then w(M) is the q-expandion
of a modular form for SL2Z.

Note that if τ is a number in the complex upper half-plane, and z ∈ C, then setting L = ez and q = e2πτ

makes σ a holomorphic function of z, vanishing to first order at each of the points of the lattice

2πiZ + 2πiτZ.

Thus σ is a form of the Weiestrass sigma function. In the book [HBJ92], Hirzebruch, Berger, and Jung
recognized that this feature of the Witten genus gave it a special place among elliptic genera.

In [AHS01], the authors introduced the notion of an elliptic spetrum: this is triple (E,C, t) consisting of
a complex-orientable ring spectrum E, equipped with an isomorphism

t : spf E0CP∞ ∼= Ĉ

between its formal group and the formal group of an elliptic curve C. They used Abel’s Theorem–equivalently,
the Theorem of the Cube–to show that that every elliptic spectrum receives a canonical map of ring spectra

MU〈6〉 σ(E,C,t)−−−−−→ E,

naturally in the elliptic spectrum. For the elliptic spectrum associated to the Tate elliptic curve, the orien-
tation is the Witten genus, in the sense that the diagram

MU〈6〉 −−−−→ MO〈8〉

σ(KT ate)

y yw
K[[q]] −−−−→ KO[[q]]

commutes.

Inspired by this result, the senior author in collaboration with Goerss and Miller showed that the notion
of elliptic spectrum can be rigidified and enriched, into a sheaf of E∞ spectra Otop on the étale site of the
moduli stack MEll of elliptic curves, equipped with an isomorphism

spf O0
topCP∞ ∼= Ĉ

(here C denotes the tautological elliptic curve over MEll). They defined the spectrum of Topological Modular
Forms to be

tmf = Γho(MEll,Otop),
and the result of [AHS01] clearly suggested that there should be a map of ring spectra

MU〈6〉 → tmf

or better
MO〈8〉 → tmf,
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such that for any elliptic spectrum (E,C, t), the diagram

MU〈6〉 −−−−→ MO〈8〉y y
E ←−−−− tmf

commutes, and such that
MO〈8〉 → tmf → KO[[q]]

is the map associated to the Witten genus. This is the result we prove here.

The argument proceeds as follows. In §2 we recall and elaborate on the obstruction theory of May, Quinn,
and Ray [MQR77]. If R is a ring spectrum, then its space of units is the pull-back GL1R in the diagram

GL1R −−−−→ Ry y
(π0R)× −−−−→ π0R.

It is so named because, if X is a space, then

[X,GL1R] = (R0(X))×.

If R is an A∞ spectrum, then GL1R has a classifying space BGL1R, and if R is an E∞ spectrum, then there
is a spectrum gl1R such that

GL1R ≈ Ω∞gl1R.

Indeed, the functor gl1 is the right adjoint up to homotopy of

Σ∞+ Ω∞ : (−1)-connected spectra→ E∞-spectra.

If S denotes the sphere spectrum, then BGL1S is the classifying space for stable spherical fibrations.

Let
F : B → BGL1S

be an infinite loop space over BGL1S: say

F = Ω∞
(
b
f−→ Σgl1S

)
.

It is convenient to desuspend this once and consider it as a map

j : g = Σ−1b −→ gl1S.

Then the Thom spectrum M of F is an E∞ spectrum; and, if R is an E∞ spectrum, then the obstruction
to giving an E∞ orientation

M → R

is the horizontal composition in

g
j

// gl1S
ι //

��

gl1R;

Cj

;;w
w

w
w

w

(1.1)

and the space of E∞ orientations is the space of indicated factorizations. For string orientations of tmf , we
can take R = tmf and g = Σ−1bo〈8〉 = Σ7bo.

We eventually replace both the source and target in the mapping problem above. For example, let us
suppose that R is En-local. In §4.4 we show that the homotopy group

πq fib(gl1R→ Lngl1R)
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is torsion, and vanishes for q > n. This allows us to replace gl1tmf∧p with LK(1)∨K(2)gl1tmf
∧
p , and so avail

ourselves of the homotopy pull-back square

gl1tmf
∧
p −−−−→ LK(2)gl1tmf

∧
py y

LK(1)gl1tmf
∧
p −−−−→ LK(1)LK(2)gl1tmf

∧
p .

(1.2)

Next, Bousfield (n = 1) and Kuhn (general n) have shown that LK(n)X is a functor of Ω∞X, and this
implies that

LK(n)gl1tmf
∧
p ≈ LK(n)tmf

∧
p ,

and so the square (1.2) becomes

gl1tmf
∧
p −−−−→ LK(2)tmf

∧
py y

LK(1)tmf
∧
p −−−−→ LK(1)LK(2)tmf

∧
p .

Similarly, the theorem of Bousfield and Kuhn allows us to use the Adams Conjecture, to replace the source
Cj in the mapping problem above with bo〈8〉. Since bo〈8〉 is K(2)-acyclic and LK(1)bo〈8〉 ≈ KOp, we end
up with a sequence

[bo〈8〉, gl1tmf∧p ]→ [KOp, LK(1)tmf
∧
p ] A−→ [KOp, LK(1)LK(2)tmf

∧
p ]. (1.3)

Work of Adams–Harris–Switzer and Clarke [AHS71, Cla87] and results about LK(1)tmf
∧
p imply that

[bo〈8〉, LK(1)tmf
∧
p ] is the set of measures on cts(Z×p /{±1},Zp) taking values in p-adic modular forms. These

in turn can be identified with the set of sequences of p-adic modular forms satisfying a generalization of the
Kummer congruences.

Using the “logarithm” of [Rez06], we identify the kernel of the map A with those sequences of p-adic
modular forms which satisfy the Kummer congruences and are in the kernel of the Atkin operator.

Finally, the maps bo〈8〉 → LK(1)tmf
∧
p which solve the mapping problem (1.1) are sequences gk of p-adic

modular forms which satisfy the generalized Kummer congruences, are in the kernal of the Atkin operator,
and satisfy

gk ≡ Gk mod Z[[q]],

where Gk is tne Eisenstein series, normalized so that

Gk(q) = −Bk
2k

+ o(q).

Again, a precise statement of our results concerning tmf is given in §12.

2. Units of ring spectra and the space of orientations

2.1. The spectrum of units and E∞ orientations. In this section we recall and elaborate on the ob-
struction theory for E∞ orientations of May, Quinn, and Ray [MQR77]. We shall be brief, as a more detailed
account appears in [ABG+].

Definition 2.1. If R is a ring spectrum, then the space of units of R is the space GL1R which is the
homotopy pull-back in the diagram

GL1R −−−−→ Ω∞Ry y
(π0R)× −−−−→ π0R.
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If X is a space, then
[X,GL1R] = R0(X+)×,

and if X is a pointed space, then

[X,GL1R]+ = (1 + R̃0(X))× ⊆ R0(X+)×.

If R is an E∞ spectrum, then there is a spectrum gl1R such that GL1R ≈ Ω∞gl1R, and gl1 is the right
adjoint up to homotopy of the functor

Σ∞+ Ω∞ def= Σ∞+ Ω∞ : (−1)-connected spectra→ E∞-spectra.

Indeed, one can choose topological model categories of (−1)-connected spectra and E∞-spectra so that one
has the following.

Theorem 2.2. The functors Σ∞+ Ω∞ and gl1 model simplicial adjunctions

Σ∞+ Ω∞ : Ho((−1)-connected spectra) // HoE∞-spectra : gl1.oo

�

Remark 2.3. By simplicial adjunction, we mean that the indicated adjunctions preserve the homotopy type
of (simplicial) mapping spaces.

Example 2.4. If S is the sphere spectrum, then GL1S is the components of QS0 of degree ±1, and BGL1S
is the classifying space for stable spherical fibrations.

Suppose that b is a spectrum over bgl1S = Σgl1S, participating in a triangle

Σ−1b
Σ−1j−−−→ gl1S → C(j)→ b

f−→ bgl1S.

For convenience let g = Σ−1b. Note that if B = Ω∞B, then after looping down we have a map

B → BGL1S (2.5)

and so a stable spherical fibration over B.

Definition 2.6. The Thom spectrum of f : b → bgl1S is the homotopy pushout M = Mf in the diagram
of E∞ spectra

Σ∞+ Ω∞(gl1S) −−−−→ Sy y
Σ∞+ Ω∞(Cf) −−−−→ M.

(2.7)

The spectrum underlying M is the usual Thom spectrum of the spherical fibration classified by (2.5).

Now suppose that R is an E∞ spectrum with unit ι : S → R, and let i = gl1ι. The description (2.7) of M ,
together with the adjunction between Σ∞+ Ω∞ and gl1, shows that the space E∞(M,R) is naturally weakly
equivalent to the homotopy pull-back in the diagram

E∞(M,R) −−−−→ spectra(Cf, gl1R)y y
{i} −−−−→ spectra(gl1S, gl1R).

(2.8)

Let bgl1R = Σgl1R, and let p be the fiber in

p→ bgl1S → bgl1R.
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It is useful to consider the diagram

gl1S // Cf //

��
�
�
� b

f
//

��
�
�
� bgl1S

gl1S
i // gl1R // p // bgl1S,

which shows that we also have a homotopy pull-back diagram

E∞(M,R) −−−−→ spectra(b, p)y y
{f} −−−−→ spectra(b, bgl1S).

In other words, the space of E∞ orientations is the space of lifts in the fibration

gl1R

��

gl1R

��
p //

��

∗

��

b
f

//

==z
z

z
z

z
bgl1S // bgl1R.

2.2. The space of units and orientations. In this form, there is an analogous unstable result. If R is
merely an A∞ spectrum, then one can still form the delooping BGL1R, and indeed there is a fibration

GL1R→ EGL1R→ BGL1R.

Suppose that F : B → BGL1S is a map of spaces, and let P be the pull-back in the diagram

P //

��

EGL1R

��

B
F

//

;;w
w

w
w

w
BGL1S

BGL1ι // BGL1R.

(2.9)

Let M = MF be the Thom spectrum of the spherical fibration classified by F . In general it is not a ring
spectrum, but it is a Σ∞+ X-comodule via the relative diagonal

M −→ Σ∞+ X ∧M.

Definition 2.10. An orientation of M in R-theory is a map of spectra

u : M → R

such that the composition

M ∧R −→ Σ∞+ X ∧M ∧R
1∧u∧1−−−−→ Σ∞+ X ∧R ∧R −→ Σ∞+ X ∧R

is a weak equivalence. The space of orientations is the subspace of

u ∈ spectra(M,R) ∼= (Σ∞+ X-comodules,R-modules)(M ∧R,Σ∞+ X ∧R)

satisfying this condition.

About this situation there is the following.

Proposition 2.11. (1) The space of orientations M → R is naturally weakly equivalent to the space of
sections in (2.9).

(2) If F = Ω∞f then MF is the spectrum underlying the E∞ spectrum Mf .
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(3) If u : Mf → R is an E∞ map, associated to a map

t : b→ p,

then the underlying orientation MF → R is the one associated to

Ω∞t : B → P.

�

2.3. The space of orientations as a torsor. If E∞(M,R) is non-empty, then π0E∞(M,R) is a torsor for

π0E∞(Σ∞+ B,R) ∼= π0 spectra(b, gl1R),

by the E∞ map

M −→ Σ∞+ B ∧M.

