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INTRODUCTION

These notes are based on the course of lectures ] gave at
Harvard in the fall of 1964, They constitute a self-contained account
of vector bundles and K-theory assuming only the rudiments of point-
set topology and linear algebra. Omne of the features of the treatment
is that no use is made of ordinary homology or cohomology theory. In
fact rational cohomology is defined in terms of K-theory.

The theory is taken as far as the solution of the Hopf invariant
problem and a start is made on the J-homomorphism, In addition to
the lecture notes proper two papers of mine published since 1964 have
been reproduced at the end, The first, dealing with operations, is a
natural supplement to the material in Chapter III. It provides an
alternative approach to operations which is less slick but more funda-
mental than the Grothendieck method of Chapter III and it relates
operations and filtration, Actually the lectures deal with compact
spaces not cell-complexes and so the skeleton-filtration does not figure
in the notes. The second paper provides a new approach to real K-theory

and so fills an obvious gap in the lecture notes.



CHAPTER I, Vector Bundles

§L.1. Basic definitions. We shall develop the theory of

complex vector bundles only, though much of the elementary
theory ia the same for real and symplectic bundles, Therefore,

by vector space, we shall always understand complex vector
epace unless otharwise specified.

Let X be a topological space. A family of vector spaces

over X {s a topolegical space E , together with:

(i} a continuous map p:E~X

(ii} a finite dimensional vector space structure on each
E = pnl(x) for x €X ,
compatible with the topology on E_ induced from E,

The map p is called the projection map, the space E is called
the total space of the family, the space X is called the base space
of the family, and if x€X , Ex is called the fiber over x .,

A section of & family p; E ~X is a continuous map -
8 :X ~E guchthat ps(x)=x forall x€X,

A homomorphism from one family p: E —+ X to another

family q : F ~ X is a continuous map ¢: E ~ F such that:

(i) qp=p

(ii) foreach xG X, ¢: E _-F_ isa linear map of

vector spaces,



We say that ¢ is an isomorphism if ¢ is bijective and (o'l

is continuous, If there exists an isomorphism between E and

F , we say that they are isomorphic,

Example 1. Let V be a vector space, and let E=X XV,
Pt E X be the projection onto the firat factor, E is called ihe
product family with fiber V. I F is any family which is
isomorphic to some product family, F is said to be a trivial
family,

If Y is a subspace of X, and if E is a family of vector
spaces over X with projection p, p: p-l(Y) ~ ¥ is clearly a
family over Y, We call it the restrictionof E to ¥, and
denote it by E]Y ., More generally, #f Y is any space, and
t:Y—~X is a continuous map, then we define the induced family
*(p) : £*(E) ~ Y as follows:

f*(E} is the subspace of Y X E consisting of all points
(v, e) such that f{y) = p(e), together with the obvious projaction
maps and vector space structures on tha fibers, If g: Z~Y,
then there is a natural isomorphism g*{¥(E) = (fg)*(E) given
by sending each point of the form (z,e) into the point {z, g(z), e),
where z2€ 2, e€E, If £:Y ~X iasan inclusion map, clearly
there is an isomorphism E|Y = *(E) given by sending each

e € E into the corresponding (pfle), e).



A family E of vector spaces over X is sald to be
locally trivial if every x € X posesses a neighborhood U such
that E|U is trivial, A locally trivial family will also be called
a vector bundle, A trivial family will be called a trivial bundie,
If f:Y¥Y~X, and if E is a vector bundle over X , it is easy
to see that f*(E) is a vector bundle over Y. We shall call

£*(E) the induced bundle in this case,

Example 2, Let V be a vector space, and let X be iis
associated projective space, We defins ECX XV to be the set
of all (x, v} suchthat x €%, v €V, and v lies in the line
determining x . We leave it to the reader to show that E is

actually a vector bundle,

Notice that if E is a vector bundle over X , then dim(Ex)
is a locally constant function on X , and hence is a constant on
each connected component of X, I dim(Ex) is a constant on
the whole of X, then E 15 said to have a dimension, and the
dimension of E is the common number dim(Ex) for all x.
(Caution: the dimension of E sao defined is usually different from

the dimension of E as a topological space, )

