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INTRODUCTION

These notes are based on the course of lectures I gave at

Harvard in the fall of 1964. They constitute a self-contained account

of vector bundles and K-theory assuming only the rudiments of point

set topology and linear algebra. One of the features of the treatment

is that no use is made of ordinary homology or cohomology theory. In

fact rational cohomology is defined in terms of K-theory.

The theory is taken as far as the solution of the Hopf invariant

problem and a start is made on the J -homomorphism. In addition to

the lecture notes proper two papers of mine published since 1964 have

been reproduced at the end. The first, dealing with operations, is a

natural supplement to the material in Chapter ITI. It provides an

alternative approach to operations which is less slick but more funda

mental than the Grothendieck method of Chapter III and it relates

operations and filtration. Actually the lectures deal with compact

spaces not cell-complexes and so the skeleton-filtration does not figure

in the notes. The second paper provides a new approach to real K-theory

and so fills an obvious gap in the lecture notes.
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CHAPTER I. Vector Bundles

§1.1. Basic definitions. We shall develop the theory of

complex vector bundles only, though much of the elementary

theory is the same for real and symplectic bundles. Therefore,

by vector space, we shall always understand complex vector

space unless otherwise specified.

Let X be a topological space. A family of vector spaces

over X is a topological space E, together with:

(i) a continuous map p: E -. X

(ii) a finite dimensional vector space structure on eac·h

. -1
Ex =P (x) for x €X ,

compatible with the topology on Ex induced {rom E.

The map p is called the projection map, the space E is called

the total space of the family, the space X is called the base space

of the family, and if x € X, E is called the fiber over x •
x

A section of a family p: E ~ X is a continuous map .

s : X ... E such that ps(x) = x for all x € X _

A b.omomorphism from one family p: E ..... X to another

family q : F ..... X is a continuous map ((J: E ..... F such that:

(i) qcp =P

(ii) for each x.S X, qJ: Ex .... F x is a linear map of

vector spaces.
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We say that ({J is an isomorphism if f(J is bijective and tp-l

is continuous. If there exists an isomorphism between E and

F , we say that they are isomorphic.

Example 1. Let V be a vector space, and let E =X x V I

P : E .... X be the projection onto the first factor. E is called the

product family with fiber V. If F is any family which is

isomorphic to some product family, F is said to be a trivial

family.

If Y is a subspace of X , and if E is a family of vector

spaces over X with projection P J p: p -l(y) ...... Y is clea.rly a

family over Y. We call it the restriction of E to Y, and

denote it by ElY. More generally, if Y is any space, and

f : Y .... X is a continuous map, then we define the induced family

f* (p) : f* (E) ..... Y as follows:

f* (E) is the subspace of Y X E consisting of all points

(y, e) such that f(y) =pee), together with the obvious 'projection

maps and vector space structures on the fibers. If g : Z -t Y ,

then there is a natural isomorphism g*f*(E) ~ (fg)*(E) given

by sending each point of the form (z, e) into the point (z, g(z), e).

where z € Z, e € E. If f: Y ..... X is GoD inclusion map, clearly

there is an isomorphism E IY ~ f* (E) given by sending each

e € E into the corr'esponding (p(e), e).
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A ~amily E of vector spaces over X is said to be

locally trivial if every x € X posesses a neighborhood U such

that E JU is trivial, A locally trivial family will also be called

a vector bundle. A trivial family will be called a trivial bundle.

If f: Y ... X , and if E is a vector bundle over X. it is easy

to see that f* (E) is a vector bundle over Y .. We shall call

f* (E) the induced bundle in this case.

Example Z. Let V be a vector space, and let X be its

associated projective space. We define E C X x V to be the set

of all (x, v) such that x € X, v € V, and v lies in the line

determining x,. We leave it to the reader to show that E is

actually a vector bundle.

Notice that if E is a vector bundle over X, then dim(E )x

is a locally constant function on X , and hence is a constant on

each connected component of X. H dim(Ex ) is a constant on

the whole of X, then E is said to have a dimension, and the

dimension of E is the common number dim(E ) for all x.
x

(Caution: the dimension of E so defined is usually different from

the dimension of E as a topological space. )

Since a vector bundle is locally trivial, Any section o{ a

vector bundle is locally described by a vector valued function on

the base space. If E is a' vector bundle, we denote by I' (E) the

set of all sections of E. Since the set of functions on a space
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with values in a fixed vector space is itself a vector space,

we see that r(E) is a vector space in a natural way.

Suppose that V, Ware vector spaces, and that

E =X X V. F = X X Ware the corresponding product bundles.

Then any homomorphism cp: E ... F determines a map

t: X ... Hom(V, W) by the formula tAx, v) =(x, O(x)v). Moreover,

if we give Hom(V, W) its usual topology, then 41 is continuous;

conversely, any such continuous map c1: X .... ·Hom(V, W) determines

a homomorphism t(J: E .... F. (This is most easily seen by taking

bases {e.} and {f.} for V and W respectively. Then each
1 1

• (x) is represented by a matrix • (x). . , where1,J

\t(x)e i
= \' 4'(x). .f

jL, 1, J
j

The continuity of either qJ or ~ is equivalent to the continuity

of the functions ~. ..)
1,J

Let Iso(V, W) c Hom (V, W) be the subspace of all

isomorphisms between V and W. Clearly, Iso(V, W) is an

open set in Hom(V, W). Further, the inverse map T .... T-1

gives us a continuous map Is o(V, W) ..... Iso(W, V). Suppose that

f(J : E ... F is such that CfJ. : E -t F is an isomorphism for allx x x
x € X. This is equivalent to the statement that ~(X) c:: Iso(V J W) •

The map~....(x,-l defines '1': X Iso(W, V) , which is continuous.

Thus the corresponding map 1/1: F E is continuous. Thus
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tp : E -. F is an isomorphism if and only if it is bijective or,

equivalently, 'P is an isomorphism if and only if each fPx is

an isomorphism. Further, since Iso(V, W) is open in Hom(V, W),

we see that for any homomorphism ((J, the set of those points

x E: X for which C(J. is an isomorphism form an open subset of
x

X. All of these assertions are local in nature, and therefore

are valid for vector bundles as well as for trivial families.

Remark: The finite dimensionality of V is basic to the

previous argument. If one wants to consider infinite dimensional

vector bundles, then one must distinguish between the different

operator topologies on Hom (V,W).
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§l. Z. Operations on vector bundles. Natural operations

on vector spaces, such as direct sum and tensor product, can

be extended to vector bundles. The only troublesome question

is how one should topologize the resulting spaces. We shall

give a general method for extending operations from vector spaces

to vector bundles which will handle all of these problems uniformly.

Let T be a functor which carries finite dimensional

vector spaces into finite dimensional vector spaces. For

simplicity, we assume that T is a covariant functor of one

variable. Thus, to every vector space V , we have an associated

vector space T(V). We shall say that T is a continuous

functor if for all V and \V , the map T: flom(V, W) .... Hom(T(V),T(W)

is continuous,

If E is a vector bundle, we define the set T(E) to be the

union

and, if C(J: E -+ F, we define T(<p): T(E) -t T(F)

by the maps T{cp \:T(E ) -t T(F ) • What we must show is that T(E)
)( x x·

has a natural topology, and that, in this topology, T(cp) is

continuous.

We begin by defining T(E) in the case that E is a product

bundle. If E = X X V, we define T(E) to be X x T(V) in the



product topology. Suppose that F =X X W , and that

qJ : E -. F is a homomorphism. Let 4>: X -. Hom(V, W) be

the corresponding map. Since, by hypothesis, T: Hom(V, W)

-. Hom(T(V), T(W» is continuous, TW: X -. Hom(T(V), T(W» is

continuous. Thus T(~): X X T(V) -. X X T(W) is also continuous.

If q) is an isomorphism, then Tcp will be an isomorphism since

it is continuous and an isomorphism on each fiber.

Now suppose that E is trivial, but has no preferred

product structure. Choose an isomorphism Q: E -. X X V , and

topologize T(E) by requiring T(a): T(E) -. X x T(V) to be a

homeomorphism. If ~: E -. X X W is any other isomorphism,

by letting ((J =fJa...,l above, we see that T(a) and T(P> induce

the same topology on T(E), since T(tp) =T(~)T(a)-l is a

homeomorphism. Thus, the topology on E d~es not depend on

the choice of ~. Further, if Y c X, it is clear that the topology

on T(E) IY is the same as that on T(E IY). Finally, if cp: E F

is a homomorphism of trivial bundles, we see that T(tp): T(E) T(F)

is continuous, and therefore is a homomorphism.

Now suppose that E is any vector bundle. Then if

U c X is such that E IU is trivial, we topologize T(E IU) as

above. We topologize TeE) by taking for the open sets, those

subsets V c T(E) such that V n (T(E) JU) is open in T(E JU)

for all open U c X for which E IU is trivial. The reader can
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now easily verify that if Y c X, the topology on T(E' y)

is the same as that on T(E) IY , and that, if cp: E .... F is

any homomorphism, T(qJ): T(E) ... T{F) is also a homomorphism.

If f: Y ... X is a continuous map and E is a vector

bundle over X then, for any continuous functor T, we have

a natural isomorphism

f*T(E) :::::. Tf*(E)

The case when T has several variables both covariant

and contravariant, proceeds similarly. Therefore we can define

for vector bundles E, F corresponding bundles:

(i) E e F , their direct sum

(ii) E ~ F , their tensor product

(iii) Hom(E, F)

(iv) E*, the dual bundle of E

(v) Ai(E) , where Ai is the i th exterior power.

We also obtain natural isomorphisms

(i) E at F!:! F 9 E

(ii) E ~ F ~ F @ E

(iii) E • (F t ED Frr) Gt (E ~ F 1
) e (E ~ F")

(iv) Hom(E,F) e E* ~ F

(v) Ak(E ED F) ~ E9 (Ai(E) ~ ~j(F»
i+j=k
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Finally, not~ce .that sections of Hom (E, F) correspond

in a 1 - 1 fashion with homomorphis ms «J: E ~ F. We'

therefore define HOM(E, F) to be the vector space of all

homomorphisms from E to F , and make the identification

HOM(E,F) = r(Hom(E,F» •
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§ 1. 3. Sub-bundles and q.uotient bundles. Let E be

a vector bundle. A sub-bundle of E is a subset of E which

is a bundle in the induced structure.

A homomorphism ((J: F ... E is called a monomorphism

(respectively epimorphism) if each fPx : F x .. Ex is a

monomorphism (respectively epimorphism). Notice that

cp : F -t E is a monomorphism if and only if cP* : E* -t F* is

an epimorphism. If F is a sub-bundle of E, and if qJ: F -t E

il the inclusion map, then f{J is a monomorphism.

LEMl\aA 1. 3. 1. !L CfJ : F -t E is, a monomorphism, then

CP(F) is a sub-bundle of E,~ tp: F -t ¢(F) is an isomorphism.

Proof: ((J: F ... cp(F) is a bijection, so if CP(F) is a sub-

bundle, qJ is an isomorphism. Thus we need only show that

tp(F) is a sub-bundle.

The problem is local, so it suffices to consider the case

when E and F are product bundles. Let E =X X V and

l~t x € X; choose W c V to be a subspace complementary tox

<p(Fx>• G =X X Wx is a sub-bundle of E.

Define 9: F e G .... E by 9{a 9b) = fPCa> + i(b). where i: G -t E

is the inclusion. By construction, ex is an isomorphism. Thus,

there exists an open neighborhood U of " such that 9 JU is an

isomorphism. F is a sub-bunCle of F e G. so 9(F) = fP{F)

. is a sub-bundle of e(F 9 G) = E on U.
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Notice that in our argument, we have shown more than

we have stated. We have shown that if qJ: F ..... E, then the

set of points for which ~ is a monomorphism form an openx

set. Also, we have shown that, locally, a sub-bundle is a

direct summand. This second fact allows us to define quotient

bundles.

DEFINITION 1. 3. 1. If F is a sub-bundle of E , the

quotient bundle ElF is the union of all the vector spaces E,/Fx

given the quotient topology.

Since F is locally a direct summand in E , we see that

ElF is locally trivial, and thus is a bundle. This justifies the

te r minology.

1£ f{): F ..... E is an arbitrary homomorphism, the function

dimension(kernel (~» need not be constant, or even locally
x

constant.

DEFINITION 1. 3. Z. cP : F .. E is said to be a .!!.!:!£!

homomorphism if dimension(kernel(fPx» is locally con.tant.

PROPOSITION 1. 3. 2. ~ ((J: F ... E is strict, then:

(i) kernel(fP) = U kernel(~ ) is a Bub-bundle of F
x x

(ii) image (cp) = U image(f,q ) is a sub-bundle of E
x x.

(iii) cokernel (cp) =U cokernel(CA ) is a bundle in the
x x

quotient structure.



~: Notice that (ii) implies (iii). We first prove

(ii). The problem is local, so we· can assume F = X X V for

some V. Given x € X , we choose Wx C V complementary

to ker(~x) in V. Put G =.X XWx ; then f{J induces, by

composition with the inclusion, a homomorphism, : G -+ E ,

such that 'x is a monomorphism. Thus,.1/> is a monomorphism

in some neighborhood U of x. Therefore, ,(0) JU is a

sub-bundle of E Iu. However, ,peG) c fP(F) , and since dim(fP(Fy»
is constant for all y, and dim(;(Gr ) =dime, (Gx»=dim«(/)(F,»

=dim(c;o(Fy»for all y€U, '/>(G)IU=CP(F)lu. Thus tp(F) is

a sub-bundle of E.

Finally, we must prove (i). Clearly, fJ*: E* .... F* is

strict. Since F* ... coker(fP*) is an epimorPb:ism, (coker(tp* »*

... F* lie is a monomorphism. However, for each x we have a

natural commutative diagra:m

ker (~ ) ) F

! x !:.
(coker ~~)* ---+).Fx

in which the vertical arrows are isomorphisms. Thus

ker(cp) ~ (cokerC<O* »* and so, by (1. 3.1), is a sub-bundle of F.

Again,' we have proved something more than we have stated.

Our argument shows that for any x ~ X, dim ~ (F ) < dim f(J (F )x x - y y
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for all y € U, U some neighborhood of x. Thus, ~

(tpx> is an upper semi-continuous function of x.

DEFINITION L 3. 3. A projection operator P: E ... E

is a homomorphism such that p
Z = P •

Notice that rank (P ) + rank (1 - P ) = dim E sox x x

that, since both rank (Px) . and rank (1 - Px) are upper semi-

continuous functions of x , they are locally constant. Thus

both P and 1 - P are strict homomorphisms. Since ker{P)

= (1 - P)E, E is the direct sum of the two sub-bundles PE

and (1 - P)E. Thus any projection operator P: E .... E determines

a direct sum decomposition E =(PE) 9 «1 - P)E) •

We now consider metrics on vector bundles. We define

a functor Herm which assigns to each vector space V the

vector space Herm(V) of all Hermitian forms on V. By

the techniques of §l. 2, this allows us to define a vector bundle

Herm(E) for every bundle E.

DEFINITION 1. 3. 4. A metric on a bundle E is any

section h: X -. Herm(E) such that hex) is positive definite

for all x € X. A bundle with a specified metric is called a

Hermitian bundle.

Suppose that E is a bundle, F is a sub-bundle of E ,

and that h is a Hermitian met.ric on E. Then for each x € X
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we consider the orthogonal projection P x : Ex ... F x defined

by the metric. This defines a map P: E -. F which we shall

now check is continuous. The problem being local we may

assume F is trivial, so that we have sections f 1, ••• , in

of F giving a basis in each fiber. Then for ::v SF we have
~ x

p (v)x = L
i

h (v, f.(x»f.(x)
x 1 1

Since h is continuous this implies that P is continuous. Thus
..L

P is a projection operator on E. U F is the subspace of
x

J. L
E which is orthogonal to F under h, we see that F =U Fx x x x

is the kernel of P, and thus is a sub-bundle of E, and that

E :;; F ED FL. Thus, a metric provides any sub-bundle with a

definite complementary sub-bundle.

Remark: So far, most of our arguments have been of

a very general nature, and we could have replaced "continuo.us"

with "algebraic", "differentiable", "analytic", etc. without any

trouble. In the next section, our arguments become less general.
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§ 1.4. Vector bundles on compact spaces. In order to

proceed further, we must make some restriction on the sort of base

spaces which we consider. We shall assume from now on that our

base spaces are compact Hausdorff. We leave it to the reader to notice

which results hold for more general base spaces.

Recall that if f : X ... V is a continuous vector-,,-alued flU1ction~

the support of f (written supp. f) is the closure of f-1(V - {o}) •

We need the following results from point set topology. We

state them in vector forms which are clearly equivalent to the usual forms

Tietze Extension Theorem. Let X be a normal space, Y c X

a closed subspace, V a real vector space, and f: Y .... V a continuous

map_ Then there exists a continuous map g: X -'V such that g)y = f •

Existence of Partitions of Unity. Let X be a compact

Hausdorff space, {Ui} a finite open co~~riJlg" '!']len tJlere exist

continuous maps f i : X .... R such that:

all x E: X(i)

(ii)

(iii)

fi(x) ~ 0

supp (fi ) c Ui

E f.(x) =1
i 1

all x EX

Such a collection iii} is called a partition of unity.
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We first give a bundle form of the Tietze extension theorem.

LEMMA 1.4. 1. Let X be compact Hausdorff, Y eX.!

closed subspace, and E a bundle over X. Then any section

s : Y ... E J Y can be extended to X.

Proof: Let s € r(E IY). Since, locally, s is a vector

valued function, we can apply the Tietze extension theorem to show that

for each x € X , there exists an open set U containing x and

t € r (E IU) such that t Iu n y = s Iu n Y. Since X is compact, we

can find a finite subcover {u~} by such open sets. Let ta e;r(Elu
Q

)

be the corresponding sections and let {pJ be a partition of unity

with supp (pa) C Ua. We define 5 a E: r(E) by

5 a.(x) = Pa(x) ta(x)

= 0

if x € Ua.

otherwise.

Then E S is a section of E and its restriction to Y is clearly s.a

LElvlMA 1. 4.2. Let Y be a closed subspace of a compact

Hausdorff space X, and let E, F be two vector bundles over X •

l!. f : ElY -> FlY is an isomorehism, then there exists an opet set U

cODtaining Y and an extension f: E' U~ Flu which is an isomorphism
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Proof: f is a section of Hom(E IY, Fry), and thus,

extends to a section of Hom(E, F) •.Let U be the set of those

points for which this map is an isomorphism. Then U is open and

contains Y •

LEM.MA 1. 4. 3. !=!!. Y be a compact Hausdorff space,

ft : Y -t X (0 ~ t ~ 1) a homotopy and E a vector bundle over X.

~

Proof: If I denotes the unit intervallet f: Y x I ~X be the

homotopy, so that f(y, t) =ft(y), and let 11': Y X I ... Y denote

the projection. Now apply (1. 4. 2) to the bundles f*E, 1I'*ftE and

the subspace Y X it} of Y X I , on which the re is an obvious iso·

morphism s. By the compactness of Y we deduce that f*E and

11' *f~ E are isomorphic in some strip Y X at where lit denotes a

neighborhood of it} in I. Hence the isomorphism class of f~E

is a locally constant function of t. Since I is connected this implies

it is constant, whence

f* Eo

We shall use Vect(X) to denote the set of isomorphism classes

of vector bundles on X, and Vectn(X) to denote the subset of Vect(X)

given by bundles of dimension n. Vect(X) is an abelian semi-group
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under the operation e • In Vect (X) we have one naturally
n

distinguished element - the class Qf the trivial bundle of dimension n.

LE Ml\iA 1. 4. 4.

(1) If f: X ... Y is a homotop.y equivalence,

f* : Vect(Y) -. Vect(X) is bijective.

(2) ..!!. X is contractible, every bundle over X is

trivial and Vect(X) is isomorphic to the non-

negative integers.

LEMl\iA 1. 4. 5. Y E is a bundle over X X I, and

11 : X x I -+ X X {OJ is the projection, E is isomorphic to 'If * (E Ix x{O}).

Both of these lemmas are immediate consequences of (1. 4. 3) •

Suppose now Y is closed in X , E is a vector bundle over

X and a: Ely .... Y x V is an isomorphism.. We refer to a as a

trivialization of E~ Y. Let 1T : Y X V -+ V denote the projection

and define an equivalence relation on E' Y by

e "-'e t <-> 'IT ex (e) =1fet(e')

We extend this by the identity on E Ix - Y and we let E/CI. denote the

quotient space of .E given by this equivalence relation. It has a

natural structure of a family of vector spaces over X/Y. We assert

that E/a. is in fact a vector bundle. To see this we have only to verify
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the local trivality at the base point Y/Y of X/Y. Now by (1.4. Z)

we can extend a to an isomorphism a: E J U -t U X V for some

open set U containing Y. Then a induces an isomorphism

(E IU)/a ~ (U/Y) X V

which establishes the local triviality of E/a •

Suppose era, al are homotopic trivializations of E over Y.

This means that we have a trivialization fJ of E X lover Y X I c X x I

inducing aO and al at the two end points of 1. Let f: (X IY) x I

-+ (X x I)!(Y x I) be the natural map. Then f* (E x IIp> is a bundle on

(X/V) x I whose restriction to (X/Y) x {i} is Ela.. (i z 0" 1). Hence"
1

To summarize we have established

LEl\AMA 1.4. 7. A trivialization a of a bundle E ~

Y eX defines a bundle E/a. .2!!!. X/Y. The isomorphism class

.2!. E/a depends only on the homotopy class o! a •

Using this we shall now prove

LEMMA 1. 4. 8. Let Y c X be a closed contractible subspace.

Then f: X --X/Y induces a bijection f* : Vect (X/Y) ... Vect(X) •



20.

~: Let E be a bundle on X then by (1. 4.4) ElY is

trivial. Thus trivializations a: ElY'" Y x V exist. Moreover,

two such trivializations differ by an automorphism of Y X V , i. e. ,

by a map Y ..... GL(V). But GL(V) = GL(n,C) is connected and V

is contractible. Thus a is unique up to homotopy and so the

isomorphism class r:J. Ela is uniquely determined by that of E.

Thus we have constructed a map

Vect (X)~ Vect(X/Y)

* *and this is clearly a two-sided inverse for f • Hence f is bijective

as asserted.

Vector bundles are frequently constructed by a glueing or

clutching construction which we shall now describe. Let

A = Xl nX2 '

all the spaces being compact. Assume that E i is a vector bundle

over Xi and that tfJ: EllA ..... E ZIA is an isomorphism. Then we

define the vector bundle EI UfPEZ on X as follows. As a topoloskal

space E1 U E Z is the quotient of the disjoint sum EI + E Z by the
qJ

equivalence relation which identifies e1 € EllA with tp{e1) € E ZJA •

Identifying X with the corresponding quotient of Xl + Xz we obtain

a natural projec"tion p : E
I

Urp E Z ... X, and p -l(x) has a natural

vector space structure. It remains to show that E1 Utp E Z is locally
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trivial. Since EI utpEzfx - A =(E1IXI -A) + (EzfXz - A) the

local triviality at points x;' A follows from that of E1 and E Z •

Therefore, let a € A and let VI be a closed neighborhood of a

in Xl over which E1 is trivial. so that we have an isomorphism

Restricting to A we get an isomorphism

Let

e~: EI/VI OA (VI OA) X of

e~: EZ/VI 0 A (VI OA) X CJf

be the isomorphism corresponding to e~ under tp. By (1. 4. 2) this

can be extended to an isomorphism

where VZ is a neighborhood of a in XZ • The pair 91, 92 then

defines in an obvious wayan isomorphism

establishing the local triviality of E1 U, E Z •

Elementary properties of this construction are. the following:
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(i) If E is a bundle over X and E i = E IXi' then

the identity defines an isomorphism IA : E 1 fA .-. EzIA. and

(Ii) If~.: E. -. E~ are isomorphisms on X. and ((J' PI =f3.,cP ,
1 1 2. 1 w

then

(iii) If (E... cp) and (E~, q:l) are two "clutching data rr on the
1 1

Xi ' then

Moreover, we also have

LEMMA 1. 4. 6. The isomorphism class of E1 Utp E Z depends

only on the homotopy class of the isomorphism cp: E 1JA -. E Z JA •

E:2.2!: A homotopy of isomorphisms EllA -. EzlA means

an isomorphism
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where I is the unit interval and .... : X X I .... X is the projection.

Let

be defined by ft(x) =x X {t} and denote by

the isomorphism induced from 4' by it. Then

Since f 0 and f
1

are homotopic it follows from (1. 4. 3) that

as required.

Remark: The "collapsing" and "clutching" constructions

for bundles (on X/Y and Xl U Xz respectively) are both special

cases of a general process of forming bundles over quotient spaces

We leave it as an exercise to the reader to give a precise general

formulation.

We shall del10te by [X, y] the set of homotopy classes of

maps X -t Y.
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LEMM:A 1. 4. 9. For aJ;!Y X, there is a natural

isomorphism Vectn(S(X» ~ [X, GL(n,C)] •

~: '.Write SeX) as C+(X) U C-(X), where C+(X)

= [0, liZ] X x/{o} X X , C-(X) = [1/2, 1] X X/{l} x X. Then

C+(X) nC·(X) =X. If E is any n-dimensional bundle over SeX),

Elc+(x) and EIC-(X) are trivial. Let o.t- : Elc±.(X} ~C±(X) X V

be such isomorphisms. Then (a+ IX)(a-IX) -1 : X X V ... X X V is a

bundle map, and thus defines a map a of X into GL(n, c&) =Iso(V) •

+ -Since both C (X) and C (X) are contractible, the homotopy classes

of both a+ and a,- are well defined, and thus the homotopy class

of a is well defined. Thus we have a natural map 9: Vect (S(X»n

.... [X, GL(n, <e)]. The clutching construction on the other hand

defines by (1.4.6) a map

qJ : [X, GL(n, C)]~ Vectn (S(X»

It is clear that 9 and tp are inverses of each other and so are

bijections.

We have just seen that Vect (S(X» has a homotopy theoreticn

interpretation. We now give a similar interpretation to Vectn(X).

First we must establish some simple facts about quotient bundles.

LEMMA 1. 4. 10. ~ E be any bundle over X. ~

there exists a (Hermitian) metric on E.
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~ A metric on a vector space V defines a metric

on the product bundle X )( V. Hence metrics exist on trivial

bundles. Let {uJ be a finite open covering of X such that

E IUa: is trivial and let ha: be a metric for E IUa:. Let (PJ
be a partition of unity with supp. Per c: U

a
and define

ka.(x) = Pa,(x) ha(X)

= 0 otherwise.

Then ka is a section of Herm(E) and is positive semi-definite.

But for any x €X there exists a such that Pa.(x) > 0 (since

}; pO! =1) and so x S Ua • Hence, for this a, ka(x) is positive

definite. Hence Ea ka(x) is positive definite for all x € X and

so k =I; k is a metric for E.a .

A sequence of vector bundle homomorphisms

is called exact if for each x € X the sequence of vector· space

ho~onaorphisr.ns

~E ~F ~ •••
X .x.

,. exact.

. ,n
COROLLARY 1.4.11. Suppose t~at 0 -> E1....JIL.-;>E ....!lL->E"~ 0

It I :In exact sequence of bundles over X. Then there exists an

'.omorphism E~ E' ~ E" •



~: Give E a metric.

However, (Ef)l. ~ E" •

I'V t Ii
Then E = E 9 (E) •

26.

A subspace V c r(E) is said to be ample if

qJ:X xV~E

is a surjection, where cp(x, s) = s (x) •

LEMMA 1. 4. 12. ~ E is any bundle over a compact

Hausdorff seee X,~ r(E) contains a finite dimensional

ample subspace.

Proof: Let {UJ be a finite ~pen covering of X so that

E Iuex is trivial for each ex , and let {pex} be a partition of unity

with supp p c U1\1. Since E' U is trivial we can find a finite-a w. a
dimensional ample subspace V c r(E' U ). Now definea a

9 : V ~ fI(E)
ex. ex

by

"O! va(x) = Pa(x) • va(x)

= 0

The Sa define a homomorphism

9: IT V ~ r(E)
a a

otherwise •

and the image of 9 is a finite dimensional 8ubspace of r(E);

in fact, for each x € X there exists a with Pa(x) > 0 and
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and so the map

9 (V )-~ Eex a x

is surjective.

COROLLARY 1.4.13. !! E is any bundle, there exists

an epimorphism ((J: X X em~ E for some integer m.

COROLLARY 1. 4. 14. !! E is any bundle, there exists a

bundle F such that E ED F is trivial.

We. are now in a position to prove the existence of a

homotopy theoretic definition for Vectn(X). We first introduce

Grassmann manifolds. If V is any vector space. and n any

integer, the set Gn (V) is the set of all subspaces of V of

codimension n. If V is given some Hermitian metric, each

subspace of V determines a projection operator. This defines

a map G (V) .... End(V) , where End(V) is the set of endomorphismsn

of V. We' give G (V) the topology induced by this map •n

Suppose that E is a bundle over a space X, V is a

vector space, and f(J: X X V ... E is an epimorphism. If we map

X into Gn(V) by assigining to x the subspace ker('Px)' this

map is continuous for any metric on V (here n = dim(E». We

call the map X'" G (V) the map induced by cp •
n
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Let V be a vector space, and let F c: Gn(V) x V be

the sub-bundle consisting of all points (g, v) such that v € g •

Then, if E =(0 (V) X V>/F is the quotient bundle, E is calledn

the classifying bundle over Gn(V).

Notice that if E' is a bundle over X, and fP : X X V ~ E'

is an epimorphism, then if f: X .... Gn(V) is the map induced by

({>, we have EI ~ f* (E), where E is the classifying bundle.

Suppose that h is a metric on V. We denote by Gn(Vh )

the set Gn(V) with the topology induced by h. If hI is another

metric on V, then the epimorphism Gn(Vh ) X V ... E (where E

is the classifying bundle) induces the identity map Gn(Vh ) .... Gn(Vh ,)

Thus the identity map is continuous. Thus, the top~logy on

On(V) does not depend on the metric.

Now consider the natural projections

given by (zl' ••• , zm) ... (zl' ••• , zm-l). These induce

continuous maps

If E(m} denotes the classifying bundle over Gn(em ) it is

immediate that

* (E ) '.::!EL m-l m - (m-l)
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THEOREM 1.4. 15. The map

m
induced by f -t f* (E(m» ~ f : X -t Gn(C ), is an isomorphism

lor all compact Hausdorff spaces X.

~ We shall construct an inverse map. If E is a

bundle over X, there exists (by (1. 4. 13)) an epimorphism

tp : X X em -t E. Let f: X .... Gn<Cm ) be the map induced by ((J •

m'If we can show that the homotopy class of f (in G (V ) for m'
n

sufficiently large does not depend on the choice of qJ, then we

construct our inverse map Vectn(X)'" 1~> [X, Gn(V
m

)] by

.ending E to the homotopy class of f.

Suppose that tpi: X X C IDf ... E are two epimorphisms

m-
( i = 0, 1). Let gi: X ... Gnce 1) be the map induced by '" •

[)efine "'t: X X e rno X em! + E by "'t(x,vo ' vI) =(1 - t) fPo(x, vo)

+ ttl1(x, VI) •. This is an epimorphism. Let f t : X .... Gn(Cmo ED em!)

he the map i~duced by ¥Jt. If we identify C mO e e ml with

C mo+m1 by (zl' ••• , z ) ED (u1' ••• , u )~ (zI'··· Z .1- • • ,u )rna ml mu ml
then

where j. : G (CUli) ..... G (Cmo+m1) is the natural inclusion and
1 n n .
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is the map induced by a permutation of coordinates in CmO+ml,

and so is homotopic to the identity. Hence jIgl is homotopic

to £1 and hence to jogo as required.