This has the following description in the theory of units. Suppose given a diagram of spectra

g
j

// U
f

//

i

��

V //

u
~~~

~
~

~
b

X

(2.12)

in which the row is a cofiber sequence, and let A be the homotopy pull-back in the diagram

A −−−−→ spectra(V,X)y y
{i} −−−−→ spectra(U,X).

By construction, [b,X] acts on π0A, and we have the following.

Lemma 2.13. If there is a map u making the diagram (2.12) commute (in the homotopy category), then
π0A is a torsor for [b,X], and a choice of map u determines a weak equivalence

spectra(b,X) ≈ A,

which induces a trivialization of torsors upon applying π0.

Proof. Let k = ij : g → X. A map u : V → X as in (2.12) determines a wedge decomposition

Ck ≈ X ∨ Cf

making the diagram

g

j

��

g

k

��

// ∗

��

U
i //

��

X

��

// Ci

V //

u

<<yyyyyyyyy

��

// X ∨ b

��

// Ci

��

b b // ∗,
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in which the rows and columns are cofibrations, commute. Applying spectra(− , X) gives a commutative
diagram

spectra(b,X) ≈ //

&&MMMMMMMMMM
•

��

A

##HH
HH

HH
HH

HH
•

��

spectra(Ck,X) //

��

•

spectra(V,X)

��

{id} //

&&MMMMMMMMMMM {i}

##HHHHHHHHH

spectra(X,X) // spectra(U,X),

in which the indicated squares are homotopy pull-backs, and the left oblique square is obtained from the
right one by base change. In particular, if π0A is non-empty, then it is a torsor for π0 spectra(b,X). �

3. Rational orientations and characteristic classes

In this section we express some classical results about orientations, particularly Hirzebruch’s theory of
multiplicative sequences and Miller’s universal Bernoulli numbers, in terms of the obstruction theory in §2.

3.1. Rational units. If R is a ring spectrum and X is a connected pointed finite CW complex, then there
is a natural transformation

log : (1 + R̃0(X))× −→ R̃0(X; Q) (3.1)

1 + z 7→ log(1 + z);

note that the induced map on homotopy groups

πkGL1R ∼= G̃L1R
0
(Sk)

log−−→ πkR⊗Q

is just the natural map for k ≥ 1, and so is an isomorphism if R is rational.

This natural transformation is represented by an H-map

log : GL1R〈1〉 → (R⊗Q)〈1〉 (3.2)

which is a weak equivalence if R is rational.

If R is an E∞ spectrum, then the map (3.2) refines to a map of spectra, and so we have the following.

Lemma 3.3. If R is an E∞ ring spectrum, then the logarithm (3.1) arises from a map of spectra

gl1(R)〈1〉 → (R⊗Q)〈1〉 (3.4)

which induces the natural inclusion on homotopy groups. In particular if R is rational then this map is a
weak equivalence. In geneneral, the map induces weak equivalences

gl1(R⊗Q)〈1〉 ≈ (gl1R)〈1〉 ⊗Q ≈ (R⊗Q)〈1〉.

�

Since π0gl1S = {±1} and S ⊗Q ≈ HQ, we have the following.

Corollary 3.5. gl1S ⊗Q is contractible. �
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3.2. The Miller invariant. Since gl1(S)⊗Q ≈ ∗, the natural map

gl1(S)⊗Q/Z→ bgl1S

is an equivalence.

Definition 3.6. Suppose that
f : b→ bgl1S

is a map of spectra, and i : gl1S → X is a spectrum under gl1S. The (stable) Miller invariant associated to
f and i is the composition

m(f, i) : b
f−→ bgl1S ←−≈ gl1S ⊗Q/Z→ X ⊗Q/Z.

When the maps f and i are understood from the context, we shall write m(b,X) for m(f, i), etc. If R is an
E∞ spectrum, then we shall write m(b, R) for

m(b, gl1R) : b→ gl1R⊗Q/Z.

If F : B → BGL1S is a map of spaces, and R is a ring spectrum, then the (unstable) Miller invariant
associated to F and R is the composition

M(F,R) : B F−→ BGL1S ←−≈ GL1S ⊗Q/Z→ GL1R⊗Q/Z.

By construction we have

M(Ω∞b, R) = Ω∞m(b, R) ∈ [Ω∞b,GL1R⊗Q/Z], (3.7)

when R is an E∞ spectrum.

The terminology recognizes the fact that, when BU → BGL1S is the standard map, the effect on homo-
topy groups of M(BU,R) is given by the “universal Bernoulli numbers” introduced by Miller [Mil82]. In
order to explain this, we recall Hirzebruch’s theory of multiplicative sequences.

3.3. Hirzebruch’s characteristic series. Suppose that R is a ring spectrum and V is a virtual vector
bundle (or spherical fibration) over B. For simplicity we suppose that V has rank 0. A Thom class is an
element U ∈ R0(BV ) which freely generates R∗(BV ) as an R∗(B+)-module. Two Thom classes U0, U1 ∈
R0(BV ) determine a difference class

U0

U1
= δ(U0, U1) ∈ R0(B+)× (3.8)

by the formula
U0 = δ(U0, U1)U1.

Put another way, if V is orientable in R-theory, then the set of orientations is a torsor for R0(B+)×.

If R is an A∞ spectrum, this class has a simple description in the theory of units. By Proposition 2.11,
the two Thom classes correspond to lifts in the digram

EGL1R

��

B
V

//

U0
44jjjjjjjjjjjjjjjjjjj

U1

44jjjjjjjjjjjjjjjjjjj BGL1S // BGL1R,

and so their difference is a map
δ̃(U0, U1) ∈ [B,GL1R] ∼= R0(B+)×.

Proposition 3.9. The two constructions of difference class given above coincide; that is,

δ(U0, U1) = δ̃(U0, U1) ∈ R0(B+)×.

�
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If V is an oriented vector bundle and R is a rational homotopy-commutative ring spectrum, then we
always have the orientation

α : BV −→MSO → HQ ≈ S ⊗Q→ R.

It follows that an R-orientation
β : BV → R

may be studied using the difference class

δ(α, β) ∈ R0(B+)× ∼= H0(B+;R∗)×.

Hirzebruch’s theory of multiplicative sequences describes the difference class in the case that B = BSO (or
BU , etc.). For simplicity we consider the case of BSO.

Let L be the tautological line bundle over CP∞, let UαL ∈ H2((CP∞)L) be its standard Thom class in
ordinary cohomology; and let x = eHL = ζ∗UαL ∈ H2(CP∞+ ) be its euler class.

Suppose β : MSO → R is another map of ring spectra, and let

UβL ∈ R2((CP∞)L)

be the Thom class of the tautological line bundle.

Definition 3.10. The Hirzebruch series of the orientation β is the difference class

Kβ(x)
def= δ(UαL,UβL) = 1 + o(x) ∈ R0(CP∞+ )× ∼= H0(CP∞+ ;R∗)×.

If F denotes the formal group law over R∗ classified by MU∗ →MSO∗ → R∗, then

Kβ(x) =
x

expF (x)
.

One then has the following.

Proposition 3.11. The difference class

δ(α, β) ∈ R0(BSO+)×

is the characteristic class of virtual oriented bundles whose value on a sum L1 ⊕ · · · ⊕ Lr of complex line
bundles is ∏

i

Kβ(c1Li).

�

3.4. Homotopy groups. We continue to suppose that R is a rational homotopy-commutative ring spec-
trum, and that we are given a homotopy multiplicative orientation

β : MSO → R.

The difference class δ(α, β) determines a pointed map

BU → BSO
δ(α,β)−−−−→ GL1R〈1〉.

Let cβ be the composition

cβ : BU → GL1R〈1〉
log−−→ Ω∞R〈1〉,

where the logarithm is the map (3.2) representing the natural transformation

(1 + R̃0(X))×
1+z 7→log(1+z)−−−−−−−−−→ (R̃0(X))

and inducing the identity on homotopy groups in positive degrees. Define classes tk ∈ π2kR by the formula

Kβ(x) = exp

∑
k≥1

tk
k!
xk

 .

In this section we prove the following result.
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Proposition 3.12. If v denotes the periodicity element v = 1− L ∈ K0(S2) ∼= π2BU , then

(cβ)∗(vk) = (−1)ktk

Proof. The composition

S2k −→ (CP∞)∧k
Q

(1−Li)−−−−−−→ BU,

where the first map is the inclusion of the bottom cell, represents vk. For I ⊆ {1, . . . , k} write

LI =
∏
i∈I

Li

and
xI =

∑
i∈I

xi.

Then ∏
(1− Li) =

∑
I⊆{1,...,k}

(−1)|I|LI ,

and so the composition

(CP∞)∧k
Q

(1−Li)−−−−−−→ BU
δ−→ GL1R〈1〉

represents the element

f =
∏

I⊆{1,...,k}

Kβ(xI)(−1)|I| ∈ (1 + R̃0((CP∞)∧k) ⊆ R0((CP∞)k+)×. (3.13)

If we write
f = 1 + ax1 · · · · · xk + o(k + 1),

then (cβ)∗(vk) = a.

It is easy to check that the coefficient of x1 · · · · · xk in (3.13) is the coefficient of x1 · · · · · xk in

(−1)k
tk
k!

(x1 + · · ·+ xk)k,

which is (−1)ktk. �

3.5. The Miller invariant and universal Bernoulli numbers. Now suppose that R is a A∞ spectrum
which is also homotopy commutative. Suppose that

F : B → BSO

is a map, and let M be the associated Thom spectrum. By Proposition 2.11, an orientation

β : M → R

corresponds to a lift in the diagram
EGL1R

��

B

;;v
v

v
v

v
// BGL1R.

Once again we have the standard orientation

α : M → BSO → HQ ≈ S ⊗Q→ R⊗Q,
and so we can consider the difference class

δ = δ(α, β) : B → GL1R⊗Q.
If β′ : M → R is another orientation, then

δ(α, β)δ(α, β′)−1 = δ(β′, β)−1

factors through GL1R→ GL1R⊗Q, and so the composition

B
δ−→ GL1R⊗Q→ GL1R⊗Q/Z (3.14)

11



is independent of the choice of orientation, and it is not difficult to check that

δu = M(B,R).

With this observation, Proposition 3.12 gives the following.

Proposition 3.15. If
β : MU → R

is a multiplicative map with Hirzebruch series

Kβ(x) =
x

expF (x)
= exp

∑
k≥1

tk
xk

k!

 ,

then
M(BU,R)∗vk = (−1)ktk mod Z ∈ π2kR⊗Q/Z.

�

Corollary 3.16. If β′ is another multiplicative orientation with characteristic series

Kβ′(x) = exp

∑
k≥1

t′k
xk

k!

 ,

then
tk ≡ t′k

in π2kR⊗Q/Z.

Remark 3.17. Miller [Mil82] proves a similar result for the sequence bk defined by
x

expF (x)
=
∑

bkx
k.

In our applications, we need the following generalization of Proposition 3.15. We still suppose that R is
homotopy-commutative A∞ ring spectrum, and we suppose given a multiplicative orientation

β : MO〈2n〉 → R.

After rationalizing we may consider the difference class

δ(α, β) : BO〈2n〉 → GL1(R⊗Q)〈1〉,

and restricting to BU〈2n〉 gives a map

cβ : BU〈2n〉 → BO〈2n〉 → GL1(R⊗Q)〈1〉 ≈ R⊗Q〈1〉.

We use Proposition 3.12 to calculate