Since a vector bundle is locally trivial, any section of a
vector bundle is locally described by a vector yalued function on
the base space. H E is a vector bundle, we denote by I'(E) the

set of all sections of E, BSince the set of functions on a space



with values in a fixed vector space is itself a vector space,

we see that T(E) is a vector space in a natural way,

Suppose that V, W are vector spaces, and that
E=XxV, F=XxW are the corresponding product bundles.
Then any homomorphism ¢@: E #~ F determines & map
$: X »~ Hom(V, W) by the formula ¢x, v) = (x, #{x)v) . Moreover,
if wa give Hom{V, W) its usual topology, then ¢ is continuous;
conversely, any such continuous map ¢: X -~ Hom(V, W) determines
a homomorphism ¢: E ~F ., (This is most easily seen by taking
bases {ei} and {fi} for V and W respeciively, Then each

@ (x) is represented by a mairix (x)i i where
Sxley = ) @), A, .
J

The continuity of either @ or & is equivalent to the continnity

of the functions @, ..}
i,

Let Iso(V,W) cHom(V, W} be the subspace of all
isomorphisms between V and W, Clearly, Iso{V, W) isan
open set in Hom(V, W) . Further, the inverse map T ~ 71
gives us a continuous map IsofV,W) - Iso(W,V), Suppose that
©:E -~ F is such that Pt Ex -+ Fx ig an isomorphism for all
x €X . This is equivalent to the statement that $(X) S lso(V, W) .
The mapi* @(x)-1 defines W¥: X ~ Iso{W, V}, which is continuous,

Thus the corresponding map ¥ : F ~ E is continnous, Thus



9:E—F is an isomorphism if and only if it is bijective or,
equivalently, ¢ is an isomorphism if and only if each @ is

an isomorphism, Further, since Iso{V,W) is open in Hom(V,W),
we see that for any homomorphism ¢, the set of those points

x €X for which @, is an isomorphism form an open subset of

X, All of these assertions are local in nature, and therefore

are valid for vector bundles as well as for trivial families,

Remark: The finite dimensionality of V is basic to the
previous argument, If one wants to consider infinite dimensional
vector bundles, then one must distinguish between the different

operator topologies on Hom (V,W).
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$1, 2. Operations on vector bundles, Natural operations

on vector spaces, such as direct sum and tensor product, can

be extended to vector bundles, The only troublescome question

is how one should fopologize the resulting spaces, We shall

give a general method for extending operations from vector spaces

to vector bundles which will handle 21l of these problems uniformly,

Let T be a functor which carries finite dirmnensional
vector spaces into finite dimensional vector spaces, For
simplicity, we assume that T is a covariant functor of one
variable, Thus, to every vector space V , we have an associated
vector space T(V), We shall say that T is a continuous
functor if for all V and W, the map T : Hom(V, W) = Hom(T(V)},T(W))

is continuous,

If E is a2 vector bundle, we define the set T(E} to be the

union

U ey .
xEX

and, if @:E~F, we define T(p): T(E) -~ T(F)
by the maps T@Q:T(Ex) = T(F,) . What we must show is that T(E)
has a natural topology, and that, in this topology, T{p) is

continucus,

We begin by defining T(E) in the case that E is a product

bundle, If E = X xV, we define T(E) tobe X x T(V) in the



product topology, Suppose that F =X x W, and that

@:E~F is a homomorphism. Let &:X — Hom(V, W) be

the corresponding map, Since, by hypothesis, T : Hom(V,W)

- Hom(T(V), T(W)) is continuous, T&: X - Hom(T(V), T(W}) is
continuous, Thus T{p): X x T(V) X x T(W) iz also continuous,
If ¢ is an isomorphism, then T¢ will be an isomorphism since

it is continuous and an isomorphism on each fiber,

Now suppose that E is trivial, but has no preferred
product structure, Choose an isomorphism «:E ~+X xV , and
topologize T(E) by requiring T(e) : T(E}) ~X x T(V} tobe a
homeomorphism, H B:E - X x W ig any other isomorphism,
by letting ¢ = ﬂa-l ahove, we see that T{a) and T{B) induce
the same topology on T(E), since T{yp) = 'I'(ﬁ)'l‘(a)"l is a
hemeomorphism, Thus, the topology on E does not depend on
the choice of &, Further, if Y c X, it is clear that the topology
on T{E)|Y is the same as that on T(E|Y), Finally, if 9t E~F
is a homomorphism of trivial bundles, we see that T(¢) : T(E) —~ T(F)