Remark. It is possible to interpret vector bundles as

modules in the following way. Let C(X) denote the ring of

continuous complex-valued functions on X. If E is a vector bundle

over X then r (E) is a C(X) - module under point-wise

multiplication, i. e. ,

£s (x) = f(x)s (x) f € C(X) , 5 € r(E) •

Moreover a homomorphism cp: E .... F determines a C(X) -module

homomorphism

rep: r(E) ---> reF)

Thus r is a functor from the category lJ of vector bundles

over X to the category In of C(X)-modu)~~. If E is trivial

of dimension n. then r(~ is free of rank n. If F is al~o

trivial then

r : ROM(E, F)~ HOTnC(X)( r(E), r (F»

is bijective. In fact, choosing isomorphisms E ~ X x V I
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F ~ X x W we have

(
f"'J (X ~HOM E, F) = Home V, W) = C(x) ~ Home{v, W)

'rhus r induces an equivalence between the category :r of

trivial vector bundles to the category ;J of free C(X)-modules

uf finite rank. Let Proj (d') denote the Bub-category of \J'

whose objects ~re images of projection operators in :r , and

Irot Proj (3) c'ln be defined' s imila rly. Then it follows at once

t,hat r induces an equivalence of categories

Proj (3' )~ Proj (3)

But, by (1.4. 14), Proj (3') = U • By definition Proj (3\) is the

c~t1tegory of finitely-generated projective C(X)-modules. Thus

W~ have established the following:

PROPOSITION. r induces an equivalence between the

ttntegory of vector bundles over X and the category of finitely·

nf'll(~rated projective modules over C(X).
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§ 1. 5. Additional structures. In linear algebra one frequently'

considers vector spaces with some additional structure, and we

can do the same for vector bundles. For example we have already

discussed hermitian metrics. The next most obvious example is to

consider non-degenerate bilinear forms. Thus if V is a vector

bundle a non-degenerate bilinear form on V means an element T

of HOM (V @ V, 1) which induces a non-degenerate element of

Hom(V ~ V ,C) for all x ex. Equivalently T may be

x x

regarded as an element of ISO(V, V*). The vector bundle V

together with this isomorphism T will be called a self-dual bundl e •

If T is symmetric t i. e., if Tx is symmetric for all

x E: X , we shall call (V, T) an orthogonal bundle. If T is skew-

symmetric, i.e., if Tx is skew-symmetric for all x€X, we

shall call (V, T) a symplectic bundle.

Alternatively we may consider pairs (V, T) with

T € ISO(V I \7), where V denotes the complex conj ugate bvH1e.

of V (obtained by applying the "complex conjugate functor" to V).
:'1

Such a (V, T) may be called a self-conjugate bundle. The ,

isomorphism T may also be. thought of as an anti-linear isomorphiS~

V ... V. As such \ve may form T
Z If T

2 = identity

we may call (V, T) a!:!!J bundle. In fact the subspace W c V

consisting of all v S V with Tv = v has the structure of a !.!!!

vector bundle and V may be identified with W~C, the
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complexification of W. If T Z = - identity then we may call (V, T)

a quaternion bundle. ~ fact. we can define a quaternion vector

.pace structure on each V by putting j(v) =Tvx

th t · t d R b·· ·th·· ...Z.Z 1e qua ermons are genera e over y 1, J WI lJ = -J1, 1 =J =- J.

Now if V has a hermitian metric h then this gives an

IHomorphism V ... v* and hence turns a self-conjugate bundle into

" self-dual one. We leave it as an exercise to the reader to examine

In detail the symmetric+ and skew-symmetric cases and to show

'hnt, up to homotopy, the notions of self-conjugate, orthogonal,

M'yrnplectic, are essentially equivalent to self-dual, real, quaternion.

'11hus we ~ay pick which ever alternative is more convenient at any

pH rticular stage. For example, the result of the preceeding sections

C'1xtend immediately to real and quaternion vector bundles although the

rxt.ension of (1.4.3) for example to orthogonal or sympletic bundles is

taot so immediate. On the other hand the properties of tensor products

UI"e more conveniently dealt with in the framework of bilinear form~.

"rhus the tensor product of (V# T) and (W, S) is (V~W, T@S) and the

H,Ytnmetry properties of T0S follow at once from those of T and

:; I Note in particular that t:Qe tensor product of two sympletic

hundles is orthogonal.

t The point is that GL(n, R) and O(n, C)J.1.ave th~ same maximal compact

t-illh~roup O(n, R). Similar remarks apply in the skew case.



A self-conjugate bundle is a special case of a much more

general notion. Let F, G be two continuous functors on vector

spaces. Then by an F'" G bundle we will mean a pair (V, T)

where V is a veetor bundle and T € ISO(F(V), G(V». Obviously

a self-conjugate bundle arises by taking F =identity, G = *.
Another example of some importance is to take F and G to be

multiplication by a fixed integer m, i. e. ,

34

F(V) = G(V) = V eve··· e V (m times) •

Thus an m .... m bundle (or more briefly an m-bundle) is a pair

(V, T) where T S Aut (mV) • The m-bundle (V, T) is trivial if

there exists 5 € Aut(V) so that T =mS •

In general for F'" G bundles the analogue of (1. 4. 3) does

not hold, i. e. J homotopy does not imply isomorphism. Thus the

good notion of equivalence must incorporate homotopy. For

example, two ~-bundles (VO' TO) and (VI' T1) will be called

equivalent if there is an m-bundle (W, S) on X X I so that

(v., T.) :: (W, S)IX X {i} ,
1 1

i = 0, 1 •

Remark: An m-bundle over K should be thought of as

a "mod m vector bundle" over S(X).
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§ 1. 6. a-bundles over G-spaces. Suppose that G is a

topological group. Then by a G-~ we mean a topological space

X together with a given continuous a'ction of G on X, i. e., G

acts on X and the map 0 X X -t X is continuous. A G-map

hetween G-spaces is a map commuting with the action of G .

A G"space E is a a-vector bundle over the G-space X if

(i)

(ii)

(iii)

E is a vector bundle over X,

the projection E -t X is a G-map,

for each g €G the map E .. E ( ) is a vectorx gx

spa'ce homomorphism.

H G is the group of one element then of cour·se every space

ts a G-space and every vector bundle is a G-vector bundle. At

the other extreme if X is a point then X is a G-space for all G

itnd a G-vector bundle over X is just a (finite-dimensional)

l·npresentation space of G. Thus G-vector bundles form a natural

Kf'neralization including both ordinary vector bundles and G-modules.

Much of the theory of vector bundles over compact spa..ces generalizes

to G-vector bundles provided G is also compact. This however,

presupposes the basic facts about representations of compact groups.

J··or the present. therefore w~ restrict ourselves to finite groups

wh"re no questions of analysis are involved.

There are two extreme kinds of G-space:

(i) X is a free a-space if g 11 => g(x), x ,

(ii) X is a trivial G-space if g(x) =x for all x € X, g € Ot
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We shall examine the structure of Ci-vector bundles in these two

extreme cases.

Suppose then that X is a free a-space and let X/G be

the orbit space. Then 'If: X ... x/o is a finite covering map.

Let E be a G-vector bundle over X. Then E is necessarily a

free G-space. The orbit space E/G has a natural vector bundle

structure over X/G: in fact E/G'" x/o is locally isomorphic to

E .... X and hence the local triviality of E implies that of E/O.

Conversely, suppose V is a vector bundle over x/a. Then 11' *v

is a G-vector bundle over X ; in fact, 11' *V C X X V and G acts on :"

X X V by g(x, v) =(g(x). v). It is clear that E" E/G and

V ... 1r *V are inverse functors. Thus we have

PROPOSITION 1. 6. 1. If X .!!. G-~ a-vector bundles

over X correspond bijectively to vector bundles over X /G by

E -.E/G.

Before discussing trivial G-spaces let us recall the basic

fact about representations of finite groups ~ namely that there exists

a finite set VI' ••• , Vk of irreducible representations of G so

that any representation V of G is isomorphic to a unique direct

sum E~=l niYi • Now for any two G-modules (1. e., representation

spaces) V, W we can define the vector space HomG(V, W) of

G-homomorphisms. Then we have



HomG(V., V.) =0
1 J

~C i =j •
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Hence for any V it follows that the natural map

is a G- isomorphism. In this form we can extend the result to

G-bundles over a trivial G-space. In fact, if E is any G-bundle

over the trivial G-space X we can define the

morphism A,v € END E by

homo-

Av(e) = 1

101
L gee)
g€G

e€E

where IGJ denotes the order of G (This depends on the fact

that, X being G-trivial, each g E: G defines an endomorphism

uf E). It is immediate that Av is a projection operator for E

And so its image, the invariant subspace of E , is a vector bundle.

We denote this by EG ·and call it the invariant sub-bundle of E .

Thus if E, F are two G-bundles then HomG(E, F) = (Hom(E, F»G

til again a vector bundle. In particular taking E to be the trivial

'HUldie Vi = X X'Vi with its natural G-action we can consider

'.hn natural bundle map

t ~ ~ HomG(Vi, F) --> F

i= 1
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We have already observed that for a G-module F this is a

a-isomorphism. In other words for any Q-bundle F over X

this is a a-isomorphism for all x € X. Hence it is an isomorphism

of G-bundles. Thus every a-bundle F is isomorphic to a

G-bundle of the form ~V. e E. where E. is a vector bundle

1 1
1

with trivial G-action. Moreover the E i
are unique up to isomorphis

In fact we have
k

Homa(Vi. F) - L Homa(Vit \j 0 E j >

j=l

k

:::. I Homa(Vi' V j ) 0Ej

j=l

Thus we have established

PROPOSITION 1. 6. 2. Let X be a trivial G-space,

Vi' ••• , Vk
a com~lete

set of irreducible a-modules, Vi =X x Vi ~,

the corresponding a-bundles. Thus everxG-~
F over X

k

is isomorphic to a direct sum :Ei=l Vi ~ E i
where the E i ~

vector bundles with trivial a-action. Moreover the, .Et
are unique,

up to isomorphism and are given by E i
= HomG(Vi, F) •

We return now to the case of a general (compact) G-space

X and we shall show how to extend the results of §1.4 to G-bundl
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Observe first that, if E is a G-bundle, G acts natur°a11y on

r(E) by

(gs)(x) = g(s(g-l(x)) s e; r(E) •

A section s is invariant if gs =g for all g € G. The set of

0.11 invariant sections forms a subspace I"{E)G of r(E). The

llveraging operator

Av =

((e,fines as usual a homomorphism r(E) ... r(E)G which is the

hl~ntity ,?n r(E)G •

LEMMA 1. 6. 3. Let X be a compact G-space Y c X

~ .. closed sub G-space (i. e., invariant by G) and let E~

( ..... bundle over X. Then any invariant section s : Y -t E' Y extends

"0 un invariant section over X.

~: By (1.4. 1) we can extend s to some section t of

II: over X. Then Av{t) is an invariant section of E over X,

while over Y we have

Av(t) = Av(s) = s

~ l'I\.·~~ S is invariant. Thus Av(t) is the required extension.
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If E, F are two G-bundles then Hom(E, F) is also a

G-bundle and we have

l"{Hom(E,F»G ~ H0Ma(E, F) •

Hence the G-analogues of (1.4. 2) and (1.4.3) follow at once from

(It 6. 3). Thus we have

LEMMA 1. 6. 4. ~ Y be a compact G-spac~, X a

G-space, f t
: Y ... X (0::' t::. 1) .! a-homotopyand E.! G-vector

* *
bundle over X. ~ f OE~ £1 E are isomorphic G-bundles.

A G-homotopy means 'of course a G-map F : Y X I ... X

where I is the unit interval with trivial G-action. A G-space is

G-contractible if it is a-homotopy equivalent to a point. In

particular, the cone over a a-space is always G-contractible. By

a trivial G-bundle we shall mean a G-bundle isomorphic to a product

X X V where V is a a-module. With these definitions (1. 4. 4) -

(1. 4. 11) extend without change to G-bundles. We have only to observe

that if h is a metric for E then Av(h) is an inV'ariant metric •

To extend (1. 4. 12) we observe that if V c r(E) is ample

then :Ega:; gV C i"(E) is ample and inval·iant.

to· the appropriate extension of (1. 4.14) •

This leads at once

In ext~nding (t. 4.15) \ve have to consider Gra.ssmannians

k

of G-subspaces of m~. 1 V. for m .... en , where as before

1= 1
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VI' ••• , Vk denote a c.omplete set of irreducible G - modules.

We leave the...formulation to the reader.

Finally,consider the module interpretation of vector bundles.

Write A = C(X). Then if X is a G-space G acts on A as a

group ot algebra automorphisms. If E is a G -vector bundle over

X then r(E) is a projective A-module and G acts on r(E) ,

the relation between the A - and G - actions being

g(as) = g(a)g(s) a €A, g €G, s £r(E).

We can look at thi. another way if we introduce the fltwisted group

algebra" B of G over A, namely elements of B are linear

combinations E ~ a g with a € A and the product is definedgQ...f g g

by

(ag) (alg f> = (ag(a'»gg'

J.n fact, r(E) is then just a B-module. We leave it as an exercise

tu the reader to show that the category of G-vector bundles over

X is equivalent to the category of B-modules which are finitely

.ener8:ted and projective over A.
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CHAPTER II. K-Theory

§ z. 1. Definitions. If X is any space) the set Vect(X)

has the structure of an abelian semigroup, where the additive structure

is defined by direct sum. If A is any abelian semigroup, we can

associate to A an abelian group K(A) with the following property:

there is a semigroup homomorphism a.: A -t K(A) such that if G

is any group, y : A .... G any semigroup homomorphisrn ,l there is a

unique homomorphism X: K(A) -t G such that 'Y =)fa. If such a

K(A) exists, it must be unique.

The group R(A) is defined in the usual fashion. Let F(A)

be the free abelian group generated by the elements of A, let E{A)

be the subgroup of F(A) generated by those elements of the form

a + at - (a (;1) at) II where 9 is the addition in A,l a, a' €A. Then

K(A) =F(A)/E(A) has the universal property described above,

with CY.: A -. K(A) being the obvious map.

A slightly different construction of K(A) which is sometimes

convenient is the following. Let Jj: A ..... A X A be the diagonal

homomorphism of semi-groups, and let K(A) denote the set of

cosets of A (A) in A X A. It is, a quotient semi-group, but the

interchange of factors in A X A induces an inverse in K(A) so that

K(A) is a group. We then define O!A: A ... K(A) to be the composition

. of a -t (a, 0) with the natural pr~jection A x A .... K(A) (we assume
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A has a zero for simplicity). The pair (K(A), QA) is a functor

of A so that if " : A ... B is a semi-group homomorphism we

hltve a commutative diagram

erA
-A ------iiI"'> K(A)

lK(Y)
B __~_B__~> K(B)

J( B is a group aB is an isomorphism. That shows K(A) has the

,· ..quired universal property.

If A is also a semi-ring (that is, A possesses a

WauHiplication which is distributative over the addition of A) then

K(I\) is clearly a ring.

If X is a space, we write K(X) for the ring K(Vect(X».

Nfl l:onfusion should result from this notation. If E € Veet (X) , we

IttA II write [El for the image of E in K(X). Eventually, to avoid

.'..·.H.. Rive notation, we may simply wl·ite E instead of [El when

U... 'on is no danger of confusion.

Using our second construction of K it .follows that, if X

iii " "puce, every element of K(X) is of th~ form [El - [F] , where
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E, F are bundles over X. Let G be a bundle such that F 9 G

is trivial. We write n for the trivial bundle of dimension n .

Let F 9 G =n. Then eE] - [F] =[E] + [a] - ([F) + [a]) =[E 9 aj - [!1
Thus, every element of K(X) is of the form [H] - [.!!] •

Suppose that E, F are such that [El = [F], then again

from our second construction of K it follows that there is a bundle

G such that EGG ~ F 9 G. Let G' be a bundle such that

G Qat ::::. n
41

, ,.., , I"'tJ

Then E <I G 9 G = F 9' G 9 G , so E 9!! = F Q.!! •

If two bundles become equivalent when a suitable trivial bundle is

added to each of them, the bundles are said to be stably equivalent.

.... Vect(X) induces a ring homomorphism £* : K(Y) ... K(X). By

Thus, [El =[F] if and only if E and F are stably equivalent.

for K-theory is the periodicity theorem. In its simplest form, it

states that for any X, there is an isomorphism between K(X) 8 K{SZ)

2
and K(X x S ). This is a specia.l cas:e of a nl01·e general theorem

Then f* : Vect(Y)

The fundamental theoremThe periodicity theorem.

Suppose f: X ... Y is a continuous map.

§ Z. 2.

:~
j

~
~

~
~
~j,
;,~

(1. 4. 3) this homomorphism depends only on the homotopy class of f. ,~
';1

.(~

1
~
~
.:;~
)i

'I
,~

~
.:~

which we shall prove.

If E is a vector bundle over a space X, and if EO =E - X, :~

where X is considered to lie in E as the zero section, the non-zero

complex numbers act on EO as a group of fiber preserving auto

morphisms. Let P(E) be the quotient space obtained from EO by
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dividing by the action of the complex number. peE) is called

the projectiye bundle associated to E. If P : peE) ... X is the

projection map, p -l(x) is a complex projective space for all

x E: X.. If V is a vector space, and W is a vector space of

dimension one, V and V ~ Ware isomorphic, but not naturally

isomorphic. For any non-zero element wE; W the map II .... lJ ~ W

defines an isomorphism between V and V ~ W , and thus defines

An isomorphism p( w): P(V) ..... P(V @ W). However, if W' is any

other non-zero element of W, w' =AW for some non-zero

(~omplex number ~. Thus P( w) = P(w') , so the isomorphism

b~tween P(V) and P(V 8 W) is natural. Thus, if E is any

vector bundle, and L is a line bundle, there is a natural isomorphism

l'(E) ~ peE ~ L) •

If E is a vector bundle over X then each point a € P(E)
x

.. P(Ex ) represents a one-dimensional subspace H~ C Ex. The

union of all these defines a subspace H* c: p*E. where

p : peE) .... X is the projection. It is easy to check that H* is a

.ub-bundle of p*E. In fact, the problem being local we may

assume E is a product and then we are reduced to a special case

of the Grassmannian already discussed in § 1. 4. We have denoted

our line" bundle by H* because' we want its dual H (the choice

of convention here is dictated by algebra-geometric considerations

which we do not discuss here).
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We can now state the periodicity theorem.

THEOREM Z.. 2. 1. Let L be a line bundle over X.

Then, as a K(X)-algebra J K(P(L G 1) is generated by [H],

and is subject to the single relation «(H] - [l])([L][H] - [1]) =0 .

Before we proceed to the proof of this ~heorem, we would

like to point out two corollaries. Notice that P(l G 1) = X x 52 .

COROLLARY Z. 2. Z.. K(SZ) is generated by [H]~

K (point) module, and (H] is subject to the only single relation

([H] - [1])2 = 0 •

COROLLARY 2.2.3. If X is any space, and if

IJ : K(X) 0 K(SZ) ... K(X X SZ) is defined by IL (a I8i b) =('II' ~ a)('II' ib) ,

where 11' 1 ' 11' 2 are the projections onto the two factors, then

IJ is an isomorphism of rings.

The proof of the theorem will be broken down into a

series of lemmas.

To begin, we notice that for any 'x € X, there is a natural

embedding L .... peL Q 1) given by the map y'" (y, 1). Thisx x

map extends to the one point compactification of Lx' and gives

us a homeomorphism of the one pQint compactification of Lx onto

P(L 9 1) . If we map X -t P(LG 1) by sending x to the image
x

of the "point at infinity" of the one point compactification of Lx'
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we obtain a section of peL 9 1) which we call the "section at

Infinity". Similarly, the zero section of L gives us a section

of peL G 1) , which we call the zero section of P(L 9 1) .

We choose a metric on L I and we let S c L be the

o
urdt circle bundle. We write P for the part of L consisting

(»( vectors of length ~ 1 t and pro for that part of peL 9 1)

c··unsisting of the section at infinity, together with all the vectors

o co
uf length ~ 1. We denote the projections S'" X , P ... X ,P ... X

ltv 1T, if 0 ' and TT 00 respectively.

Since 1T 0 and 1T ()() are homotopy equivalences, every

hundle on pO is of the form 'II'~(EO) and every bundle on poo

I,. of the form TI' * (E oo) , where EO and E oo are bundles on X.
00

'11hns, any bundle E on peL 9 1) is isomorphic to one of the form

(tr~(EO), f, 'II'~(EOO», where f € ISO('II' * (EO), 'II' *(Eoo» is a

"lutching function. Moreover, if we insist that the isomorphism

c'ulncide with the obvious ones over the zero and infinite sections,

it. follows that the homotopy class of f is uniquely determined by

U!~ isomorphism class of E. This again uses the fact that the

o·~8ection is a deformation retract of pO and the en-section a

f1oformation retract of pa>. We shall simplify our notation

o co *0 * 00.lil!htly by writing (E , f, E ) for (11' 0 (E ), f, 11' w(E »"
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Our proof will now be devoted to showing that the bundles

EO and E oo and the clutching function f can be taken to have a

particularly simple form. In the special case that L is trivial,

S is just X x 51, the projection S'" SI is a complex-valued

function on S which we denote by z (here SI is identified with

the complex numbers of unit modulus). This allows us to consider

functions on S which are finite Laurent series in z whose

coefficients are functions on X:

n

I
k=-n

k
ak(x)z

These finite Laurent series can be used to approximate functions

on S in a uniform manner.

If L is not trivial, we have an analogue to finite Laurent

series. Here z becomes a section in a bundle rather than a

function. Since 1r *(L) is a subset of S xL, the diagonal map

S ... 5 x 5 c S X L gives us a section of 11' *(L). We denote this

section by z. Taking tensor products we obtain, for k ~ 0, a

section zk of (1T* (L»k, and a section z -k of (11' *(L*»k .

We write L-k for (L*)k. Then, for any k, k', Lk " Lk ' ~ Lk+kl

-k k *Suppose that ak € (L ). Then 11' * (ak ) €O z € r(11' (1», and

thus 11' 11= (ak ) @ zk is a function on S. We write akzk for this

. function. By a finite Laurent series, we shall understand a sum

of functions on 5 of the form
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n

I
k= -n

where ak E: t'(L-k) for all k.

More generally, if EO I E oo are two vector bundles on

X, and ~ E: r Hom(Lk ~ EO , E ClO
) • then if we write akzk for

ka k ~ z , we see that any finite sum of the form

is an element of r(tr*(EO), 'Ir*(Eoo». If f €ISO('Ir*(EO),1I'*(Eco» ,

we call f a Laurent clutching function for (EO, E oo) •

The function z is a clutching function for (1, L). Further,

(1, z, L) is just the bundle H* which we defined earlier. To

lee this, we first recall that R* was defined as a sub-bundle of

w*(L 91). For each y € peL 9 1) • H* is a subspace of
x y

(L Q 1) , and
x

H*
CD

= L 90 t
X

H* = 091o x

'rhus, the composition

H* ---.;> .... *(L 9 1) -> 11'* (1)
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induced by the projection L 9 1 ... 1 defines an isomorphism:

Likewise, the composition

H* --> 11'* (L 9 1) --> .... *(L)

induced by the projection L 9 1-> L defines an isomorphism:

Hence f = fco f~
1 : 11'. (1) --> 11'. (L) is a clutching function for H*

Clearly, if y G S , fey) is the isomorphism whose graph is H* •x y

Since H* is the subspace of L Q 1 spanned by y 9 1y x x

(y € S C L , 1 e; C), we see that f is exactly our section z •x x

Thus

H* ~ (1, z, L)

Therefore, for any integer k,

Hk .::: ( -k1, z

The next step i~ our classification of the bundles over P

is to show that every clutching function can be taken to be a Laurent

clutching function. Suppose that f S r Hom(1r*EO, 'If *EO) is

any section. We define its Fourier coefficients
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k 0 co)&k €rHom( L @ E ,E

by

= 2~i J
S

x

-k-l
f z dzxx x

Here fx ' Zx denote the restrictions of f , z to Sx' and dzx

is therefore a differential on Sx with coefficients in Lx • Let

Sn be the partial sum

s =n

n

I
-n

ft.nd define the Cesaro means

1
n

Then the proof of Fejerts theorem on the (C, 1) summability of

Fourier series extends immediately to the present more general

case and gives

LEMMA 2. 2. 4. ~ f be any clutching function for

([0";0, Em), and let fn be the sequence of Cesaro means of the

.Fourier series of f. Then f converges uniformly to f •_ n

'[,hus, for all large n, f is a clutching function for (EO, E oo). n _

( 0 00"'" ( 0 (0)
tt nd E, f, E ) = E , f J E •
~_ n
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Proof: Since ISO(EO, E oo) is an open subset of the

vector space HOM(EO, E co), there exists an E' > 0 such that

g € ISO(EO, Em) whenever If - g' < £ , where I I denotes the

usual sup. norm with respect to fixed metrics in EO, ECX) •

Since the fn converge uniformly to fn we have If - fn ' < (

for large n. Thus, for 0 ~ t ~ 1, Itf + (l-t)f e: lSO(Eo, EO»
n

f and fn are homotopic in ISO(EO• Eoo). so (EO. f. Eoo)

/"ttl ( 0 co)= E, {n' E •

Next, consider a polynomial clutching function; that is,

one of the form

p =
n

L
k=O

Consider the homomorphism

given by the matrix

-z 1

-z 1
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It is clear that tD(p) is~ in z. Now, define

the sequence Pr(z) inductively by

Then we have the following matrix identity:

1 PI Pz ... p .
n

I 1

Ln(p) = 1 1-z

1
1 1 -z

or, more briefly

where NI and NZ are nilpotent. If N is nilpotent, 1 + tN

is nonsingular for 0 ~ t ~ 1, so we obtain

PROPOSITION Z. Z. s. tn(p) ~ p G 1~

isomorphic bundles on P, i. e. ,

(EO, p, EO) 9 (f L
k

@EO'1'IL
k

@E
O
)

k=l k=l

!::!. if L k
@ EO, ,tn(p), Eoo

@ I LkeEO)

\k=O k=1
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Remark: The definition of cCn(p) is, of course,

modelled on the way one passes from an ordinary differential

equation of order n to a system of first order equations.

For brevity, we write s:,n(EO, p, E oo) for the bundle

LEMMA 2.2.6. !:et p be a polynomial clutching

function of degree ~ n ~ (EO. E oo). Then

Proof: We have

Multiplying the z on the bottom row by t gives us a homotopy

between etn+1(p) and tn(p) 9 1. This establishes the first part.

Similarly,

=

o

-z 1

-z 1

-z

-z

a n
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We multiply the 1 on the second row by t and obtain a

homotopy between c£n+l(zp) and etn(p) Q (-z). Since -z is

the composition of z with the map -1, and since -1 extends

o (-1 0 0) ",.. (-1 0 0)to E, L @ E , -z, E = L ~ E , z, E • The second

part is therefore proved.

We shall now establish a simple algebraic formula in

1<{P). We write [EO, p, EED] for [(EO, P, Eco)l.

PROPOSITION 2. 2. 7. For any polynomial clutching

function p for (EO, E oo), we have the identity

Proof: From the second part of the last lemma, together

with the last proposition, we see that

(L-
1

@EO, zp,E
oo

) 9(~o Lk@EO, 1, ~o Lk@E
O

)

- (EO,p,Eoo ) 9 (f L
k ~EO,I, i L

k @E~\
k=1 k=I)

'-h (L- 1
JICI\ EO EO)\'J7 'lO', Z,

'rhus, in K(P),

-1 0 00] [0 0] [0 co] [-1 0 0][L t®E, zp, E 9 E ,1, E = E , p, E Q L @ E ,z, E
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-1[1, z, L] =[H ],
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In particular, if we put EO =I, p = z, E oo =L, we

obtain the formula

([H] - [l])([L][H] - [1]) = 0

which is part of our main theorem.

We now turn our attention to linear clutching functions.

First, suppose that T is an endomorphism of a finite dimensional

vector space E, and let S be a circle in the complex plane which

does not pass through any eigenvalue of T. Then

Q =
Z'JI'i J -1

(z - T) dz

5

is a projection operator in E which commutes with T. The

decomposition E =E+ 9 E. I E+ = QE, E_ =(1 - Q)E is therefore

invariant under T J so that T can be ·Nritten as T = T+ 9 T _ .

Then T+ has all of its eigenvalues inside S , while T _ has all

of its eigenvalues outside s. This is, of course, just the spectral

decomposition of T corresponding to the two components of the

complement of S.
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We shall now extend these results to vector bundles, but

first we make a remark on notation. So far z and hence p(z)

have been sections over S. However, they extend in a natural

way to sections over the whole of L. It will also be convenient

to include the co-section of P in certain statements. Thus, if

we assert that p(z) =a.z +b is an isomorphism ol1tside S, we shall

take this to include the statement that a is an isomorphism.

PROPOSITION Z. Z. 8. ~ p be a linear clutching

function for (EO, E oo), and define endomorphisms Q0 , Q00 of

J~;O, E co by putting

I
= Zui J

s
x

-1
Px dpx

1
= Zwi J

5x

Th 0 0 and 0 00
• t· t den are proJec 10n opera: ors I an

o 00pO = C p

Write E~ =QiEi, E i =(1 - Qi)Ei , i =O. co, so that Ei. =E~ G E~ •

!hen p is compatible with these decoz:npositions, so that p =p+ G p_ •

Moreover, p+ is an isomorphism outside S, and p_ ~.~~.~_~.!_?mo.!ph

18m inside S

~: It suffices to verify these statements at each point

x € X. In other words, we may assume that X is a point, L =C,
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and z is just a complex number. Since p(z) is an isomorphism

for Iz' =1, we can find a real number a with C! > 1 such that

pea) : EO -> E oo is an isomorphism. For simplicity of computation,

we identify EO with EO) by this isomorphism. Next, we consider

the conformal transformation

w = 1 - az
z-a

which preserves the unit circle and its inside. Substituting for z,

we find (since we have taken p(a) =1)

p(z) =

where T E: End(EO). Hence

w-T
w+a

= 1
Z'fI'i

1= Z'J1'i
J (- (w + C)!fl dw + (w - T)-ldw) .

'wl=l

Similarly,

= I
Z1I'i J -1

(w - T) dw
IwJ =1

since lad> 1 •

1
= ZTI'i J

Iwl=1
-1(dw)(w - T)

so our assertions follow from the corresponding staten"lents .toncerlling

a linear transformation T.
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COROLLARY 2. z. 9. Let p be as in (Z. Z. 8), and

write

Then, if p{t) =p+(t) G P.(t), where

we obtain a homotopy .of linear clutching functions connecti~g p

~: The last part of the last lemma implies that p+(t)

and p _(t) are isomorphisms on S for 0 < t < 1. Thus, p{t) is

a clutching function for 0 ~ t ~ I. Thus,

(EO J p, E(X) = (EO, p(l), E oo)

o co) (0 (0)- (E+ ' a+z, E + e E_ ' b _, E_

Since a+: L ~ E~ .... E~. b_: E~ - E~ are necessarily

isomorphisms, we see that

(E~ , b. J E~)

=

=

". 0 0
(E+ J z, L ~ E+)

(E~ , 1, E~)
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Again, consider a polynomial clutching function p of

degree < n. Then tD(p) is a linear clutching function for (VO, Voo)

~here

n

Val = Em Q L Lk ~ EO

k=l

Hence, it defines a decomposition

as above. To express the dependence of V~ on p and n, we write

V
o = V (EO Eco)+ n' p,

Note that this is a vector bundle on X. If Pt is a homotopy of

polynomial clutching functions of degree ~ n , it follows by

constructing Vn over X X I that

( 0 (0)""'"( 0 00)V n E , PO' E = Vn E , PI' E

Hence, from the homotopies used in proving the two parts of (2. 2. 6),

we obtain

or, equivalently
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( 0 (0) I"W ( 0 (0) 0Vn+l E , zp, L ~ E = L ~ Vn E , p, E 9 E .