RingSpectra(MO〈2n〉, R)→
∏
k≥n

π2kR⊗Q

β 7→ (cβ∗vk)

Let g denote the composition

g : (CP∞)n
Q

(1−Li)−−−−−−→ BU〈2n〉 → BO〈2n〉 cβ−→ GL1(R⊗Q)〈1〉.

Then
g = g(x1, . . . , xn) = 1 + higher terms ∈ H0((CP∞)n+;R∗ ⊗Q),

where xi is the ordinary cohomology Chern class of Li. Proposition 3.43 of [AHS01] implies that there is a
power series f(x) = 1 + o(x) ∈ (R∗ ⊗Q)[[x]] such that

g(x1, . . . , xn) =
∏

I⊆{1,...,n}

f(xI)(−1)|I| .

12



For example, if n = 3 then

g(x1, x2, x3) =
f(x1 + x2)f(x1 + x3)f(x2 + x3)
f(x1 + x2 + x3)f(x1)f(x2)f(x3)

.

The Proposition also implies that if f ′ is another such power series then

f ′(x) = f(x) exp(function of the xi of degree n).

It follows that if we write

f(x) = exp

∑
k≥1

tk
k!
xk

 ,

then g determines tk for k ≥ n. If β factors as

MO〈2n〉 →MSO
β−→ R,

then f may be taken to be the Hirzebruch characteristic series Kβ . The argument of Proposition 3.12 then
implies

Proposition 3.18. For k ≥ n,
cβ∗v

k = (−1)ktk. �

�

Remark 3.19. In the case at hand, cβ∗vk = 0 unless k ≡ 0 mod 2, so we could have omitted the sign. The
formula is written so that it remains true for complex orientations which do not factor through MSO.

4. Localization of units

In this section and the next, we study the Morava K-theory and E-theory localizations of the spectrum
of units of an E∞ ring spectrum. The main tool is the functor of Bousfield-Kuhn [], which gives rise to the
logarithm of [Rez06].

4.1. The weak equivalence GL1R ≈ Ω∞R. Let R be an E∞ ring spectrum. If X is a pointed space, then
we have the natural transformation

[X,GL1R]∗ ∼= (1 + R̃0(X)) ⊆ R0(X+), (4.1)

which is an isomorphism when X is a connected sphere. It follows that the natural transformation 1+x 7→ x
is represented by a weak equivalence of pointed spaces

GL1R〈1〉 −→ Ω∞R〈1〉. (4.2)

4.2. The Bousfield-Kuhn functor. Fix a prime p and, for n ≥ 0 let

LK(n), L
f
K(n) : spectra −→ spectra

denote Bousfield localization and finite localization with respect to the indicated Morava K-theory.

The functor LK(n)gl1 is approachable because of the following construction of Bousfield and Kuhn [Bou87,
Kuh89]

Theorem 4.3. For each prime p and each n ≥ 1, there is a functor

Φfn : Ho spaces∗ −→ Ho spectra

and a natural equivalence
LfK(n)

∼= ΦfnΩ
∞;

setting
Φn = LK(n)Φfn,

gives a natural equivalence
LK(n)

∼= ΦnΩ∞.
�
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4.3. The logarithm. By applying the Bousfield-Kuhn functor to the weak equivalence (4.2), we obtain
weak equivalences

`n : LK(n)gl1R ≈ LK(n)R

`fn : LfK(n)gl1R ≈ L
f
K(n)R

(4.4)

naturally in the E∞ spectrum R. The composition

gl1R −→ LK(n)gl1R
`n−→ LK(n)R

represents a “logarithmic” natural transformation

`n : (1 + R̃0X)× ⊆ R0(X+)× −→ R̃0(X).

It has been extensively studied by the third author in [Rez06]. In particular, he proves the following.

Proposition 4.5. If R is a K(1)-local E∞ spectrum, then for x ∈ R0(X+)×,

`1(x) =
(

1− 1
p
ψ

)
log x

=
1
p

log
xp

ψ(x)

=
∞∑
k=1

(−1)k
pk−1

k

(
θ(x)
xp

)k
.

�

Example 4.6. For example, take X = S2n. Then R0(S2n) ∼= π0R[ε]/ε2, and

`1(1 + aε) = (1− 1
p
ψ) log(1 + aε)

= (1− 1
p
ψ)(aε).

(4.7)

Now suppose that E = LT (Ĉ0) is the Lubin-Tate spectrum associated to a supersingular elliptic curve
C0 in characteristic p > 0: so E is simultaneously an elliptic spectrum and a form of E2. Recall that E in
an E∞ ring spectrum.

Let
T (p) : E0(X+) −→ E0(X+)

be the operation which extends the classical Hecke operator on coefficients. If ψp is the power operation
associated to the subgroup of p-torsion, let R be the operation

R =
1
p
ψp.

On E0S2n, the action of R is given by the formula

Ra = pn−1a.

Proposition 4.8. For x ∈ E0(X+)×,

`2(x) = (1− T (p) +R) log x.

�

Example 4.9. Taking f ∈ π2nE so 1 + f ∈ E0(S2n)×, we find that Rf = pn−1f , and

`2(1 + f) = (1− T (p) + pn−1)f. (4.10)
14



4.4. Morava E-theory localization of units. We write Ln for LK(0)∨···∨K(n). It is the localization with
respect to the nth Lubin-Tate or Morava E theory. In this section we give a proof of the following result.

Theorem 4.11. Let R be an E∞ spectrum such that R = LnR. If F denotes the fiber of the natural map
gl1R −→ Lngl1R, then π∗F is torsion, and for q > n,

πqF = 0.

Lemma 4.12. Let X be a spectrum. Then LfnX ≈ LnX if and only LfK(j)X ≈ LK(j)X for 0 ≤ j ≤ n.

Proof. This follows result follows from the various pull-back squares relating Ln and LK(j) and Lfn and
LfK(j). �

Suppose that R is an E∞ spectrum such that R = LnR. Using Lemma 4.12 and the isomorphisms `j
(4.4), we have

LK(j)gl1R ≈ LK(j)R ≈ LfK(j)R ≈ L
f
K(j)gl1R.

Applying Lemma 4.12 again, we conclude that

Lfngl1R ≈ Lngl1R
and so

fib(gl1R→ Lngl1R) ≈ fib(gl1R→ Lfngl1R).
Let us write F for this fiber. We claim that it is a filtered homotopy colimit of coconnected torsion spectra.

Recall that
fib(S → LfnS) = hocolim

α
Zα,

where Zα is a filtered colimit of finite complexes of type n+ 1; and if

Fα = gl1R ∧ Zα,
then

F = hocolim
α

Fα.

In particular each Fα is torsion.

To see that each Fα is coconnected, let DZα be the Spanier-Whitehead dual of Zα. Let q be large enough
that there is a connected finite complex Kα such that

ΣqDZα = Σ∞Kα.

Then

Ω∞Σ−qFα ≈ Ω∞F (ΣqDZα, gl1R)

≈ spectra(Σ∞Kα, gl1R)

≈ spaces∗(Kα, GL1R)
1−x−−−→
≈

spaces∗(Kα,Ω∞R) = ∗,

since R is Ln-local and Kα has type n+ 1.

Now we can show that πiF = 0 for i > n. Let’s write Pn for the n Postnikov approximation. Since Fα is
torsion and coconnected, we know that

fib(Fα → PnFα)
is a homotopy colimit of suspensions of HFp’s.

Now consider the fibration
F → gl1R→ Lngl1R

Note that for q > n ≥ j, K(Fp, q) is K(j)-acyclic by [RW80], and so if q > n then

[ΣqHFp, gl1R] = π0E∞(Σ∞+ K(Fp, q), R) = 0.
15



We also have
[ΣqHFp, Lngl1R]

for all q. It follows that for q > n any map
Fα → F

factors through Fα → PnFα, and so F = PnF . This completes the proof of Theorem 4.11.

5. String orientations

We apply the obstruction theory in §2 to the study of string orientations. So let bo = bo〈0〉 and bu be the
connective real and complex K-theory spectra, and let bstring = Σ8bo, so Ω∞bstring = BO〈8〉 (by Bott
periodicity). Let string = Σ−1bstring, and let j be the map

j : string → gl1S

which is the desuspension of bstring → bgl1S. Let gl1S/string be the cofiber of j. Let MString be the
homotopy pushout in the diagram of E∞ spectra

Σ∞+ Ω∞(gl1S) −−−−→ Sy y
Σ∞+ Ω∞(gl1S/string) −−−−→ MString.

(5.1)

Then MString is the Thom spectrum associated to the map

BString → BO;

it is also often called MO〈8〉.
Let ι : S → R denote the unit of the E∞ spectrum R, and let i = gl1ι. The description (5.1) of MString,

together with the adjunction between Σ∞+ Ω∞ and gl1, shows that the space E∞(MString,R) is naturally
weakly equivalent to the homotopy pull-back in the diagram

E∞(MString,R) −−−−→ spectra(gl1S/string, gl1R)y y
{i} −−−−→ spectra(gl1S, gl1R).

(5.2)

This suggests that we make the following

Definition 5.3. If i : gl1S → X is a spectrum under gl1S, then we write A (X) for the homotopy pull-back
in the diagram

A (X) −−−−→ spectra(gl1S/string,X)y y
{i} −−−−→ spectra(gl1S,X).

(5.4)

In particular A (gl1R) is naturally weakly equivalent to the space of E∞ maps MString → R.

In this section we describe a sequence of invariants to detect π0A (X); they fit into a sequence

π0A (X) � B (X) � C (X) ↪→ D (X) .

The first approximation, B (X), arises from the long exact sequence of homotopy groups associated to the
square (5.4). By definition,

D (X) ∼= [bstring,X ⊗Q].

The map B (X)→ D (X) arises from the fact that gl1S is rationally contractible, and so it can be calculated
using the results of §3. The image of π0A (X) in D (X) will be called C (X) .

16



5.1. The homotopy invariant B (X). Consider the diagram

string
j

// gl1S
π //

i

��

gl1S/string

u
xxr r r r r r

// bstring

X

(5.5)

Let
B (X) def= {u ∈ [gl1S/string,X]|uπ = i},

be the set of dotted arrows in the homotopy category making the diagram commute. The long exact sequence
of homotopy groups associated to the diagram (5.4) includes a natural surjective map

h : π0A (X) � B (X) . (5.6)

Note also that the map
[bstring,X]→ [gl1S/string,X]

induces an action of [bstring,X] on π0A (X) and on B (X).

Lemma 5.7. The map h is compatible with the action of [bstring,X] on its source and target. If A (X) is
non-empty, then it is weakly equivalent to spectra(bstring,X), and π0A (X) is a torsor for [bstring,X].

Proof. The compatibility of h with the action of [bstring,X] is a tautology. The rest is follows from taking
U = gl1S, V = gl1S/string, and X = X in Lemma 2.13. �

Example 5.8. Taking X = gl1R in the Lemma, we recover the fact that if E∞(MString,R) is non-empty,
then π0E∞(MString,R) is a torsor for

π0E∞(Σ∞+ BString,R) ∼= [bstring, gl1R].

5.2. The characteristic series and the Miller invariant. Since, by Corollary 3.5, (gl1S) ⊗ Q is con-
tractible, we have weak equivalences

A (X ⊗Q) ≈ spectra(gl1S/string,X ⊗Q) ≈ spectra(bstring,X ⊗Q).

Definition 5.9. If X is a spectrum (or a pointed space), let

D (X) def=

s ∈ ∏
k≥4

π2kX ⊗Q

∣∣∣∣∣∣ sk = 0 if k is odd

 .

If X is a spectrum, then there is a natural isomorphism

s : [bstring,X ⊗Q] ∼= D (X) (5.10)

sending a map f : bstring → X ⊗Q to the sequence s(f) defined by