is continuous, and therefore is a homomorphism,

Now suppose that E is any vector bundle, Then if
U <X is such that E|U is trivial, we topologize T(E|U} as
above, We topologize T(E} by taking for the open sets, those
subsets V c T{E) such that V N{T(E}|U) is openin T(E|U)

for all open U< X for which E|U is trivial, The reader can
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now easily verify that if Y c X, the topology on T(E|Y}
is the same as that on T(E)|Y, and that, if @: E ~F is

any homomorphism, T{¢) : T(E) ~ T{F) is also a homomorphism,

If f:¥~X isa continuous mapand E is a vector
bundle over X then, for any continuous functor T , we have

a natural isomorphism
f*T(E) & T*(E) .

The case when T has several variables both covariant
and coniravariant, proceeds similarly, Therefore we can define

for vector bundles E , F corresponding bundles:

(i} E@&F , their direct sum
{i1) E®F , their tensor product
(iii)  Hom(E,F)
(iv). E*, the dual bundle of E
{v) ki(E) , where Ai is the i exterior power,

We alsc obtain natural isomorphisms

() E@eF~ FQE
(1) EQFE F@QE
(iii) Ee(Fer"MS(Eer)o(EsF"
(iv) Hom(E,F) & E* @F

v MEer) = & EerwE)y .
itj=k
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Finglly, notice that sections of Hom (E, F} correspond
ina I ~1 fashion with homomorphisams ¢:E~F, We
therefore define HOM(E,F) to be the vector space of all
homomorphisms from E to F , and meake the identification

HOM(E, r) = T'(Hom(E,F)) ,
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$1,3. Sub-bundles and quotient bundles, Let E be

a vector bundle, A sub-bundle of E is a subset of E which
is a bundle in the induced structure,

A homomorphism @3 F ~E is called a monomorphism
{respectively epimorphism) if each O F,- Ex isa

monomorphism (respectively epimorphism), Notice that
@o: F - E ig a monomorphism if and only if tp* s E* «F* s
an epimorphism, ¥ ¥ is a sub-bundle of £, and if ¢:F ~E

is the inclusion map, then ¢ is a monomorphism,

LEMMA L1, 3,1, K ¢o:F-~FE isa monomorphism, then

©(F) is a sub-bundle of E, and @: F ~ ¢(F) is an isomorphism,

Proof: p:F = ¢(F) is a bijection, so if ¢(F) is a sub-
bundle, ¢ is an isomorphism, Thus we need only show that

¢{F} is a sub-bundle,

The problem is local, so it suffices to consider the case
wher E and F are product bundles, Let E=X xV =and
lat x €X; choose Wx cV to be a subspace complementary to
(p(Fx) . G =X xW_ isa sub-bundle of E,
Pefine 6: F@® G ~E by 6(a @b) = ¢{a) + i(b}, where i: G- E
is the inclusion, By construction, 9x is an isomorphism, Thus,
there exists an open neighborhood U of x suchthat 8]U is an
isomorphism, F is a sub-bundle of F 8 G, so O(F) = ¢F)

is a sub-bundle of 8(F @G)=E on U,
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Notice that in cur argument, we have shown more than
we have stated, We have shown that §f ¢ F ~E , then the
set of points for which P is & monomorphism form an open
set, Also, we have shown that, locally, a sub-bundle is a
direct summand, This second fact allows us to define quotient

bundlea,

DEFINITION L 3,1, If F is a sub-bundle of E , the
quotient bundle E/F is the union of all the vector spaces E x/Fx

given the quotient topology.

Since ¥ is locally a direct summand in E , we see that
E/F is locally trivial, and thus is a bundle, This justifies the
terminology.