Combining this with the above corollary and (2. Z. 5),

we obtain the following formula in K(P):

and hence the formula

+ 000'This shows that [V ] e:: K(X) completely determines [E I p, E ] e; K(P).. p

We can now prove our theorem.

Let t be an indeterminant over the ring K(X). Then

the ma.p t ... [H] induces a K(X)-algebra homomorphism (since

([H] - [1])([L][H] - [1]) = 0)

1.L : K(X)[t]/«t - l)([L)t - 1» -> K(P) .

To prove that IJ is an isomorph"ism, we explicitly construct an

inverse.

First, suppose that f is a clutching function for (EO, E oo) •

Let f be the sequence of Cesaro means of its Fourier series,
n

nand put Pn =z fn • Then, if n is sufficiently large, Pn is a



62.

polynomial clutching function (of degree ~ Zn) for (EO, Ln ~ E oo).

We define

Vn(f) € K(X)[t]/(t - l)([L] t - 1»

by the formula

Now, for sufficiently large n, the linear segment joining

Pn+l and zPn provides a homotopy of polynomial clutching functions

of degree ~ Z(n + 1) • Hence, by the formulae following (2. 2. 9),

( 0 n+l 00"" ( 0 n+l (0)
V2n+Z E , Pn+l' L ~ E ) = V2n+2 E , zPn , LeE

,.., ( 0 n+l 00)= VZn+1 E , zPn ' L ~ E

Hence

lin+1(f) = {IL][VIn(EO. Pn , Ln ~ E oo)] + [E O]}(tn - tn+l) + [E°]tn+l

= IJn(f)

since (t - l)([L]t - 1) = 0 . Thus, rln(f) is independent of n if

n is sufficiently large, and thus depends only on f. We write it

as v(f). If g is sufficiently close to f, and n is sufficiently

large, the linear segment joining f n and gn provides a homotopy
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of polynomial. clutching functions of degree ~ 2n , and hence

v(f) =V (f) = II (g) = v(g). Thus, v(f) is a locally constantn n

function of f I and hence depends only on the homotopy class of f.

However, if E is any bundle on P, and f a clutching function

defining E, we define v(E) =v(f) , and veE) will be well defined

and depend only on the isomorphism class of E. Since II(E) is

clearly additive for +, it induces a group homomorphism

v : K{P) --> K(X)[t]/«t - l)([ll]t - 1»

From our definition, it is clear that this is a K(X)-module

homomorphism.

First, we check that ""11 is the identity. With our

notation as above,

I£II(E) = tJ{[V2n(EO, Pn , Ln @ E(X)]( tn - 1 - t n) +{EO] tn }

= {V2n(EO. P
n

• Ln @ E(X)J({Hf-1 - (HnJ) + [EO]{HJn

= [EO, P ,Ln e Eoo][H]n
n

= [EO, f I E oo]n

= (EO, f , E co]

= E

~ince K{P) is additively generated by elements o{ the f~rm [E],

t.his proves that IJII is the identity.



Finally, we show that liP. is the identity. Since lilt

is a homomorphism of K(X)-modules, it suffices to show that

111£ (tn) =to for all n > o. However,

IJIt{tn) = v(Hn)

[ -n L-n]= IJ 1, z ,

= [V Zn(1, I, 1)](tn - 1 - tn
) + [1] tD

since V 2n(1, 1, 1) ::: 0
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§ 2. 3. KG(X). Suppose that G is a finite group a.nd

that X is a G-space. Let VectG(X) denote t'J'a.e set of isomcfphisl"A

classes of G-vector bundles over X. This is an abelian sem,

group under 9. We form the associated abelian group and denote

it by KG(X). If G = 1 is the trivial group then KG(X) = K(:;() •

If on the other hand X is a point then KG(X) ~ R.(G) the

character ring of G.

If E is a G-vector bundle over X then P(E) 5.s a G-space

H E = L 9 1 when L is a G-bundle then the zero and infi.nite

sections X .... peE) are both G-sections. Also the bundle Hover

P(E) is a G- line bundle. If we now examine the pl'oof of the

periodicity theorem which we have just given we see that we co~ld

have assumed a G-action on everything. Thus we get the periodicity

theorem for KG:

THEOREM 2. 3. 1. 1!. X is a G-sl)ace, and if L !!.!
a-line bundle over X, the map t ... [H] induces an isomorphism

2!. KG(X) - m~d.ules:

KQ(X)[t]/(t[L] - l}(t - 1)~ KG(P(L 9 1»
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f Z. 4. Cohomology tbeory properties of K • We next

define K(X, Y) for a compact pair (X, Y). We shall then be able

to establish, in a purely formal fashion, certain properties of K.

Since the proofs are formal, the theorems are equally valid for

any "cohomology theory" satisfying certain axioms. We leave this

formalization to the reader.

Let C denote the category of compact spaces, c+ the

category of compact spaces with distinguished basepoint, and C
2

the category of compact pairs. We define functors:

by sending a pair (X, Y) to X/Y with basepoint Y/Y (if Y 19 ,
the empty set, X/Y is understood to be the disjoint union of X

with a point.) We send a space X to the pair (X, (]1>. The

composite C .. C+ is given by X -t X+, where X+ denotes X/9 •

If X is in C+ , we define K(X) to be the kernel of the

map i* : K(X) K(xO) where i: X o .... X is the inclusion of the base-

point. If c : X X o is the collapsing map then c* induces a

splitting K(X):t K(X) 9 K(xO). This splitting is clearly natural

for maps in C+ • Thus K is a functor on C+. Also, it is clear

that K(X);; K(X+). We define K(X, Y) by K(X, Y) =K(X/Y) •

In particular K(X, r,I) =K(X). Since it is a functor on C+ it

follows that K(X, Y) is a contravariant functor of (X, Y) in C2 •
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We now introduce the "smash product" operation in C+ •

+If X , Y € C we put

X 1\ Y = X X y/x V y

where X V Y =X x YO Ux O X Y, xo' YO being the base-points of X, Y

respectively. For any three spaces X, Y, Z ~ c+ we have a

natural homeomorphism

x " (Y " Z) fled (X " Y) 1\ Z

and we shall identify these spaces by the hcmeomorphism.

Let I denote the unit interval [0,.1] and let aI ={OJ U {I}

be its boundary. We take 1/01 € c+ as our standard model of the

circle 51. Similarly if In denotes the unit cube in Rn we take

In/of! as our model of the n-sphere Sn. Then we have a natural

hor.neonnorphis~

n 1 1 1
S ~S "S " ••• "S (n factors)

For X € c+ the space 51" X € C+ is called the reduced suspension

of X , and often written as SX. The n-th iterated suspension

55 ••• SX (n times) is naturally homeomorphic to Sn" X and is

written briefly as sllx.
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DEFINITION Z. 4. 1. For n>O

i{-n(X) = K(SnX) !2!. X €c+

K-n(X, Y) K-D,(X/y) K(Sn(X/y» Z
= = ~ eX, Y) €C

K-n(X) = K-n(X, ~ = K(SD(X+» for XbC .

It is clear that all these are contravariant functors on the

appropriate categories.

Before proceeding further we define the cone on X by

ex = IXX/{O}xX •

Thus C is a functor C : C ... C+. We identify X with the subspace

{l} x X of ex. The space CX/X =I X X/a! xx is called the

unreduced suspension of X. Note that this is a functor C ... c+

whereas the reduced suspension S is a functor C+ .... C+. If

X b C+ with base-point X o then we have a natural inclusion map

and the quotient space obtained by collapsing I in CX/X is just

SX. Thus by (1. 4. 8) P : ex/x ... SX induces an isomorphism

K(SX) :t K(CX/X) and hence also an isomorphism K(SX} ~ K(CX,X)

Thus the use of ax for both the reduced and unreduced suspensions

leads to no problems •
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If (X, y) € CZ
we define X U CY to be the space

obtained from X and CY by id.entifying the subspaces Y eX

and {I} X Y c CY. Taking the base-point of CY as base'-point

of X U C Y we have

XUCY€c+ •

We note that X is a subspace of X U CY and that there

is a natural homeomorphism

x u CyIx ~ CyIy .

Thus, if Y € C+ ,

K(X U CY, X) ~ K(CY, Y)

'= K(SY)

_ i-ICY)

Now we begin with a simple lemma

LEMMA 2. 4. Z. For (X, Y) e: cz. we have an exact

sequence

-. .*K{X, Y) J > K(X) -2...-> K(Y)

where i: Y -t X !..!!9. j : (X • ¢) .... (X, y) are the inclusions.
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Proof: The composition i*j* is induced by the

composition ji : (Y, ¢) .... (X, Y), and so factors through the

~ero group K(Y, Y). Thus i*j* = O. Suppose now that

C€ Ker i*. We may represent « in the form [E] - Cn] where

E is a vector bundle over X. Since i* ( =0 it follows that

[E 'Y] =en] in K(Y). This implies that for some integer m

we have

(E Ell m) 'Y = n E9 m

i. e., we have a trivialization a. of (E E9 m)' Y. This defines a

bundle E ED m/a on X/Y and so an element

fl = [E 9 m/a,] - [n ED m] € K(X/Y) =K(X, Y) •

Then

j* (n) = [E E9 m] - Cn 9 m]

- [El - en] =c .

"Thus Ker i* =1m j* and the exactness is established.

COROLLARY 2. 4. 3. !£. (X, Y) € C2 and Y € C+

(so that, taking the same base-point 01. X , we have X f; C+ ~o) ~

then the sequence

K(X, Y)~K(X)~K(Y)

is exact.
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~: This is immediate fr'om (Z.4. 2) and the

natural isomorphisms

K(X) ~ i{(X) $ K(y0)

K(Y) ~ K(Y) (f) K(y0) •

We are now ready for our main proposition:

PROPOSITION 2. 4. 4. ~ (X, y) € e+ there is a

natural exact sequence (infinite to the left)

••• K-Z(y~K-1(X, y~K-l(X)~K-l(y)--L.>KO(X,Y)

.* .* 0
~ KO(X) 1 >K (Y)

~: First we observe that it is sufficient to show that,

for (X, Y) € C2 and Y € c+ , we have an exact sequence of five terms

In fact, if this has been established then, replacing (X, Y) by (Sn X,Sfty )

for n =1, Z, ••• we obtain an infinite sequence continuing (*). Then

replacing (X, Y) by (X+ , y+) where (X, Y) is any pair in C2 we

get the infinite sequence of the enunciation. Now (2.4. 3) gives the

exactness of the last three terms of (*). To get exactness at the



remaining places we shall apply (2. 4. 3) in t.urn to'~ the pairs

(X U CY, X) and «X U CY) uex , x u CY). First, taking the

pair (X UCY, X) we get an exact sequence (where k, m are the

natural inclusions)

* k* ~K (X UCY, X) m > Rex uCY) > K(X) •

Since CY is contractible 1.4.8) implies that

p* : R(x/y)~ K(X U CY)

is an isomorphism ~here

p : X U Cy~ X U CyICY = X/y

is the collapsing map. Also the composition k*p* coincides with

J*. Let

9 : K(X UCY, X) --> K-1(y)

be the isomorphism introduced earlier. Then defining

-1by 6 = m* 9 we obtain the exact sequence

72.



which is the middle part of (*).

Finally, we apply (2.4. 3) to the pair

where we have labelled the cones C1 and Cz in order to

distinguish between them. (see figure).

Thus we obtain an exact sequence

It will be sufficient to show that this sequence is isomorphic to the

sequence obtained from the first three terms of (*). In view of the

definition of 6 it will be sufficient to show that the diagram

K(X U C1Y ~ CZX, X U C1Y) > K(X uelY U CzX}

II It
(D) K(CzX/X) K(G.Y/Y)

II II
K"l(X) i* > K-1(y)
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-4ir:t..

commutes up to sign. "tylies, of course, in the fact

that i* is induced by"t1te-~ion

Czy~CzX

and that in the above diagram we have .C
1
Y and not C 2Y. To

deal with this situation we introduce

the double cone on Y namely C1Y U C 2Y •

This fits into the commutative diagram

of maps

(E)

=====)~>BY

===» Sy

where all double arrows ==> induce isomorphism in K. Using

this diagram we see that diagram (0) will commute up to sign

provided the diagram induced by (E)

commutes ,up to sign. This will follow at once from the following



75.

lemma which is in any case of independent interest and will be

needed later

LEMMA Z. 4.5. !:!t T : 51 -. S- be defined by T(t)

=1 - t, t S I (we recall that 51 = I/aI) and let T" 1 : BY .... SY be

the map induced by T .2!! 81 and the identity on Y (for Y € c+) •

~ (T" 1)* y :: -y !2.!: y ~ R(5X) •

This lemma in turn is an easy corollary of the following:

LEMMA Z. 4.6. For any map f: Y -+ GLen, C) ~ E f

denote the corresponding vector bundle over SY. .!!!!!. f ... [Efl - en]

Induces a group isomorphism

lim [Y,GL(n, C)] .= ~ (SY)
n-too

where the group structure on the left is induced from that of CiL(n,C).

In fact, the operation (T "1)* on K (BY) corresponds by

the isomorphism of (2.4. 6) to the operation of replacing the map

Y ..... f(y) by y ... f(y)-l • i. e., it corresponds t~ the inverse in the group.

Thus (2.4. 6) implies (2.4.5) and hence (2.4.4). It remains therefore

to establish (Z.4. 6). Now (1. 4. 9) inlplies that f ... [Efl - Cn] induces

It bijection of sets

lim [V, GL(n, C)]~ K(SY) •
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The fact that this is in fact a group homomorphism follows from

the homotopy connecting the two maps GL(n) x GL(n) ... GL(Zn)

given by

A x B ---.» C: ~)

and

This homotopy is given explicitly by

Pt (A XB) = fA 0\( cos t sin t)(l O)(COS t sin t,
\.0 1) ·sin t cos t 0 B sin t cos V

where 0:5. t ~ '11' /z •

From (2.4.4) we deduce at once:

COROLLARy 2. 4. 7. If Y is a retract of X ,..!!!!!!
for all n ~ 0, the seguence K-n(X, Y) .... K-n(X) .... K-n(y) .!!.!...

!Elit short exact sequence, and

COROLLARY 2.4. 8. .!!. X, Y are two spaces with

basepoints, the projection maps tr.x.: X x y ... X, 'II" Y : X X Y ... Y

induce an isomorphism for all n ~ 0
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~: X is a retract of X X Y , and Y is a retract

of (X X Y)/X. The result follows by two applications of (Z. 4. 7) •

Since i{°(X" Y) is the kernel of i; e i\- :KO(X x Y)

-+ KO(X) e KO(y), the usual tensor product KO(X) ~ KO(y) ... KO(X x Y)

o00סס\"1 '"""0 """'0induces a pairing K (X) ~ K (Y) ... K (X A Y). Thus, we have a

pairing

since SDX " Smy = Sft 1\ Sm 1\ X " Y = Sn+m " X " Y. Replacing

X by X+ ,. Y by Y+, we have

Using this pairing, we can restate the periodicity theorem as follows:

THEOREM Z.4. 9. For any space X and any n ~ 0 ,

the map K-Z(point) 8 K-n(X) ... K-n- 2(X) induces an isomorphism

(3 : K-n(X) .... K-n-Z(X) •

~: K- 2(point) = {{(52) is the freE'! abelian group

generated by [H] - [1]. If (X, Y) S CZ the maps in the exact

aequence (2.4.4) all commute with the periodicity isomorphism (J.

'fhis is immediate for i* and j* and is also true for 6 since this

was also induced by a map of spaces. In other words fl shifts the

whole sequence to the left by six terms. Hence if we define
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n -n -n-ZK (X, Y) for' n> 0 inductively by K =K we can extend

(2. 4. 4) to an exact sequence infinite in both directions. Alternatively

using the periodicity /3 we can define an exact sequence of six

terms

KO(X, Y) ----> KO(X)~ KO(y)

i !
K1(y) < K1(X) i K1(X, Y)

Except when otherwise stated we shall now always identify Kn

and Kn - Z • We introduce

We define K* (X) to be KO(X) e K1(X). Then, for any pair (X, Y),

we have an exact sequence

----...> KO(X) ---..,.> KO(y)

!
K1(X) ~< K1(X, Y)

The form of the periodicity theorem given in (2.4. 9) is

a special case of a more general "Thom isomorphism theorem" •

If X is a compact space, and E is a real vector bundle over X,

the Thorn complex X E of E is the one point compac:tification
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of the total space of E. Alternatively, if E is a complex

E ~ E
bundle, X = peE $ l)/P(E) • Thus, we see that K (X ) is

a module over K(X). The Thorn isomorphism theorem for

complex line bundles can now be stated.

THEOREM Z.4.10. K L is a complex line bundle,

K(X
L

) is a free K(X)- module on one generator Il (L), and the

image of /J(L) l!! K(P(L $ 1» i!. [H] - [L*] •

E!.22!: This is immediate {rom our main theorem

determining K(P(L $ 1» and the exact sequence of the pair

P(L (J) 1), peL) (note that peL) =X) •

We conclude this section by giving the following extension

n( (2_ 4. 5) which will be needed later.

LEMMA Z. 4. 11. Let T : SnX ~ sIX be the map
-- a -

Induced by a permutat~oE a of the n factors in Sn = 51 A 51 A-. _1\ 51

l'hen (T )*x =sgn(O'}x for x € K(SnX) •
C1 --

~: Considering Sn as the one-point compactification

n£ Rn we can make GL(n, R) act on it and hence on K(SIX).

trhis extends the permutation actions T • Since GL(n, R) has
C1 .

Just two components characterized by sgn det it is sufficient to

f~hcck the formula T*x =-x for..2!!! T € GL(n,R) with det T = -1 •

Hut (2.4.5) gi'v'es this formula for (
T = -1 1. )

•• 1
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§Z. 5. Computations of K* (X) for some X.

From the periodicity theorem, we see that K(Sn) = 0 if n

is odd, and K(Sn) =Z if n is even. This allows us to prove the

Brouwer fixed point theorem.

THEOREM 2.5.1. Let Dn be the unit disc in

Euclidean n-space. 1£ f : On ... Dn is continuous, then for some

x € On, f(x) =x •

,...,* n I"W* n-l .t n-lProof: Since K (D ) = 0, and K (S ) r 0, 5

is not a retract of On. If f(x) I- x for every x € On, define

g : Dn
... Sn-l by g(x) =(1 - a(x»f(x) + a(x)x, where a(x) is

the unique function such that a(x) > 0, Ig(x) I =1. H f(x) I x

for all x I clearly such a function a(x) exists. H x ~ Sn-l ,

a(x) = 1, and g(x) =x. Thus g is a retraction of D
n

onto

Sn-l •

We will say that a space X is a cell complex if there

is a filtration by closed sets X.1 C Xo C Xl c··· C Xn = X such

that each Xk - Xk - 1 is a disjoint union of open k-cel1s, and

X_1 = ¢ •

PROPOSITION 2. 5. 2. If X is a cell comp!~~~~

that XZk =XZk+1 for all k,

KO (X) is a free abelian group .with generators in a

one-one correspondence with the cells of X ..
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~: We procee~ by induction on n. Since

XZn/XZn-Z is a union of Zn-spheres with a point in common

we have:

where k is the number of Zn-cells in X. The result for X2n

now follows from the inductive hypothesis and the exact sequence

of the pair (XZn' X Zn- Z) . As examples of spaces to which this

proposition applies, 'we may take X to be a complex Grassmam

tnnnifold, a flag manifol~,. a complex quadric (a space whose

homogeneous defining equati~~ is of the form E Z~ =0), We
. 1

.hall return to the Grassmann and flag manifolds in more detail

Inter.

PROPOSITION Z. ·S. 3. Let L l , ••• , L be line bundles-- n-------
(!ver X, and let .;fJ be' the standard bundle over P(L1 (f) ••• ~ Ln>•

1'hen, the map t ~ [H] induces an isomorphism of K(X) -modules

~ ." First we shall show that we may take Ln = 1 •

In fact for any vect'or bundle E and line bundle L over X we
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have P(E @ L) = peE) and -the ""Standard !ina.bundles G, Hover

P(E 8 L*), peE) are related by G* = H* @ L , i. e. t G = H ~ L*

. *Taking E = L1 (f)... (f) Ln and L = L n we see that the

propositions for ~ ~ • •• 6) Ln and for M1 G> ••• $ Mn with

M. =L. ~ L* are equivalent. We shall suppose therefore that
1 1 n

Ln = 1 and for brevity write

P = peL <t>... $ L )m 1 m for I < m < n

so that we have inclusions X =PI ... P z ........... Pn' If Hm

denotes the standard line bundle over P . then H rPI£:' H 1m m m- m-

Now we observe that we have a commutative diagram

p s
~ P(H*n-l $1)n-l

JWn• 1

i

~q
PI

n
~ p

n

(11' n-l is the projection onto X = PI' in is the inclusion, S is

the zero section) which induces a homeomorphism

Moreover q* (Hn>~ G , the standard line bundle over P(H~_l $1)

Now K(P(H* 1 ~ 1» is a free K(P I)-module on two generatorsn- n-
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[1] and [0], and [a] satisfies the equation erG] - [l])([G] - [Hn _I])

*Since s*[G] =[I] it follows that K(P(Hn _1 ~l), s(P
n

_I» is

the submodule generated freely by {a] - [1] and that, on this

submodule, multiplication by [al and [Hn - 1] coincide. Hence

K(P , PI) is a free K(P I)-module generated freely by ([H ] - [I])n n- n

and this module structure is such that, for any x € K(Pn' PI) ,

Now assume the proposition established for n - 1, so that

y'n-l
K(P 1) :::. K(X)[t] IT (t - [L~])

n- i=l 1

wi.th t corresponding to [Hn - 1]. Then it follows that t ... [Hn]

induces an isomorphism of the ideal (t - 1) in

· n-l

K(X)[tJ ~t - 1) IT (t - [L!J)Y' ~ i=1 1

nnd since Ln =1 this gives the required result for K(Pn )

rstablisbing the induction and completing the proof.
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COROLLARY Z. 5. 4. K(P(Cn»:::. Z[tJ/(t - l)n~

the map t -t [H] •

~: Take X to be a point.

We could again have assumed that a finite. group acted

on everything, and we would have obtained
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§2.6. Multiplication in K* (X, Y) • We first observe

that the multiplication in K(X) can be defined "externally" as

follows. Let E, F be two bundles over X, and let E ~ F

be niCE) ~ 1T~(F) over X XX. If 6: X ..... X XX is the diagonal

* Athen E ~ F =6 (E @ F) •

A

If E is a bundle on X, F a bundle on Y, let E e F

= 1T k(E) ~ 1r ~(F) on X X Y. This defines a pairing

K(X) 8 K(Y)~ K(X x Y)

rf X, Y have basepoints, K(X 1\ Y) is the kernel of Rex x y)

-> K(X) <t> K(Y). Thus, we have K(X) @ K(Y) -t i«X 1\ Y) •

Suppose that (X, A), (Y, B) are pairs. Then we have

K(X/A) *K(Y/B)~ ~«X/A) ,,(Y/B» •

That is,

K(X,A) @K(Y,B)~ K(X x Y, (X x B) U(A x Y».

We define (X,A) X (Y,B) to be eX x Y, (X x B) U (A x Y» •

In the special ca·se that X = Y , we have a diagonal map

1\ : (X, A U B) -t (X, A) X (X, B). This gives us K(X,A) ~ K(X, B)

-> K(X, A U B}. In particular, taking B =9 , we see that

K(X,A) is a K(X)-module. Furtl1er, it is easy to see that
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K(X,A)~ K(X)~ K(A)

is an exact sequence of K(X)-modules.

More generally, we can define products

. for m, n ~ 0 as follows:

K-n(X, A) = K(Sn A (X/A»

K-m(y, B) = K(Sm A (Y/B»

Thus, we have

K-n(X,A)@K-m(y, B) --> K(Sn" (X/A) "8m 1\ (Y/B})

= K(Sn 1\ 8
m

" {X/A} " (Y/B»

= K-n-m«X,A) X (Y, B» •

Thus, if we define xy € K-n-m(X, A U B) for x € K-n(X, A),

-m( *(y€K X,B) tobe IJ. x@y), where f:,: (X, A UB)-..(X1 .4.) x (X, B)

is the diagonal, then (2.4. 11) sho\vs that xy ..= (_l)tllDyx •

We define K'(X,A) to be



87.

Then K'(X) is a graded ring, and K*(X, A) is a graded

K'(X)-module. If P E K-Z(point) is the generator, multiplication

-J1J ) -n-Z( )by P induces an isomorphism K ,X, A ... K X, A for all n.

We define K*(X, A) to be K*(X, A)/(l - {j). Then K*(X) is

a ring graded by ZZ' and K*(X, A) is a Zz -graded module

over K*(X).

For any pair (X, A), each of the maps in the~·exact triangle

is a K*(X)-module map. Only the coboundary 6 causes any

difficulty and 80 we need to prove

LEMMA z. 6. O. . 6: K-1(y) -t KO(X, Y) is a K(X)-module

homomorphism.

Proof: By definition 0 is induced by the inclusion of pairs

j : (X X {I} U Y X I, Y X {OJ) .. (X X {I} U Y X I, Y X {a} UX X {I})

(see figure)

.-..-_-.0

_i >

1

x y
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* .
Hence 0 =j is &. module homomorphism over the absolute group

K(X x {I} U Y X I) ~ K(X)

It remains only to observe that the K(X)-module structures of the

two groups involved are the standard ones. For K-1(y) this is

immediate and for K(X.. Y) we have only to observe that the

projection I'" {I} induces the isomorphisms

K(X, Y) ... K(X X {I} U Y X I, Y X {a})

K(X) .. K(X X {I} U Y X I)

We shall now digress for some time to give an alternative and often

illuminating description of K(X, A) which has particular relevance

for products.

Un> 1 I we define C (X, A) to be a category as follows:
- n

An object of · C (X, A) is a collection E ,E 1'·· ., EO of bundles
n n n-

over X, together with maps a.: E. fA ... E. ItA such that
1 1 1-

ex
0---.> En'A-

n
-.."".> En_IIA·.·

is exact. The morphisms f1': E ... F , where E = (E., a.)
1 1

F = (F., fJ.), are collections of map. ({J,.: E ..... F. such that
1 1 1 1 1
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fJ.CfJ: = II\. 1 ex.. In particular, l"_(X,A) consists of pairs of
1 1 ~- .1 -1

bundles E1, EO over X and isomorphisms ex: E1 ' A ~EO IA •

An elementary sequence in Cn(X,A) is a sequence of

the form 0, 0, ••• , 0, E p ' Ep _1' 0, ••• , 0 where Ep =Ep _1 '

ex = identity map. We define E I"t<I F if for some set of elementary

objects Q1' ••• , Q , PI' ••• , P ,n . m

The set of such equivalence classes is denoted by £ (X,A).n

It is clear that £n(X,A) is a semigroup for each n.

There is a natural inclusion Cn(X,A) c Cn+1(X,A) which

induces a homomorphism £n(X,A) ... In+l(X,A). We denote by

Coo(X,A) the union of all of the Cn(X,A), and by £Q)(X,A)

the direct limit of the .£ (X, A).n

The main theorem of this section is the following:

TIIEOREM Z.6.1. For all n::: 1, the maps ~(X,A)

.• In+l(X,A) are isomorphisms, and tn(X, A) :::. K(X,A) •

We shall break up the proof of this theorem into a number

()( lemmas.

Consider first the special case A =¢, n =1. Then

(I] (X, ,6) consists of all pairs E 1, EO of bundles. We see
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that (EI , EO) ,... (Fl' F 0) if and only if there are

bundles 0, P such that E1 eQ .::: F 1 @ P, EO G>Q ~FO (f) P.

Then the map !l(X, ~) ... K(X) given by (EI , EO) .... [Eol - [EI]

is an isomorphism. In fact !l(X, p) coincides with one of

our definitions of K(X).

DEFINITION 2. 6. 2. An Euler characterfstic Xn

for S, is a transformation of functors
-- n

Xn : ~n(X, A)~ K(X,A)

To begin we need a simple lemma.

LEMMA Z. 6.3. Let A eX, and let E, F be bundles

over X. .!:!::! cp: E fA .... F fA , ~ : E ... F pe monomorphisms

(resp. isomorphisms) and assume I/J IA is homotopic to cp.

~ qJ extends to X as a monomorphism (resp. isomorphismJ.

Proof: Let Y =(A X [0, 1]) U (X X [OJ). Then, if E', F'

are the ~erse images of E, F under the proje.-:tion Y .... X ,

we can define Q: E' ..... F' ,v.hich .i$l a lnOlJOnlOl-phisn'l (resp.

isomorphism) such tnat 4'IA X [1] = cp, ,pIx X (0] =t/J. We

can extend W to (U X [0, 1]) U (X X [0]) for some neighborhood

U of A. Let f: X -. [0, 1J be stich that f(A) = 1, l(X - U) = 0



Let fPx = ~(x, f(x». Then this extends cp to X •

. LEMMA Z. 6.4. !! A is a point,

is exact. ~,J! Xl is an Euler characteristic for ~,

Xl : ll(X, A) -t K(X,A) is an isomorphism when A is a point.

~: If (EI , EO> represents an element of ll(X)

whose image in ll(A) is zero, E1 and EO have the same

dimension over A. Thus there is an isomorphism cp:E1IA ...EO

Thus we have exactness for ~(X, A) ... ~(X) ~ .t1(A) •

If (EI, EO' tp) has image zero in t1(X) , there is a

~ ()-1trivial P and an isomorphism l/J: E1 @ P = EO e p. l/J qJ @ 1

is an automorphism of EO e PJA. Since A is a point any such

automorphism must be homotopic to the identity and hence by

(2. 6. 3) it extends to ex: EO ~ P ~ EO e P. Thus, we have a

commuting diagram:

(El <t> P) fA cpe>l ,. (Eo (%) P)IA

lPlA 1alA

1(Eo @ P)IA > (EO e P)IA
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Thus (EI , EO' cp) represents 0 in ~ (X, A). Thus 11(X,A)

~ ~(X) is an injection.

LEMMA Z. 6. 5. ~(X/A, A/A) "'ll(X,A) is an isomorphism

for all (X,A). Thus, if Xl is an Eule~ characteristic, Xl: ll(X,·A)

.... K(X, A) is an isomorphism for all (X, A) •

E!:22!: Since the isomorphism 11(X/A, A/A) ... K(X,A)

factors through ~(X,A), the map ~(X/A. A/A) .. ~(X,A) is

injective.

Suppose that E1, EO are bundles on X, a: EllA ... EO IA
is an isomorphism. Let P be a bundle on X such that there Is an

isomorphism fJ: E1 $ P .... F I where F is triviaL Then (EI, EO' a)

is equivalent to (F, EO ED P, y) where ,.. =(a ED 1) p-l. TheD,

(F, EO E9 P, y) is the image of (F, (EO I) P)/" , ,,/,,). Thus,

~(X/A,A/A) ... .\l(X, A) is onto.