“s(f)k = f∗v
k,”

where we identify π∗bstring with its image in π∗bu = Z[v] under complexification. Precisely, s(f)k is defined
so that, for x ∈ π2kbstring,

f∗x = λ · s(f)k
if c∗x = λ · vk, where c : bstring → bu is induced by complexification.

Definition 5.11. If i : gl1S → X is a spectrum under gl1S, then the characteristic map of X is the map

b : π0A (X)→ D (X)

given by the composition

b : π0A (X)→ π0A (XQ) ∼= [bstring,XQ] s−→∼= D (X) . (5.12)

We write
C (X) def= (im b : π0A (X)→ D (X)) ⊆ D (X)

for the image of the characteristic map.
17



If R is an E∞ spectrum, then we may write the charactierstic map of gl1R as

b : π0E∞(MString,R)→ D (gl1R) ,

and the methods of §3.3 lead to an expression of the characteristic map using Hirzebruch’s theory of mul-
tiplicative sequences. Before giving the formula, we note that the characterstic map is the refinement of an
unstable invariant.

By Proposition 2.11, the standard orientation

MString −→MSO −→ HQ ≈ S ⊗Q −→ R⊗Q

corresponds to a section
EGL1R⊗Q

��

BString

α

77ooooooooooo
// BGL1R⊗Q,

while a (not-necessarily E∞) orientation

β : MString → R

gives a section
EGL1R

��

BString

β
88qqqqqqqqqq

// BGL1R.

The difference of α and β is a map

∆ = δ(α, β) ∈ [BString,GL1R⊗Q],

and we define
b(β) def= (∆∗v

k)k≥4 ∈ D (GL1R) .
The notation is consistent: if β is an E∞ map, then Proposition 2.11 gives

δ ∈ [bstring, gl1R⊗Q],

such that
∆ = Ω∞δ

and
(δ∗vk)k≥4 = b(β) ∈ D (gl1R) ,

so the two notions of b(β) coincide in
D (gl1R) ∼= D (GL1R) .

In any case, as long as β is merely homotopy-multiplicative, there is the following calculation. View the
composition

(CP∞)3
Q

(1−Li)−−−−−−→ BU〈6〉 r−→ BString
δ(α,β)−−−−→ GL1R⊗Q

to get an element
g = g(x1, x2, x3) = 1 + o(x1x2x3) ∈ H0((CP∞)3+;R∗ ⊗Q)×.

As we explain in §3.3, there is a power series h(x) = R∗ ⊗Q[[x]] such that

g(x1, x2, x3) =
∏

I⊆{1,2,3}

h(xI)(−1)|I| ; (5.13)

this equation does not quite determine h, but if we write

h(x) = exp

∑
k≥1

tk
xk

k!

 ,
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then (5.13) determines tk = tk(β) for k ≥ 3. If β factors rationally through an orientation

γ : MSO → R⊗Q,
then we may take h to be the Hirzebruch series

h(x) = Kγ(x) =
x

expFβ
(x)

of γ.

Proposition 5.14. With the definitions above,

tk(β) = 2bk(β)

for k ≥ 4, and so

h(x) = exp
(

2
∑

bk(β)
xk

k!

)
.

Proof. In Proposition 3.18, it is shown that

δ∗r∗v
k = (−1)ktk = tk ∈ π2kR⊗Q

(using the fact that tk = 0 unless k is even). Since

c∗r∗v
k = vk + (−1)kvk,

we find that tk = 2bk, as required. �

Example 5.15. The Hirzebruch series of the Atiyah-Bott-Shapiro orientation

ABS : MSpin→ KO

is
x

ex/2 − e−x/2
= exp

−∑
k≥2

Bk
k

xk

k!

 , (5.16)

where Bk is the kth Bernoulli number (see Proposition 10.2). It follows that the characteristic map of the
Atiyah-Bott-Shapiro orientation is given by

bk(ABS) = −Bk
2k
vk ∈ π2kKO ⊗Q.

Note that the map

BString
δ(α,β)−−−−→ GL1R⊗Q→ GL1R⊗Q/Z

is independent of the choice of orientation β; it is the Miller invariant M(BString,GL1R) as in §3.5. Since
we are fixing the spectrum bstring as our source, we make the following abbreviation.

Definition 5.17. Let i : gl1S → X be a spectrum under gl1S. We write mX for the stable Miller in-
variant m(bstring,X). Similarly if X is a space under GL1S, we write MX for the unstable invariant
M(BString,X). We may write MR for MGL1R and mR for mgl1R where appropriate.

Of course these are related by the formula

MΩ∞X = Ω∞mX ,

and so equation (5.16) implies the following.

Proposition 5.18.

(mKO)∗vk = −Bk
2k
vk mod Z

in π2kKO ⊗ Q/Z (with the convention that vk = 0 for k odd, or noting that Bk = 0 for k odd and bigger
than 1). �

The following is a useful summary of the relationship among our invariants.
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Proposition 5.19. i) The map b : π0A (X) −→ D (X) factors through the map h of (5.6), and so we have
the sequence of epi- and monomorphisms

π0A (X) // // B (X) // // C (X) // // D (X) .

ii) If α, β ∈ π0A (X) are such that b(α) = b(β), then they differ by a torsion element of [bstring,X].

iii) If A (X) is non-empty, then there is a “short exact sequence”

0→ [bstring,X]tors → π0A (X) � C (X) .

iv) If C (X) is non-empty, then it is the set of

f ∈ [bstring,X ⊗Q]

such that
bstring

f−→ X ⊗Q −→ X ⊗Q/Z
is mX .

v) The functors A (− ) and A (gl1− ) preserve homotopy limits.

vi) If g : X → Y is a map of spectra under gl1S such that

πq fib(g) = 0

for q ≥ 6, then

A (X) ≈ A (Y )

B (X) ∼= B (Y )

D (X) ∼= D (Y )

C (X) ∼= C (Y ) .

Proof. Most of this is clear from the definitions. For items (i) and (iv) it may be helpful to contemplate the
diagram

gl1S //

��

gl1S/string //

��
�
�
�

bstring

��
�
�
�

Σj
//

mX

%%LLLLLLLLLL bgl1S

��

Σ−1X ⊗Q/Z // X // X ⊗Q // X ⊗Q/Z,

whose rows are cofiber sequences.

For item (vi), note that the hypotheses imply that

spectra(string, fib(g))

is contractible. Consider the diagram

string
j

//

k
##GG

GG
GG

GG
GG

gl1S //

i

��

gl1S/string

yys s s s s s

��
�
�
�

fib(g) // X
g

// Y

If A (Y ) is nonempty, then gk is null, and then πq fib(g) = 0 for q ≤ 6 implies that k is null, and so A (X) is
nonempty. Thus the hypothesis on fib(g) implies that A (Y ) is nonempty if and only if A (X) is nonempty,
and in that case we have

A (X) ≈ spectra(bstring,X) ≈ spectra(bstring, Y ) ≈ A (Y ) ,

using Lemma 2.13. �
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6. String orientations of KO

Over the next few section we assemble a proof of the following.

Theorem 6.1. The characteristic map b identifies

π0A (gl1KO) ∼= π0E∞(MString,KO) ∼= π0E∞(MSpin,KO)

with the set of even sequences {bk ∈ Q}k≥4 satisfying the following conditions.

i) bk ≡ −Bk

2k mod Z.

ii) For each prime p and each c ∈ Z×p , the sequence {(1 − ck)(1 − pk−1)bk}k≥4 satisfies the generalized
Kummer congruences (Definition 9.6).

The sequence {bk = −Bk

2k }k≥4 satisfies these conditions, and so π0E∞(MSpin,KO) is nonempty. The E∞
orientation with characteristic series {bk}k≥4 refines the Atiyah-Bott-Shapiro orientation.

Remark 6.2. Michael Joachim [Joa04] has shown that the Atiyah-Bott-Shapiro orientation is an E∞ map,
and Laures [Lau03] has proved this result for 2-adic real K-theory.

We first describe the string orientations of p-adic real K-theory in §7. In §8 we explain how our description
of the p-adic orientations fit together to describe integral orientations. Sections 9 and 10 give proofs of
technical results which were used along the way.

7. String orientations of KOp

We begin with the study of string orientations of p-adic real K-theory. To begin, we recall that KOp is
K(1)-local.

Lemma 7.1. The natural map
bstring → KOp

is K(1)-localization:
LK(1)bstring ≈ KOp.

Proof. Recall that Kp is K(1)-local, and indeed as bu is a BP -module spectrum,

LK(1)bu = (v−1
1 bu)∧p = Kp.

The fibration
KOp → Kp → Kp

then shows that KOp is K(1)-local. Next, observe that LK(1)bstring ≈ LK(1)bo, and the result of Bousfield-
Kuhn (Theorem 4.3) implies that

LK(1)bstring ≈ LK(1)KOp ≈ KOp.

�

In view the the Lemma, (4.4) specializes to give the logarithmic weak equivalence

`1 : LK(1)gl1KOp → LK(1)KOp ≈ KOp (7.2)

Lemma 7.3. The natural map

gl1KOp → LK(1)gl1KOp
`1−→
≈

LK(1)KOp ≈ KOp

induces a weak equivalence
A (gl1KOp) ≈ A (KOp) ; (7.4)
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and in the diagram
π0A (gl1KOp) −−−−→ B (gl1KOp) −−−−→ C (gl1KOp)y y y
π0A (KOp) −−−−→ B (KOp) −−−−→ C (KOp) ,

(7.5)

all the arrows are isomorphisms.

Proof. KOp is K(1)-local and so L1-local; it follows from Theorem 4.11 that

πq fib(gl1KOp −→ LK(1)gl1KOp) = 0

for q > 1, and so

A (gl1KOp) ∼= A
(
LK(1)gl1KOp

)
by Proposition 5.19. The weak equivalence (7.2) then gives the weak equivalence (7.4). Similar remarks
apply for the the vertical arrows in (7.5).

For the horizontal arrows, recall also from Proposition 5.19 that we always have surjections

π0A (X) � B (X) � C (X) ,

and the kernel consists of torsion elements of [bstring,X]. We have (using Lemma 7.1 along the way)

[bstring, gl1KOp] ∼= [bstring, LK(1)gl1KOp] ∼= [bstring,KOp] ∼= [KOp,KOp],

which is torsion-free. �

Corollary 7.6. π0E∞(MString,KOp) ∼= π0A (gl1KOp) ∼= B (gl1KOp) ∼= B (KOp) is non-empty.

Proof. Consider the diagram

string // gl1S //

��

gl1S/string

xxr
r

r
r

r

KOp,

where the vertical arrow is

gl1S → gl1KOp
`1−→ KOp.

Since KOp is K(1)-local and LK(1)string = Σ−1KOp,

[string,KOp] = [Σ−1KOp,KOp] = 0.

Thus a dotted arrow exists, and B (KOp) is nonempty. �

To study B (KOp), let c be a p-adic unit. Let jc be the cofiber in

string
Σ−1(1−ψc)−−−−−−−→ string −→ jc,

and let Jc = Ω∞jc. The solution to the Unstable Adams Conjecture gives maps Ac and Bc making the
diagram

Jc //

Ac

��

BString
Ω∞(1−ψc)

//

Bc

��

BString

GL1S // GL1S/String // BString
Ω∞j

// BGL1S

(7.7)
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commute. Applying the Bousfield-Kuhn functor Φ (4.3) to the diagram (7.7) gives the top portion of the
commutative diagram

LK(1)jc

ΦAc ≈
��

// KOp

ΦBc ≈
��

1−ψc

// KOp

LK(1)gl1S //

��

LK(1)gl1S/string //

α

��
�
�
�

KOp

β

��
�
�
�

//

mgl1KOp

))SSSSSSSSSSSSSSSSS LK(1)bgl1S

��

Σ−1LK(1)gl1KOp ⊗Q/Z //

`1

��

LK(1)gl1KOp //

`1 ≈
��

LK(1)gl1KOp ⊗Q

`1 ≈
��

r
// LK(1)gl1KOp ⊗Q/Z

`1 ≈
��

Σ−1KOp ⊗Q/Z // KOp // KOp ⊗Q // KOp ⊗Q/Z
(7.8)

in which the rows are cofibrations.

Lemma 7.9. If c is a generator of Z×p /{±1}, then the map ΦBc is a weak equivalence.

Proof. The assertion is equivalent to the assertion that ΦAc is a weak equivalence. Thus the result is an
expression of the calculation of the K(1)-local sphere [Bou79, Rav84]. �

Proposition 7.10. Composition with ΦBc and with `1 in diagram (7.8) identifies the set of α ∈ B
(
LK(1)gl1KOp

) ∼=
π0E∞(MString,KOp) with the set of sequences b ∈ D (KOp) ⊆

∏
k≥4 Qp such that

i) the sequence {(1− ck)(1− pk−1)bk}k≥4 satisfies the generalized Kummer congruences; and

ii) bk ≡ −Bk

2k mod Zp.

Proof. First, it is clear from the diagram that to give a map

α : LK(1)gl1S/string → LK(1)gl1KOp (7.11)

is equivalent to giving the element `1αΦBc of [KOp,KOp]. By Proposition 9.7, applying π∗ as in

[KOp,KOp] −→
∏

k even ≥4

π2kKOp →
∏

k even ≥4

Qp

is an isomorphism onto the set of even sequences satisfying the generalized Kummer congruences. Thus to
give a map α as in (7.11) is equivalent to giving a sequence

{tk(α) = π2k(`1αΦBc)}k≥4 ∈
∏

Qp

satisfying the generalized Kummer congruences.

By definition, b(α) is the sequence

{bk(α) = π2kβ} ∈
∏
k≥4

π2kgl1KOp ⊗Q ∼= [bstring, gl1KOp ⊗Q]

where β is the map induced by α in the diagram (7.8). To compare t(α) and b(α), it is convenient first to
consider

b(`1α) ∈ D (KOp) ∼= [bstring,KOp ⊗Q].

Rezk’s formula (4.6) shows that
bk(`1α) = (1− pk−1)bk(α).

Inspection of diagram (7.8) shows that

tk(α) = (1− ck)(1− pk−1)bk(α).
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Thus to give a pair of maps α and β making the middle square in (7.8) commute is equivalent to giving
a sequence {bk(α)} ∈ D (KOp) ⊂

∏
k≥4 Qp such that the sequence {(1 − ck)(1 − pk−1)bk(α)} satisfies the

generalized Kummer congruences.

Such α, β make the whole diagram (7.8) commute, and so correspond to an E∞ orientation MString →
KOp, if and only if

rβ = mgl1KOp ,

where r is the map gl1KOp⊗Q→ gl1KOp⊗Q/Z. This equation holds if and only if it holds after applying
π∗. Using Proposition 5.18 and the definition of bk(α), this is the condition that

bk(α) = −Bk
2k

mod Zp

for k ≥ 4. �

Corollary 7.12. There is a unique E∞ map

MO〈8〉 → KOp

refining the Atiyah-Bott-Shapiro orientation.

Proof. According to the preceding Proposition, the statement is equivalent to the fact that the sequence

{−(1− pk−1)(1− ck)Bk
2k
}k≥4

satisfies the generalized Kummer congruences. This is equivalent to the existence of the Mazur measure; see
Example 9.9 and Corollary 9.10. �

We conclude this section by describing another approach to the commutativity of the diagram (7.8) which
will be useful in the study of tmf orientations. Consider the diagram

LK(1)S
ρ(c)

// KOp

ΦBc ≈
��

LK(1)gl1S //

��
LK(1)gl1ι **TTTTTTTTTTTTTTTT

`1 ≈

OO

LK(1)gl1S/string

α

��
�
�
�

Σ−1LK(1)gl1KOp ⊗Q/Z //

��

LK(1)gl1KOp

`1 ≈
��

Σ−1KOp ⊗Q/Z // KOp,

(7.13)

which except for the top square is a fragment of (7.8). The map ρ(c) is the map in the homotopy category
defined so that the top square commutes.

Suppose given any map
α : LK(1)gl1S/string → LK(1)gl1KOp.

In view of the equivalences marked in the diagram, the middle square commutes if and only if

`1αΦBcρ(c) = `1LK(1)gl1ι`
−1
1 ∈ π0KOp ∼= Zp.

The naturality of `1 implies

Lemma 7.14. For any E∞ spectrum R,

`1LK(1)gl1ι`
−1
1 = LK(1)ι : LK(1)S → LK(1)R.

�
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Proposition 7.15.

ρ(c)−1 =
1
2p

log(cp−1) ∈ π0KOp.

Proof. Let α be chosen so that the diagram (7.8) (and so also (7.13)) commutes. Let

g = `1αΦBc : KOp → KOp,

and define bk ∈ Qp by the formula

g∗v
k ≡ (1− ck)(1− pk−1)bkvk.

From Proposition 7.10 we know that

bk ≡ −
Bk
2k

mod Z. (7.16)

By the definition of ρ(c) we have

gρ(c) = `1LK(1)gl1ι`
−1
1 ∈ π0KOp ∼= Zp,

and from Lemma 7.14 we have `1LK(1)gl1ι`
−1
1 = LK(1)ι. Thus

gρ(c) = 1,

and it remains to calculate π0g.

As we explain in Proposition 9.7, if for k even and ≥ 4, gk ∈ Zp is defined by

g∗v
k = gkv

k

then
π0g = lim

r→∞
g(p−1)pr .

In Corollary 10.7, we show that if bk is any sequence of p-adic numbers satisfying (7.16), and if gk =
(1− ck)(1− pk−1)bk, then

lim
r→∞

g(p−1)pr =
1
2p

log cp−1.

�

8. Proof of Theorem 6.1

When we assemble the orientations of KOp constructed in §7 into orientations of KO, the result is a proof
of Theorem 6.1.

Proposition 5.19 and Lemma 7.3 imply the following.

Lemma 8.1. Applying A (gl1(− )) to the homotopy pull-back square

KO −−−−→
∏
pKOpy y

KO ⊗Q −−−−→
(∏

pKOp

)
⊗Q

yields a Cartesian square
π0A (gl1KO) −−−−→

∏
p π0A (gl1KOp)y y

D (gl1KO) −−−−→
∏
pD (gl1KOp) .

�
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Proof of Theorem 6.1. By Lemma 8.1, the characteristic map b identifies π0E∞(MString,KO) with the
subset of sequences {bk}k≥4 ∈ D (gl1KO) ⊆

∏
Q such that, for each p, {bk}k≥4 is in C (gl1KOp). By

Proposition 7.10, this is the set of {bk}k≥4 ∈ D (gl1KO) such that, for each prime p and each p-adic unit c,
the sequence {(1− ck)(1− pk−1)bk}k≥4 satisfies the generalized Kummer congruences, and such that

bk ≡ −
Bk
2k

mod Z.

In Corollary 7.12, we observe that the charateristic map of the Atiyah-Bott-Shapiro orientation is

bk = −Bk
2k
,

which satisfies all the required, and so corresponds to a unique E∞ map MString → KO. �

9. Maps between p-adic K-theory spectra

In this section, we fix a prime p. If E denotes either Kp or KOp, then we write E∨X for the “completed
homology”

E∨X
def= π0LK(1)E ∧X.

The following results are well-known to experts, and proofs of many cases are available; see for example
[Rav84, HM07]. What we need can be deduced from [AHS71], and Clarke [Cla87] has emphasized the
usefulness of measures in studying operations in p-adic K-theory. To state a result, note that given

f : S −→ LK(1)Kp ∧Kp

and λ ∈ Z×p , we get an element

S
f−→ LK(1)Kp ∧Kp

1∧ψλ

−−−→ LK(1)Kp ∧Kp → Kp ∈ π0K ∼= Zp (9.1)

(recalling that Kp is K(1)-local). Fixing f and letting λ vary over Z×p , we see that f defines a continuous
map Z×p → Zp.
Proposition 9.2. The procedure above induces isomorphisms

K∨
pKp

∼= cts(Z×p ,Zp)
KO∨pKOp

∼= cts(Z×p /{±1},Zp).
(9.3)

Dually, one has

K0
pKp

∼= homcts(cts(Z×p ,Zp),Zp)
KO0

pKOp
∼= homcts(cts(Z×p /{±1},Zp),Zp).

Proof. The statements about cohomology follow from the ones about completed homology, by duality. For
the statement about K∨

pKp, recall that [AHS71] show that

K0K ∼= {f ∈ Q[x, x−1]|f(k) ∈ Z[1/k] for all k};
where given

f : S → K ∧K,
f(k) is the composition

f(k) : S
f−→ K ∧K 1∧ψk

−−−→ K ∧K[
1
k

] −→ K[
1
k

].

Let c be a p-adic unit. For every r > 0, there is an integer k prime to p such that c ≡ k mod pr. Given
f ∈ K0K as above, we can consider the class of f(k) ∈ Z[1/k]/pr = Z/pr. This class depends only on the
class of c in (Z/pr)× and on the class of f in (K/pr)0K. Thus we have defined a map

(K/pr)0K → map(Z×p ,Z/pr)
which passes to the limit to give (9.3). The case of KO is similar, using the calculation of [AHS71] that

KO0KO ∼= {f ∈ Q[x, x−1]|f(−x) = f(x); f(k) ∈ Z[1/k] for all k.}
�
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Thus K0
pKp is the space of Zp-valued measures on cts(Z×p ,Zp). We write dµ for µ ∈ K0K viewed as a

measure, and for
f ∈ cts(Z×p ,Zp)

we use the notation ∫
fdµ

def= 〈µ, f〉.

Example 9.4. The formula (9.1) shows that, for λ ∈ Z×p ,∫
fdψλ = f(λ)

so dψλ is the Dirac measure supported at λ.

Example 9.5. As usual let v denote the Bott element in K0S2. Then the map

S ≈ S−2k ∧ S2k v−k∧vk

−−−−−→ K ∧K
correspond to the function

(x 7→ xk) ∈ cts(Z×p ,Zp),
since ∫

xkdψλ = λk = π2kψ
λ.

More generally if α : K → K then

〈α, v−k ∧ vk〉 =
α∗v

k

vk
∈ π0K.

In measure notation,

π2kα =
∫
xkdα : Zp → Zp.

That is, the effect on homotopy groups of α viewed as a map of spectra is given by the moments of the
measure dα.

We shall need to identify those sequences of p-adic numbers which are the moments of measures; equiva-
lently, we shall need to identify which sequences of p-adic numbers are the effect in homotopy of a self-map
of KOp.

Fix n ≥ 0. Let An be the set of polynomials

h(x) =
∑
k≥n

akx
k ∈ Qp[x]

such that
h(c) ∈ Zp

if c ∈ Z×p .

Definition 9.6. We say that a sequence {zk}k≥n satisfies the generalized Kummer congruences if, for all

h(x) =
∑

akx
k ∈ An,

we have ∑
akzk ∈ Zp.

Proposition 9.7. Let n be a natural number. The natural map

K0
pKp −→

∏
k≥n

Qp

α 7→ {π2kα}k≥n
is injective. Its image is the set of sequences {zk} satisfying the generalized Kummer congruences. For any
such sequence {zk}, the limit

z0 = lim
r
z(p−1)pr
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exists, and if zk = π2kα for k ≥ n, then π0α = z0. Similarly, the natural map

KO0
pKOp

s−→
∏
k≥n

Qp

α 7→ {π2kα}k≥n

is injective, with image the set of sequences {zk} with zk = 0 for k odd, and satisfying the generalized
Kummer congruences.

Proof. A polynomial h =
∑
akx

k ∈ An satisfying the conditions of the proposition defines a continuous
function

h : Z×p → Zp.

Suppose α ∈ K0K, and let

zk = π2kα =
∫
xkdα.

for k even. Then

Zp 3
∫