If o+ F ~E {s an arbitrary homomorphism, the function
dimension{kernel (tpx)) need not be constant, or even locally

constant,

DEFINITION 1,3,2, ¢:F —~E is said to be a strict

homomovrphism if dimension(kernel(qox)) is locally consiant,

PROPOSITION 1.3.2, ¥ ¢:F ~E jg strict, then;

(i) kernel{y)= U kernel{p )  is a sub-bundie of F

(ii} image (@} = :l‘,l imge(lpx) is a sub-bundle of E

(iii) cokernel{g) = U cokernel((ox) is a bundle in the
X

quotient structure,
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Proof: Notice that (ii) implies (iii) . We first prove
{ii). The problem is local, so we can agsume F =X %V for
some V, Given x €X , we choose Wx €V complementary
to ker(tpx) in V, Put G=X xwx ; then ¢ induces, by
composition with the inclusion, a homomorphism $ : G ~E ,
such that § . is a monomorphism, Thus, $ is a monomorphism
in some neighborhood U of x. Therefore, § (G)[{U isa
sub~bundle of E|U. However, 9(G)c ¢(F), and since dim(‘,‘o(Fy))
is constant for all y , and dim(ﬁ((}‘_) = dim($ ‘Gx” = dim(tp(Fx))
= dirn(qo(Fy)) forall yeUu, $(G)u - olF)[U., Thus @(F) is
a sub-bundle of E,

Finally, we must prove (i), Clearly, ¢* : E* =~F* i,

strict, Since F* -~ coker(¢*) is an epimorphism, (cokex{y*))*

~F** is a monomorphism., However, for each x we have a

natural commautative diagram

ker (@) ———>F,

(cokor gt)F —>F"?

in which the vertical arrows are isomorphisms, Thus

kex{p) = (coker(¢* ))* and so, by {1, 3,1), is a sub-bundle of F,

Again, we have proved something more than we have stated,

Our argument shows that for any x € X, dim tpx(Fx) < dim ‘py(Fy)
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for all y €U, U some neighborhood of x . Thus, vank

{gox) is an upper semi-continuous function of x .

DEFINITION L 3,3, A projection operator P: E ~E

is a hemomorphism such that PPeP.

Notice that rank (P ) + rank(l - P ) =dim E_ s0
that, since both rank (Px) ~and rank (1 - Px) are upper semi~
continuous functions of x , they are locally constant. Thus
both P and 1 - P are strict homomorphisms, Since ker(P)
={l=- P)E, E isthe direct sum of the two sub-bundles PE
and {1 - P)E, Thus any projection operator P ; E = E determines

a direct sum decomposition E = (PE) @ ({1 - P)E) .

We now consider metrics on vector bundles. We define
a functor Herm which assigns to each vector space V the
vector space Herm(V) of all Hermitian forms on V. By
the techniques of §1,2, this sllows us to define a vector bundle

Hermi{E)} for every bundle E,

DEFINITION 1.3,4, A metric ona bundle E is any
section h 3 X » Herm(E) such that h(x) is positive definite
for all x & X, A bundle with a specified metric is called a

Hermitian bundie,

Suppose that E is a bundle, F is a sub<bundle of E ,
and that h is a Hermitian metric on E, Then for each x €X
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we consider the orthogonal projection Px : Ex ~F, defined
by the metric. This defines a map P : E - F which we shall
now check is continuous, The problem being local we may
assume F is trivial, so that we have sections fl' LI In

of F giving a basis in each fiber. Then for v €F_ we have

P (v) = ) h(v, (i) .
i
Since h is continuous this implies that P is continuous, Thus
L

P is a projection operator on E, If F_ is the subspace of

1 N
Ex. which is orthogonal to Fx under h , we see that F = l:)ch
is the kernel of P, and thus is a sub=bundle of E, and that

L

EZSF@®F . Thus, a metric provides any sub-bundle with a

definite complementary sub-bundle,

Remark: So far, most of our arguments have been of
a very general nature, and we could have replaced "continuous"
with "algebraic", "differentiable”, "analytic”, ete, without any

trouble, In the next section, our arguments become less general,
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§ 1,4, Vector bundles on compact spaces, In order to

proceed further, we must make some restriction on the sort of base
spaces which we consider, We shall assume from now on that our

base spaces are compact Hausdorfi, We leave it to the reader to notice

which results hold for more generzl base gpaces,

Recall that if f : X -V is a continuous vector-valued function,

the support of £ (written supp. f ) is the closure of f—l('V - {o}).