LEMMA Z. 6.6. !! Xl' X~ are two Euler characteristics

!2!. 11' Xl = X~ •

• -1
~: Xl X1 is a transformation of functors (rom K. to

itself which is the identity on each K(X). Since K(X,A) =K(X/A)

is injected into K(X/A). it is the identity on an K(X,A).



LEMMA Z.6. 7. There exists an Euler characteristic

E!:.22!: Suppose (EI , Eo' a) represents an element of

ll(X,A). Let XO' Xl be two copies of X, and let Y =Xo UA Xl

be the space which results from identifying corresponding points

of A. Then [EI, a, EO] € K(Y). Let 1r i : Y ... Xi be the obvious

retraction. Then K(Y) = K(Y, X.) E9 K(X.). The map (XO' A)
1 1

-+ (Y, Xl) induces an isomorphism K(Y, Xl) -. K(XO' A). Let

Xl(E1, EO' a) be the image of the component of [EI , a, Eo] which

lies in K(Y, Xl) • If A = 9 , then X(E1, EO' a) =(Eol - [EI]. One

can easily verify that this definition is independent of the choices

made.

COROLLARY Z. 6.8. The class of (EI, EO' a) in

11(X, A) only depends on the homotopy class of a •

~: Let Y = X X [0, 1], B = A X [0, 1]. Then, if ot

is a homotopy with ao =(l, ot defines _: 11' *(E1) IB ~ 'If *(EO> lB.
Let i j : (X, A) ... (X X [jl, A X [j]). From the commuting diagram

.* .*1 1
.£l(X,A) < 0 J;(Y, B) __1_-fi1'~ l eX A)

!XJ i~ !Xt i! = 1l'
K(X,A' < K(Y, B) ~ K(X,A)
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we see that since every map is an isomorphism, and since

i*O(iif
l

is the identity, (El , EO' aa) =(El , Eo' C\) •

~: If (En+1, ••• , EO; ~+l' ••• , al ) represents an

element of t n+1(X,A), so does

The two maps Cln+1 Q) 0 : E n+1 ... En <t> En+1 and 0 $1 : En+1 ... En G>En+1

are (linearly) homotopic as monomorphisms. 0 $1 extends to X,

and thus by (2. 6. 3) Cln+1 Q) 0 extends to a monomorphism

fJ : E n+1 ... En e E n+1 on all of X. Thus we can write En e E n+l

as P(En+l) G>Q. Then we see that. if ." : Q ... E n- l $ E n+1 is the

resulting map, (En+1,···, EO~; an+1, ••• , O),} is equivalent to

(0, 0, E n_l $ En+1, ••• , EO: 0, 'Y , •••• ( 1). Thus In(X, A)

~ tn+1(X,A) is onto.

LEMMA Z.6.10. The map J:n(X,A) -I ~n+l(X,A) ..!!...!!!.

isomorphism for all n ~ I •

~: It suffices to produce a map In+l(X,A) ... !l(X,A)

which is a left inverse of the map !l(X,A) -t In+l(X,A) •
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Let (En' ••• , EO; an' ••• , l\) represent an element of

!n(X,A). Choose a Hermitian metric on each E i • Let

ali: Ei_1'A -t E i IA be the Hermitian adjoint of Oi.

Put FO=EEZi ' F 1 =EEZi+1 ,anddefine !J:F1 ... F O

by fJ =:£ aZi+1 + E Cl~i. Then (Fl' F 0' P) € £'l(X, A). This

gives us a map etn(X,A) ... £I(X,A). To see that it is well defined,

we need only see that it does not depend on the choice of metrics.

But all choices of metric are homotopic to one another, so that a

change of metrics only changes the homotopy class of fJ. Thus

this map is well defined. It clearly is a left inverse to .£1(X, A)

... etnCX, A) •

COROLLAR Y ., 2. 6. II. For each n there exists exactlr

one Euler characteristic Xn: J:neX, A) ... K(X,A) • and it is always

an isomorphism. Thus, there exists X: et(X)(X.A) ... K(X,A)

~8omorphically.
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We next want to construct pairings

l, (X, Y) 8 t (X', Y') --> ~.+ «(X, y) x (X', y'»n m -n m

compatible with the pairings

K(X, Y) @ K(X', Y') --> K(X, Y) X (X', Y'»

To do this, we must consider complexes of vector bundle.,

i. e., sequences

a a 1o--> E -!!...> E -!::..> ••• --> E --> 0n ft-1 0

where aiai+l =0 for all i.

LEMIviA Z.6.12. Let EO' ••• , E be vector bundles 011
- n

X • and let a. : E.I Y ---:> E. 11 Y be such that
1 1 1-

is exact on Y. Then the a. can be extended to ~ : E. -> E. 1
1 ~ 1 1-

on X such that Pi~+l =0 for all i.

Proof: We shall sho,," that there is some open neighborhood

U of Y in X and an extenBion "'1 of at to U for all i such

that
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o--> E ~ E Tn-l > ••• --> E -> 0
n n-! 0

is exact on U. The extension to the whole of X is then achieved

by replacing Ti by P'-i where p is a continuous function on X

such that p =1 on Y and supp pcU •

Suppose that OD some closed neighborhood Ui of Y in X,

we could extend al'.···' ai to 1'1' ••• , 1'i such that on Ui t

"iE. --=--> E. 1~ • •• --> EO --> 0
1 1-

is exact. Let Ki be the kernel of Ti on Ui . Then ai+l defines

a section of Hom(Eit1, Ki ) defined on Y. Thus, this section

can be extended to a nei.bborhood of Y in U. , and thus
1

~+l : E i +1 ... Ki can be extended to "i+l: E i +1 ... Ki on this

neighborhood. 01+1 i8 a surjection OD Y, 80 'Ti+l will be a

surjection on some closed neighborhood Ui+1 of Y in Uj

Thus, the lemma follows by induction on i.

We introduce the set C) (X, Y) of complexes of length n
D

on X which are acyclic (i. e., exact) on Y. We say that two

8uch complexes are homotopic if they are isomorphic to the

restrictions to X X{a} and to X)( {I} of an element in

'b(X Xl, Y)( I). There is a natural map

given by restriction of homomorphisms.
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LEMMA 2. 6.13. «- induces a bijection of homotopy

classes.

Proof: The last lemnla shows that ~ is surjective.

To show that • is injective we have to sbow that any conlplex

over X x {a} u X x {I} U Y X I which is acyclic over Y X 1 can be

extended to a complex on the whole of X X I. We carry out this

extension in three steps. First we make the obvious extensions

to X x (0, 1/4] and X x [3/4, 1]. Next we apply the preceding

lemma to the pair X X [1/4, 3/4], Y x [1/4, 3/4J U V X {I /4}U V X{3/4}

where V is a closed neighborhood of Y in X over which the given

complexes are still acyclic. This gives a complex on X x {1/4, 3/4]

which agrees with that already defined at the two thickened ends

along the strips V X {1/4} and V x {3/4}. Thus if we now

multiply everything by a function p such that

(i)

(ii)

p=l

p=o

on X x {a} U X x {I} U Y x I

on (X - V) X {1/4} U (X - V) X {3/4}

we obtain the desired extensi"n (see figure: the dotted line

indicates the 8UppO·rt of p) •

1

,-~-~~-~--~--~-.~~--~--~----~-

3/4

I

1/4 Io-....,j.~------------

o bi3-~_hh ------_-- __--_h-
y
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If E E , (X, Y), F E ~ (XI, Y') then E ~ F is a
n m

complex OD X X XI which is acyclic on (X x y.) U (Y X X r ) •

Thus we have a natural pairing

which is compatible with homotopies. Thus, by meaDS of .,

it induces a pairing

LEMMA Z.6.14. For any classee x E £n(X, V),

Xl E t, (X' y')m ' ,

x(x ~ X' ) = X(x) X(x') •

~: This ie clearly true when Y =yl =~. However,

the pairing K(X. Y) ~ K(X'. Y'} -> K«X, y) )( (X', Y'» which

we defined earlier was the only natural pairing compatible with

the pairings defined for the case Y = y. = ~ •

With this lemma we DOW have a very con,"cDicDt de.c-ript.ion

01 the relative product. As a simple appJicat.iMl we shall give a

- Zn
pew construction for the generator of K(S ).

Let V be a complex vector space and cODsider the exterior

IIKebra A*(V). '\Ve can regard this in a natural way as a complex
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of vector bundles over V. Thus we put E. =V )( Ai(V), and
1

define

by

(VI w) --+ (v, v 1\ w) •

-1£ dim V = 1 the complex has just one map and this is an isomorphism
t'W" 2

for v; o. Thus it defines an element of K(B(V), S (V» == K(5 )

where B(V), B(V) denote the unit ball and unit sphere of V with

respect to some metric. Moreover this element is, from it.
~ 2

definition, the canonical generator of K(S ) except for a sign -1.

Since

A*(V. W) ~ A*(V) e A*(W)

it follows that for any V, A* (V) defines a complex over V

acyclic on V - {o} , and that this gives the canonical generator of

1t(B(V), S(V» =ie(SZn) except for a factor (_l)D (where D = dim V) •

More generally the same cODStructioD applies to a vector

bundle V over a space X. Let us introduce the Thorn space

XV defined a8 the one-point compactificatioD of V or equivalently

as B(V)/S(V). Then K(B(V, S(V» =R(XV, and the exterior algebra

I'W V
of V defines an element-of K(X ) which we denete .y A

V
• It has the

two pr.perties
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(A) Ay restricts to a generator of if(py) for each

point P EX.

(B) 'Avew =AV • ~ I where this product is from

~XV) X i«xW) to !(XVSW).

A very similar discussion can be carried out for projective

spaces. Thus if V is a vector bundle over X let P =P(V G> 1)

and let H be $he standard line-bundle over P. By definition we

have a monomorphism

H*~ 1f*(V f> 1)

when '11': P ... X is the projectiou. Hence tensoring with H we

get a section of H e 'If *(V E9 1). Projecting onto the first factor

gives therefore a natural section

s E r(H e 'II'*V) •

Consider the exterior algebra A*(H ~ 11'*V). Each component is

• vector bundle over P and exterior multiplication by s gives us

• complex of vector bundles acyclic outside the subspace where

• =o. But this is just the image of the natural cross-section

X ... p. If we restrict to the complement of P(V) in p(V CD 1)

then H becomes isomorphic to 1 and we recover the element

which defines ~ (identifying P(V $1) - P(V) with V in the usual

way). This shows that the image of AV under the homomorphism
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i(XV) = K(P(V Q) 1), P(V» ----+ K(P(V (1»

is the alternating sum

•

We conclude this section by remarking that everything

we have been saying works equally well for G-spaces, G being

a finite group•. We have only used the basic facts about extensions

of homomorphisms etc. which hold equally well for G-bundles.

Thus elements of Ka(X, Y) may be represented by G~complexes

of vector bundles over X acyclic over Y. In particular the

exterior algebra of a G-vector bundle V defines an element

as above.
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§Z.7. The Thorn isomorphism. If E = E L i is a

decomposable vector bundle over X (i. e., a sum of line-bundles)

then we have (2. 5. 3) determined the structure of K(P(E) as a

K(X)-algebra. Now for any space X we have a canonical isomorphism

Also, if 'IT: X x 81 ... X is the projection, we have

P(E) x 51 = P(11"*E)

and so

K* (P(E» ~ K(P(1r *E» •

Thus replacing X by X x 81 in (2. 5. 3) gives at once

PROPOSITION Z. 7. 1. _Le_t E = I; Li _b_e_a_d_e_co_m-...,p_o_sa_b_l_8

vector bundle over X. ~ K*(P(E»,~ K*(X)-al~ebra,

is generated by IHJ subject to the single relation

n ([L.][H] - 1) = 0 •
1

Remark: As with (2. 5. 3) this extends at once to G-spaces

Jfiving K~(P(E» as a K~(X)-algebra.

Now the Thorn space X
E may be identified with peE $l)/P(E),

And at the end of § 2. 6 we saw that the image of AE in K(P(E ~ 1»
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is

Since this element generates Cas an ideal) the kernel of

K* (P(E e 1» ----+ K* (P(E»

we deduce

PROPOSITION Z. 7. 2. .!:!! E be a decomposable

vector bundle over X. .I.h!D i<* (XE ) is a free K* (X) -module

on "'E as generator.

Remark: This "Thorn isomorphism theorem" for the

decomposable case also holds as before for G-spaces. We now

show how this fact can be put to use.

COROLLARY 2. 7. 3. ~ X be a G-space such that
1KQ(X) =0 and let E be a decomposable G-vector bundle. Then,

!!... SeE) denotes the sphere bundle, we have an exact sequence

o ---;. K~(S(E» ....... K~(X)~ K~(X)~ K~(S(E» ....... 0

where cp is multiplication by
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~: This follows at once by applying (2. 7. 2) in the

exact sequence of the pair (B(E), SeE').

In order to apply this corollary when X =point we

need to verify

LEMMA 2. 7.4. ~ (point) = 0 •

~: It is sufficient to show that

is an isomorphism. But, since G is acting trivially on 51, we

have

KG(Sl) ~ K(Sl) e R(G)

::::. K (point) ~ R(G)

~ KG (point) •

Thus we can take X =point in (Z. 7. 3). Moreover if we

take G abelian then E is necessarily decomposable. Thus we

obtain

COROLLARY Z. 7. 5. ~ G be an abel~an group, E a

(i-module. Then we have an exact sequence

o-+ ~(S(E»-+ R(G)~ R(G)~ K~(S(E»-+ 0
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!!h!!! CP is multiplication by

Suppose in particular that G acts freely on SeE)

(it is then neces.sarily cyclic), so that

K~(S(E» :::. K* (S(E)/G)

Thus we deduce

COROLLARY Z. 7. 6. ~ G be a cyclic group, E..!

G-module with SeE) G-.!!:!!. Then we have an exact sequence

~ ((J is multiplication by "'.I[E] •

Remark: A similar result will hold for other groups

acting freely on spheres once the Thorn isomorphism for KG has

been extended to bundles which are not decomposable. However,

this will Dot be done in these notes.

As a special case of (2. 7.6) take G =Zz' E =CD with

the (-1) action. Then

S(E)/G = PZn-1(R)
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. is real projective space of odd dimension •

R(ZZ) = Z[p)/pZ - I

A_I[E] = (1 _ p)n

Putting u =P - I so that uZ =-Ze1 and ~_l[E) =(_u)n we see

that RO(PZn_I(R» is cyclic of order Zn-I while KI(PZn_I(R»

is infinite cyclic. If we compare the sequences for nand n + 1

we get a commutative diagram

But in R(ZZ) the kernel of (_a)n (for n > 1) is (2- a) and 80

coincides with the kernel of -a. Hence the map

is zero. From the exact sequences of the pairs (PZn+1' P Zn)'

(p P ) we deduce thatZn' Zn-l

1 1
K (P2n+1)~ K (PZn)
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is surjective, while

is injective. Hence

The exact sequence of the pair (PZn+1' P Zn) then shows that

is an isomorphism. Summarizing we have established

PROPOSITION Z. 7. 7.

as follows

The strucutre of K* (P (a» is
D -

K1(P2n+1) = z

K1(PZn> = 0

We leave it as an exercise to the reader to apply (Z. 7. 6) to

other spaces.

We propose DOW to proceed to the general Thon~ i90mo.tphiefn

theorem. It should be emphasized a.t this point that the methods

to be used do2!,g! extend to G-bundles. Entirely different methods
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are needed for a-bundles and we do Dot discuss them here.

We start with the following general result

THEOREM Z. 7.8. Let 11': B ... X be a map of compact

spaces, and let ,."" ••• , IJn be homogeneous elements of K*(B).

~ M* be the free (Zz) graded group generated by 1J 1,_··, /J,n

Suppose that every point x E X has a neighborhood U such that

for all V c U , the natural map

is an isomorphism. Then, for any 'y eX, the map

* * * -1K (X, Y) ~ M ----;> K {B, 'II' (Y»

is an isomorphism.

Proof: If UCX has the property that~ for all Vc U,

K* (V) ~ M* ~ K* ( 11' -l(V» (1)

we shall say that U is good. If U is good then, using exact

sequences and the fact that 8M* preserves exactness (M* being

torsion free) we deduce
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K*(U, V) @M*. ~ K*{1T -1 (U), 'If -1 (V» (2)

Here we use of course the compatibility of a with products

(Lemma 2.6.0). What we have to show therefore is

·X locally good ~ X good.

Since X is compact it will be enough to show that

Now any Vc:. U1 U U2 is of the form V = V l U V 2 with Vi C Ui

(and so Vi is also good). Since

it follows that (2) holds for the pair (V, V2 ). Since (1)

holds for V 2 the exact sequence of (V, V2 ) shows that (1)

holds for V. Thus U1 U U2 is good and the proof is complete.

COROLLARY 2. 7. 9. .!=!1 'I1':E ... X be a vector bundle,

and let H be the usual line bundle over P(E). Then K* (P(E»

is a free K* (X)-module on the generators I, [H], [H]Z, ••• , [H]n

[H] satisfies the equation :E (_l)i [H]i[~iE] =0 •
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Proof: Since E is locally trivial it is in particular

local!y dec omposable. * Hence I by (2. 7. 1), each point x e X

has a neighborhood U so that for all V c U, K*(P(E J V» is

a free K*(V)-module on generators 1, (H), •••• [H]n-l. Now

apply (2. 7. 8). The equation for fH] has already been established

at the end of §2. 6.

COROLLAR Y Z. 7.10. ..!!. 1T : E ... X is a vector bundle,

and if F(E) is the flag bundle of E with projection map p:F(E)-'X

then p* : K*(X) ... K*(F(E) is injective.

..f.!2~: F(E) is the flag bundle over P(E) of a bundle

of dimension one less than dim (E). We proceed inductively

on dim(E) using (2.7. 9) •

COROLLARY 2. 7.11. (The Splitting Principle). U

El' ••• , En .are vector bundles on X, then there exist a space

F and a map tr: F -. X such that

1) 1T* : K*(X) .... K*(F) is injective

Z)

Proof:

Each v*(E.) is a sum of line bundles.
--- 1

We take F to be the flag bundle of ~ E. •
1

The importance of the Splitting Principle is clear. It enables

..
Remark: This is the argument which does not generalize

to G-spaces.
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us to reduce many problems to the decomposable case.

COROLLARY Z.7.1Z. (The Thom Isomorphism Theorem).

If 11' : E .... X is a vector bundle

defined by .(x) =AEx is an isomorphism.

~: This follows from (2. 7. 9) in the same way a.
(Z. 7. Z) followed from (Z. 7.1).

We leave the following propositions as exercises for the

reader

PROPOSITION 2.7.13. 1! 11': E .... X is a vector bundle,

Ll
, ••• , Ln

the usual line bundles over F(E), then the map

defined bI t i
... (Li

] defines an isomorphism of K*CX) modules

~ I is the ideal generated by elements

ia being the i-th elementary sYmmetric function.
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PROPOSITION Z.7.14. Let 'If: E .. X be an-- ---
n-dimensional vector bundle and let Gk(E) be the Grassmann

bundle (of k-dimensional subspaces) of E. Let F be the

induced k-dimensional bundle over Gk(E), F ' the quotient

bundle p*(E)/F. Then the ma2 defined by t
i

.. ~i(F),

8 i .. ~i(FI) defines an isomorphism of K*(X)-modules

~ I is the ideal senerated by the elements

for all I..

(Hint: Compare Gk(E) with the flag bundle of E) •

In particular, we see that if G k is the Grassmann
D,

manifold of k-dimeDsional subspace. of an n-dimensional vector

space, K*(G k) is torsion free. This also follows from its
D,

cell decomposition. By induction we deduce K* is torsion free

for a product of Grassmannians.

THEOREM Z. 7.lS. •1..et X be a ~pace such that K (x)

i8 torsion free, and let Y be a (finite) cell complex, Y' c Y a

8ubcomplex. Then the map

K*(X) 18 K*(Y, y.)~ K*{X x Y, X X YI)

il an i8omorph18m.
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Proof: The theorem holds for Y a ball, Y' its

boundary as a consequence of 2. 7.2. It thus holds for any

(y, y.) by induction on the number of cells in Y.

COROLLARY 2.7.15. (The KUnneth Theorem).

Let X be a space such that K*(X) is a finitely generated

abelian group, and let Y be a cell complex. Then there is a

natural exact sequence

0-->

L Tor(Ki(X), Kj(y» -;> 0

i+j=k+l

where all suffixes are in Zz •

Proof: Suppose we can find a space Z and a map

f : X ... Z such that K*(Z) is torsion free, and f*: K*{Z) ... K*(X)

is surjective. Then from the exact sequence K*{Z/X) is torsion

free. From the last theorem, K*{Z X Y) = K*{Z) 8 K*(Y) •

K*«Z/X} X Y) = K*(Z/X) @ K*(Y). The result will then follow

from the exact sequence for the pair (Z x y, X x y) •

We now construct such a map g: SX .... Z. Let a1,···, an

generate KO(X), and let bl ,···, bm generate K-1(X) =K(5X) •

Then each a. determines a map fl. : X ..... G for
1 1 r i , Si
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suitable, and each b. a map ~. : SX ~ G • Let
1 1 ui,vi

a : X -t G X·· • x G =Gibe a x... x.a ,and
r1, 8 1 r n , sn 1 n

f3 : SX ... Gu. v: x ••• XGu v = G" be f3 X··· X P •
l' 1 In' m 1 m

Then

Thus, if f: (Sa) x (j : SX ~.. (50') x GU =G

f*: K*(G) --> K*(SX} is surjective,

and K*(G) is torsion free as required. This proves the formula for

SX and this is equivalent to the formula for X.

We next compute the rings K*(U(n», where U(n) is

the unitary group on n variables. Now for any compact Lie

group G we can consider representations p: G ... GL(m, C) as

defining elements [p] E K1(G): we simply regard p as a map

and disregard its multiplicative properties. Suppose now that

a., p are two representatioDs G'" GL(m, C) which a,ree on the

closed subgroup H. Then we can define a map

Y : G/H ... GL(m, C)

•
by ,,(gH) = a(g)*,(g)-l. This is well-defined because of the

multiplicative properties of a, ~. The map ~ defines an element
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(yJ E K
1
(G/H) whose image ill K1(G) is just (aJ - (~]. As

a particular case of this we take

G = U(n), H =U(D - 1). G/H = S2n-l

For CI, (3 we take the representations of G OD the even and

odd parts of the exterior algebra A*(CD
), and we identify these

two parts by exterior multiplication with the n-th basic vector

e of CD., Since U(n - 1) keeps e fixed this identificationn n

is compatible with the action of U(n - 1). We are thus in the

situation being considered and 80 we obtaiD an element

If we pass to the isomorphic group f«S2n) we see from ite

definition that r"l is just the basic element

cODstructed earlier from the exterior algebra. Thus [y] is a

generator of K1(S2n-l), and its image in K1(U(n» is Z (_l)i(>.i]

where the Ai are the exterior power repre8en~tioD8. With

this preliminary discussion we are DOW ready to prove:



THEOREM Z.7.17. K*CU(n» is the exterior algebra

generated by [>-,1], ••• , lAD], where Ai is the i-th exterior

power representation of U(D).

~: We proceed by induction on D. CODsider the

mapping

U(n) ---> U(n)/U(n - I) = 82n-1

SiDee the restriction of Ai to U(n - 1) is lJi E9 ~i-l, where lJi

denote. the i-th exterior power representation of U(n - 1) , the

inductive hypothesis together with (Z. 7. 8) imply that K*(U(n»

i8 a free K*(S2n-l)_module generated by the monomials in

[~1], ••• , [~n-l]. But K*(SZn-l) is an exterior algebra on one

geDerator (yl whose image ill K* (U (n» i.

I (- l)i[~i] ,

1=0

as ShOWD above. Hence X'U(n» is the exterior algebra OD

(Xl]. • •• , [AD] •• required.

116
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CHAPTER In. Operations.

01. Exterior Powers. By an operation F in K-theory,

we .hall mean a natural transformation F X : K(X) .. K(X). That

is, for every space X, there is a (set) map FX : K(X) .. K(X) ,

and if f: X .. Y is any continuous map, F Xf· = f*F y •

Suppose that F and G are two operations which have

the property that F«(E] - n) = G([E] • n) whenever E is a sum

of line bundles and n is an integer. Then F(x) =G(x) for all

x E K(X) , as we Bee immediately from the splitting principle of

the last chapter.

There are various ways in which one can define operations

using exterior power operations. The first of these which we shall

discuss is due to Grothendieck •

If V is a vector bundle over a space X, we define

~[V] e K(X)[[tl] to be the power series

L ttr>.i(V)]
i =0

The isomorphism

>.k(V (9 W) ~ L t(V) ~ >.J(W)

i+j=k
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gives us the formula

~[V $ W] = ~[V] ~[W]

for any two bundles V, W. For any W the power aeries "t[W]

is a unit in K(X)[[t]], because it has constant leading term 1.

Thus we have a homomorphism

~ : Vect(X) ..... 1 + K(X)[[t]]+

of the additive semi-group Vect(X) into the multiplicative group

of power series over K(X) with constant term 1. By the ~iversal

property of K(X) this extends uniquely to a homomorphism

~ : K(X) ... 1 + K(X)[[tJt •

Thus, taking the coefficient of t i we ~ve operations

Ai : K(X) -+ K{X) •

Explicitly therefore

~([V) - [w]) = ~[V] ~[Wrl

In a very similar way we can treat the symmetric powers

Si(V). Since

Sk(V (9 W)'::: L Si(V) €O sj(W)

i+j=k
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we obtain a homomorphism

St : K(X)~ 1 + K(X)[[t]]+

whose coefficients define the operatioDS

SI : K(X)~ K(X) •

Notice that if L is a line bundle,

At(L) = 1 + tL

St(L) = 1 + tL + t
2

L + • • •

:: (1 - tL)-l •

Thus

Thus, if V is a sum of line bundles, ~_t[V]st[V]=1 • Therefore,

for any x E K(X), "-_t(x)St(x) =1, and so

~([V] - [W]) = Ac:[V]S_trW]

that is,

This gives us an explicit formula for the operations >.,1 in terms

of operations on bundles.
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Now recall that, for any bundle E, dim Ex is a

locally constant function of x. Since X is assumed compact

dim E = Sup dim Ex
xEX

is finite. The exterior powers have the basic property that

if i> dimE.

Let us call an element of K(X) positive (written x:: 0) if it is

represented by a genuine bundle, i. e•• if it is in the image of

Vect (X). Then

x > 0 ~ ~(x) E K(X)[t] •

For many problems it is not dim E which is important

but another integer defined as follows. First let us denote by rank E

the bundle whose fibre at x is Cd(x) where d(x) =dim Ex: if

X is connected then rank E is just the trivial bundle of dimension

equal to dim E. Then E -. rank E induces an (idempotent) ring

endomorphism

rank: K(X) -> K(X)

which is frequently referred to as the augmentation. The kernel of

this endomorphism is an ideal denoted by K1(X). For a connected

space with base-point we clearly have
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For any x E K(X) we have

x - rank x E K1(X) •

Now define diml{'" for any x E K(X) , to be the least integer n

for which

x - rank x + n > 0

since every element of K(X) can be represented in the form [V] - n

for some bundle V it follows that dimKx is finite for all x E K(X) •

For a vector bundle E we clearly have

Notice that

where Xl =x - rank x , so that dim K is essentially a function on

the quotient ~(X) of K(X).

It is now convenient to i~troduce operations "i which

have the same relation to dimK as the ).i have to the dimension

of bundles. Again following Grothendieck we define

"t(X) = ~/l-t(x) E K(X)[[t]]
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so that ?It(x + y) ="t(x)Yt(Y). Thus for each i we have an

operation

"i :K(X) ~ K(X) •

The ,; are linear combinations of the ~j for j::. i and vice-

versa, in view of the formula

obtained by putting s = tIl - t, t =s/1 + s. Note that

and for a line-bundle L

rt([L] - 1) = 1 + t([L] - 1) •

PROPOSITION 3.1.1. ~ x E K1(X) ,~ ?'t(x) l!.

a polYJ!0mial of degree ~ dimKx •

~: Let n = ditnxx , so that x + n ~ o. Thus x + n'

= [El for some vector bundle E. Moreover dim E = n and so

for i> n •

Thus ~(x + n) is a polynomial of degree ~ n. Now
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Yt(X) = "t(X + n)Yt(l)-n

= "t/l-t(x + n)(l - t)n

n

= I xi(x + n)ti(l - t)n-i

1=0

and so is a polynomial of degree ~ n as stated.

We now define dim"x to be the largest integer n such

that "n(x - rank x) I 0, and we put

By (3. 1. 1) we have

dim"x = sup dim'Ux
xEK(X) ,

We shall show that, under mild restrictions, dimKX

is finite. For this we shall need some preliminary lemmas on

symmetric functions.

LEMMA 3. 1. 2. Let xl' ••• , x be indeterminates.
-- n

rrhen any homogeneous polynomial in Z[x1, ••• , xn] of degree

> n(n - 1) lies in the ideal generated by the symmetric functions of

(xl' ••• , xn) of positive degree.
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Let a.(x1
, ••• , x ) be the i-th elementary

1 n

symmetric function. Then the equation

n n-l n-2 ( )n
x - (J x + (7. x + •• • + -1 (]

1 2 n = 0

has roots x =xi. Thus x~ is in the ideal generated by 0'1' ••• , on •

But any monomial in xl' ••• , xn of degree > n(n - 1) is divisible

by xr for some i and so is also in this ideal.

LEM.M:A 3.1.3. Let xl' ••• , x n ' Yl'

indeterminates and let

b. = a.(Yl' ••• t Y )
1 1 ~

be the elementary symmetric functions. !:!t I be any ideal in

Z[a,b], J its extension in Z[x,y). ~

J n Z[a, b] = I •

~: It is well-known tllat zfx] is a free Zral-n~odul.

with basis the monomials

rx-
o < r. < n - i

- 1-
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Hence Z[x, y] = Z[x] ~ Z[y] is a free module over Z[a, b] = Zeal CD Z[b]

with basis the monomials x!. y!.. Then the ideal J c Z[x, y]

consists of all elements f of the form

f =L r sf x-y-
!.,!.

with f EI
!.,,!.

Since the x!. y!' are a free basis f belongs to Z[a, b] if and only if

f =0 for !.,!.1 (0,0) in which case
!.,!.

f = £0 0 E I •,

Thus J n Zea, b] = I as stated.

Remark: This lemma is essentially an algebraic form

of the splitting principle since it asserts that we can embed Z[a, b]/l

in Z[x,y]/J. It is of course purely formal in character and it

seems preferable to use this rather than the topological splitting

principle whenever we are dealing with formal algebraic results.

The topological splitting principle depends of course on the periodicity

theorem and should only be used when we are dealing with properties

that lie at that depth.

LEMMA 3.1.4. Let K be a commutative ring (with 1)

and suppose

a(t)

b(t)
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are elements of K[t] such that

a(t) b(t) = 1 ..

Then there exists an integer N =N(n, m) so that any monomial

of weight I: jrj > N vanishes •

~: Passing to the universal situation it is sufficient

to prove that if ai' •••• an' b l,···, bm are indeterminates,

then any monomial a in the &1 of weight > N lies in the ideal

I generated by the elements

I
i+j=k

a.b.
1 J

k = I, •••• mD(aO =bo=1)

By (3.1.3), introducing indeterminates xl' ••• , xn ' Yl'···' Ym •

it is sufficient to prove that a belongs to the extended ideal J.