hdα =

∑
k

akzk

So the sequence {π2kα}k≥n0 satisfies the indicated condition. The condition characterizes the image, because
An is dense in the set of continuous functions Z×p → Zp.

Now the fact that, p-adically,
lim
r→∞

(p− 1)pr = 0

implies that
lim
r→∞

x(p−1)pr

= 1

as functions Z×p → Zp. Thus if α is a measure, then∫
1dα = lim

r

∫
x(p−1)pr

dα

as indicated. The case of KO is analogous. �

Example 9.8. If c is a p-adic unit, then

cp−1 ≡ 1 mod p

and so
c(p−1)pk−1

≡ 1 mod pk.

Let α = 1
pk ; let m and n be integers such that

m ≡ n mod (p− 1)pk−1;

and let
h(x) = α(xm − xn).

Then
h(c) ∈ Zp.

It follows that if {zn}n≥n0 is a sequence as in the Proposition, then

zm ≡ zn mod pk

if m ≡ n mod (p− 1)pk−1. In the case p = 2, a slight refinement of this argument shows that

zm ≡ zn mod 2 for all m,n

zm ≡ zn mod 2k+1 if k ≥ 2 and m ≡ n mod 2k−1.
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Example 9.9. Let c be a p-adic unit. By Theorem 10.6, there is a measure µ′c on Z×p /{±1} with the
property that, for k even, ∫

Z×p /{±1}
xkdµ′c = −(1− pk−1)(1− ck)Bk

2k
.

Moreover, the mean of this measure is ∫
Z×p /{±1}

dµ′c =
1
2p

log cp−1.

It follows that the sequence

zk = −(1− pk−1)(1− ck)Bk
2k

for k ≥ 4 satisfies the conditions of Proposition 9.7. (The congruences of Example 9.8 in this case are known
as the Kummer congruences) Applying Proposition 9.7 to this sequence, we have the following.

Corollary 9.10. There is a unique map

g : KOp → KOp

such that
g∗v

k = −(1− pk−1)(1− ck)Bk
2k
vk

for k ≥ 4. Moreover

g∗v
0 =

1
2p

log cp−1.

10. Bernoulli numbers, Eisenstein series, and the Mazur measure

In this section we assemble some results about Bernoulli numbers and the Mazur measure. Variations
on these results are scattered in the literature (see particularly [Ada65, Kat75, Kob77, Ser73]) and are
surely known to experts. We include them here because we have not found precisely the results we need by
consulting any one source.

10.1. Bernoulli numbers. Recall that the Bernoulli numbers are the rational numbers Bk for k ≥ 0 defined
by the formula

x

ex − 1
=
∑
k≥0

Bk
xk

k!
. (10.1)

It is easy to see that B0 = 1 and B1 = −1/2. It is also not difficult to check that Bk = 0 for k odd and
greater than 1. Indeed this follows from the following result, which relates the Bernoulli numbers to the
Â-genus.

Proposition 10.2.

x

ex/2 − e−x/2
= exp

−∑
k≥2

Bk
k

xk

k!

 .

Proof. We have

log
(

x

ex/2 − e−x/2

)
= log x− log(ex/2(1− e−x))

= log x− x

2
− log(1− e−x),

and so

d log
(

x

ex/2 − e−x/2

)
=

1
x
− 1

2
− e−x

1− e−x

=
1
x
− 1

2
− 1
ex − 1

.
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Comparing with (10.1), we find that

d log
(

x

ex/2 − e−x/2

)
= −

∑
k≥2

Bk
xk−1

k!
,

and so

x

ex/2 − ex/2
= A exp

−∑
k≥2

Bk
k

xk

k!

 .

Comparison of constant terms shows that A = 1. �

10.2. Mazur measure. In the following, we use the notation∑∗

a≤i<b

f(i) def=
∑
a≤i<b
p-i

f(i)

for a sum over integers not divisible by the given prime p.

Let A denote the set of polynomials h(x) ∈ Qp[x] such that h(0) = 0, and such that h(a) ∈ Zp whenever
a ∈ Z×p . Then A is dense in the space map(Z×p ,Zp) of continuous functions.

Theorem 10.3. Fix an element c ∈ Z×p .

(a) There exists a measure µc on Z×p ,

f(x) 7→
∫

Z×p
f(x) dµc(x) : map(Z×p ,Zp)→ Zp,

uniquely characterized by the following property. For h(x) ∈ A, let

Hc(x)
def
=
∫ cx

x

h(t)
t

dt.

Then ∫
Z×p
h(x) dµc(x) = lim

r→+∞

1
pr

∑∗

0≤i<pr

Hc(i).

(b) For this measure, we have∫
Z×p
xk dµc(x) = −Bk

k
(1− pk−1)(1− ck)

for k ≥ 1, and ∫
Z×p

1 dµc(x) =
1
p

log(cp−1).

The proof will proceed in several steps, given below.

Step 1. Fix a polynomial h(x) =
∑K
k=1 akx

k ∈ A, so that Hc(x) =
∑K
k=1

ak

k ((cx)k − xk). Let −r0 be the
minimum of the p-adic valuations of the ak/k ∈ Qp, for 1 ≤ k ≤ K. We first show that the p-adic numbers

1
pr

∑∗

0≤i<pr

Hc(i)

are p-adic integers for all r ≥ r0.
For each integer i such that 0 ≤ i < pr and p - i, there is a unique integer j of the same type such that

ci ≡ j mod pr. Let mr(j) ∈ Zp be the number making the equation

ci = j(1 +mr(j)pr)
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hold. Then for k ≥ 1,∑∗

0≤i<pr

(ci)k =
∑∗

0≤j<pr

jk(1 +mr(j)pr)k ≡
∑∗

0≤j<pr

jk + k jkmr(j)pr mod p2r.

Thus ∑∗

0≤i<pr

[(ci)k − ik] ≡
∑∗

0≤j<pr

k jkmr(j)pr mod p2r,

hence
1
pr

∑∗

0≤i<pr

Hc(i) ≡
∑∗

0≤j<pr

K∑
k=1

mr(j)akjk ≡
∑∗

0≤j<pr

mr(j)h(j) mod pr−r0 .

By hypothesis, h(j) and mr(j) are p-adic integers. Thus, we see the expression above is a p-adic integer
for all r ≥ r0. �

Step 2. We show that if h(x) = xk, k ≥ 1, then

lim
r→+∞

1
pr

∑∗

0≤i<pr

Hc(i) = −Bk
k

(1− pk−1)(1− ck).

In particular, the limit exists (and by Step 1 must lie in Zp). This proves the first part of (b).

Define polynomials Fk(t) ∈ Q[t] by

x
etx − 1
ex − 1

=
∑
k

Fk(t)
xk

k!
, so that Fk(t) =

t∑
j=1

(
k

j

)
Bk−jt

j .

(The identity x e
tx−1
ex−1 = xetx

ex−1 −
x

ex−1 means that Fk(t) = Bk(t)−Bk, where Bk(t) is the Bernoulli polynomial

defined by xetx

ex−1 =
∑
Bk(t)xk/k!.)

For n ≥ 0, let
Sk(n) =

∑
0≤i<n

ik

be the power sum. Then

Sk(n) =
1

k + 1
Fk+1(n).

Note that this is a polynomial in n of form Bk · n+O(n2).

Define
S∗k(n) =

∑∗

0≤i<n

ik.

When p|n, we have

S∗k(n) = Sk(n)− pkSk(n/p) =
1

k + 1
[Fk+1(n)− pkFk+1(n/p)].

This has the form (1− pk−1)Bk · n+O(n2). It follows that if we let n = pr, and allow r → +∞, then

S∗k(n)/n→ (1− pk−1)Bk.

If h(x) = xk, then Hc(x) = (ck − 1)xk/k, whence

1
pr

∑∗

0≤i<pr

Hc(i) =
ck − 1
k pr

∑∗

0≤i<pr

ik

=
ck − 1
k

S∗k(p
r)/pr

which thus converges to (1− pk−1)(ck − 1)Bk/k as r → +∞. �
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Step 3. By linearity, Step 2 shows that the limit in (a) converges to an element of Qp for all h ∈ A, and by
Step 1 this element must lie in Zp; thus we get a well-defined function φ : A→ Zp.

It is clear that if h(x) ∈ A has the property that h(Z×p ) ⊆ prZp, then φ(h) ∈ prZp. (If h has this property,
then h(x)/pr ∈ A.) Since any continuous function h : Z×p → Zp can be approximated uniformly by a sequence
hi(x) of elements of A, we see that we can define∫

Z×p
h(x) dµc(x) = lim

i→∞
φ(hi).

This constructs the measure of part (a). �

The remaining step is to prove the second formula of part (b). We give the argument in a form which we
will also apply in the proof of Proposition 7.15.

To make sense of the statement in part (b), first note that the Taylor series for natural logarithm allows us
to define a continuous homomorphism log : (1 + pZp)× → Zp. This extends in a unique way to a continuous
homomorphism log : Z×p → Zp, for instance by the formula

log(a) =
1

p− 1
log(ap−1).

We begin with the following result of von Staudt-Adams.

Lemma 10.4. If p is odd, and k ≡ 0 mod p− 1, or if p = 2 and k is even, then

Bk
k

(1− pk−1) ≡
(

1− 1
p

)
1
k

mod Zp.

�

Proof. This is easily deduced from Theorem 2.5 of [Ada65]. �

For convenience, we let
N(k) = (p− 1)pk.

Proposition 10.5. Let bk ∈ Qp be a sequence satisfying

bk ≡ −
Bk
k

mod Zp,

and let c be a p-adic unit. Then

lim
k→∞

(1− pN(k)−1)(1− cN(k))bN(k) =
1
p

log cp−1.

Proof. By Lemma 10.4 we have

(1− pN(k)−1)bN(k) ≡ −
1

N(k)

(
1− 1

p

)
mod Zp,

and since
1− cN(k) ≡ 0 mod pk,

we have

(1− cN(k))(1− pN(k)−1)bN(k) ≡ −
1− cN(k)

N(k)

(
1− 1

p

)
mod pk.

Now

lim
k→∞

1− cN(k)

N(k)
= − 1

p− 1
log cp−1,

so
lim
k→∞

(1− pN(k)−1)(1− cN(k))bN(k) =
p− 1
p

1
p− 1

log cp−1 =
1
p

log cp−1,

as required. �
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This completes the proof of Theorem 10.3. �

10.3. Half measures.

Theorem 10.6. Let µc be the measure constructed in (10.3). There exists a measure µ′c on Z×p /{±1},
characterized by the property that∫

Z×p /{±1}
h(x) dµ′c(x) =

1
2

∫
Zp

h(x) dµc(x),

for all h ∈ map(Zp/{±1},Zp).

Proof. The existence of µ′c is clear when p is odd; only the case p = 2 requires explanation.

Let A′ be the set of polynomials h(x) ∈ Q2[x] such that h(x) = h(−x) and h(0) = 0, and such that
h(a) ∈ Z2 whenever a ∈ Z×2 . Then A′ is dense in the space map(Z×2 /{±1},Z2). Fix a polynomial h(x) =∑K
k=2 akx

k ∈ A′. Let −r0 be the minimum of the 2-adic valuations of the ak/k ∈ Q2, for 2 ≤ k ≤ K.
Consider Hc(t) =

∫ cx
x
h(t)/t dt. I claim that

1
2r+1

∑∗

0≤i<2r

Hc(i) ∈ Z2

for all sufficiently large r. Given this, it is clear that the desired measure exists, by the arguments of the
previous section.

For each integer i such that 0 ≤ i < 2r and 2 - i, there is a unique integer j of the same type such that
ci ≡ ±j mod 2r+1. Let qr(j) ∈ {±1} and mr(j) ∈ Z2 be the unique elements satisfying the equation

ci = qr(j)j(1 +mr(j)2r+1).

Then for even integers k ≥ 2,∑∗

0≤i<2r

(ci)k =
∑∗

0≤j<2r

qr(j)kjk(1 +mr(j)2r+1)k ≡
∑∗

0≤j<2r

jk + kjkmr(j)2r+1 mod 22r+2.

Thus ∑∗

0≤i<2r

[(ci)k − ik] ≡
∑∗

0≤j<2r

k jkmr(j)2r+1 mod 22r+2,

and thus

1
2r+1

∑∗

0≤i<2r

Hc(i) ≡
∑∗

0≤j<2r

K∑
k=2

mr(j)akjk ≡
∑∗

0≤j<2r

mr(j)h(j) mod 2r−r0+1.

As before, mr(j), h(j) ∈ Z2, so that this expression is a 2-adic integer when r ≥ r0 − 1. �

Note that this result and Proposition 10.5 imply the following.

Corollary 10.7. Let bk ∈ Qp be a sequence satisfying

bk ≡ −
Bk
2k