We need the following resulis from point set topology. We

state them in vector forms which are clearly equivalent to the usual forms

Tietze Extension Theorem, Let X be a normal space, Y cX

2 closed subspace, V a real vector space, and f: Y ~V a coniinuous

map. Then there exists a continuous map g : X -V such that g|y =1,

Existence of Partitions of Unity, Let X be a compact

Hausdorff space, {Ui} a finite open covering, VThen there exist

continuous mape §{; : X =~ R such that;
{i) ii(x) >0 all x€X

{ii) sui)p (fi.) c Ui

{iii) E fi(x) =1 all xe€X ,
i

Such a cellection {fi} is calied a partition of unity,
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We first give a bundle form of the Tietze extension theorem.

LEMMA L 4.1, Let X be compact Hansdorff, Y<X a

closed subspace, and E a bundle over X . Then any section

s8:Y ~E|Y canbe extended to X .

Proof: Let s €IE|Y). Since, locally, s is a vector-
valued function, we can apply the Tietze extension theorem to show that
for each x €X , there exists an open set U containing x and
t €T (E|U} suchthat t{UNY =s|UNY, Since X is compact, we
can find a finite subcover {Ua} by such open sets, Let ta GI‘(EIUQ)
be the corresponding sections and let {pa} be a partition of unity

with supp (pa) CU, . Wedefine 5, €I'(E) by

S &) = pylx)t (x) if x€U,

= 0 otherwise .

Then %5 - is a section of E and its restrictionto Y is clearly s.

LEMMA 1.4.2. Let Y be a closed subspace of a compact

Hausdorff space X, and let E,F be two vector bundles over X .

I f:E|lY — F|Y isan isomorphism, then there exists an opet set U

containing Y and an extension f: E|u—> Fl U which is an isomorphism
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Proof: f is a section of Hom(E|Y, F|Y), and thus,
extends to a section of Hom(E, F), Let U be the set of those
points for which this map is an isomorphism, Then U is open and

containg Y ,

LEMMA 1,4,3, Let Y bea compact Hausdorff space,

f,:Y~X (0<t<1) ahomotopy and E a vector bundle over X,
Then

& ~ ¥

foE = fI E ,

Proof: IfI denotes the unit intervallet f: Y x I =X be the
homotopy, so that f(y, t) = t(Y)’ andlet 7: Y xI1~Y denote
the projection. Now apply (L. 4. 2) to the bundles #*E, “*ﬁEE and
the subspace ¥ x {t} of ¥ xI , on which the re is an obvious iso-
morphism s, By the compaciness of Y we deduce that f*E and
ﬁ*f’:E are isomorphic in some strip Y x §t where §t denotes a
neighborhood of {t} in I, Hence the isomorphism class of f’:E
is a locally constant function of ¢, Since 1 is connected this implies

it is constant, whence

[}

t* B
0

We shall use Vect{X) to denote the set of isomorphism classes
of vector bundles on X, and Vectn(x) to denote the subset of Vect(X)

given by bundies of dimension n, Veci{X) is an abelian semi-group
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under the operation @ , In Vect (X) we have one maturally

distinguished element ~ the class af the trivial bundle of dimension n.,

LEMMA 1, 4.4,

{1) If £:X - Y isa homotopy equivalence,

£% : Vect(Y) -» Vect(X) is bijective ,

(2) If X is contractible, every bundie over X is

trivial and Vect(X) is isomorphic to the non-

nepative integers ,

LEMMA 1L 4.5, K E is a bundle over X x I, and

# :X xI-X x{0} is the projection, E is isomorphic to **{E|X x{o}).

Both of these lemmas are immediate consequences of (L 4, 3) .

Suppose now Y is closed in X , E is a vector bundle over
X and @:E|Y =Y xV is an isomorphism, We referto a asa

trivialization of E over Y, Let # ¢ ¥ XV —+V denote the projection

and define an equivalence relation on E|Y by
e el a==> wofe) = ryle!) .