But ck is just the k-th elementary symmetric function of the

(m + n) variables ; •••• , xn ' Yl'···' Ym • The result now

follows by applying (3. 1. Z) with N =(m + n)(m + D - 1) •

Remark: The value for N(m, n) obtained in the above proof

is not best possible. It can be".•hown by more detailed arguments
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that the be'st possible value is ron.

We now apply these algebraic results:

PROPOSITION 3.1. 5. ~ x E K1(x). Then there

exists an integer N, depending on x, such that any monomial

k
of weight Ej=l i j > N is equal to zero.

~: We apply (3.1.4) to the polynomials "t(x), ?It(-x).

Note therefore, that N depends on dim"x t dim,.,(-x) •

Since yl{x):' x we deduce:

COROLLARY 3. 1. 6. Any x E K1(X) is nilpotent.

If we define the degree of ep"ch "Ii to be one. then for

iany monomia~~ the 'Y we have

weight > degree.

In view of (3.1. 5) t therefore, all monomials in "i(x) of sufficiently

high degree are zero if x E K1(X). Thus we can apply a formal

power series* in the 'i to any x E K1(X). Let us denote by

* A~ usual a formal power series means a sum f =~ fn where fn
is a homogeneoul polynomial of degree n (and 80 involves only a finite
number of the variables).
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Op(K1, K)the set of all operations K1 '" K. This has a ring

structu.re induced by the ring structure of K (addition and

multiplication of values). Then by what we have said we obtain

a ring homomorphism

THEOREM 3. 1. 7.

1 n ~
cp : z[[y, ••• , " , ••• JJ~ Op(Kl ~ K)

is an isomorphism.

Proof: Let Y be the product of n copies of P (C).- D,m m

Using the base point Pa(e) of P m(C) the Yn, m form a direct

system of spaces with inclusions

for n'::' n, m l ~ m •

Then K(Y ) is an inverse system of groups withn,m

K(Y ) = Z[x • • • x ]!(xm +1 ••• ",no), I I}
n, m 1" n. 1 I ~. n

lim K(Y ) - Z[[x1, • • • , xn]]
<- n,m

m
lim K(Y ) - lim Zffx t , _•• , xn]]
<- n,m

~m,n n
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Any operation will induce an operation on the inverse limits.

Hence we can define a map

'" : Op(K1, K) ---;. e Z[(x1, ••• , xn]]
n

by ·'P(f) = lim f(x i +x., + • • • + x ). Since, in K(Y ) we have<-- "n n, m

n
=~ (1 +x.t)

i=l 1

it follows that

lim a.(x1, ••• J X )
~ 1 n

n

where fJi denotes the i-th elementary symmetric function. In

particular J therefore 1/Jcp is injective and so qJ is injective. Moreover

the image of ,pcp is

which is the same as

S
lim Z[[x1,···, xn]] n
~

n

where []Sn denotes the sUbring of invariants under the symmetric

1l1"OUp Sn. But, for all f E Op(K1, K) ,
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for all x E K1 '

Let us define HO(X, Z) to be the ring of all continuous

lies in this group. In othe.r words

Im,p(/' = Im,p

f([E] - n) = 0

To complete the proof it remains now to show that I/J is injective.

Suppose then that 1/>(£) = o. Since any line bundle over a space X

is induced by a map into some P (C) it follows that
n

f(x) = 0

this implies that

whenever E is a sum of n line "bundles. By the splitting principle

maps X -t Z. Then we have a direct sum decomposition of groups

i. e., f is the zero operation, as required.

determined by the rank homomorphism. It is easy to see that there

are no non-zero' natural homomorphisms
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and so Op(K) =Op(K.K) differs from Op(Kl'K) only by Op(HO(Z»

which is the ring of all maps Z .... Z. Thus (3. L 7) gives essentially

a complete description of Op(K).

Vfe turn now to a discussion of finiteness conditions on K(X).

First we deal with HO(X, z) •

PROPOSITION 3. 1. 8. The following are equivalent

(A)

(B)

is a Noetherian ring

is a finite Z-module •

~: (B) implies (A) trivially. Suppose therefore that

HO (X, Z) is Noetherian. Assume if possible that we can find a

strictly decreasing infinite chain of components (open and closed

sets) of X

x = Xo => Xl ::> • •• ~ X ::> X ::> • • •n n+l

Then for each n we can find a continuous map f : X .. Z so thatn

fn (Xn+i) = 0

fn (Xn - Xn +1) = 1

:onsider the ideal I of HO(X,Z) consisting of l118pS f: X -. Z

uch that f(X ) = 0 for some n. Since HO(X, Z) is Noetherian
n

is finitely generated and hence there exists N so that
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for all f E I •

But this is a contradiction because

Thus X has only a finite number of components, so that

n

X = \' x.L, °1

i= 1

with X. connected. Hence HO(X, Z) is isomorphic to Zn.
1

Passing now to K(X) we have

PROPOSITION 3. 1. 9. The following are equivalent

CA) K(X) is a Noetherian ring

(B) K(X) is a finite Z- module •

~: Again assume (A), then HO(X, Z) which is a quotient

ring of K(X) is also Noetherian. Hence by (3. 1. 8), HO(X, Z) is a

finite Z-module. Now K1{X) is an ideal of K(X) consisting of

nilpotent elements (3. 1. 6). Since K(X) is Noetherian it follows

that K1(X) is a nilpotent ideal. For brevity put I =K1(X). Then

In = 0 for some n and the 1m/1m+1, m =0, I, ••• , n - 1 are

all finite modules over xiI ~ aO(X, Z). Hence K(X) is a finite
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HO(X, Z)-module and so also a finite Z-module.

Examples of spaces X for which K(X) is a finite Z-module

are cell-complexes.

Let us now define a filtration of K(X) by the subgroups

K~(X) generated by all monomials

with ~=l ij :::. n and xi E K1(X) • Since "l(x) = x,

we have K'{ =~. If x E K~(X) we say that x has ,,-filtration > n

and write F ,,(x) ~ n •

PROPOSITION 3. 1. 10. Assume K(X) is a finite Z-module.

Then for s orne n

K"<X) = 0 •n

~: Let xl' ••• , X s be generators of K1(X) and let

Nj =N(xj ) be the integers given by (3. 1. 5). Because of the formula

it will be sufficient to show that there exists N so that all U10.J1I.JJIl.iall'

in the ",i(x ..) of total weight > N are zero. But taking N =LS
1 N.

F J J= J

,ve see that any suel .. ---'III"', for some J, have weight > NJ
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in the I(xj). Hence by (3. 1.5) this monomial is zero.

COROLLARY 3.1. 11. Assume K(X) is a finite Z-module.

Then dim"X is finite.

We call the reader's attention to certain further properties of

the operations yi.

PROPOSITION 3. 1. lZ. l!. V is a. bundle of dimension n,

[ n _.D ~ * V *A-I V] = (-1) y ([V] - n). ~ K {X ) is a free K (X) module

generated by ')In([V] - n) •

PROPOSITION 3. 1. 13. There exist polynomials P., Q ••
1 lJ

such that for all x, y

1 1 Z Z •.
= Pi(Y (x), " (y), " (x), 'Y (y) , ••• , yl(X), yl(y»

· · 1 i+jyJ("J(x» = Q •.(y (x), ••• ,,, (x».
lJ

We leave these proofs to the reader, who may verify them easily

by use of the splitting principle.
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§ 2. The Adams Operations. We shall now separate

out for special attention some operations with particularly pleasing

properties. These were introduced by J. F. Adams. We define

zpO(x) =rank (x). In the ring K(X)[[tJ] we define .t(x) =Zi:O tilex)

by

Notice that since all of the coefficients of this power series are

integers. this definition makes sense.

PROPOSITION 3. Z. L For anx X, y E K(X)

1)

2)

3)

Proof:

for each k.

t/Jk(x + y) = ~k(x) + ,pk(y) for all k

.!!. x is a line bundle, ,pk(x) = x
k

•

Properties 1~ Z uniquely deter~e the operations

~k •

k k k¢t(x + y) = IPt(x) + tPt(y), so that I/J (x + y) =: I/J (x) .,. r/J (y)

H x is a line bundle, ~_t(x) = 1 - tx, so that

d~ (log(l - tx» =

= Z 2 3-x-tx -t x - •••
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z Z
Thus tPt(x) =1 + tx + t x +. •• •

The last part follows from the splitting principle.

PROPOSITION 3. Z. 2. For any x, y E K(X)

1) tfJk(xy) =",k(x) tPk(y) for all k

2) ,k(lJ)f(x» =",kJ(x) for all k, J •

3) !! P is prime, ,p(x):. xP mod p

4) If u E K(SZn), I/>k(u) =knu for all k.

~ The first two assertions follow immediately from

the last proposition and the splitting principle. Also, from the

splitting principle, I/Jp(x) =xP + pf(A1(x), ••• , AP(x», where f

is some polynomial with integral coefficients. Finally, if h is

the generator of K(52), "k(h) =kh. Since SZn =S2 " ••• "SZ ,

I'tW 2n
and K (8 ) is generated by h ~ h @ • •• ~ h • the last assertion

follows from the first.

We next give an application of the Adams operations ,k.

S
4n-l Zn

. ·

uppose that f : S ... S is any map. We deflne the Hopf

invariant H(f) as follows. Let Xf
be the mapping cone of f.

Let i: SZn ... Xf
be the inclusion, and let j: Xf

... S4n collapse

SZn. Let u be the generator of K(S4n). From the exact

sequence we see that there is an element x E K(Xf) such that i *(x)

I'W 2n """*

generates K(S ). K(Xf) is the free abelian group generated by
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x and y = j* (u). Since (i* (x»Z = 0, x Z =Hy for some H.

This integer H we define as the Hopi invariant of f. Clearly,

up to a minus sign, H(f) is well defined. The following theorem

was first established by J. F. Adams by cohomological methods.

THEOREM 3. 2. 3. 1! H(f) ~,~ n =1, Z, .2!. 4 •

~: Let ,p2(x)::: ZDx +ay, zp3(x)::: 3nx +by. Since ,p2(x)

=xl. mod Z, a is odd. ,pk(y) = j* (lIJk(u» =k2ny. Thus,we see

that

,p6(X) = 1/J3(,pZ(x» = 6nx + (Z~ + 32na)y

~6(x) = IPZ(1JJ3(x» = 6Dx + (Z2n b + 3na)y •

Thus 2~ + 3Zna =22~ + 3na , or Zn(Zn - l)b =3n(3n - l)a •

Since a is odd, Zn divides 3D
- 1, which by elementary number

theory can happen only if n =1, 2, or 4.

If n = 1, 2, or 4·, the Hopi maps determined by consi:lering

S4n-las a subspace of the non-zero vectors in 2-dimensional

2ncomplex, quaternionic, or Cayley space, and S as the complex.

quaternionic, or Cayley projective line all have Hopi invariant

one. We leave the verification to the reader.

PROPOSITION 3. Z. 4. Let x E K(X) be such that F y(x) ~ n.

Then for any k we have
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Proof: If n =0 we have

k k ) kI/J (x) = '" (rank x +xl =rank x + ,p xl

k
Here xl and so l/J xl are in K1(X). Thus

Consider now n > o. Since ,pk is a ring homomorphism it is

sufficient to prove that the composition ,pk • yn - kn.,n (where

l/Jk E Op(K), yn E Op(K I , K» is equal to a polynomial

in the yi in which each term has weight ~ n +1. As in (3. 1. 7)

we have isomorphisms

~ lim Z[x • •• x ]8m
c;...- l' , m

m

in which yi corresponds to i-th elementary symmetric function

a i of the

and so

x .•
J

Now

where f is a polynomial in the ai of weight ~ n + 1. Since
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rfJk • ')In corresponds to lfJk(un> by the above isomorphisms the

proposition is established.

Iterating (3. Z. 4) we obtain:

COROLLARY 3. Z. 5. !! K~+l(X) = 0,

for any sequence of non-negative integers kO' k1, ••• , kn •

By (3. 1. 10) we can apply 3. Z. 5 in particular whenever K(X) is

a finite Z -module.

Notice that ,pk acts as a linear transformation on the vector

space K(X) (8) Q. Taking km =k for all m in (3. Z.5) we see

that

on K(X) @Q •

Thus the eigenvalues of each ,pk are powers of knot exceed;ng 1,".

Let Vk . denote the eigenspace of "",k cOl-l·esponding to the
,1

eigenvalue k i (we may have Vk . =0). Then if k > 1, we have
,1

an orthogonal deconlposition of the identity operator 1 of K(X) €O Q :
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Thus K(X) @ Q is the direct sum of the Vk, i • Now put in .

(3. 2. 5),
k = km for m:/ i

and we see that

(fIJI - l.i )V . = 0
k , 1

and so V k • c V 1 .• Hence we deduce
,1 ~ 1

PROPOSITION 3. Z. 6. Assume K(X) has finite ,.,-filtration

and let Vk. i denote the eigenspace of ,k ~ K(X) @ Q correspond

ing to the eigenvalue k i • Then if k, l. > 1 we have

Vk · = Vi ·,1 ,1

Since the subspace Vk • does not depend on k (for k > 1) we
,1

may denote it by a symbol independent of k. We shall denote it by

H
2i

(X; Q) and call it the 2i-th Betti gr0u.P of X. From (3. 2.4)

it follows that the eigenvalue kO =I occurs only in HO(X, z) ~ Q •

Thus our notation is consistent in that

o 0H (X, Z) 8 Q = H (X : Q) •

We define the odd Betti groups by
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where X+ = x U point and S denotes reduced suspension. If

the spaces involved are finite-dimensional we put

and the Euler characteristic E(X) is defined by

Note that the KUnneth formula (when applicable·) implies

E(X x Y) = E(X) E(Y) •

The following proposition is merely a reformulation of (3. Z. 4)

in terms of the notation just introduced:

PROPOSITION 3. Z. 7.

K~ (X) @ Q = L H
2m

(X; Q)

m>n

and so
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Since 1J>ku =ku for the generator u of K(S2) it follows

that

where (3: K(X) ... K- 2(X) is the periodicity isomorphism. Thus

~ induces an isomorphism

From the way the odd Betti groups were defined it follows that,

for all k

(3. 2. 8)

If we now take the exact K-sequence of the pair X, A, tensor

with' 0, decompose under ,pk and use (3. 2. 8) we obtain:

PROPOSITION 3. 2. 9. !t A eX, and if both K*(X), K*(A)

are finite Z-modules the exact sequence

induces an exact sequence

i-Ie ) 6 i( ) i( ~ i( 6••• ~ H A;Q ~ H X,A;Q -> H X;Q,-> H A;Q)->··.
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\Ve next give a second application of the operations ,pk.

Since P (c)/p l(C) is the sphere SZn, we have an inclusionn n-

of S2n into Pn+k(C)/Pn-l(C) for all k. We should like to

know for which values of nand k,SZn is a retract of Pn+k(C)/Pn-l(C).

That is, we should like to know when can there exist a map

f : Pn+k{C)/:.?n-l(C) ... S2n which is the identity on S2n. We shall

obtain certain necessary conditions on nand k for such an f

to exist.

THEOREM 3. 2. 10. Assume a retraction

i
~. Then the coefficients of x

are all integers.

n
~ 1- < k - (log 1 +X)!.2!:. .!!! x

~: Let ( be the usual1ine-bundle over P n+k and

let x =~ - 1. Then K (Pn+k) is a free abelian group 0.0 geneJ;il.toA·"

x
S

J 0 < s < n + k, and \ve Dlay identJly K(P +k' P 1) with the
- - n n-

subgroup generated by x· with n ~ 8 ~ n +k. In K(Pn+k) ~ Q

put y = log (1 + x), so that ~ =eY • Then
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sis a one -dimensional space generated by y • Now let u
~ 2n

generate K(S ), and let

f* (u) =
n+k

L
i=n

ia.x
1

Since f is a retract we have an = 1. Since ~ku =knu, f* (u)

must be a multiple of yn, so that .

n+k

L
i=n

i
a.x =

1

nAy •

2nRestricting to S we see that '" =1 , and so

yn = (log(l +x»n

h n n~as all coefficients from x to'X integral as required.

Remark: It has been shown by Adams and Grant-Walker

(Proc. Camb. PhiL Soc. 61(1965), 81..103) that (3. Z.10) gives a

sufficient condition for the existence of a retraction.

21n-t2n-1 211"1Suppose once more that we have a map f: S ... S

Then we can attach to f an invariant e(f) E a/z in the following

fashion.
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Let X be the mapping cone of f, i =S2m -t X the

inclusion, j: X -t S2n+2m the map which collapses S2m. Let

u generate KO(S2n+Zm), v generate iO(S2m), and let x E i{O(X)

be such that i* (x) =v. Let y = j* (u). Then for any ok ,

k I. I. kAs before, we know that tp t/J = I/J,p , so that

Thus

e(f) = EQ

is well defined once x is chosen. If x is changed by a multiple

of y, e(f) is changed by an integer, so that e(f) E Q/Z is well

defined. We leave to the reader the elementary exercise that

e : n 2n+Zm_l(SZm) ... O/Z is a group homomorphism. It turns

out that this is a very powerful invariant.
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§3. The Groups J(X). In this section we assume,

for simplicity, that X is connected. One can introduce a notion

of equivalence between vector bundles, known as fibre homotopy

equivalence, which is of much interest in homotopy theory. Let

E, E' be two bundles over a space X , and suppose that both E,

EI have been given Hermitian metrics. Then E and E' are said

to be fibre homotopy equivalent if there exist maps f: SeE) ... S(E'),

g : S(E') -t S{E), commuting with the projection onto X , and such

that gf and fg are homotopic to the identity through fibre-preserving

maps. Clearly this is an equivalence, relation defined on the set

of equivalence classes of vector bundles over X.

Fibre homotopy equivalence is additive; that is, if E, E'

are fibre homotopy equivalent to F, F' respectively, then E Q) EI

is fibre-homotopy equivalent to F e F'. This follows from the fact

that SeE $ EI} may be viewed as the fibre-join of the two fibre

spaces SeE), SeE') : in general the fibre-join of 11': Y ... X ,

11' • : y .... X is defined as the space of triples (y, t, y') where

tEl, 'R' (Y) =11' I(y') and we impose the equivalence relations

(Yz, 1, y') ~

(y, 0, Y~)

. I
(YZ' 1, Y )

We say that two bundles E, E' Are stably l.ibre-hoolotopy

eq·uivalent if there e.yist trivial bundles. V, V' such that E <;> V is
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fibre-homotopy equivalent to E' $ VI. The set of all stable

fibre-homotopy equivalence classes over X forms a semi-group

which 'we denote by J(X). Since every vector bundle E has a

complementary bundle F so that E $ F is trivial it follows that

J(X) is a group and hence the map

Vect(X)~ J(X)

extends to an epimorphism

K(X) -+ J(X)

which we also denote by J.

If we have two bundles E, E' and if 11' : S(E) ... X,

"IT • : S(Et) ~ X are the projection maps of the respective sphere

bundles, the Thorn complexes XE , X
Et

are just the mapping

cones of the maps 11', 11' I respectively. Thus, we see that if E

and E' are fibre homotopy equivalent, XE and X
E1

have the

same homotopy type. However, if E is a trivial bundle of

dimension n, XE =SZn(X+). Thus~ to show that J(E) F0 , it

suffices to show that XE does not have the same stable homotopy

type as a suspension of X+ •

kWe shall now show bow to use the operations ,p of §2

to give necessary conditions for J(E) = o. By the Thonl isolnorphiSIn

(2.7.1Z) we know that K(XE ) is a free K(X)-module generated by



148.

. k
AE. Hence, for any k, there is a unique element p (E) e K(X)

such that

The multiplicative property of the fundamental class XE , established

in §2, together ~ith the fact that lPk pre~erves products, shows that

Also, taking E = 1, and recalling that

,pk 0 fJ = kfJ 0 1J>k

where ~ is the periodicity isomorphism, we see that

k
P (1) = k •

Now let Ok = Z[l/k] be the subring of Q consisting of fractions

with denominators a power of k. Then if we put

n=dimE

we obtain a homomorphism

ka : K(X) ... Gk

where Gk is the m.ultiplicative group of units of K(X) ® Ok •

Suppose now E is fibre-homotopically trivial. then there exists
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u E ~(XE) so that l{Jku = knu. Putting u = XE a we find that

n
k AEa

and so

k ka (E)· l/J (a) = a

Moreover, restricting to a point, we see that a has augmentation

k1 so that a and l/> (a) are both elements of Gk • Hence we may

write

_a_ EO
l/J k (a) k

K(X). ~

Since ak(E) depends only on the stable class of E , we have

established the following

PROPOSITION 3. 3. 1. ~ Hk c Gk be the subgroup

generated by all elements of the form a/,pk(a) with a a unit of( '.

k
a : K(X) -.;> Ok

maps the kernel of J into Ilk' Cl:nd so induces a homomorehism
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In order to apply (3. 3. 1) it is necessary to be able to

k kcompute a or equivalently p • Now

is an operation. Its augmentation is known so it remains to determine

its value on combinations of line-bundles. Because of its

multiplicative property, it is only necessary to determine pk(L)

for a line-bundle L.

LEMMA 3. 3. 2. For a line-bundle L, we have

k-l

pItrL] = l. [L]j
j=O

~: By (2. 7. 1) and (2. 7. 2) we have a description of

K(XL) as the K(X) sub-module of K(P(L (1» generated by

n.= 1 - [L][H]. The structure of K(P(L &) 1» is of course given

by our main theorem (2. 2. 1). Hence

,k(u) = 1 _ [Lk][.tt]
k-l

= (1 - [LJ[H)) {L [Lj][Hj ] }
j=O

k-l

= uI (Lj]. since (1 - [L)[H])(l - [HJ) = 0 •
j=O
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Thus
k-l

I/Jk>"L = >"L { I [Li]}
j=O

proving that

k-l
,l(L) = I [Li]

j=O

as required.

As an example we take X = PZn(R), real projective

Zn-space. As shown in (2. 7. 7) t(X) is cyclic of order 2n with

generator x = [L] - I, where L is the standard line-bundle.

The multiplicative structure follows from the relation [L]2 =1

(since L is associated to the group ZZ). Now take k =3 , then

x •

(since xl. = ~2x)

and so the group H3 de'fined above is reduced to the identity•
.''-....,._~

Using (3. 3. Z) we find

a 3(mx) = p3(mx) = (p3(x»m =(p3[L])rn. 3-m

= 3-m '(1 + [L] + [L]Z)rn

= (1 +x/3)rn

1
m

· 1 ~i-l em)= 1 + (- 1)1- W. • X
31 1

ic:l

= 1+ ~ (1 - (1 - fj)x
m

• 1 + 3-me]· 2 - l)x
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Thus if J(mx) = 0 we must have 3m - 1 divisible by Zn+l.

This happens if and only if Zn-l divides m. Thus the kernel of

J : K(PZn(R» .... J(PZn(R»

is at most of order 2. This result can in fact be improved by

use of real K-theory and is the basis of the solution of the vector

field problem for spheres.

The problem considered in (3. Z. 10) is in fact a special

case of the more general problem we are considering now. In fact,

the space Pn+k(C)/Pn-l(C) is easily seen to be the Thorn space of

the bundle nH over Pk(C). The conclusion of (3. 2. 10) may

therefore be interpreted as a statement about the order of

J(H] E J(Pk(C». The method of proof in (3. 2.10) is essentially

the same as that used in this section. The point is that we are now

considering Dot just a single space but a whole class, namely Thom

spaces, and describing a uniform method for dealing with all spaces

of this class.

For further details of J(X) on the preceding lines we

refer the reader to the series of papers "On the groups J(X)" by

J. F. Adams (Topology 1964-).
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APPENDIX

The space of Fredholm operators. In this appendix we shall

give a Hilbert space interpretation ~ of K(X). This is of interest

in connection with the theory of the index for elliptic operators ..

Let H denote a separable complex Hilbert space, and

let a(H) be the algebra of all bounded operators on H. We

give (i, the norm topology. It is well-known that this makes a

into a Banach algebra. In particular the group of units a* of a

forms an open set. We recall also that, by the closed graph theorem,

any TEa which is an algebraic isomorphism H ... H is also a

topological isomorphism, i. e., T-1 exists in a and so T E a* •

DEFINITION: An operator T E a(H) is a Fredholm operator

if Ker T and Coker T are finite dimensional. The integer

dim Ker T - dim Coker T

is called the index of T.

We first observe that, for a Fredholm operator T, the

image T(H) is closed. In fact, since T(H) is of finite codimension

in H we can find a finite dimensional algebraic coil'lplement P.

Then T (f) j : H G) P ... H (where j: P -t H is the inclusion) is

f These results have been obtained independently by K. Janich

(Bonn dissertation 1964).
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surjective, and so by the closed graph theorem the image of

any closed set is closed. In pa.rticular T(H) =T (J) j (H ~ 0)

is closed.

Let J c G be the subspace of all Fredholm operators.

If T, 5 are two Fredholm operators we have

dim Ker TS < dirn Ker T + dim Ker S

dirn Coker TS < dim Coker rr + dim Coker S

and so TS is again a Fredholrrl operator. Thus 3 is a

topological space with an associative product :J x 3 ... 3. Hence

for any space X the set [X, 3] of homotopy classes of mappings

X ... :J is a semi-group. Our main aim will be to indicate the

proof of the following:

index: [X, I]'" 1((X) •

!l0te~ If X is a point this means that the ~onnp~t("d ('"("tIl}P~)UC']')t"

of 3 are determined by an integer: this is in fact the index which

explains our use of the word in the more general context of

Theorem Al •
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Theorem Al asserts that ;, is a classifying or representing

space for K-theory. Another closely related classifying space

may be obta.ined as follows. Let X c a denote all the compact

operators. This is a closed Z-sided ideal and the quotient

<B = a/x is therefore again a Banach algebra. Let m* be the

group of units of (II. It is a topoloCical group and so, for any

X, (X, CB*] is a group. Then our second theorem is:

THEOREM AZ. m* is a classifying space for K-theory,

i. e., we have a natural group-isomorphism

[X, m*] ~ K(X)

We begin with the following lemma which is essentially

the generalization to infinite dimensions of Proposition 1. 3. Z.

LEMMA A3. Let T E 3 and let V be a closed subspace

of H of finite codimensioD such that V n Ker T = O. Then there

exists a neighborhood U of T in a such that, for all 5 E U ,

we have

(i) V n Ker S = 0

(ii) U H/S(v) topologized as a quotient space of U x H
SEU

is a trivial vector bundle over U.
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Proof: Let W =T(V)~ (the orthogonal complement of T(V)

in H.) Since TEa and dim H/V is finite it follows that dim W

is finite. Now define, for S E G. ,

IPs: V(ilW~H

by ({JS(V $ W) =S(V) + ·W. Then 5 ~ CPs gives a continuous linear

map

<p: a ... t(V (f) W, H)

where £ stands for the space of all continuous linear maps with

the norm topology. Now ~ is an isomorphism and the isoroorphisrns

in £ form an open set (like U* in a). Hence there exists a

neighborhood U of T in Q, so that <fIS is an isomorphism for

all S E U. This clearly implies (i) and (ii).

C OR OLLAR Y A4~ :J is open in a"

Proof: Take V =(Ker T)J. in (A3).

PROPOSITION AS. ~ T: X .... 3 be a continuous map

with X compact. Then there exists V c H, closed and of

finite codimension so that

(i) V n Ker Tx =0 for all x ex.

Moreover, for any such" V we. have

(ii) U HIT (V), topologized as a quotient space of
xEX x

X X H, is a vector bundle over X •
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Proof: For each x E X take V =(Ker °T ).L and let
x x

Ux be the inverse image under T of the open set given by (A3).

J..Iet K. = U be a finite sub-cover of this family of open sets.
I xi

Then V = n. V satisfies (i). To prove (ii) we apply (A3) to
1 Xi

each T , and deduce that U HIT (V) is locally trivial near
x y y

x , and hence is a vector bundle.

For brevity we shall denote the bundle UxEX HITx(V) I

occurring in (A4), by H/T(V). Just as in the finite-dimensional

case we can split the map p : X x H -+ H/T(V) : more precisely we

can find a continuous map

cp : H/T{V) -) X X H

commuting with projection on X and such that

p(() = identity

One way to construct (p is to use the metric in H and map H/T(V) onto

.Lthe orthogonal complement T(V) of T(V). This is technically in-

convenient since we then have to verify that T(V)J.. is a vector bundle.

Instead we observe that, by definition, p splits locally and so we can

choose splittings ~i over Ui , where Ui is a finite open covering

of X. Then cpo - cpo =8.. is essentially a map H/T(V) Iu. n u.
1 J lJ 1 J

..... U. n u. x V. If p. is a partition of unity subordinate to the
1 J 1
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covering we put, in the usual way

8. = 1:; p. 9..
1 J 1J

so that 8i is defined over all Ui , and then qJ =<Pi - tJi is

independent of i and gives the required splitting.

We can now define index T for any map T: X .... 3 (X being

compact). We choose V as in (A5) and put

index T = [H/V] - [H/T(V)] E K(X) ,

where H/V stands for the trivial bundle X X H/V. We must

show that this is independent of the choice of V. If W is

another choice so is V n W, 80 it is sufficient to assume W C V •

But then we have the exact sequences of vector bundles

o ----> V/W --> H/Yf --> H/V --> 0

o--> V/W ----> H/T(W) --> H/T(V) ----> 0

Hence

[H/V] - [H/W) = [V/W] = [H/T(V)] - [H/T(W)]

as required.

It is clear that our definition of index T is functorial •

Thus if f: Y ... X is a continuous map then
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index Tf = f* index T •

This follows from the fact that a choice of the subspace V for

T is als 0 a choice for Tf.

If T: X X I -t:J is a homotopy between T 0 and T1 then

index T E K(X x 1) restricts to index T i E K(X X {i}), i =0, 1.

Since we know that

K(X X I) ~ K(X X {i}) ~ K(X)

is an isomorphism, it follows that

index TO =index T1 •

Thus

index: [X, :J] -> K(X)

is well-defined.

Next we must show that "index" is a homomorphism. Let

S : X ~:;, T: X -:J be two continuous maps. Let W c: H be a choice

for T. Replacing S by the homotopic map 11' S ( 11' denoting projection
w w

onto W) we can assume S (H)cW. Now let VCH be a choice for S

then it is also a choice for TS and we have an exact sequence of vector

bundles over X

O~W/SV~H/TSV~H/TW~ O.
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Hence

index TS = [H/V] - [H/TSV]

= [H/V] - [W/SV] - [H/TW]

= [H/V] - [H/SV] + [H/W] - [H/TW]

= index S + index T

as required.

Having now established that

index: [X, 3]~ K(X)

is a homomorphism the next step in the proof of Theorem (AI) is

PROPOSITION A6. We have an exact sequence of serr:d-

groups

[X, a*]~ [X, 3] index> K(X)~ 0 •

~: Consider first a map T: X -t:J of index zel·O. 1"his

means that

[H/V] - [H/TV] = 0 in K(X)

Hence adding a trivial bundle P to both factors we have

H/V • P ~ H/TV e> P •
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Equivalently replacing V by a closed subspace W with

dim V/W = dim P t

H/W = H/TW

If We now split X x H -+ H/TW as explained earlier we obtain a

continuous r.nap

cp : X X H/W~ X x H

commuting with projection on X , linear on the fibres. If

i~ : X -> f (H/W, H)

is the map associated to <p, it follows from the construction

of ({' that

x~c12 +Tx x

gives a continuous map

x~a* •

But if 0 ~ t ~ 1, T + t 4» provides a homotopy of maps X .... 3

connecting T with T + w. This proves exactness in the 1·11;ddJ~..