mod Zp.

Then

lim(1− pN(k)−1)(1− cN(k))bk =
1
2p

log cp−1,

and this quantity is a p-adic integer. �
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10.4. Eisenstein series. Recall that the normalized Eisenstein series are the power series Gk given by

Gk = −Bk
2k

+
∞∑
n=1

σk−1(n)qn (10.8)

if k is even and Gk = 0 if k is odd, where

σk−1(n) =
∑
d|n

dk−1.

For k > 1, G2k is the q-expansion of a modular form. These Eisenstein series are related to the sigma
orientation of because of the following: note that the left-hand-side below is a form of the Weierstrass sigma
function (see for example [AHS04]).

Proposition 10.9.

x

ex/2 − e−x/2
∏
n≥1

(1− qn)2

(1− qnex)(1− qne−x)
= exp

∑
k≥2

2Gk
xk

k!

 .

Proof. Let’s write u = ex for convenience. We have

log

∏
n≥1

(1− qn)2

(1− qnu)(1− qnu−1)

 = 2
∑
n≥1

log(1− qn)−
∑
n≥1

log(1− qnu)−
∑
n≥1

log(1− qnu−1)

= −2
∑
n≥1

∑
d≥1

qnd

d
+
∑
n≥1

∑
d≥1

qnd

d
(ud + u−d)

= −2
∑
n≥1

∑
d≥1

qnd

d
+
∑
n≥1

∑
d≥1

qnd

d

∑
k≥0

1
k!
dk(xk + (−1)kxk).

In this expression, the coefficient of xk is 0 if k is 0 or odd, and, if k is even,
2
k!

∑
d≥1

dk−1
∑
n≥1

qnd,

which is the same as
2
k!

∑
n≥1

σk−1(n)qn.

Together with the equation

x

ex/2 − e−x/2
= exp

−∑
k≥2

Bk
k

xk

k!


which we prove in Proposition 10.2, we have

x

ex/2 − e−x/2
∏
n≥1

(1− qn)2

(1− qnex)(1− qne−x)
= exp

∑
k≥2

2Gk
xk

k!

 ,

as required. �

10.5. Kummer congruences for Eisenstein series. Let p be a prime. Then we write

G∗k(q) = Gk(q)− pk−1Gk(qp)

and
σ∗k−1(n) =

∑
d|n,(p,d)=1

dk−1.

It is easy to check that

G∗k(q) = −(1− pk−1)
Bk
2k

+
∑
n≥1

σ∗k−1(n)qn.
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Once again it is convenient to let N(r) = (p− 1)pr.

Proposition 10.10. For each prime p and for each p-adic unit c, there is a unique measure νc on Z×p /{±1},
taking values in MFp,∗, with moments ∫

Z×p /{±1}
xkdνc = (1− ck)G∗k

for k even and greater than three. Moreover this measure has mean

lim
r→∞

(1− cN(r))G∗N(r) =
1
2p

log cp−1.

Proof. Fix a prime p. Let

h(z) =
∑

akz
k ∈ Qp[z]

be a test polynomial for the generalized Kummer congruences (Definition 9.6), i.e. for every p-adic unit c,∑
akc

k ∈ Zp.

Fix a p-adic unit c. We must show that ∑
ak(1− ck)G∗k ∈ Zp[[q]].

The constant term (coefficient of q0) in (1− ck)G∗k is

−(1− ck)(1− pk−1)
Bk
2k
,

and so the generalized Kummer congruences for this term is equivalent to the existence of the Mazur measure
as explained in Example 9.9. For n ≥ 1 the coefficient of qn in (1− ck)G∗k is

(1− ck)σ∗k−1(n) = (1− ck)
∑

d|n,(p,d)=1

dk−1 =
1
d
(1− ck)

∑
d|n,(p,d)=1

dk.

Note that the d in the sum are p-adic units.∑
k

ak(1− ck)σ∗k−1(n) =
∑

d|n,(p,d)=1

d−1

(∑
k

ak1−
∑
k

ak(cd)k
)

The description of h means that each of the terms
∑
k ak and

∑
k ak(cd)

k is an element of Zp, and so the
whole expression is as well.

The second part follows from Corollary 10.7. Explicitly, if c is a p-adic unit, then

cp−1 ≡ 1 mod p

and so
cN(r) ≡ 1 mod pr,

i.e.

|1− cN(r)|p =
1
pr
.

Since |σ∗k−1(n)|p ≤ 1, we have

|(1− cN(r))σ∗N(r)−1(n)| ≤ 1
pr
.

Thus

lim
r→∞

(1− cN(r))G∗N(r) = lim
r→∞

−(1− cN(r))(1− pk−1)
Bk
2k

=
1
2p

log cp−1,

by Proposition 10.5. �
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11. K(n) localizations of tmf

Proposition 11.1. π2ktmf ⊗Q ∼= MFk ⊗Q and π2k(tmf∧p )⊗Q ∼= MFk ⊗Qp.

Lemma 11.2. tmf∧p is torsion in odd degrees.

Lemma 11.3.
tmf∧p

∼= (L2tmf
∧
p )〈0, . . . ,∞〉

We need the following facts about K(n)-localizations of tmf . If g is a power series

g =
∑

anq
n,

let g|V and g|U be the power series

g|U =
∑

anq
pn

g|V =
∑

apnq
n.

Thus if g is a p-adic modular form, then V and U are the Verschiebung and Atkin operators. If gk ∈ MFk
is a modular form of weight k, then the Hecke operator T (p) is given by

gk|T (p)(q) = gk|U + pk−1gk|V,

and
g∗k = gk − pk−1gk|V

is a p-adic modular form of weight k. [Ser73]

The logarithm `1 for LK(1)tmf is a map

gl1tmf → LK(1)gl1tmf
`1−→ LK(1)tmf.

Proposition 11.4. i) The natural map

π2ktmf →MFk

induces a map
π2kLK(1)tmf →MFp,k

from the homotopy of the K(1)-localization of tmf to the ring of p-adic modular forms.

ii) The θ-algebra structure of LK(1)tmf is such that the diagram

π2kLK(1)tmf −−−−→ MFp,k

ψ

y yg 7→pkg|V

π2kLK(1)tmf −−−−→ MFp,k

(11.5)

iii) There is an operation U : LK(1)tmf → LK(1)tmf making the diagram

π2kLK(1)tmf
π2kU−−−−→ π2kLK(1)tmfy y

MFp,k
U−−−−→ MFp,k

commute.

iv) [KOp, LK(1)tmf
∧
p ] is torsion free. Indeed, the natural map

[bstring, LK(1)tmf
∧
p ] ∼= [KOp, LK(1)tmf

∧
p ]→

∏
k≥4

MFp,k
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is an isomorphism onto the set of sequences of p-adic modular forms bk (with bk of weight k) which satisfy
the generalized Kummer congruences. (Definition 9.6) If {bk} is such a sequence, corresponding to a map
f : KOp → LK(1)tmf

∧
p , then

π0f = lim
r
b(p−1)pr

v) [KOp, LK(1)LK(2)tmf
∧
p ] is torsion free, and the natural map

[KOp, LK(1)LK(2)tmf
∧
p ] ∼= [bstring, LK(1)LK(2)tmf

∧
p ] −→

[bstring, LK(1)LK(2)tmf
∧
p ⊗Q] s−→ D

(
LK(1)LK(2)tmf

∧
p

)
is injective.

Now consider the diagram
LK(1)gl1tmf −−−−→ LK(1)LK(2)gl1tmf

`1

y≈ ≈
yLK(1)`2

LK(1)tmf
b−−−−→ LK(1)LK(2)tmf,

where the top horizontal arrow is LK(1) applied to K(2)-localization, and the bottom horizontal arrow b is
defined so that the diagram commutes.

Proposition 11.6. i) The diagram

π2kgl1tmf −−−−→ MFk

`1

y ygk 7→g∗k

π2kLK(1)tmf −−−−→ MFp,k

commutes.

ii) The diagram

π2kLK(1)tmf
π2kb //

π2k(1−U)
((PPPPPPPPPPPP

π2kLK(1)LK(2)tmf

π2kLK(1)tmf

55lllllllllllll

commutes, with the bottom right arrow LK(1) applied to K(2) localization.

Proof. Substituting the formula (11.5) for ψ in the equation (4.7) for `1 shows that, if g is a modular form
of weight k representing an element 1 + g ∈ π2kgl1tmf , then

`1g = (1− pk−1V )g.

On the other hand, Proposition 4.8 implies that

`2g = (1− T (p) +R)g = (1− T (p) + pn−1)g.

Note that UV g = g. Thus

(1− U)`1g = (1− U)(1− pn−1V )g

= (1− U − pk−1V + pk−1UV )g

= (1− T (p) + pk−1)g
= `2g,

as required. �
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12. String orientations of tmf : statement of main results

To state a result about orientations of tmf , we write MFk for the group of integral modular forms of
weight k and level 1. Then MF∗ ⊗ Q is isomorphic to the ring of rational modular forms of level one. A
modular form f ∈MFk ⊗Q has a q-expansion

f(q) ∈
∑
n

fnq
n.

If f is a modular form and p is a prime, then we write f |T (p) for the modular form given by applying the
Hecke operator T (p) to f . Recall that if f has weight k, then

f |T (p)(q) =
∑
n

fnq
pn + pk−1

∑
n

fpnq
n.

We write Bk for the k-the Bernoulli number, defined by

x

ex − 1
=
∑
k≥0

Bk
xk

k!
.

Theorem 12.1. C (gl1tmf) is the set of sequences (gk ∈ MFk ⊗ Q)k≥4 satisfying the following three
conditions.

i) gk(q) ≡ −Bk

2k mod Z[[q]].

ii) Given a prime p, write g∗k(q) = gk(q) − pk−1gk(qp). For each prime p and each c ∈ Z×p , the sequence
{(1− ck)g∗k(q))}k≥4 satisfies the generalized Kummer congruences (Definition 9.6).

iii) For all primes p, gk|T (p) = (1 + pk−1)gk.

Remark 12.2. Note that condition iii) implies that each gk is a multiple of the Eisenstein series Gk, since
this is the eigenfunction of T (p) with the indicated eigenvalue [Ser70].

For k ≥ 4 let Gk ∈MFk ⊗Q be the Eisenstein series, normalized as

Gk = −Bk
2k

+
∑
n=1

σk−1(n)qn,

where
σk−1(n) =

∑
d|n

dk−1.

Theorem 12.3. The sequence {Gk}k≥4 satisfies the conditions of Theorem 12.1, and so π0E∞(MString, tmf)
is nonempty. The E∞ orientations with characteristic series {Gk}k≥4 refine the sigma orientation of
[AHS04].

13. First reductions

In this section we reduce the study of orientations of tmf to a problem about K(1)-local spectra.

Proposition 13.1. Applying π0A (gl1(− )) to the homotopy pull-back square
tmf −−−−→

∏
p tmf

∧
py y

tmf ⊗Q −−−−→
(∏

p tmf
∧
p

)
⊗Q

(13.2)

yields a Cartesian square
π0A (gl1tmf) −−−−→

∏
p π0A

(
gl1tmf

∧
p

)y y
D (gl1tmf) −−−−→ D

(∏
p gl1tmf

∧
p

)
.
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In particular C (gl1tmf) ⊆ D (gl1tmf) ∼= D (tmf) is the set of sequences (gk ∈ MFk ⊗ Q) such that, for
each prime p, the image of this sequence in MF∗ ⊗Qp lies in C

(
gl1tmf

∧
p

)
.

Proof. By Proposition 5.19, applying A (gl1(− )) to the diagram (13.2) yields a homotopy pull-back diagram.
Let

Y =
∏
p

gl1tmf
∧
p

X =

(∏
p

gl1tmf
∧
p

)
⊗Q.

Since X is rational, and (gl1S)⊗Q ≈ ∗, we have a weak equivalence

A (X) ≈ map(bstring,X). (13.3)

From this we get a Mayer-Vietoris sequence

[Σbstring,X]→ π0A (gl1tmf)→ π0A (gl1tmf ⊗Q)⊕ π0A (Y ) � [bstring,X].

But [Σbstring,X] ∼= [bstring,Σ−1X] ∼= D
(
Σ−1X

)
= 0, because for all p, tmf∧p is torsion in odd degrees

(Lemma 11.2). �

Proposition 13.4. The natural map

A
(
gl1tmf

∧
p

)
→ A

(
LK(1)∨K(2)gl1tmf

∧
p

)
(13.5)

is a weak equivalence, and so there is a homotopy pull-back square

A
(
gl1tmf

∧
p

)
−−−−→ A

(
LK(2)gl1tmf

∧
p

)y y
A
(
LK(1)gl1tmf

∧
p

)
−−−−→ A

(
LK(1)LK(2)gl1tmf

∧
p

)
.

Proof. Since (Lemma 11.3)
tmf∧p

∼= (L2tmf
∧
p )〈0, . . . ,∞〉

we have
gl1tmf

∧
p
∼= gl1L2tmf

∧
p .

Theorem 4.11 implies that
πq fib(gl1L2tmf

∧
p → L2gl1L2tmf

∧
p )