We extend this by the identity on E|X - Y and we let E/x denote the
quotient space of E given by this equivalence relation, It haz a
natural siructure of a family of vector gpaces over X/Y . We assert

that E/q is in fact a vector bundle. To see this we have only to verify
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the local trivality at the base point Y/Y of X/Y. Now by (L 4.2)
we can extend « to an isomorphism G:E|U-U xV for some

open set U containing Y, Then @ induces an isomorphism

iy

E[U)/e £ W/Y)xV

which establishes the local triviality of Efe .

Suppose ¢ , & are homotopic trivializations of E over Y,
This means that we have a trivialization # of E xI over Y xIcX x1I
inducing @, and @; atthe two end points of I. Let f: XIYrxl
=+ (X x I}/{Y x I) be the natural map. Then f* {E x I/g)} ig a bundle on
{X/¥) x I whose restriction to (X/Y) x {i} is Efai (i =0, 1). Hence,

by (L. 4, 3),
E/oro & E/al .
To summarize we have established

LEMMA 1,4,7. A trivialization & of a bundle E over

Y ¢ X defines a bundle E/o¢ over X/Y. The isomorphism class

of E/a depends only on the homotopy class of @ «

Using this we shall now prove

LEMMA 1,4.8, Let YcX bea closed contractible subspace.

Then f:X -=X/Y induces a bijection f* : Vect (X/Y)} » Vect(X) .
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Proof: Let E be a bundle on X thenby {L4,4) E|Y is
trivial, Thus trivializations i E|Y =Y x V exist, Moreover,
two such trivializations differ by an automerphism of Y xV , i, e,,
bya map Y = GL{(V), But GL(V) = GL(n,C)} is connected and V
is contractible, Thus ¢ is unique up to homotopy and so the
isomorphism class of E[a is unigquely determined by that of E,

Thus we have constructed a map
Vect (X) —» Vect(X/Y)

and this is clearly a two-gided inverse for £* . Hence i 1s bijective

ag asserted.

Vector bundles are frequently constructed by a glueing or

clutching construction which we shall now describe, Let
X=X,uX,, A=XNX, ,

a1l the spaces being compact, Assume that Ei is a vector bundle
over X, and that ¢:E,|A ~E,|A is an isomorphism, Then we
dafine the vector bundle El quz on X as follows, As a topolegical
space El U ® E, is the quotient of the disjoint sum E, + ]EI2 by the
equivalence relation which identifies e, GEIIA with ¢{e;) EEzlA .
Identifying X with the corresponding quotient of Xl tX, we obtain
a natural projection p :El U, E, -+X, and pﬁl(x) has a natural

©
vector space siructure. It remains to show that El U o EZ is locally
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trivial, Since E; U, Ey[X - A = (B[X; ~A)} + (E;|X, ~ A) the
local triviality at points x £ A follows from that of E, and E,.
Therefore, let a €A and let Vl be a closed neighborhood of a

in }Cl over which El iz trivial, 20 that we have an isomorphism
& tE [V, -V, xT ,
Restricting to A we get an isomorphism
A
8 E V. NA~(V, nA) xa |,
| S L | 1
A
Let 03 B,V nA ~ (v, na} x T

be the isomorphism corresponding to OIA under ¢ ., By (1.4,2) this

can be extended to an isomorphism

8, t |V, -V, x@®

where V, is a neighborhood of a in X, . The pair 91, 8, then

defines in an cbvious way an isomorphism

8, Uspez’ELU¢Ez|v1UVz“’(v1UVz) x ¢,

establishing the local triviality of E, U o E;, o

Ejementary properties of this construction are the followings
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{i) I E is a bundle over X and E; = EIXi, then
the identity defines an isomorphism I, : E,|A ~E,|A, and

E.U E,=E,.
171, 2

() X B :E ~E,

; are isomorphisms on X, and QD’ﬁl = B0,

then
[ 1
(11i) ¥ (E;, ¢ and (E;, ¢’} are two "clutching data" on the
Xi,then
~~ t
(E )ea(E E’=E9E UE@E
2 2‘ 1 ltp@cp' A
(B, U, Ep) @ (B] EYSE ®E U E,®E, ,
1Y% E2 Up E2 1°% pg 202
# *

Moreover, we also have

LEMMA 1, 4.6, The isomorphism class of El U'p Ez depends

only on the homotopy class of the isomorphism ¢ : El IA -'EZIA .