It remains to show that the index is surjective. Let E

he a vector bundle over X and let F be a complement so that

II; (±) F is isomorphic to the trivial bundle X X V • Let 'If E End V
x
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denote projection onto the subspace corresponding to E •
x

Let Tk E:J denote the standard operator of index k, defined

relative to an orthonormal basis {e.} (i =1, 2, ••• ) by
1

Then define a map

= 0

if i - k > 1

otherwise •

S : X .. 3'(H ~ V) ~ :J(l-I)

by S =T 1 @ 1T + TO ~ (1 - 11" ). We have Ker 5 =0 for all xx - x x x

and H ~ V/S(H ® V) ~E. Hence

index S = -[El •

The constant map Tk : X .... 3 given by Tk(x) = T k has index k

and so

index TkS = k - [El •

Since every element of K(X) is of the form k - [El this shows

that the index is surjective and completes the proof of the p.t.-opc.\s.ii.

Irheorem (AI) now follows {I-om (A6) and the following:

PROPOSITION A 7. [x, a*] =1
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This proposition is due to Kuiper and we shall not

reproduce the proof here (full details are in Kuiper's paper:

Topology 3 (1964) 19-30). In fact, Kuiper actually shows that

a* is contractible.

We turn now to discuss the proof of (A2). We recall first

that

1+:Kc3.

This is a standard result in the theory of compact operators: the

proof is easy.

PROPOSITION A8. ~ 11' : a -t (B =a/x be the natural

map. Then

Proof: (a) Let T E 3 and let P, Q denote orthogonal

projection onto Ker T, Ker T* respectively. Then T*T + P

and TT* + Q are both in a* , and so their images by 11' are

in m*. But P, Q E X and so 11' (T*).11' (T) E G3*, 1F(T)1r(T*) € cB

This implies that 11' (T) E m* •

-1 *Let T E 11' (m), i. e., there exists SEa with

ST and TS E 1 + :K c 3\. Since dim Ker T .::. dim Ker ST

dim Coker T < dim Coker TS

it follows that T E :J •



164.

Theorem (AZ) will now follow from (AI) and the following

general lemma (applied with L =a. M =(B, U =m*) •

LEMMA A9. ~ Tr : L .... M be a continuous linear

map of Banach spaces with 1'1" (L) dense in M and let U be an

open set in M. Then, for any compact X

[x, 1T -1(U)]~ [X, U]

is bijective.

Proof: First we shall show that if"--
11" :L~M

satisfies the hypotheses of the lemma, then for any compact X,

the induced map

also satisfies the same hypotheses. Since LX, ~ are Banach

spaces the only thing to prove is that 11"X(LX) is dense in NiX.
Thus. let f: X .... M be given. We have to construct g : X ... L

so that 1111" g(x) - f(x) II < £ for all x EX. Choose &1' ••• , an

in f(X) so that their j -neighborhoods {Ui} cover f(X) and

choose b i so that II-rr (bi ) - a i II < (/3 • Let ui (x) be a partition

of unity of X subordinate to the covering {f-1UJ and define
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g : X .... L by

g(x) = \' u.(x) b. •L- 1 1

This is the required map.

Hence replacing 11" by 1!'X and U by UX (which is

open in MX) we see that it is only necessary to prove the lemma

when X is a point, i. e., to prove that

induces a bijection of path-components. Clearly this map of

path-components is surjective: if P E U then there exists

Q E 11' (L) n U such that the segment 1?Q is entirely in U. To

see that it is injective let PO' PI E 11' -leU) and suppose f: I ... U

is a path with £(0) =1f(Po), £(1) =w(Pl). By what we proved at

the beginning there exists g: I -t 11" -1(U) such that

If 11' g(t) - f(t) II < ( for all tEl •

If ( is sufficiently small the ~egments joining 11' g(i) to f(i),

for i =0, 1, will lie entirely in U. This implies that the

segment joining g(i) to P. I for i = 0, 1, lies in 11' -l( U) •
1

Thus Po can be joined to PI by a path in 11' -leU) (see figure)

and this completes the pro·of.
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Introduction

FOR allY finite OW-complex X we can define the Grotllendieck group
K(X). It is constructed from the set of complex vector bundles over X
[see (8) for precise definitions]. It has many formal similarities to the
cohomology of X, but there is one striking difference. Whereas co
homology is graded, by dimension, K(X) has only a filtration: the sub
group Kq(X) is defined as the kernel of the restriction homomorphism

K(X) --)- K(Xq - 1),

where X q - 1 is the (q-l)-skeleton of X. Now K(X) has a ring structure,
induced by the tensor product of vector bundles, and this is compatible
with the filtration, so that K(X) becomes a filtered ring. There are also
natural operations in K(X), induced by the exterior powers, and one of
the main purposes of this paper is to examine the relation between
operations and filtration (Theorem 4.3).

Besides the formal analogy between K (X) and cohomology there is a
more precise relationship. If X has no torsion this takes a particularly
simple form, namely the even-dimensional part of the integral co-

homology ring HeT(X; Z) = ~ H2q(X; Z)
q

is naturally isomorp~ic to the graded ring

GK(X) = ~ K 2Q(X)/K2q_l(X).
q

Since this isomorphism preserves the ring structures, it is natural to
ask about the operations. Can we relate the operations in K -theory to
the Steenrod operations in cohomology?

Ifwe consider the way the operations arise in the two theories, we see
that in both cases a key role is played by the symmetric group. It is
well known [cf. (10)] that one way ofintroducing the Steenrod operations
is via. the cohomology of the symmetric group (and its subgroups). On
the other hand, the operations on vector bundles come essentially from
representations of the general linear group and the role of the symmetric
group in constructing the irreducible representations of GL(n) is of
course classical [cf. (11)]. A closer examination of the two cases shows
Quart. J. Matb. Oxford (1), 17 (1966), 165-93.
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that the symmetric group enters in essentially the same way in both
theories. The operations arise from the interplay of the kth power map
and the action of the symmetric group Sk.

We shall develop this point of view and, following Steenrod, we shall
introduce operations in K -theory corresponding to any subgroup G
of Sk. Taking k = p (a prime) and G = Zp to be the cyclic group of
order p we find that the only non-trivial operation defined by Zp is
the Adams operation I/Jp. This shows that ¢Jp is analogous to the total
Steenrod power operation IPi and, for spaces without torsion, we obtain
the precise relationship between .pp and the pi (Theorem 6.5). Inciden
tally we give a rather simple geometrical description (2.7) of the opera
tion I/Jp.

It is not difficult to translate Theorem 6.5 into rational cohomology
by use of the Chern character, and (for spaces without torsion) we
recover a theorem of Adams (1). In fact this paper originated in an
attempt to obtain Adams's results by more direct and elementary
methods.

Although the only essentially new results are concerned with the
relation between operations and filtration, it seems appropriate to give
a new self-contained account of the theory of operations jn K-theory.
We assume known the standard facts about K-theory [cf. (8)] and the
theory of representations of finite groups. We do not assume anything
about representations of compact Lie groups.

In § 1 we present ,,"'hat is relevant from the classical theory of the
symmetric group and tensor products. We follow essentially an idea of
Schur [see (11) 215], which puts the emphasis on the symmetric group
Sk rather than the general linear group GL(n). This seems particularly
appropriate for K-theory where the dimension n is rather a nuisance
(it can even be negative!). Thus we introduce a graded ring

R* = I Homz(R(Sk)' Z),
k

where R(Sk) is the character ring ofSk' and we study this in considerable
detail. Among the formulae we obtain, at least one (Proposition 1.9) is
probably not well known. In § 2, by considering the tensor powers of a
graded vector bundle, we show how to define a ring homomorphism

. j: R* -+ Op(K),

where Op(K) stands for the operations in K-theory. The detailed
information about R* obtained in § 1 is then applied to yield results in
K-theory.
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§ 3 is concerned· with 'externalizing' and 'relativizing' the tensor
powers defined in § 2.. Then in § 4 we study the relation of operations
and ·filtration. § 5 is devoted to the cyclic group of prime order.and its
related operations.. In § 6 we investigate briefly our operations in
connexion with the spectral sequence H*(X, Z) => K*(X) and obtain
in particular the relation with the Steenrod powers mentioned earlier.
Finally in § 7 we translate things into rational cohomology and derive
Adams's result.

The general exposition is considerably simplified by introducing the
functor Ko(X) for a G-space X (§ 2) .. We establish some of its elementary
properties but for a fuller treatment we refer to (4) and (9) ..

The key idea that one should consider the symmetric group acting on
the kth power of.a complex ofvector bundles is due originally to Grothen
dieck, and there is a considerable overlap between our presentation of
operations in K-theory and some of his unpublished work.

I am indebted to P. Cartier and B. Kostant for some very enlightening
discussions.

1. Tensor products and the symmetric group

For any finite group G we denote by R(G) the free abelian group
generated by the (isomorphism classes of) irreducible complex represen
tations of G. It is a ring with respect to the tensor product. By assigning
to each irreducible representation its character we obtain an embedding
of R(G) in the ring of all complex-valued class funotions on G.. We shall
frequently identify R(G) with this subring and refer to it as the character
ring of G.. For. any two finite groups G, H we have a natural isomorphism

R(G) Q9 R(H) -+ R(GXH).

Now let Sk be the symmetric group alld let {JI:r} be a complete set of
irreducible complex Sk-modules. Here 7T may be regarded as a partition
of k, but no use will be made of this fact. Let E be a complex vector
space, E®k its kth tensor power. The group Sk acts on this in a natural
way, and we consider the classical decomposition

E@k "J I ~ Q9 1T(E),

where 7r(E) = HomSk(~' E®k). We note in particular the two extreme
cases: if ~ is the trivial one-dimensional representation, then 7T(E) is
the kth symmetric power ak(E); if J: is the sign representation, then
7T(E) is the kth exterior power Ak(E). Any endomorphism T of E induces
an Sk-endomorphism T®k of E@k, and hence an endomorphism 7T(T) of
1T(E). Taking T E GL(E), we see that 7T(E) becomes a representation
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spaoe of GL(E), and this is of course the classical construction for the
irreduoible representations of the general linear group. For our pur
poses, however, this is not relevant. All we are interested in are the
character formulae. "'\\re therefore proceed as follows.

Let E = en and let T be the diagonal matrix (t1 , ••• , tn). Since the
eigenvalues of '11r&k are all nlonomials of degree k in t1, ••• , tn' it follows
that, for each 11', Trace7T(11

) is a homogeneous polynomial in t1, ... ,tn
with integer coeffioients. Moreover, Trace1T(T) = Trace(1T(S-lTS») for
any permutation matrix S and so rrrace7T(T) is symmetric in t1, ••• ,tn •

We define

~n,k = Tracesk(T®k) = I Trace7T(T) o [V7T] ESymk [tl' ... ,tn ] 0R(Sk)'
11'

where [~] E R(Sk) is the class of Yn. and Symk[tt,. .. , tn] denotes the
symmetric polynomials of degree k. If we regard R(Sk) as the character
ring, then Lin,k is just the function of t1, ••• , tn and g E Sk given by
Trace(gT0k). There are a number of other ways of writing this basic
element, the simplest being the following proposition:

PROPOSITION 1.1. For any partition ex = (exl ,. •. , ar) of k let Prx E R(Sk)
be the representation induced from the trivial representation of

Sex. = ScxsXSoc.X ••. XScx,.,

then L1 = I ma. @ Pa.'
od-k

where °mex. is the monomial symmetric function generated by ffl ~I •.. t:r and
the summation is over all partitions of k.

Proof. Let Ea. be the eigenspace of T®k corresponding to the eigen
value ttl t~1 ... ffi". This has as a basis the orbit under Sk of the vector

eex. = erOC1 0 erOC2
••• 0 e~(J(r,

where e1, ••• , en are the standard base of en. Since the stabilizer of ea. is
just the subgroup Sa.' it follows that Eoc is the induced representation pa,.
Since Sa. and Sp are conjugate if ex and Pare the same partition of k, it

follows that A = I t rx ® Prx = I mrx ® Prx'
locl=k Of.t-k

where the first summation is over all sequences 0:1,0:2"" with

fad = I (Xi = k.
Now let us introduce the dual group

R*(Sk) = Homz(R(Sk)'Z).

Then L1nJk defines (and is defined by) a homomorphism

~~,k: R*(Sk) ~ Symk[t1,···, tn]·
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From the inclusions Sk XSl -+ Sk+l

we obtain homomorphisms

R(Sk+l) ~ R(Sk XS/) I".J R(Sk) ® R(SI)

and hence by duality

R*(Sk) ® R*(Sl) -+ R*(Sk+Z)'
Putting R* = ! R*(Sk) we see that the above pairings turll R* into

k~O

a commutative graded ring. This follows from the fact, already used in
Proposition 1.1, that SO(, and SfJ are conjugate if £x and f3 are the same
partition. Moreover, if we define

a~:R* -+ Sym[t1, ... ,tn ]

by a~ = I ~~,k' we see that ~~ is a ring homomorphism. This follows
from the multiplioative property of the trace:

Trace(UIU2 P®(k+l» = Trace(gl T®k)Trace(g2 POl),

where Ul E Sk' g2 E S,. Finally we observe that we have a commutative
diagram

iY n+1
R*-------~

Synl [t1 , •.• , tn]

where the "Vertical arrow is given by putting tn +1 = O. Henoe passing
to the limit we can define

11' : R* -+ lim Sym[t1, ..• , tn ].
+
n

Here the inverse limit is taken in the category of graded rings, so tllat

lim Sym[t1, ••• , 'ft] = ! lim Symk[t1,. .. , tft']
+- 1'==0 +0-
n n

is the direct sum (and not the direct produot) of its homogeneous parts.

PROPOSITION 1.2. A': R* -+ lim Sym[t1,... ,lnJ
+
n

is an i8omorphi8m.

Proof. Let a1c E R.(8k ) denote the homomorphism R(Sk) -+ Z
defined by _k( _10 TT) -f TT

(T~ 1) = 1, <T~("1T = 0 1 Y1T =F 1,
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where 1 denotes the trivial representation. Since 1T(E) is the kth sym
metric power of E when Yn. = 1, it follows from the definition of d~,k that

L\~,k(ak) = hk(t1,••. , tn )

is the kth homogeneous symmetric function (Le. the coefficient of Zk in
IT (l-zti)-l). Since the hk are a polynomial basis for the symmetric
functions, it follows that L\~ is an epimorphism for all n. Now the rank
of R(Sk) is equal to the number of conjugacy classes of Sko, that is the
number of partitions of k, and hence is also equal to the rank of
Symk[t1,. .. , tn] provided that n ~ k. Hence

a~,k: R*(Sk) ~ Symk[tl' ... ' tn]

is an epimorphism of free abelian groups of the same rank (for n ~ k)
and hence is an isomorphism. Since

Symk[tt'···, tn +1] -* Symk[tt".. ·, tn ]

is also an isomorphism for n ~ k, this completes the proof.

COROLLARY 1.3. R* is a polynomial ring on generator8 ai, a2 , ••••

Instead of using the elements uk E B*(Sk) we could equally well have
used the elements Ak defined by

Ak(fn,) = 1 if fn, is the sign representation.

Ak(fn,) = 0 otherwise.

Since '7T(E) is the kth exterior power when 1T is the sign representation

of Sk' it follows that A' (\k) - e (t t )
Un,k /\ - k I'···' n

is the kth elementary symmetric function. Thus R* is equally well a
polynomial ring on generators AI, A2, ••••

COROLLARY 1.4. Let ~nJk = I ai ® bi with air E Symk[t1,···, tn] and
bi E R(Sk)' and suppose n ~ k. Then the ai/arm a base if and only if the
biform a base. When this is 80 the ai determine the bi and conversely, i.e.
they are 'dual bases'.

Proof. This is an immediate reinterpretation of the fact that L\~,k is
an isomorphism.

CoROLLARY 1.5. The representations pot/arm a base/or R(Sk).

Proof. Apply Corollary 1.4 to the expression for an,k given in Pro
position 1.1. Since the mot are a basis for the symmetric functions, it
follows that the POI. are a basis for R(Sk).

COROLLARY 1.6. The characters ofSk take integer values on all conjugacy
classes.
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Proof. The oharacters of all Pot are integer-valued and so Corollary 1.6
follows from Corollary 1.5.

Note. Corollary 1.6 can of course be deduced fairly easily from other
considerations.

Let O(Sk) denote the group of integer-valued class functions on Sk'
By Corollary 1.6 we have a natural homomorphism

R(Sk) ~ O(Sk)·

'This has zero kernel and finite cokernel, and the same is therefore true
for the dual homomorphism

O*(Sk) ---+ R*(Sk)·

'The direct sum G* = .L O*(Sk) has a natural ring structure, and
k,O

0* ---+ R*
is a ring homomorphism. We shall identify G* with the image Bubring
of R*. From its definition, O*(Sk) is the free abelian group on the
conjugacy classes of Sk' Let r/l' denote the class of a k-cycle. Then G* is
a polynomial ring on ¢Jl, r/J2, .... The next result identifies the 8ubring
~'(O*) of symmetric functions:

~ ¢Jk = .L motpot(g)·
Clt-k

But, ifH c G, any character ofGinduced from H is zero on all elements of
G not conjugate to elements of H. Hence, taking H = 8 ot, G = Sk' we
see that Pot(g) = 0 unless ex = k (Le. ex is the single partition k). Since
Pk(g) = 1, we deduce

n
PROPOSITION 1.7. ~~(r/l') = mk(tt, ... , tn) = .L t~ 80 that d'(O*) is the

i=l

-8ubring genera.ted by tke power sums mk'

Proof. By definition we have

~~(.pk) = Trace(gT@k),

where g E S~ is a k-cycle. Now use Proposition 1.1 to evaluate this trace
.and we get

as required.

COROLLARY 1.8. Let Qk be the Newton polynomial expressing the power
sum mk in terms of the elementary sym'fftetric functions e1,. •• , ek, i.e.

mk = Qk(e1 ,···, ek)'

then
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Remark. Let us tensor with the rationals Q, so that we can introduce

€(X E R(Sk) (2) Q,

the ,characteristic function ofthe conjugacy class defined by the partition
(X. Then Proposition 1.7 is essentially equivalent to the following
expression [cf. (11) VII (7.6)] for ~n,k

~n,k = ! p(X(t) ® €(X E Symk[tt,···, tn] @ R(Sk) <8> Q,
at-k

where Pa. is the monomial in the power sums
k

Pot = n (mi)a" (X = 1at2at ...•
t;l

Since J).'(Ak) = ek' it follows that we can write ~nJk in the form

dn,k = ! qa.(t) (2) bOt'
at-k

where got is the monomial in the elementary symmetric funotions
k

qa.= II (e,)a" ~= l a1 2at ••• ,
i=l

and the hex are certain uniquely defined elements in R(Sk). We shall not
attempt to find bex in general, but the following proposition gives the
'leading coefficient' bk •

Then we have

~n,k = (-l)k-lek(t) @A_1(M)+composite terms,

where 'composite' means involving a product of at least two e,(t).

Proof. In the formula

an,k = I q«(t) 0 bex,
O:~k

the ba. are the basis of R(Sk) dual to the basis of R.(Sk) consisting of
monomials in the Ai. Thus bk is defined by the oonditions

(bk,Ak ) = 1,

(bk,u) = 0

if u is composite in the Ai. Since the ifJi are related to the Ai by the
equations of Corollary 1.8

iflk = Qk(A1,••• ,Ak ) = (-I)k-lkAk+composite terms,

PROPOSITION 1.9. Let M denote the (k-l)-dimensional representation.
k

ofSk given by tke 8ubspace I Zi = 0 ojtke standard Ie-dimensional repreaen
'£=-1

tation. Let Ai(M) denote tke itk exterior power oj M, ani/, put

A_1(M) = I (-I)iAi(M) E R(Sk).
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we can equally well define bk by the conditions

(bk , ~k) = (-I )k-1k,

(bk,u) = 0

if'U is composite in the ¢Ji. To prove that bk = (-1 )k-lA_1(M), it remains
therefore to check that the character A_1(M) vanishes on all composite
classes and has value k on a k-cycle. Now, if g E Sk is composite, Le. not a
k-cyole,it has an eigenvalue 1 when actingonM; ifg == (1 ...r)(r+I,... 8)•.•
is the cycle decomposition, the fixed vector is given by

1
zi = - (I ~ i ~ r),

r
1

z· = -- (j > r).
J k-r

o 1

.Since A_1(M)(g) = det(I-Y..1I)' where YM is tIle linear transformation
of M defilled by g, the existence of an eigenvalue 1 of g¥ implies
A_1(M)(g) = o. Finally take g = (1 2 ... k) alld consider the k-dimen
,sional representatioll N == .llf EB 1. Then gJ.Y is givell by the following
matrix

1

g~v ==

1

1

and so det(I-tYN) = I-tk • Hence

det(l-tgl~f) == det(l-tg.v). (I-t)-1

l-tk
= -- = l+t+t2+...+tk - 1,

I-t

and so A_1(M)(g) = det(l-g~1") = k,

whioh completes the proof.
If G c Sk is any subgroup, then we can consider the element

~n,k(G) E Symk[t1, ••. , tn] Q9 R(G)

obtained from ~n,k by the'restriction 'YJ: R(Sk) -+ R(G). Similarly

~~,k(G):R*(G) -+ Symk[tt,···, tn]

is the composition of ~~,k and

'YJ* : R*(G) -+ R*(Sk)·

Consider in particular the special case when k = p is prime and G = Z1J
is the cyclic group of order p. The image of

'YJ: R(Sp) -+ R(Zp)
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is generatedby the trivial representation 1 and the regular representation
N of Zp (this latter being the -restriction of the standard p-dimensional
representation of Sp). Hence we must have

A",p(Zp) = a(t) 0 1+b(t) Q9 N

for suitable symmetric functions a(t), b(t). Evaluating R(Sp) on the
identity element we get . p - + be1-ap.

Evaluating on a generator of Zp and using Proposition 1.7 we get

mp =a.

Hence b = ef-mp which has, of course, integer coefficients since
p

(!ti)p = !tf modp.

Thus we have established the proposition:

PROPOSITION 1.10. Let p be a prime. Then restricting An,p from the sym
metric group to the cyclic group we get

eP-m
i1",p(Zp) = mp @ I + 1 P p ®N,

where N is the regular representation of Zp.

Let 8p E R*(Sp) be the element corresponding to

eP-m
1 p E Symp[t1,. .• , tn]

p

by the isomorphism of Proposition 1.2 (for n ;;:: p), i.e.

a' 8p _ ef-mp
n - p ·

Then Proposition 1.10 asserts that 8P is that homomorphism R(8p )-'+Z
which gives the multiplicity of the regular representation N when we
restrict to Zp. Thus, for p E R(Sp), .

'1J(p) = .pP(p)1+8P (p)N, (1.11)

where "1: R(Sp) ~ R(Zp) is the restriction.

2. Operations in K -theory

Let X be a compact Hausdorff space and let G be a finite group. We
shall say that X is a G-space if G acts on X. Let E be a oomplex vector
bundle over X. We shall say that E is a G-vector bundle over the G
space X if E is a G-space such that

(i) the projection E ~ X commutes with the action of G,
(ii) for each g E G the map Ex ~ Eg(x) is linear.
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The Grothendieck group <?f all G-vector bundles over the G-space X is
denoted by Ka(X). Note that the action of G on X is supposed given:
it is part of the structure of X. Since we can always construct an in
variant metric in a G-vector bundle by averaging over G, the usual
arguments show that a short exact sequence splits compatibly with G.
Hence, if

is a long exact sequence of G-vector bundles, the Euler characteristic
I (-1}i[E i ] is zero in Ka(X). For a fuller treatment of these and other
points about Ka(X) we refer the reader to (4) and (9).

In this section we shall be concerned only with a trivial G-space X,
i.e. g(x) = x for all x E X and g E G. In this case a G-vector bundle is
just a vector bundle E over X with a given homomorphisnl

G-+AutE,

where Aut E is the group of vector bundle automorphisms of E. We
proceed to examine such a G-vector bundle.

The subspace of E left fixed by G forms a subveotor bundle EO of E:
in fact it is the image of the projection operator

1~ILg,
yea

and the image of any projection operator is always a sub-bundle (4). If
E, F are two G-vector bundles, then the subspace of Hom(E, F) con
sisting of all cPx: Ex ~ F:x; commuting with the action of G forms a sub
vector bundle Homa(E, F): in fact Homa(E, F) = (Hom(E, F))G. In
particular let V be a representation space of G, and let V denote the
corresponding G-vector bundle X X V over X. Then, for any G-vector
bundle E over X, Homa(V~ E) is a vector bundle, and we have a natural
homomorphism V 0 HomG(V, E) -+ E.

Now let {~}... be a complete set of irreducible representations of G
and consider the bundle homomorphism

ct: I {V71 0 Homo(V71' E)} -+ E.
'IT

For each x E X, az is an isomorphism. Hence 0: is an isomorphism. This
establishes the following proposition:

PROPOSITION 2.1. If X is a trivial G-space, we have a natural i8o-

morphism K(X) Q9 R(G) ~ Ka(X).

In particular we call apply the }>receding discussion to the natural
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action ofSk on the k-fold tensor product E~kofa vector bundle E. Thus
we have a canonical decomposition compatible with the action of Sk

E0k rov I {V'IT 0 Homs,,(V1T' EfSk)}.
'IT

We put l7(E) = H OffiS
k
(V'IT' E~k).

Thus 17 is an operation on vector bundles. In fact 7T(E) is the vector
bundle associated to E by the irreducible representation of GL(n)
(n = dim E) associated to the partition Tt, but this fact will play no
special role in what follows.

Our next step is to extend these operations on veotor bundles to
operations on K(X). For this purpose it will be convenient to represent
K(X) as the quotient of a set ~(X) by an equivalence relation (elements
oftC(X) will play the role of 'cochains'). An element of ~(X) is a graded,
vector bundle E = I Ei , where Ei == 0 for all but a finite number of

ieZ

values of i. We have a natural surjection

~(X) -+ K(X)

given by taking the Euler oharacteristic [E] = I (-1 )i[E,]. The
equivalence relation on ~(X) which gives K(X) is clearly generated by
isomorphism and the addition of elementary objeots, i.e. one of the form
I~ with

P; = P;+1 (for somej), li = 0 (i =l=j,j+l).

Similarly for a G-space X we can represent KG(X) as a quotient of
~G(X), where an element of <i&'a(X) is a graded G-vector bundle.

Suppose now that E E <i&'(X) is a graded vector bundle. Then E@k is
also a graded vector bundle, the grading being defined in the usual way
as the sum of the degrees of the k factors. We consider Sk as aoting on
ID~k by permuting factors and with the appropriate 8ign change. ThuB a
transposition of two terms ep @ e(l (where ep E Ep , eq E Eq) carries with it
the sign (-1 )P(l. The Euler oharacteristic [E0k] ofE~k is then an element
of KSi(X).

PRoPOSITION 2.2. The elemera [E0k] E KS1;(X) depends only on the
element [E] E K(X). Thus we have an operation:

fi9k:K(X) ~ Ksll(X) = K(X) ® R(Sk).

Proof. We have to show that, if P is an elementary object of ~(X),

then [(EEf) P}~k] = [E~k] E KSJ;(X}.

But we have an Sic-decomposition:

(E(f)P)@k ~ E@k(f) Q.
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We have to show therefore that [Q] = 0 in KSJ:(X). To do this we regard
E as a complex of vector bundles with all maps zero and P as a complex
with the identity map IJ -+ IJ+l. Then (E.Ef) P)0k is a complex of vector
bundles, and Sk acts on it as a group ofcomplex automorphisms (because
of our choice ofsigns). The same is true for E0k and Q. Now Qcontains
P as a factor, and so Q is certainly acyolic. Hence, by the remark at the
beginning of this section, we have [Q] = 0 in KSj;(X) as required.

Remark. If we decompose EfiJk under Bk

E0k r-.- I V TT @?T(E),
11

T(X):K(X) ~ K(X),

where 7T(E) = Homsj;(VTT' E~k), Proposition 2.2 asserts that E ~ 7T(E)
induces an operation 7T:K(X) ~ K(X).

Let Op(K) denote the set of all natural transformations of the functor
K into itself. In other words, an element T E Op(K) defines for each
Xamap

whioh is natural. We define addition and multiplication in Op(K) by
adding and multiplying values. Thus, for a E K(X),

(T+B)(X)(a) = T(X)(a)+8(X)a,

T8(X)(a) = T(X)a. S(X)a.

If we follow the operation

~k:K(X) --+ K(X) @ R(Sk)

by a homomorphism c/>: R(Sk) ~ Z we obtain a natural map

T.:K(X) ~ K(X).

This prooedure defines a map

jk: R.(Sk) ~ Op(K)

which is a group homomorphism. Extending this additively we obtain

a ring homomorphism · R 0 X)
J: *~ p( ·

We have now achieved our aim of showing how the symmetric group
defines a ring of operations in ](-theory. The structure of the ring R.
has moreover been completely determined in § 1. We conclude this
section by examining certain particular operations and connecting up
our definitions of them with those given by Grothendieck [cf (5); § 12]
and Adams (2).

To avoid unwieldy formulae we shall usually omit the symbol j and
just think of elements of R. as operations. In fact it is not difficult to

3696.2.17 N
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sho\v that j is a monomorphism (although we do not really need this
fact), so that R. may be thought of as a subring of Op(K).

All the particular elements that we have described in § 1, namely
uk, ).,k, .pk, fJP, can now be regarded as operations in K-theory. From the
way they were defined it is clear that, if E is vector bundle, then Ak[E]
is the class ofthe kth exterior power of E, and O'k(E) is the class of the kth
symmetric power of E. A general element of K(X) can always be re
presented in the form [Eo] - [Et ], where Eo, Et are vector bundles. Taking
(Eo EB E1)®k as an Sk-complex and picking out the symmetric and skew
symmetric components, we find

k
ak([Eo]-[EI ]) = ! (-l)iak-i[Eo]Ai[Et ], (1)

;=0
k

Ak([Eo]-[Et ]) = ! (-I)i,\k-i[Eo]ai[E1]. (2)
1=0

Putting formally Au = ! ,\kuk, au = ! akuk, where u is an indeterminate,
and taking Eo = E1 in (1), we get

uu[E1]A-u[Ell = I. (3)

This identity could of course have been deduced from the corresponding
relation between the generating functions of ek and hk by using the iso
morphism of (1.2). Now from (2) we get

Au( [Eo] - [Et ]) = Au[Eol<1-u[ Ell
= '\'Il[Eo]'\u[Et]-l by (3).

This is the formula by which Grothendieck originally extended the Ak

from vector bundles to K. Thus our definition of the operations 'Ak

coincides with that ofGrothendieck. Essentially the use ofgraded tensor
products has provided us with a general procedure for extending opera...
tions which can be regarded as a generalization of the Grothendieck
method for the exterior powers.t

Adams defines his operations epk in terms of the Grothendieck 'Ak by
use of the Newton polynomials

.pk = Qk('At, ... ,Ak).

Corollary 1.8 shows that our definition of f/Jk therefore agrees with that
of Adams. An important property of the epk is that they are additive.
We shall therefore show how to prove this directly from our definition.