is torsion, and zero for q > 2, and so Proposition 5.19 implies that (13.5) is a weak equivalence. �

For the next result, we recall the following.

Lemma 13.6. K(2) ∧ bstring and K(2) ∧ bu〈6〉 are contractible. �

Proposition 13.7. For all X under gl1S, A
(
LK(2)X

)
≈ ∗, and the image of π0A

(
LK(2)X

)
in D

(
LK(2)X

)
is the zero sequence.

Proof. Since K(2) ∧ bstring ≈ ∗, gl1S → gl1S/string is a K(2)-equivalence. This proves the first part.

In particular, up to homotopy there is a unique map g making the diagram

string
j

// gl1S
≈K(2)

//

��

gl1S/string //

g
xxpppppppppp

bstring

LK(2)X,

in which the row is a cofibration, commute. The second statement in the proposition is that the characteristic
map of g is the zero sequence.
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To see this, suppose that k is an even number greater than or equal to 4, and suppose that xk ∈
π2kgl1S/string maps to a non-zero element yk of π2kbstring. Let λk ∈ Q be defined by the formula

r∗yk = λkv
k

in π2kbu⊗Q. Then bk = bk(g) is determined

g∗xk = λkbk(g) ∈ π2k(LK(2)X)⊗Q.

Since g factors through LK(2)gl1S/string, to prove the second part it is enough to show xk maps to a torsion
element of π2kLK(2)gl1S/string.

There are a variety of ways to show this. For example, Friedlander’s proof of the stable Adams Conjecture
[Fri80] implies that, if c is a generator of Z×p , then there is a map Fc making the diagram

bu〈6〉

Fc

��

bu〈6〉

ψc−1

��

// ∗

��

bu〈6〉

��

gl1S/string // bstring // bgl1S

(13.8)

in which the rows are cofiber sequences, commute. We can take xk to be the image of vk ∈ π2kbu〈6〉 under
Fc. Then xk maps to zero in LK(2)gl1S/string, since K(2) ∧ bu〈6〉 ≈ ∗. �

14. Orientations of LK(1)tmf

Propositions 13.4 and 13.7 together imply that we have a fibration

A
(
gl1tmf

∧
p

)
→ A

(
LK(1)gl1tmf

∧
p

)
→ A

(
LK(1)LK(2)gl1tmf

∧
p

)
. (14.1)

In this section we analyze A
(
LK(1)gl1tmf

∧
p

)
. The analysis is similar to our analysis of A (KOp) in §7. In

§15 we analyze the map in the sequence (14.1).

Note that Theorem 4.11 and Proposition 5.19 together imply that

A
(
gl1LK(1)tmf

∧
p

)
≈ A

(
LK(1)gl1LK(1)tmf

∧
p

)
.

At the same time, we have the equivalences

LK(1)gl1LK(1)tmf
∧
p

`1−→
≈

LK(1)tmf
∧
p

`1←−
≈
LK(1)gl1tmf

∧
p .

Putting these together, we find that

A
(
LK(1)gl1tmf

∧
p

)
≈ A

(
gl1LK(1)tmf

∧
p

)
and so we our description of A

(
LK(1)gl1tmf

∧
p

)
yields a description of the E∞ string orientation fo LK(1)tmf

∧
p :

Lemma 14.2. A
(
LK(1)gl1tmf

∧
p

)
is homotopy equivalent to the space of E∞ maps

MString → LK(1)tmf
∧
p .

�

The analysis proceeds much as our analysis of E∞(MString,KOp). To begin with, we have the following.

Lemma 14.3. Let X = LK(1)gl1tmf
∧
p or LK(1)LK(2)gl1tmf

∧
p . The maps

π0A (X) −→ B (X) −→ C (X)

are bijections.
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Proof. One possibility is that all three sets are empty. If not, then recall from Proposition 5.19 that we have
surjections

π0A (X) � B (X) � C (X) ,
with “kernel” the torsion subgroup of [bstring,X] = [KOp, X]. But if

X = LK(1)gl1tmf
∧
p ≈ LK(1)tmf

∧
p or LK(1)LK(2)gl1tmf

∧
p ≈ LK(1)LK(2)tmf

∧
p ,

then [KOp, X] is torsion-free (Proposition 11.4). �

Remark 14.4. The main difference from the argument for KOp is that I have not assumed that

[Σ−1KOp, LK(1)tmf
∧
p ] = 0.

To study π0A
(
LK(1)gl1tmf

∧
p

) ∼= B
(
LK(1)gl1tmf

∧
p

)
, consider the diagram

LK(1)S
ρ(c)

// KOp

ΦBc ≈
��

1−ψc

// KOp

LK(1)gl1S //

��
LK(1)gl1ι **TTTTTTTTTTTTTTTT

`1 ≈

OO

LK(1)gl1S/string //

α

��
�
�
�

KOp

β

��
�
�
�

//

mgl1tmf∧p

))TTTTTTTTTTTTTTTTT LK(1)bgl1S

��

Σ−1LK(1)gl1tmf
∧
p ⊗Q/Z //

`1

��

LK(1)gl1tmf
∧
p

//

`1 ≈
��

LK(1)gl1tmf
∧
p ⊗Q

`1 ≈
��

r
// LK(1)gl1tmf

∧
p ⊗Q/Z

`1 ≈
��

Σ−1LK(1)tmf
∧
p ⊗Q/Z // LK(1)tmf

∧
p

// LK(1)tmf
∧
p ⊗Q // LK(1)tmf

∧
p ⊗Q/Z,

(14.5)
which is modified from (7.8) in two ways: first, by replacing KO with tmf as the target, and second, by
displaying the map LK(1)gl1S → LK(1)S as in (7.13). We recall that in Proposition 7.15 we proved that

ρ(c)−1 =
1
2p

log(cp−1) ∈ π0KOp.

For convenience let
N(r) = (p− 1)pr.

Proposition 14.6. The characteristic map

π0A
(
LK(1)gl1tmf

∧
p

)
−→ D

(
LK(1)gl1tmf

∧
p

)
is an isomorphism to the set of sequences of p-adic modular forms {bk ∈MFp,2k}k≥4 such that, for all p-adic
units c,

(1) the sequence {(1− ck)b∗k}k≥4 satisfies the generalized Kummer congruences (9.6).
(2) limr→∞(1− cN(r))b∗N(r) = ρ(c)−1.

Proof. The argument is much the same as it was in the case of KOp in §7. Proposition 11.4 says that to
give a map

α : LK(1)gl1S/string → LK(1)gl1tmf
∧
p (14.7)

is equivalent to giving an sequence

{tk(α) def= π2k(`1αΦBc)}k≥4 ∈
∏
kgeq4

π2kLK(1)tmf
∧
p

of p-adic modular forms satisfying the generalized Kummer congruences.

On the other hand, b(α) is the sequence

{bk(α) = π2kβ}k≥4 ∈
∏
k≥4

π2kgl1tmf
∧
p ⊗Q
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defined using the map β in the diagram (14.5). To compare these it is convenient first to consider b(`1α).

Proposition 11.6 shows that
bk(`1α) = b∗k(α).

Inspection of the diagram (14.5) shows that

tk(α) = (1− ck)b∗k(α).

Thus to give a pair of maps α and β making the middle square in (14.5) commute is equivalent to giving
a sequence {bk(α)}k≥4 ∈ π∗tmf∧p ⊗ Q such that the sequence {(1 − ck)b∗k(α)}k≥4 satisfies the generalized
Kummer congruences.

Such α, β make the whole diagram (14.5) commute, and so correspond to an element of B
(
LK(1)gl1tmf

∧
p

)
(and, incidentally, an E∞ orientation MString → LK(1)tmf

∧
p ), if and only if

`1αΦBcρ(c) = 1

By Proposition 11.4, this is the condition that

lim
r→∞

(1− cN(r))b∗N(r)(α) = ρ(c)−1.

�

Remark 14.8. Once we know that A
(
LK(1)gl1tmf

∧
p

)
is non-empty, we can proceed as in §7. The condition

involving ρ(c) can be replaced with the condition

bk ≡ Gk mod Z.

See the proof of Theorem 12.1, below.

15. Orientations of tmf

Proposition 15.1. C
(
gl1tmf

∧
p

)
is the set of sequences (gk) ∈

∏
k≥4MFp,2k such that

(1) the sequence (g∗k) lies in C
(
LK(1)tmf

)
(that is, it satisfies the conditions of Proposition 14.6); and

(2) g∗k|(1− U) = 0.

Proof. Propositions 13.4 and 13.7 imply that the sequence

π0A
(
gl1tmf

∧
p

) γ−→ π0A
(
LK(1)gl1tmf

∧
p

) δ−→ π0A
(
LK(1)LK(2)gl1tmf

∧
p

)
is exact in the middle, in the sense that im γ = δ−1(∗), where ∗ is the element in the image of π0A

(
LK(2)gl1tmf

)
.

Using Proposition 14.3, we may replace π0A (− ) with C (− ) for the K(1)-localizations.

Proposition 13.7 shows that under

π0A
(
LK(1)LK(2)gl1tmf

∧
p

)
→ C

(
LK(1)LK(2)gl1tmf

∧
p

)
,

∗ maps to the zero sequence. Proposition 11.6 shows that the diagram

C
(
LK(1)gl1tmf

∧
p

)
−−−−→ C

(
LK(1)LK(2)gl1tmf

∧
p

)
`1

y yLK(2)`2

C
(
LK(1)tmf

∧
p

) 1−U−−−−→ C
(
LK(1)LK(2)tmf

∧
p

)
commutes, giving the result. �

Recall [AHS01] that the the sigma orientation is an orientation of elliptic spectra which refines the Witten
genus, whose Hirzebruch series is

x

ex/2 − e−x/2
∏ (1− qn)2

(1− qnex)(1− qne−x)
= exp

∑
k≥2

2Gk
xk

k!

 .
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In Proposition 10.9 we show that
x

expσ(x)
= exp

(
2
∑
k

Gk
xk

k!

)
,

where Gk is the normalized Eisenstein series

Gk = −Bk
2k

+
∑
n≥1

σk−1(n)qn.

Here
σk−1(n) =

∑
d|n

dk−1,

and if we also define
σ∗k−1(n) =

∑
d|n,(p,d)=1

dk−1

then it is easy to check that

G∗k = −(1− pk−1)
Bk
2k

+
∑
n≥1

σ∗k−1(n)qn. (15.2)

Proposition 15.3. The sequence {Gk}k≥4 satisfies the conditions of Proposition 15.1, and so is the char-
acteristic map of an E∞ orientation MString → tmf∧p .

Proof. The p-adic conditions of Proposition 15.1 are proved as Proposition 10.10. The remaining condition
is that G∗k|(1− U) = 0, which follows easily from (15.2). �

We can now prove that π0E∞(MString, tmf) contains an orientation which refines the sigma orientation.

Proof of Theorem 12.3. According to Proposition 13.1, C (gl1tmf) is the set of sequences bk ∈ MFk ⊗ Q
of modular forms such that, for all p, {bk} ∈ C

(
gl1tmf

∧
p

)
}. We have just shown that {Gk} is such a

sequence. �

Corollary 15.4. The Miller invariant of gl1S → gl1tmf satisfies

(mgl1tmf )∗v
k ≡ Gk ≡ −

Bk
2k

mod Z.

�

Proof of Theorem 12.1. Proposition 13.1 and Proposition 15.1 together identify C (gl1tmf) with the set of
sequences {gk ∈MFk ⊗Q} of modular forms such that, for all primes p and units c ∈ Z×p ,

(1) g∗k|(1− U) = 0;
(2) the sequence {(1− ck)g∗k}k≥4 satisfies the generalized Kummer congruences; and
(3) limr→∞(1− cpr

(p− 1))g∗pr(p−1) = ρ(c)−1.

Noting that
g∗k|(1− U) = gk|(1− pk−1V )|(1− U) = gk|(1− T (p) + pk−1),

the condition g∗k|(1 − U) = 0 gives the condition involving T (p) in the statement of the Theorem. The
condition involving Kummer congruences in the statement of the Theorem is identical to the one here. For
the last condition, note that on the one hand, the characteristic map b of an orientation u satisfies

bk(u) ≡ −
Bk
2k

mod Z

by Corollary 15.4. On the other hand, by Corollary 10.7, if

gk ≡ −
Bk
2k

mod Z,

then
lim
r→∞

(1− cN(r))g∗N(r) = ρ(c)−1,
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as required. �
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