Proof: A homotopy of isomorphisms E,|A ~E, |A means

an isomorphism

@:w*EJA x I~ n*E,[A X1,
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where I is the unit intervaland v : X x [ -~ X is the projection,

Let

f1Xe=>Xyxl

t

be defined by £, (x} = x x {t} and dencte by
@ : Ej[A>E,fA
the isomorphism induced from & by f, . Then

= f:(w*El U m*E,) .

El U@th ®

Since fo and fl are homotopic it follows from {1, 4, 3} that

® A

as required,

Remeark: The "collapsing” and "clutching' constructions

for bundles (on X/Y and Xl UX, respectively) are both special
cases of a general process of forming bundles over quotient spaces

We leave it as an exercise to the reader fo give a precise general
formulation.
We shall denote by [X,Y] the set of homotopy classes of

maps X =+Y,
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LEMMA 1.4.9, FEor any X, there is a natural

isomorphism Vect, (5(X)) = [X,GL{n,C)} .

Proof: Write S(X) as CT(X) UG (X}, where c'(x)
= [0, 1/2] xx/{0} xX, Cc"(X) =[1/2, 1] x X/{1} x X, Then
C+(X) RC(X)=X, I E is any n-dimensional bundle over 5(X),
E|ct(X) and E[G"(X) are trivial, Let o : EJcHX) Sci(x) x v
be such isomorphisms, Then (& X} [X)1:X xV XXV isa

bundle map, and thus defines a map « of X into GL{n,€} = Iso{V),

Since both C+(X) and C(X) are contractible, the homotopy classes

of both a+ and ¢ are wetl defined, and thus the homotopy class
of & is well defined, Thus we have a natural map 9 ; Vectn(S(x)}

-+ [X, GL{n, @)}, The cluiching construction on the other hand

defines by (L. 4, 6) a map
o [X, GL{n,C)] —> Vect s(x)) .

K is clear that & and ¢ are inverses of sach other and so are
bijections,

We have just seen that Vectn(S(x)) has a homotopy theoretic
interpretation, We now give a similar interpretation to Vectn(x) .

First we must establish some simple facts about quotient bundles,

LEMMA 14,10, Let E be any bundle over X . Then

there exists a (Hermitian) metricon E,
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Proof: A metric on a vector space V defines a metric
on the product bundle X x V, Hence metrics exist on trivial
bundles, Let {U(r} be a finite open covering of X such that
E| U, is trivial and let ha be a metric for Ean + Let {pa}

be a partition of unity with supp. P, © Ua and define

kcc(x) = pa(x) ha(x) for x G:Ua
=0 otherwise,

Then ka is a section of Herm(E) and is positive semi-~definite,
Buf for any x €X there exists. a such that pa(x) > Q0 (since

E Py © 1) andso %€ Ut! . Hence, for this «, ka(x) is positive
definite. Hence X « kﬂ(x) is positive definite for gll x €X and

80 k=Eka is a2 metric for E,

A sequence of vector bundle homomorphisins

—_— F e B oo s

is called exact if for each x €X the sequence of vector space

homomorphisms

—>E —>F, —>"

in exact,

' 1 )]
COROLLARY 1.4.1l. Suppose that ¢ —> E' - E . €. 5E" . ¢

i1 an exact sequence of bundles over X. T_hen there exists an

isomorphism E = E'raE",
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~ L
Proof: Give E a metric. Ther EX E @ (E')

However, (E')J' = E",
A subspace V c I(E) is said to be ample if

e: X XxV—>rE

is a surjection, where ¢{x, s} =s{x).

LEMMA 1, 4,12, ¥ E is any bundle over a compact

Hausdorff space X, then T'(E} contains a finite dimensional

ample subspace,

Proof: Let {Ua} be a finite open covering of X so that
E| U, is trivial for each a , and let {pa} be a partition of unity
with supp p,c U, . Since EIUa is trivial we can find a finite-
dimensional ample subspace V, c I‘(EIUa) . Now define
8,1V, —> I'(E)
by
® va(x} = p“(x) . va(x) if x€U,

= otherwise .