PROPOSITION 2.3. Let E, F be vector bundles, then

4I'([E]±[F]) = ,pk[E]±,pk[F].

t rrhis fact was certainly known to (:rothcndie(~k.
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Proof· Construct a. graded vector bundle D with Do = E, D1 = F and
consider DfI)k. The same reasoning as used in Proposition 1.1 shows
that Ie

[D]~k =! (-I):iind.[Efi!)k-i @Ffi!Jl] EK(X) @R(Sk)'
;=0 3

where indi:K(X)0R(8k-iXSi)~K(X)®R(8k) is given by the
induced representation. Here EflJk-; is an Sk_j-Vector bundle via the
standard permutation, while S; act'8 on Ffi}; via. permutation and signs.
To obtain .pk[D] we have to evaluate R(8k ) on a Ie-cycle. As in Proposi
tion 1.1 all terms except j = 0, k give zero; since the sign of a k-oycle is
(_l)k-l we get

,!/,([E]-[F]) = '!/'[E]+(-l)k(-l)k-l'!/'[F]

= '!/'[E]-'!/'[F].
For [E]+[F] the argument is similar but easier.

The multiplicative property

'!/'[E ® F] = .pk[E]'!/'[F]
follows at once from the isomorphism

(E ® F)fi!Jk ~ Efi!Jk ® FfiJk

and the multiplicative property of the ~race.

Suppose now that we have any expansion, as in Corollary 1.4, of the
basio element ~n,k in the form

J)",n,k = ! a, ®b"
where the a, E Symk[t1, ••• , tn] are a basis and the hI, E R(8k ) are therefore
a dual basis (assuming n ~ k). Then, for any x E K(X), we obtain a
corresponding expansion for x®k:

x l8k = (Xi(X) Q9 hi E K(X) (8) R(Sk),

where (Xi = (~')-lai E R*. This follows at once from the definition of /1'
and the way we have made R* operate on K(X).

Taking the ai to be the monomials in the elementary symmetrio
functions the (Xi are then the corresponding monomials in the exterior
powers Ai. Proposition 1.9 therefore gives the following proposition:t

PROPOSITION 2.4. For any x E K(X) we have

X~k = (-l)k-l;\k(x) ~A_l(M)+oompositeterms,

where 'composite' mean8 involving a proou,ct oj at least two 'A'(x) and M i8
the (1c-1 )-dimensional repre8entation oj Sk.

t Now that we have identified the'\' of § 1 with the exterior powers we revert
to the usual notation and write A'(M) instead of Ai(M), and correspondingly
A-t(M) instead of A_t(M).

N2
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Now let us restrict ourselves to the cyclic group Zk. The image of
x~k in K(X) ® R(Zk) will be denoted by pk(X) and called the cyclic
ktlt power. In the particular case when k = p (a prime), (1.11) leads to
the following proposition:

PROPOSITION 2.5. Let p be a prim.e and let x E K(X). Then the cyclic
pth power PP(x) is given, by the formula

PP(x) = ,pP(x) @ 1+OP(x) @ N E K(X) ® R(Zp),

where N is the regular representation of Zp.

Now iflP and 8p correspond, under the isomorphism

Ii' : R* -+ lim Sym[t1,. .• , tn],
+0

n

(2.6)

to the polynomials I tf and (I ti)P-I tf respectively. Hence they are
p

related by the formula
t/sP = (ifll)P"-p8P,

so that, for any x E K(X), we have

t/JP(x) = xP_pOP(x).

Substituting this in (2.5) we get the formula

PP(x) = xP ® 1+8P(x) ® (N-p).

R(Zp) = Z Ef) I(Zp),

where I(Zp) is the augmentation ideal. Thus

This is a better way ofwriting (2.5) since it corresponds to the decomposi
tion

8P(x) 0 (N-p) E K(X) ® I(Zp)

represents the difference between the pth cyclic power PP(x) and the
'ordinary' pth power xP (8)1.

Proposition 2.5 leads to a simple geometrical description for apP[V],
where V is a vector bundle. Let T be the automorphism of V~p which
permutes the factors cyclically and Jj be the eigenspace of T corre
sponding to the eigenvalue exp(21Tijjp). l lhen

.pP[V] = [~]-[~]. (2.7)

In fact from Proposition 2.5 we see that

[~] = apP[VJ+8P [V],

[Jj] = 8P[V] (j = l, ...,p-l).
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3. External tensor powers

For a further study of the properties of the operation @ k it is neces
sary both to 'relativize' it and to 'externalize' it.

First consider the relative group Ka(X, Y), where X is a G-space,
Y a sub G-space. As with the absolute case we can consider Ko(X, Y} as
the quotient of a set ~G(X,Y) by all equivalence relation. An object E
of <i1G(X, Y) is a G-complex of vector bundles over X acyclic over Y,
i.e. E consists of G-vector bundles Ei (with Ei = 0 for all but a finite
number) and homomorphisms

d d
~ Ei -+ Ei +1 -+

commuting with the action of G, so that d2 = 0 and over each point of
Y the sequence is exact. An elementary object P is one in which Pt == 0

(i =l=j, j+l), p; = 1j+l' and d:P; 4 P;+1 is the identity. The equi...
valence relation imposed on ~G(X,Y) is that generated by isomorphism
and addition (direct sum) of elementary objects. Then, if E E ~(}(X, Y),
its equivalence class [E] E Ka(X, Y). For the details we refer to (4).
For the analogous results in the case when there is no group, i.e. for the
definition of K (X, Y) as a quotient of tG'(X, Y), we refer to (7) [Part II].

Consider next the external tensor power. If E is a vector bundle over

X, we define E~k to be the vector bundle over the Cartesian product.
Xk (k factors of X) whose fibre at the point (Xl XX2 X ... XXk ) is

EZ1 0 EX1 C8> ••• ® Exlc • Thus El8lk is an Sk-vector bundle over the l~k
space Xk, the symmetric group Sk acting in the usual way on Xk by
permuting, the factors. Clearly, if

d:X -+Xk

is the diagonal map, we have a natural Sk-isomorphism

d*(El&lk) ~ Ef8k. (3.1)

If E is a complex of vector bundles over X, then we can define ill an

obvious way El&lk, which will be a complex of vector bundles over Xk.

Moreover E~k will be an Sk..oomplex of vector bundles, Xk being an Sk

space as above. If E is acyclic over Y c X, then E~kwill be acyclic over
the subspace of X consisting of points (Xl XXs X ... XXk) with Xi E Y for
at least one value of i. We denote this subspace by Xk-lY and we write
(X, Y)k for the pair (Xk,Xk-lY). Thus we have defined an operation

I8Ik: ~(X, Y) ~ ~Sk{X,Y)k.
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The proof of (2.2) generalizes at once to this situation and ·establishes

PROPOSITION 3.2. The operation E ~ E~k induces an operation

~k:K(X,Y) ~ Ks,,(X, Y)k.

COROLLARY 3.3. If x is in the kernel of K(X) -)- K(Y), then x~~b: is in

the kernel oj Ks,,(X") -+ KS,,(X"-ly).

Proof. This follows at once from (3.2) and the naturality of the
operation~ k.

From (3.1) we obtain the commutative diagram

K(X)

(3.4)

~~ (X)
k

4. Operations and filtrations

From now we assume that the spaces X, Y, ... areflnite OW-complexes.
Then K(X) is filtered by the subgroups Kq{X) defined by

Kq(X) = Ker{K(X) .... K(Xq_1 )},

where X q- 1 denotes the (q-l)-skeleton of X. Thus Ko(X) = K(X) and
Kn(X) = 0 if dim X < n. Moreover, as shown in (8), we have

K2q(X) = K 2q- 1(X)

for all. q. Since any map Y -)- X is homotopic to a cellular map, it follows
that the filtration is natural.

In [8] it is shown that K(X) is a fiUereil ring, i.e. that Kp Kq C Kp +fl•

In particular it follows that

x E Kq(X) => xk E Kkq(X).

We propose to generalize this result to the tensor power ~k.

We start by recalling (5) that, for any finite group, there is a natural

homomorphism «X: R(G) -)- K(Bo),
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where B o is the classifying space of G. This homomorphism arises as
follows_ Let A be the universal covering of Bo and V be any G-module.
Then.A X G V is a vector bundle over B 0- The construotion V~ A X G V
induces the homomorphism

ex: R(G) -+ K(Ba).

This construction can be generalized as follows. Let X be a G-space and
denote by X o the space A X G X. If V is a G-vector bundle over X, then

V;;=AXaV
is a vector bundle over X a. The construction V~ Va then induces a

homomorphism exx:Ka(X) ~ K(Xo).

A couple ofremarks are needed here. In the first place there is a clash of
notation concerning Bu. To fit in with our general notation we should
agree that 'B' is a point space. Secondly X G, like B o, is not a finite
complex. Now B o can be taken as an infinite complex in which the
q-skeleton BO,q is finite for each q, and. K(Ba) can be defined by

K(Bu) = lim K(B(/,fJ).
<f-

(I

If we suppose that G acts cellularly 011 X, theIl we can put
X G,q = A q X G X, where A q is the universal covering of B G,q and X G.rL

will be a finite complex. We then define

K(Xo) = limK(Xo,q)·
<f-

In fact, as will become apparent, there is no need for us to proceed to the
limit. All our results will essentially be concerned with finite skeletons.
We have in~roducedthe infinite spaces B a, X G because it is a little tidier
than always dealing with finite approximations.

Applying the above to the group Sk and the spaces X (trivial action)
and Xk (permutation action) we obtain a commutative diagram

O:.zk
KSJ:(Xk) >K(X~I)

ld* ~x ld*
Ks.(X) )0 K(Xs,)

II II
K (X) ® R(Sk)----.+K(X XBs,),

where d* is induced by the diagonal map d: X -+ Xk.

PROPOSITION 4.2. Let x E Kq(X), then

£Xx l(X~k) E Kkq(X~i).

(4.1)
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Proof. By hypothesis x is in the kernel of

K(X) -+ K(Xq _ 1).

Hence applying (3.3) with Y = X q - 1 we deduce that x~k is in the kernel
of p in the following diagram

as required.
Since the filtration in K is natural, Proposition 4.2 together with the

diagram (4.1) and Corollary 3.3 gives our main result:

a.zk

KSk(Xk) >K(X~i:)

Ip I
v t

KSk(Xk-lXq_1)~K( (Xk-lXq_1)Sk)

The required result now follows from this diagram, provided that we

verify that (Xk ) c (Xk-lX )
Sic kq-l q-l Sit·

But any cell (j of the (kq-l)-skeleton of X~k = Xk XskA arises from
a product of k cells of X and a cell of A. Hence at least one of the cells
of X occurring must have dimension less than q, and so a is contained in

(Xk-lXq_t)Sk === X k - 1X q_1 XS"k A ,

THEOREM 4.3. Let ®k:K(X) -+ K(X) ~ R(Sk) be the tensor power
ope-ration, and let

a;:K(X) ® R(Sk) -+ K(XXBsk)

be the natural komomorphi8m. Then

x E Kq(X) =? (X(:t~k) E Kkq(X X BSk).

COROLLARY 4.4. Let dim X ~ n and let x E Kq(X). Then tke image of

~~k in K(X) @ K(BsJ:,kq-n-l) is zero.

Proof. By Theorem 4.3 x~k has zero image in K(X X B S1e.1«J.-n-l)· But
for any two spaces A, B the map

K(A) 0 K(B) ~ K(A XB)

is injective (6). Hencex~kgiveszeroinK(X) 0 K(BsJ:tkq-n-l) as required.

Remark. Theorem 4.3 suggests that for any finite group G and G
space X we should define a filtration 011 KG(X) by putting

Ko(X)q = (XX1Kq(X XBu)·

With this notation Theorem 4.3 would read simply

x E Kq(X) => x rok E KS,,(X)kq.
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To exploit Theorem 4.3 we really need to know the filtration on
K(Bs1) as is shown by the following theorem:

THEOREM 4.5. Assume that K(X) is torsion-free and let dim X ~ n. Let
x E Kq(X) and aS8ume that all products ,\i(x)Ai(x) with i, j > 0, i+i ~ k
vanish. Then Ak(X) is divisible by the least integer m for whick

m~_l(M) E Kkq-n(Bs,),

M being as in Proposition 2.4. In particular this holds in the stable range
n < 2q.

Proof. The hypotheses and Proposition 2.4 imply that

x~k = (-l)k-l,\k(X) 0 A_t(M) E K(X) 0 R(Sk).

Let .A. = K(Bs/:)/Kkq-n(BS1)' 80 that A is a subgroup of K(BS1,lcq-n-l).

From Corollary 4.4 and the fact that K(X) is free it follows that the
image ofX<8>k in K(X) ® A must be zero. Hence Ak(x) must be divisible by
the order ofthe image ofA_1(M) in A, i.e. by the least integer m for which

m~_l(M) E Kkq-n(Bsl).

Remark. In the proof of Proposition 1.9 we saw that the character
of A_1(M) vanishes on all composite cycles of Sk. Thus, if k is not a
prime-power, the character of A_1(M) vanishes on all elements of ~'1k of
prime-power order and so by (5) [(6.10)] A_t(M) is in the kernel of the
homomorphism ,..-......

R(Sk) -+ R(lilk ).

Hence ~-l(M) = 0 and so Theorem 4.5 becomes vacuous. Thus
Theorem 4.5 is of interest only when k is a prime-power.

In order to obtain explicit results it is necessary to restrict from Sk
to the cyclic group Zk- In this case the calculations are simple. First we
need the lemma:

LEMMA 4.6. Let Y = Bz1, then

K(Y2Q-l) '" R(Z~)/I(Zk)q.

Proof. Since Y has no odd integer cohomology, it follows that
Kl(Y,Y2q_l) = 0, and so from the exact sequence of this pair we deduce

K(Y2q-l) r-.J K(Y)JK2q(Y).

But we know [(5) (8.1)] that
...............

K(Y) ~ R(Zk)'

and K 2Q(Y) is the ideal generated by I(Zk)tl. Hence

K(Y)/K2q{Y) ~ R(Zk)/I(Zk)q,

and the lemma is established.
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Remark. The results quoted from (5) are quite simple, and we could
easily have applied the calculations used there directly to Y2q-l.

Combining Corollary 4.4 and Lemma 4.6 we deduce the proposition:

PROPOSITION 4.7. Let dim X ~ 2m and let x E K2Q(X). Then the kth
cyclic power Pk(x) E K(X) (29 R(Zk) is in the image of K(X) ® I(Zk)kq-m.

The case when k = p, a prime, is of particular interest because Zp is
then the p-Sylow subgroup of Sp. This means that, as far as p-primary
results go, nothing is lost on passing from Sp to Zp. In the next section
therefore we shall study this case in detail.

5. The prime cyclic case

LEMMA 5.1. Let p E R(Zp) denote the canonical one-dimensional
representation of Zp, p-l

N= ! pi
i=O

the regular representation and 7J = P-1 .
...............

Then in R(Zp) we have

pk(N-p) = (-I)k1J(k+l)(P-l>+higher terms.

Proof. Since pP = 1, we have (l+7J)P = 1. Thus TJP = -PTJE, where
E = 1 mod TJ and 80 is a unit in fl. Hence

(-p}1] 1'-1 7JP, (1)

where we write a f'J b if a = €b with € = 1 mod TJ. Now the identity

'Pi1 (l+t)1 = (l+t)P-l =p+p-l modpt
i=O t

with t replaced by '1J shows that

N -p = 7JP - 1 mod p7J

= '1]P-l mod'fJP by (1).

Hence we have (N-p) t'J'1)P-l. (2)

From (1) we have (_p)k7J "'" TJk(P-l)7J,

and so (-p)k7JP-l "'" 7J(k+l)(P-l). (3)

The lemma. now follows from (2) and (3).

COROLLARY 5.2. The order of the image 01 (N-p) in R(Zp)fI(Zp)n is

pk where k is the least integer such that k +1 ~ ~.
p-l

Proof· I(Zp) is the ideal (7J).
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We can now state the explicit result for the prime case:

THEOREM 5.3. Suppose that dimX ~ 2(q+t) with t < q(p-l) and
let x E K2q(X). Then 8P(x) is divisible by pfl-r - 1, where

'f= [_t].
p-l

Proof. Since dimX < 2qp, we have xP = o. Hence by Proposition
2.5 we have

PP(x) = (JP(x) Q9 (N-p) E K(X) ~ R(Zp).

By Proposition 4.7 it follows that (JP(x) is divisible by the order of the
image of (N-p) in R(Zp)/I(Zp)n, where

n =pq-q-t.

From Theorem 5.3 it follows that fJP(x) is divisible by pk, where k is the
least integer for which

namely

t
(k+l) ~q--,

p-l

k = q_[_t]-1.
p-l

COROLLARY 5.4. Let the hypotheses be the same as in Theorem 5.3.

Then ,pP{x) is divisible by pl/.-r, where r = ~ t Il
Proof. .p'P and (}P are related by the formula ·

.pP(x) - xP-p8P(x).

Since z'P = 0 in our case, we have

.pP(x) = -p8P(x),

and so the result follows at onoe from Corollary 5.2.

Remark. Taking t = 0 we find that t/JP(x) is divisible by p. on the
sphere 8 2(1. Note that this result was not fed in explioitly anywhere. It
is of course a consequence of the periodicity theorem, and the computa
tion we have used for K(BzlJ} naturally depended on the periodicity
theorem.

The preoeding results take a rather interesting form if X has no
torsion. First we need a lemma:

LEMMA 5.5. Suppose that X has no torsion (i.e. H*(X, Z) has no torsion)
ana let x E K(X). Suppose that the image of x in K(Xq ) is divisible bya.
Then x is divisible by dmodu!oKq+1(X), i.e. I

x = dy+z, y E K(X), Z E Kq +1(X).
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Proof. Let A, B denote the image and cokernel of

j*: K(X) ~ K(Xq ).

From the exact sequence of the pair (X, X q ) we see that B is isomorphic
to a subgroup of Kl(X, X q ). But, since X is torsion-free, so is X/Xq•

Hence Kl(X, X q ) is free and therefore also B. Hence, ifa E A is divisible
by d in K(Xq ), it is also divisible by d in A. Taking a = j*(x) therefore

we have j*(x) = dj*(y) for some y E K(X),

and so x = dy+z, for some Z E Kerj* = Kq+1(X).
Using this lemma we now show how Corollary 5.4 leads to the following

proposition:

PROPOSITION 5.6. SUPPo8e that X has no torsion and let x E K2q(X).
Then there exist elements

Xi E K2q+2i(p-l)(X) (i = 0, 1,... , q)

~ ..pP(x) = ~ pq-~xi'
i=O

Moreover we can choose xq = xp.

Proof. By Theorem 5.3 the restriction of t/JP(x) to the 2(q+t)-skeleton,
with t = i(P-I)-I, is divisible by pq-i+l. By Corollary 5.4 it follows
that ~P(x) is divisible by pq-i+l Inodulo K2q+2i(p-l)(X), The required
result now follows by iIlduction on i. Since I/JP(x) =xPmodp and
z'P E K 2PQ(X), it follows that xP is a choice for xq •

The elements Xi occurring in Lemma 5.6 are not uniquely defined by x.
If, however, we pass to the associated g.raded group GK*(X) and then
reduce modp, we see that the element

Xi E G2fl+2i<P-l)K(X) ® Zp

defined by Xi is uniquely determined from the relation

q •
l/JPx = I pq-1,xi •

i=O

If we multiply x by p or add to it anything in KI(<<+v(X), we see from
Lemma 5.5 that Xi is unchanged. Hence Xi depends only on

x E G2QK'(X) Q9 Zp.

Now we recall [(8) § 2] that, since X has no torsion, we have an
isomorphism of graded rings

H*(X, Z) "-' GK*(X),

H2tl(X, Zp) ~ G2lJK(X) ® Zp.
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By this isomorphism the operation x~ Xi must correspond to some
cohomology operation. In the next section we shall show that this is
precisely the Steenrod power pt.

6. Relation with cohomology operations

In the proof of Proposition 4.2 we verified that there was an inclusion

j: (Xk, X~kq-l) ~ (X, X 2q_1)k.

Hence we can consider the map

K(X,Xaq_l) ~ K(X~lc' (X~J'>2kq-l)

given by x~ o:j*xl8lk. If we follow this by a cellular approximation to
the diagonal map X Src ~ ,X~k' we obtain a map

p,:K(X, X zq- 1) --?-- K(Xs1, (XS1)2kq-l).

From its definition this is compatible with the operation

x ...-.+ d*CXX~k = £XX®k

for the absolute groups, i.e. we have a commutative diagram

(6.1)

On the other hand, by restricting X to X2q and X s" to (Xs,)2kq we obtain
another commutative diagram

K(X, X2q-l) --""-~>K(Xs", (XS,,)2kq-l)

1 1
K(f?4' X?4-1) l' K( (fSt)llkq, (XSt)llkq-l)

02q(X) )- 02kq(XS ,,)

(6.2)

(6.3)

where v is the map of cochains given by

v(c) = d*[(c Q9 C @ ••• Q9 c) ®r 1].

Here we have made the identification

O*(X~k) = (O*(X) ®z ... ®z O*(X)) 0r O*(A),

where A -).- BSi is the universal 8k-bundle and r is the integral group
ring ofSic, and similarly we identify

O*(Xs,J = O*(X) ®r O*(A).



K(X2q' X2q-l) ~ 02Q(X)

is compatible with (external) products.
The map v defined by (6.3) induces a map of cohomology (denoted

also by v) v:H2Il(X, Z) ~ H2kIJ(X
Sk

' Z).

The diagrams (6.1) and (6.2) then establish the following
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The commutativity of Diagram e.2 depends of course on the fact that
the isomorphism

PROPOSITION 6.4. Let x E K2q(X) be represented by a E H2Q(X,Z) in the
spectral 8equence H*(X,Z) => K*(X). Then cx(X®k) E K1kq(XS,) i8

'repre8ented by v(a) E H 2kfJ.(XSi ' Z) in the spectral sequence

H*(XSk' Z) => K*(XS,J,
where v is induced by the formula (6.3).

Remarks. (1) It seems plausible that one could in fact define a tensor
power operation mapping the spectral sequence of X into the spectral
sequence of X Sk• Proposition 6.4 concerns itself only with the extreme
members E1 and ECIJ (and only for even dimensions).

(2) The map v is essentially the parent of all the Steenrod operations,
while x~ x~k is the parent of all the operations in K -theory introduced
in § 2. Proposition 6.4 contains therefore, in principle, all the relations
between operations in the two theories. We proceed to make this explicit
in the simplest case:

THEOREM 6.5. Suppose that X has no torsion so that we may identify
H*(X, Zp) with GK*(X) 0 Zp. If x E K1q(X) we denote the co"esponding
element of H2tJ(X, Zp) by x. Let

fJ. .
t/JPx = ! pQ-1,xi

i~O

be the decomposition of iflPx given by (5.6). Then we have

Xi = .P1(x),
where .p;,: H 2fJ.(X, Zp) -+ H2Q+2i(P-l)(X, Zp)

is the Bteenroit power (for p = 2 we put pi = S q21,).

.induces

Proof. By Proposition 6.4 the map

P:K(X) --)- K(X) 0 R(Zp)

P:H*(X, Zp) ~ H*(X, Zp) 0H*(Zp, Zp), (1)
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where P is v reduced modp. Now by (2.6) and Lemma 5.5 (ohoosing
xq = xP) we have the following expression for P(x),

q-l I
P(x) = xq ® 1- ! x, ~ ptJ.-i -l(N-p). (2)

i=O

:By definition of the Steenrod powers [(10) 112] we have

- q
P(i) = ! (-1 )a-i .Pi(x) Q9 "..,(tJ.-iXP-l\

i=O

where '1J is the canonical generator of H2(Zp; Zp).
Comparing (1) and (2) and using Lemma 5.1 we have the result.

Remark. Proposition 6.5, together with the kind of oaloulations made
in (3), leads to a very simple proof of the non-existence of elements of
Hopf invariant 1 modp (including the case p = 2).

7. Relation with Chern characters

If the space X has no torsion, it is possible to replaoe the operations
~ by the Chern oharacter

ch:K*(X) ~ H*(X; Q).

In fact oh is a monomorphism and tfJk can be computed from the formulae

chx = ! chq(x), x E K(X), ohq(x) E H2tl(X; Q)
q

cht/lkx = ! ktZchq(x).
'I.

Conversely one oan define H*(X; Q) and ch purely in terms of the
~ (3). It is reasonable therefore to try to express Theorems 5.6 and
6.5 in terms of Chern characters. We shall see that we recover the
results of Adams (1), at least for spaces without torsion.

If X is without torsion, we identify H*(X; Z) with its image in
H*(X; Q). If a E H*(X; Q), we can write a = bId for b E H*(X; Z)
and some integer d. Ifd can be chosen prime to p, we shall say that a is
p-integral.

THEOREM 7.1. Let X be a space without torsion, x E K2q(X)andpaprime.

Then p'chq+n(x)

is p-integral, where t = ~ n 1].
Proof. We proceed by induction on n. For n == 0 (and all q) the result

is a consequence of the periodioity theorem (8). We suppose therefore
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that n > 0 and the result established for all r ~ n-l. By Proposition
5.6 we have

and so

Taking components in dimension 2(q+n) we get

p«+tlchq+n(x) = i~opq-iChq+n(Xi)' t = ~n Il (I)

In particular, for n = 0, we have

chq(x) = chq(xo). (2)

Since X has no torsion, this implies that

y = Xo-X E K2q+2(X).

Replacing Xoby x +y in (1) and multiplying by pi-a we get

t
p'(P"-I)cha+n(x) = p'chq+ny+ I p'-iChq+n(Xi)· (3)

i=l

But by the inductive hypothesis (with q replaced by q+1 and q+i(p-1)
(i ~ 1») we Bee that all terms on the right-hand side of (3) are p-integral.
Hence pi ch(l+n(x) is p-integral and so the induction is established.

For any x E K2q(X) we denote by x E H2 fl(X, Zp) the corresponding
element obtained from the isomorphism

G2flK(X) Q9 Zp ~ H2rJ.(X; Zp).

Now, by Theorem 7.1, p'chq+t(P-l) x is p-integral. We may therefore
reduce it modp and obtain an element of H2rJ.+21CP-l)(X; Zp). It follows
from Theorem 7.1 that this depends only on x. We denote it therefore
by T'(x), so that pi is an operation

H2fJ(X; Zp} ~ H2a+2IC.P-1)(X; Zp}.

We now identify this operation.

THEOREM 7.2. The operation I Ti is the inverse of the 'total' Steenroa
i~O

power I pi,
i~O

i.e. (I Ti) 0 (I pi> = identity.

Proof. As in Theorem 7.1 we have
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Now in equation (I) above take n === t (p-l) and multiply by pt-q • Then
reducing modp we get t

o == I Tt-i(x i ) (t > 0),
i=O

x == TO(xo).

But by Theorem 6.5 we·have xi = pix, and s.o we deduce

o== (.± T'-ipi)x, x == TOPOx.
1.=0

In other words, the composition

(I Ti) 0 (!Pi)

is the identity operator as required.
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Introduction

THE K-theory of complex vector bundles (2, 5) has many variants and
refinemellts. Thus there are:

(1) K-theory of real vector bundles, denoted by ](0,

(2) ](-theory ofself-conjugate bundles, denoted by KG (1) or KSG (7),
(3) ](-theory of G-vector bundles over G-spaces (6), denoted by ]{a.

In this paper we introduce a ne"v It-theory denoted by KR which is,
in a sense, a mixture of these three. Our definition is motivated partly by
analogy with real algebraic geometry and partly by the theory of real
elliptic operators. In fact, for a thorough treatment of the index problem
for real elliptic operators, our K R-theory is essential. On the other hand,
from the purely topological point of view, KR-theory has a number
()f advantages and there is a strong case for regarding it as the primary
theory and obtaining all the others from it. One of the main purposes of
this paper is in fact to show how K R-tlleory leads to an elegant proof of
the periodicity theorem for KO-theory, starting essentially from the
periodicity theorem for K-theory as proved in (3). On the way we also
encounter, in a natural manner, the self-conjugate theory and various
exact sequences bet,veen the different tlleories. There is here a consider
able overlap with the thesis of Anderson (1) but, from our new vantage
point, the relationship between the various theories is much easier to see.

Recently Karoubi (8) has developed an abstract X-theory for suitable
categories with involution. Our theory is included in this abstraction but
its particular properties are not developed in (8), nor is it exploited to
simplify the KO-periodicity.

The definition and elementary properties of KR are given in § 1. The
periodicity theorem and general cohomology properties for K Rare
discussed in § 2. Then in § 3 we introduce various derived theories
K R with coefficients in certain spaces-ending up with the periodicity
theorem for K O. In § 4 we discuss briefly the relation of K R with
Clifford algebras on the lines of (4), and in particular we establish a
lemma which is used in § 3. The sigllificance of K R-theory for the
topological study of real elliptic operators is then briefly discussed in § 5.
Quart. J. Math. Oxford (2), 17 (1966), 367-86.
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This paper is essentially a by-product of the author's joint work with
I. M. Singer on the index theorem. Since the results are of independent
topological interest it seemed better to publish them on their own.

1. The real category

By a space with involution we mean a topological space X together
with a homeomorphism 7: X -+ X of period 2 (Le. 7 2 = Identity). The
involution 7" is regarded as part of the structure of X and is frequently
omitted if there is no possibility of confusion. A space with involution
is just a Z2-space in the sense of (6), where Z2 is the group of order 2. An
alternative terminology which is more suggestive is to call a space with
involution a real space. This is in analogy with algebraic geometry. In
fact if X is the set of complex points of a real algebraic variety it has a
natural structure of real space in our sense, the involution being given
by complex conjugation. Note that the fixed points are just the real
points of the variety X. In conformity with this example we shall
frequently write the involution 7" as complex conjugation:

T(X) = x.
By a real vector bundle over the real space X we mean a complex vector

bundle E over X which is also a real space and such that

(i) the projection E ~ X is real (Le. commutes with the involutions
onE,X);

(ii) the map Ex ~ Ex is anti-linear, i.e. the diagram

CXEx~Ex

t ~
CxEx~Ex

commutes, where the vertical arrows denote the involution and

C is given its standard real structure (T(Z) = z).

It is important to notice the difference between a vector bundle in the
category of real spaces (as defined above) and a complex vector bundle
in the category of Z2-spaces. In the definition of the latter the map .

Ex ~ E-r(x)

is assumed to be complex-linear. On the other hand note that if E is a
real vector bundle in the category of Z2-spaces its complexification can
be given two different strllctures, depending on whether

Ex~ ETC,x)

is extended linearly or anti-linearly. In the first it would be a bundle in
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the real category, while in the second it would be a complex bundle in
the Z2-category.

At a fixed point of the involution on X (also called a real point of X)
the involution on E gives an anti-linear map

with '7"; = 1. This means that Ex is in a natural way the complexification
of a real vector space, namely the +I-eigenspace of '7"x (the real points of
Ex). In particular if the involution on X is trivial, so that all POilltS of X
are real, there is a natural equivalence between the category tf(X) of
real vector bundles over X (as space) and the category g-(X) of real
vector bundles over X (as real space):t define tt(X) ~ ~(X) by
E ~ E Q9R C (C being given its standard real structure) and!F(X)~tff(X)
by F ~ FR (FR being the set of real points of F). This justifies our use of
'real vector bundle' in the category of real spaces: it may be regarded as
a natural extension of the notion of real vector bundle in the category
of spaces.

If E is a real vector bundle over the real space X then the space r(E)
of cross-sections is a complex vector space with an anti-linear involution:
if 8 E r(E), s is defined by

s(x) = 8(£).

Thus r(E) has a real structure, i.e. r(E) is the complexification of the
real vector space r(E)R.

If E, F are real vector bundles over the real space X a morphism
cP: E -+ F will be a homomorphism of complex vector bundles com
muting with the involutions, i.e.

~(e) = ep(e) (e E E).

E 0c F and Homc(E, F) have natural structures of real vector
bundles. For example if cPx E Homc(Ex' Fx)we define cPx E Homc(Ex' Fx)

by tP:I:(u) = (tP:I: u) (u E Ex).

It is then clear that a morphism ep: E ~ F is just a real section of
Homc(E, F), i.e. an element of (rHomc(E, F))R.

If now X is compact then exactly as in (3) [§ 1] we deduce the homo
topy property ofreal vector bundles. The only point to note is that a real
section 8 over a real subspace Y of X can always be extended to a real
section over X; in fact if t is any section extending 8 then i(t+1) is a real
extension.

t The morphisms in F(X) will be defined below.
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Suppose now that X is a real algebraic space (i.e. the complex points of
a real algebraic variety) then, as we have already remarked, it defines in
a natural way a real topological space X alg ~ X top . A real algebraic
vector bundle can, for our purposes, be taken as a complex algebraic
vector bundle 7f: E -+ X where X, E, 11, and the scalar multiplication
C X E -+ E are all defined over R (i.e. they are given by equations with
real coefficients). Passing to the underlying topological structure it is
then clear that Etop is a real vector bundle over the real space Xtop •

Consider as a particular example X = p(Cn), (n-l)-dimensional
complex projective space. The standard line-bundle Hover p(Cn) is
a real algebraic bundle. In fact H is defined by the exact sequence of

vector bundles 0 ~ E ~ X X en ~ H ~ 0,

where E c X X Cn consists of all pairs ((z), u) E X X en satisfying

I UiZi = o.
Since this equation has real coefficients E is a real bundle and this then
implies that H is also real. Hence H defines a real bundle over the real
space p(Cn).

As another example consider the affine quadric
n
IZ'+l=O.

i=l

Since this is affine a real vector bundle may be defined by projective
modules over the affine ring A+ = R[Zt" .. ,zn]/( Iz:+l). Now the
intersection of the quadric with the imaginary plane is the sphere

n
Iy' = 1,
1

the involution being just the anti-podal map y 1-+ -y. Thus projective
modules over the ring A+ define real vector bundles over Sn-l with the
anti-podal involution. If instead we had considered the quadric

!z:-l = 0

then its intersection with the real plane would have been the sphere with
trivial involution, so that projective modules over

A _ R[zl,·,·,znJ
- - (Izf-l)

define real vector bundles over Sn-l with the trivial involution (and so
these are real vector bundles in the usual sense). The significance of Sn-l

. in this example is that it is a deformation retract of the quadric in our
category (Le. the retraction preserving the involution).
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The Grothendieck group of the category of real vector bundles over a
real space X is denoted by KR(X). Restrictillg to the real points of X we
obtain a homomorphism.

In particular if X == X II we have

KR(X) I"J KO(X).

For example taking X = p(Cn) we have X R == p(Rn) and hence a
restriction llomomorphism

Note that the image of [H] in this homomorphism is just the standard real
Hopf bundle over p(Rn).

The tensor product turns KR(X) into a ring in the usual way.
If we ignore the involution on X we obtain a natural homomorphism

c: KR(X) -+ K(X).

If X == X R then this is just complexification. On the other hand if E is
a complex vector bundle over X, E E9 1"*E has a natural real structure
and so we obtain a homomorphism

r: K(X) -+ KR(X).

If X == X R then this is just 'realization', Le. taking the underlying real
space.

2. The periodicity theorem

We come now ·to the periodicity theorem. Here we shall follow care
fully the proof in (3) [§ 2] and point out the modifications needed for our
present theory.

If E is a real vector bundle over the real space X then P(E), the projec
tive bundle ofE, is also a real space. Moreover the standard line-bundle H
over P(E) is a real line-bundle. Then the periodicity theorem for KR
asserts:

THEOREM 2.1. Let L be a real line-bundle ·over the real compact space X,
H the standard real line-bundle over the real space P(L EB 1). Then, as
a KR(X)-algebra, KR(P(L EB I)) is generated by H, subject to the single

relation ([H]-[I])([L][H]-[IJ) = O.
3605 .~.17 B b



since p is real.

M.. F .. ATIYAH

First ofall we choose a metric in L invariant under the involution. The
unit circle bundle S is then a real space. The section z of 17*(L) defined
by the inclusion S ~ L is a real section. Hence so are its powers zk. The

isomorphism Hk ~ (l,z-k, L-k) [(3) 2.5]

is an isomorphism of real bllndles. Finally we assert that, if I is a real
section of Hom (17* EO, 17*EOO) then its Fourier coefficients ak are real
sections of Hom(Lk &> EO, EOO). In fact we have

ak(x) = ak(x) = -~J!xZik- 1 dzx
21T~

Si

= _1_ rk(z-)-k-l dz- (since the involution reverses the
217i. x x x orientation of S)

s:&

= _1_JJ z-k-l dz (since I and z are real)217i x x x
S:e

= ak(x).

It may be helpful to consider what happens at a real point of X. The
condition that Ix is real then becomes

Ix(e-i8) = fx(ei8)

which implies at once that the Fourier coefficients are real.
Since the linearization procedure of (3) [§ 3] involves only the ak and

and the Zk it follows that the isomorphisms obtained there are all real
isomorphisms.

The projection operators QO and Qoo of (3) [§ 4] are also real, provided
p is real. In fact

1 J_ -1
- 27Ti Px dpx'

sz
Similarly for Qoo. The bundle ~(EO,p,ErJJ) is therefore real and (4.6) is
an equation in KR(P). The proof in § 5 now applies quite formally.

We are now in a position to develop the usual cohomology-type theory,
using relative groups and suspensions. There is, however, one new feature
here which is important. Besides the usual suspension, based on R with
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trivial involution, we can also consider R with the involution x r+ -x.
It is often convenient to regard the first case as the real axis R c C and
the second as the imaginary axis iR c C, the complex numbers C always
having the standard real structure given by complex conjugation. We
use the following notation:

Rp,q = Rq EBiRp,
Bp,q = unit ball in RPtq,

Sp,q = unit sphere in Rptq.

Note that Rp,p ~ CPo Note also that, with this notation, SIJ,q has
dimension p+q-l.

"'-I

The relative group K R(X, Y) is defined in the usual way as I(R(X/Y)

\vhere KR is the kernel of the restriction to base point. We thell define
the (p, q) suspension groups

KRP,q(X,Y) = KR(XxBP,q,XxSp,qu YxBP,q).

Thu.s the usual suspension groups KR-q are given by
KR-q = KRO,q.

As in (2) one then obtains the exact sequence for a real pair (X, Y)

...~ KR-l(X) -+ KR-l(y) ~ KR(X, Y) ~ KR(X) ~ KR(Y). (2.2)

Similarly one has the exact sequence of a real triple (X, Y, Z). Taking
the triple (X X BPtO, X X SPto U Y X BP,o, X X SP,O) one then obtains an
exact sequence

... -+KRP,l(X) -? KRP,l(Y).~KRP,O(X, Y} ~ KRP,O(X) ~ KRJJ,O(Y)

for eacll integer p ~ o.
The ring structure of K R(X) extends in a natural way to give external

products
K RP,q(X, Y) Q9 K RP',q'(X' , Y') -? K R1J+rl ,q+q'(X", Y"),

where X" = X X X', Y" = X X Y' u X' X Y. By restriction to the
diagonal these define internal products.

\\7e can reformulate Theorem 2.1 in the usual way. Thus let
b = [H]-l E KRl,l(point) = KR(BI,l, Sl,l) = KR(P(C2))

and denote by f3 the homomorphism
KRP,q(X, Y) ---+ KRp+l,Q+l(X, Y)

given by x 1--+ b.x. Then we have

THEOREM 2.3. f3: KRP,q(X, Y) --? KRP+l,Q+l(X, Y) is an isomorphism.
Note also that the exact sequence of a real pair is compatible with the

periodicity isomorphism. Hence if we define
.KR1J(X,Y) = KRp,O(X,Y} for p ~ 0
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it follows that the exact sequence (2.2) for (X, Y) can be extended to
infinity in both directions. Moreover we have natural isomorphisms
KRp,q ""' KRp-q.

We consider now the general Thom isomorphism theorem as proved
for K-theory in (2) [§ 2.7]. We recall that the main steps in the proof
proceed as follows:

(i) for a line-bundle we use (2.1),
(ii) for a decomposable vector bundle we proceed by induction using

(2.1),
(iii) for a general vector bundle we use the splitting principle.

An examination of the proof in (2) [§ 2.7] shows that the only point
requiring essential modification is the assertion that a vector bundle is
locally trivial and hence locally decomposable. Now a real vector bundle
has been defined as a vector bundle with a real structure. Thus it has
been assumed locally trivial as a vector bundle in the category of spaces.
What we have to show is that it is also locally trivial in the category of real
spaces. To do this we have to consider two cases.

(i) x E X a real point. Then Ex "'-' en in our category. Hence by tb.e
extension lemma there exists' a real neighbourhood U of x such
that E IU /"'tV U X en in the category.

(ii) x =1= i. Take a comp~ex isomorphism Ex I"-J Cn. This induces an
isomorphism Ex "'-' Cn. Hence we have a real isomorphism

EIYl"-JyxCn ,

where Y = {x, x}. By the extension lemma there exists a real
neighbourhood U of Y so that E IU I"-J U X Cn.

Thus we have

THEOREM 2.4 (Thorn Isomorphism Theorem). Let E be a real vector
bundle over the real compact space X. Then

"'"t/J: K R(X) -+ K R(XE)
"'-'

is an isomorphism where t/J(x) = AE.x and AE is the element of KR(XE)
defined by the exterior algebra of E.

Among other results of (2) [§ 2.7] we note the following:

KR(XXP(Cn )) I"-J KR(X)[t]jtn-1

I"-J KR(X) 0 z K(P(Cn )).

We leave the computation of KR for Grassmannians and Flag mani
folds as exercises for the reader. The determination of KR for quadrics
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is a more interesting problem, since the answer will depend on the
signature of the quadratic form..

We conclude with the following observation. Consider the inclusion

i
RO,1 = R -+ C = Rt,l.

This induces a homomorphism

KI,l(point) ~ KO,l(point)

"-' II "-' II
KR(P(C2)) ~ KR(P(R2»).

Since i*[H] is the real Hopf bundle over P(R2) it follows that
TJ = i*(b) = i*{[H]-I) is the reduced Hopfbundle over P(R2).

3. Coefficient theories

If Y is a fixed real space then the fu~c~orX ~ K R(X X Y) gives a new
cohomology theory on the category of ~eal spaces which may be called
KR-theory with co~fficient8 in Y. We shall take for Y the spheres SP,o
(where the involution is the anti-podal map). A theory F will be said to
have period q if we have a natural isomorphism F ~ F-q. Then we have,

PROPOSITION 3.1. KR-theory with coefficients in SP,o has period

2 ifp = 1,

4 ifp = 2,

8 ifp = 4.

Proof. Consider Rp as one of the three fields R, C, or H (p = 1,2, or4).
Then for any real space X the map

JLp : X X SP,o X RO,p -+ X X Sp,o X Rp,o

given by /-Lp(X,8,U) = (X,S,8U), where 8U is the product in the field, is a
real isomorphism. Hence it induces an isomorphism

It;: KRP,O(X X SP,6) ~ KRO,p(X X SP,O).

Replacing X by a suspension gives an isomorphism

JL~: K RP,q(X X SP,O) ~ K Ro,P+tJ(X X SP,O).

Taking q = p and using the isomorphism

f3P: KR ~ KRp,p

given by Theorem 2.1, we obtain finally an isomorphism

JL;fJP : KR(X X SP,O) ~ ](RO,2P(XX SP,O)

"K R-2P(X X 8 11,°).
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Remark. fL* is clearly a KR(X)-module homomorphism. Since the
same is true of fi this implies that the periodicity isomorphism

·YP = JL~fiP: KR(Xx SP,O) ~ KR-2P(X X SP,O)

is multiplication by the image cp of 1 in the isomorphism

KR(SP,O) ~ KR-2P(SP,O).

This element cp is given by

cp = Yp(l) = p,*(bP .1), 1 E KR(Sp,O).

For any Y the projection X X Y -+ X will give rise to an exact coeffi
cient sequence involving K Rand K R with coefficients in Y. When Y
is a sphere we get a type of Gysin sequence:

PROPOSITION 3.2. The projection 7T: SP,o -+ point induces the following
exact seq1..l,ence

x ~ 3
... ~ KRP-q(X) -+ KR-q(X) ~ KR-q(X X SP,O) ~ ...

f""Itoo.I

where X is the product with (-7])P, ana 1] E K R-l(point) ~ K R(P( R2») is
th,e reduced real H opf bundle.

Proof. We replace 11 by the equivalent inclusion SP,o -+ Bp,o. The
relative group is then K RP,q(X). To compute X we use the commutative
diagram

Let 8 be the automorphism of K2P,P+q(X) obtained by interchanging the
two factors Rp,o which occur. Then the composition XBPP is just multi
plication by the image of b'P in

KRP,P(point) -+ KRO,P(point).

But tllis is just TJP. It remains then to calculate O. But the usu.al proof
given in (2) [§ 2.4] shows that 8 = (-I)pl = (-l)P.

We proceed to consider in more detail each of the theories in (3.1).
For p = 1, SP,o is just a pair of conjugate points {+1, -I}. A real vector
bundle E over XX{+I, -I} is entirely determined by the complex
vector bundle E+ which is its restriction to X X {+I}. Thus we have.

PROPOSITION 3.3. There is a natural isomorphism

KR(XxS1,O) ~ K(X).
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Note in particular that this does not depend on the real structure of X
but just on the underlying space. The period 2 given by (3.1) confirms

. what we know about K(X). The exact sequence of (3.2) becomes now

x ~* a
•.. --+ KRl-q(X) -+ KR-q(X) -+ K-q(X) --? KR2-q(X) --+ ..• (3.4)

where X is multiplication by -TJ and 7T* = c is complexification. We
leave the identification of S as an exercise for the reader. This exact
sequence is well-known (when the involution on X is trivial) but it is
always deduced from the periodicity theorem for the orthogonal group.
Our procedure has been··different and we could in fact use (3.4) to prove"
the orthogonal periodicity. Instead we shall deduce this more easily
later from the case p = 4 of (3.1).

Next we consider p.= 2 in (3.1). Then KR-q(X·x 8 2,0) has period 4.
We propose to identify this with a self-conjugate theory. If X is a real
space with involution T a self-conjugate bundle over X will mean a
complex vector bundle E together with an isomorphism ex: E ~ T*E.
Consider now the space X X 8 2,0 and decompose 8 2,0 into two halves
82.+0 and S~O with intersection {± I}.

+1

It is clear that to give a real vector bundle F over X X 8 2,0 is equivalent
to giving a complex vector bundle F+ over X X S't-° (the restriction of F)
together with an isomorphism

4>: F'/XX{+I} ~ T*(FIXx{-l}).
But X X {+i} is a" deformation retract of X X S~o and 80· [cf. (3) 2.3] we"
have an isomorphism

8: F+IXx{-I} -+ F+IXx{+I}

unique up to homotopy. Thus to give 4> is equivalent, up to homotopy, to

giving an isomorphism <X: E -+ T*E,

where E is the bundle over X induced from F+ by x 1-+ (x, 1) and

CXx = nex.-vcP(X,l)·

In other words isomorphism classes of real bundles over X X 8 2,0 corre
spond bijectively to homotopy classes of self-con.i~tgate bundles over X.
Moreover this correspondence is clearly compatible with tensor product~.



M. F. ATIYAH

Now let KSO(X) denote the Grothendieck group of homotopy classes of
self-conjugate bundles over X. If T is trivial this agrees with the defini
tions of (I) and (7). Then we have established

PROPOSITION 3.5. There is a natural isomorphism of rings

KSO(X) -+ KR(X X 82,0).

The exact sequence of (3.2), with p = 2, then gives an exact sequence

x w* a
... ~KR2-q(X) ~ KR-q(X) -+ K8C-Q(X) --?o- KR3-Q(X)-+ ... (3.6)

where X is multiplication by TJ2 and 17* is the map which assigns to any
real bundle the associated self-conjugate bundle (take a = T). The
periodicity in KSO is given by multiplication by a generator of
KSO-4(point).

Finally we come to the case p = 4. For this we need

LEMMA 3.7. Let 7J E KR-l(point) be the element deji.ned in § 2. Then

'YJ3 == o.
Proof. This can be proved by linear algebra. In fact we recall [(4)

§ 11] the existence of a homomorphism ex: A k -+ KR-k(point) where the
A k are the groups defined by use of Clifford algebras. Then TJ is the
image of the generator of Al ~ Z2 and A 3 = o. Since the homo
morphisms ak are multiplicative [(4) § 11.4] this implies that TJ3 = o.

COROLLARY 3.8. For any p ~ 3 we have short exact sequences

~* ao-+ K R-q(X) ~ K R-q(X x J.~p,O) ~ K RP+l-q(X) ~ o.
Proof. This follows from (3.7) and (3.2).
According to the remark following (3.1) the periodicity for

KR(X X 8 4,°) is given by multiplication with the element

c4 = fL!(b4 .1) E KR-8(S4t O).

Now recall [(4) Table 2] that As ~ Z, generated by an element A
(representing one of the irreducible graded modules for the Clifford
algebra Os). Applying the homomorphism

ex: As -? K R-8(point)

we obtain an element ex(A) E KR-8(point). The connexion between C4

and cx(A) is then given by the following lemma:

LEMMA 3.9. Let 1 denote the identity of KR(84,O). Then

C4 == a(A). 1 E K R-8(.S4,O).

The proofof (3.9) irJvolves a careful consideration of Clifford algebras and
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is therefore postponed until § 4 where we shall be discussing Clifford
algebras in more detail.

Using (3.9) we are now ready to establish

THEOREM 3.10. Let AE As, O:(A) E KR-8(point) be as above. Then
multiplication by cx(A) induces an isomorphism

KR(X) ~ KR-8(X)

Proof. Multiplying the exact sequence of (3.8) by a:(A) we get a commu
tative diagram of exact sequences

o~ KR-q(X) ~ KR-q(X X 8 4,°) ~ KR5-Q(X) ~ 0
~cPq iifiq t«Ps-q

o~ KR-Q-8(X) ~ KR-Q-8(X X 8 4,°) ~ KR-3-Q(X) ~ o.
By (3.9) we know that ifiq coincides with the periodicity isomorphism Y4.·
Hence 4>q is a monomorphism for all q. Hence ef>5-q in the above diagram
is a monomorphism, and this, together with the fact that t/lq is an iso
morphism, implies that c/>q is an epimorphism. Thus ePq is an isomorphism
as required.

Remark. If the involution on X is trivial, so that KR(X) = KO(X),.
this is the usual 'real periodicity theorem'.

By considering the various inclusions Sq,O ~ SP,o we obtain interesting·
exact sequences. For the identification of the relative group we need

LEMMA 3.11. The real space (with base point) 8 p ,o/8q,o is isomorphic to

Sp-q,O X Bq,o/Sp-q,O X Sq,o.

Proof. 8 p,O-Sq,O is isomorphic to Sp-q,OxRq,o. Now compactify.

COROLLARY 3~12. We have natural isomorphisms:
KR(X X Sp,o, X X sq,O) f",J KRO,q(X X sp-q,O).

In view of (3.8) the only interesting cases are for low values of p, q..
Of particular interest is the case p = 2, q = 1. This gives the exact·
sequence [cf. (1)]

... ~ K-l(X) -+ KSC(X) ~ K(X) --)- K(X) ~ ....

The exact sequence of (3.8) does in fact split canonically, so that·
(for p ~ 3)

KR-q(XxSP,O) f",J KR-q(X) EBKRP+l-q(X). (3.13)

To prove this it is sufficient to consider the case p = 3, because the;
general case then follows from the commutative diagram (p ~ 4)

0-+ KR(X) ~ KR(X X SP,O)
t to~ KR(X) -+ KR(X X 8 3,°)
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obtained by restriction. Now 8 3,0 is the 2-sphere with the anti-podal
2

involution and this may be regarded as the conic ! z~ = 0 in P(C3).
o

In § 5 we shall give, without proof, a general proposition which will imply
that, when Y is a quadric,

](R(X) -+ KR(X X Y)

has a canonical left inverse. This will establish (3.13).

4. Relation with Clifford alg.ebras

Let Cliff(RP,q) denote the Clifford algebra (over R) of the quadratic
form p q.-( +y~+ ~xj)

on Rp,q. The involution (y, x) 1-+ (-y, x) of Rp,q induces an involutory
automorphism of Cliff(RP,q) denoted byt a ~ a.

Let M = MO (£)Ml be a complex Zz-graded Cliff(RP,q)-module. We
shall say that M is a real Zz-graded Cliff(RP,q)-module if M has a real
structure (Le. an anti-linear involution m ~ in) such that

(i) the Z2-grading is compatible with the real structure, i.e.

Mi = Mi (i = 0,1),

(ii) am = am for a E Cliff(RP,q) and m EM.

Note that if p = 0, so that the involution on CIiff(RP,q) is trivial, then

MR = M~E8M~ = {m eM[m = m}

is a real Z2-graded module for the Clifford algebra in the usual sense
[a Oq-module in the notation of (4)].

The basic construction of (4) carries over to this new situation. Thus
a real graded Cliff(RP,q)-module M = MO (£)Ml defines a triple
(MO, Ml, a) where a: 8p,q X MO~ 8 p

,Q X Ml is a real isomorphism given by

a(s,m) = (s,sm).

In this way we obtain a homomorphism

h: M(p,q) -+ KRP,q(point)

where M(p,q) is the Grothendieck group of real graded Cliff(RP,q)
modules. IfM is the restriction of a Cliff(Rp,q+l)-module then a extends
over Sp,Q+l. Since the projection

S~q+l ~ Bp,q

t This notation diverges from that of (4) [§ 1] where (for q = 0) this invohltion
is called (X and' bar' is reserved for an anti-automorphism.
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is an isomorphism of real spaces (8+ denotes the upper hemisphere with
respect to the last coordinate) it follows that M defines the zero element
ofK RP,q(point). Hence, defining A(p, q) as the cokernel of the restriction

M(p,q+l) ~ M(p,q),

we see that h induces a homomorphism

£x: A(p,q) -+ KRP,q(point).

Moreover, as in (4), £x is multiplicative. Note that for p = 0 this ex

coincides essentially with that defined in (4), since

A(O, q) r"'J A q ,

KRO,q(point) ~ KO-Q(point).

The exterior algebra A*(CI) defines in a natural way a Cliff(Rl,l)
module by

z(l) = ze, z(e) = -zl
,vhere 1 E AO(CI) and e E Al(Cl) are the standard generators. Let
Al E A(l, 1) denote the element defined by this module. In view of the
definition of b E KRI,l(point) we see that

£x(;\1) = -b

and hence, since (X is multiplicative,

w2 = 1, w = w,

a(;\1) = b4•

Let M be a graded Cliff(R4,4)-module representing ;\t (in fact as shown
in (4) [§ II], we can construct M out of the exterior algebra A*(C4)), and
let w = e1 e2 eae4 E Cliff(R4,4) where e1 , ea, ea, e4 are the standard basis of
R4,O. Then we have

wz = zw for z E C4 = R4,4.

Hence we may define a new anti-linear involution m f-+ fit on M by

m=-wm
and we have """ - -- -zm = -WZfn = -wzm = -zwm

=zm.
Thus M with this new involution (or real structure) is a real graded
Cli:ff(RO,S)-module, a Os-module in the notation of (4): as such we denote
it by N. From dimensional considerations [cf. (4) Table 2], we see that it
must be one of the two irreducible Os-modules. But on complexification
(Le. ignoring involutions) it gives the same as M and hence N represents
the element of As denoted in (4) by A.
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After these preliminaries we can now proceed to the proof of Lemma
3.9. What we have to show is that under the map

JL4: 8 4,0 X R8 ~ 84,0 X C4

the element of KR4,4(S4,O) defined by M lifts to the element of KR-8(S4,O)
defined by N. To do this it is clearly sufficient to exhibit a commutative
diagram of real isomorphisms

S4,OX R8 xN ~ S4,OxC4 xM
~ v f

84,0 X R8 xN ~ 8 4,oxC4 xM (4.1)

where v is compatible with 1L4 (i.e. v(s, x, y, n) = (s, x+isy, m) for some rn )
and the vertical arrows are given by the module structures (i.e.
(s,x,y,n) r+ (s,x,y, (x,y)n).

Consider now the algebra Cliff(R4,O) == 04. The even part 02 is
isomorphic to H ffiH [(4) Table 1]. 1\foreover its centre is generated by
1 and w = e1 e2 eae4 , the two projections being !(l±w). To be quite
specific let us define the embedding

g: H ~ CliffO( R4,0)

~(l) = Itw
,

1:(.) l+w
s ~ = -2- ete2'

1:( .) l+w
~ J == -2- e1 ea,

l+w
g(k) = -2- e1 e4•

Then we can define an embedding
1]: S(H) ~ Spin(4) c r4

by 1](8) = g(s)+!{l-w), where r 4 is the Clifford group [(4) 3.1] and
S(H) denotes the quaternions of norm 1. It can now be verified that the
composite homomorphism

S(H) ~ Spin(4) -+ 80(4)

defines the natural action of S(H) on R4 == H given by left multiplica
tion.t In otller words

1](s)Y1](S)-l = sy (s E S(H), y E R4). (4.2)

If we give S(H) the anti-podal involution then 1] is not compatible with
involutions, since the involution on the even part C~ is trivial.

. t We identify 1, i, j, k with the standard base et , e2 , ea, e4 in that order.
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Regarding Cliff(R4,O) as embedded in Cliff(R4,4) in the natural way
we now define the required map v by

v(s,x,y,n) = (s,x+isy,1](s)n).

From the definition of w it follows that

1](s)w = -TJ( -8)

and so TJ( -s)n = TJ( -s){-wn} = 7](s)ii = 7](s)n,

showing that v is a real map. Equation (4.2) implies that

7J(s)(x, y)n = (x+isY)7J(s)n,

showing that v is compatible with the module structures. Thus we have
established the existence of the diagram (4.1) and this completes the
proof of Lemma 3.9.

The definitions ofM(p, q) and A(p, q) given were the natural ones from
our present point of view. However, it may be worth pointing out what
they correspond to in more concrete or classical terms. To see this we
observe that if M is a real C(RP,q)-module we can define a new action [ ]

of Rp+q on M by [x,y]m = xm+iym.

Then [X,y]2m = {-llxI12 +1IYI12}m.
Moreover for the involutions we have

[x,y]m = xm+iym

= xm+iym (since y = -y)

= [x,y]m.

Thus MR is now a real module in the usual sense for the Clifford algebra
Cp,q of the quadratic form

Q( ) - ~ 2 {~2p, q = k Yi- k Xj.
1 1

It is easy to see that we can reverse the process. Thus M(p, q) can equally
well be defined as the Grothendieck group of real graded Cp,q-mooules. From
this it is not difficult to compute the groups A(p,q) on the lines of (4)
[§ 4, 5] and to see that they depend only on p-q (mod 8) [cf. also (8)].
Using the result of (4) [11.4] one can then deduce that

ex: A(p,q) ~ KRP,q(point)

is always an isomorphism. The details are left to the reader. We should
perhaps point out at this stage that our double index notation was
suggested by the work of Karoubi (8).
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The map ex can be defined more generally for principal spin bundles as
in (4) and we obtain a Thorn isomorphism theorem for spin bundles on
the lines of (4) [12.3]. We leave the formulation to the reader.

5. Relation with the index

If $ denotes the Fourier transform of a function ep then we have
~ -J!'--
cp(x) = ip( -x).

Since the symbol a(P) of an elliptic differential operator P is defined by
Fourier transforms (9) it follows that

a(P)(x, ,) = a(P)(x, -g)

where P is the operator defined by

p~ = P{J.

Here we have assumed that P acts on functions so that p~ is defined.
More generally if X is a real' differentiable manifold, Le. a differentiable
manifold with -a differentiable involution x 14- X, and if E, F are real
differ~ntiable vector bundles over X, then the spaces r(E), r(F) of
smooth sections have a real structure and for any linear operator

P: r(E) -+ f(F)

we can define P: r(E) ~ f(F) by

P(~) = PiP.
If P is an elliptic differential operator then

a(P)(x,g) = a(P)(x, -T*(')). (5.1)

It is natural to define P to be a real operator if P = P. If the involution
on X is trivial this means th·at P is a differential operator with real
coefficients with respect to real local bases of E, F. In any case it follows
from (5.1) that the symbol a{P) of a real elliptic operator gives an iso
morphism of real vector bundles

7T*E~ 7T*F,

where 7T: S(X) ~ X is the projection of the cotangent sphere bundle and
we define the involution on S(X) by

(x, e) ~ (x, -T*(g)).

Note that if T is the identity involution on X the involution on S(X) is
not the identity but is the anti-podal map on each fibre. This is the basic
reason why our KR-theory is needed here. In fact the triple

(1T*E, 7T*F, a(P))
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defines in the usual wayan element

[u(P)] E KR(B(X), S(X»)

where B(X), the unit ball bundle of S(X), has the associated real
structure.t

The kernel and cokernel of a real elliptic operator have natural real
structures. Thus the index is naturally an element of KR(point). Of
course since KR(point) -+ K(point)

is an isomorphism there is no immediate advantage in defining this
apparently refined real index. However, the situation alters if we con
sider instead a family of real elliptic operators with parameter or base
space Y. In this case a real index can be defined as an element of KR(Y)

and KR(Y) -+ K(Y)

is not in general injective.
All these matters admit a natural extension to real elliptic complexes

(9). Of particular interest is the Dolbeault complex 011 a real algebraic
manifold. This is a real elliptic complex because the holomorphic map
T: X -+ X maps the Dolbeault complex of X into the Dolbeault complex
of X. If X is such that the sheaf cohomology groups Hq(X, (0) = 0 for
q ~ 1, HO(X, (9) "" C, the index, or Euler characteristic, of the Dolbeault
complex is 1. Based on this fact one can prove the following result:

PROPOSITION. Let f: X -+ Y be a fibering by real algebraic manifolds,.
where the fibre F is 8uch that

Hq(F, to) = 0 (q ~ 1, HO(F, (0) ~ C),

then there is a homomorphism

f*: KR(X) ~ KR(Y)
which is a left inver8e of

f*: KR(Y) ~ KR(X).

The proof cannot be given here but we observe that a special case is given
by taking X = Y X F where F is a (compact) homogeneous space ofa real
algebraic linear group. For example we can take F to be a complex
quadric, as required to prove (3.13). We can also take F = SO(2n)/U(n),.
or SO(2n)jTn, the flag manifold of SO(2n). These spaces can be used to
establish the splitting principle for orthogonal bundles. It is then
significant to observe that the real space

{SO(2n)jU(n)} X ROJ2n

t All this extonds of course to integral (or pseudo-differential) operators.
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has the structure of a real vector bundle. A point of SO(2n)/U(n)
defines a complex structure of R2n and conjugate points give conjugate
structures. For n = 2 this is essentiallyt what we used in § 3 to deduce
the orthogonal periodicity from Theorem 2.1.

t In (3.1) we used the 3-sphere 8 4,0. We could just as well have used the 2
sphere. 8 3,0. This coincides with SO(4)/U(2).
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