The @ o define a homomeorphism

e TTVCE—-> ()
o

and the image of @ is a finite dimensional subspace of TI(E) ;

in fact, for each x €X there exists « with pa(x) >0 and
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and so the map
e ot(va) —> B
is surjective,

COROLLARY 1,4,13, I E is any bundle, there exisis

an epimorphism ¢: X x c™~> E for some integer m,

COROLLARY 1.4,14. If E is any bundle, there exists a

bundle F such that E® F is trivial,

We are now in a position to prove the existence of a
homotopy theoretic definition for Vectn(x) » We first introduce
Grassmann manifolds, If V is any vector space, and n any
integer, the set Gn(V) is the set of all subspaces of V of
codimension n. ¥ V is given some Hermitian metric, each
subspace of V determines a projection operator, This defines
a map Gn(V) ~ End(V) , where End(V) is the set of endomorphisms

of V, We give Gn(V) the topology induced by this map .

Suppose that E is a bundle over a space X, V isa
vector space, and ¢: X XV - E is an epimorphiam, If we map
X into G n(v} by assigining to x the subspace ker(qox) , this
map is continuous for any metric on V {here n =dim(E)). We

call the map X -*Gn(‘V] the map induced by ¢ .
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Let V be a vector space, and let F ¢ Gn(V) XV be
the sub-~bundle consisting of all points {g, v) suchthat v€g,
Then, if E = (Gn(V} x V)/F is the quotient bundle, E is called

the classifying bundle over Gn(V) .

Notice that if E' is a bundle over X, and ¢ : X xV - E!
is an epimorphism, thenif f: X = Gn(V) is the map induced by
®, we have E' = *(E), where E is the classifying bundle,

Suppose that h is a metricon V, We denote by G (V,)
the set G _(V) with the topology induced by h, If h' is another
metric on V, then the eplmorphism Gn{vh) XV ~E (where E
is the classifying bundie) induces the identity map Gn(vh) -'Gn(Vh,)
Thus the identity map is continwous, Thus, the topology on
Gn{V ) does not depend on the metric,

Now consider the natural projections

m m-~1

C" e

given by (zl. e, zm) -~ (zl, “ee, zm-l) + These induce

continvous maps

-1
tmey P GplCT T} —> G (CTY)

I E(rn) denotes the classifying bundle over Gn(Cm) it is
immediate that

‘;-I(Em) = E(m-l) *
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THEOREM 1,4,15, The map

lir%‘_;. iX, G (C™)] —> Vect_(x)

I
induced by f - {¥ (E(m)) for £:X -~ G, (C ), is an isomorphism

for all compact Hausdorff spaces X,

Proof: We shall construct an inverse map., If E iz a
bundle over X , there exists ({by (l,4.13)) an epimorphism
@:XXC™ E, Let £:X =G (C™) be the map induced by ¢ .

If we can show that the homotopy class of £ (in Gn(Vm') for m!
sufficiently large does not depend on the choice of ¢ , then we
construct our inverse map Vect (X) - %‘4 [x, Gn(Vm)] by
sending E o the homotopy class of £,

Suppose that wiXx C™ ~ E are two epimorphisms
{i=0,1), Let g;:X~ Gn(Cmi) be the map induced by ¢ .
Define $, : X x C™0 xc™l > E by bylx,vys vl) = (1 - t} gylx, V)

+ tlpl(x, v)) . This is an epimorphism, Let f, : X -'Gn(Cmo @ c™)
be the map induced by ¥, . If we identify c™0 @ ™1 with

cmotmiy by (zl' see, zmo) @ (“l’ 4ae, u"“l) — (zl,...zmd...,uml)
then

fo = Jo8g » fi=Thg

where j; : Gn(c“‘i) ad Gn(Cm'o+m1) is the natural inc¢lusion and
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T : G (€M) — g (c™0T™Y)
is the map induced by a permnutation of coordinates in Cm0+m1 *

and so is homotopic to the identity. Hence jlg1 is homotopic

to fl and hence to jogo as required,

Remark, If is possible to interpret vector bundles as
modules in the following way, Let C{X} denote the ring of
continuous complex-valued functions on X, I E is a vector bundle
over X thern T (E)} is a C(X)} - module under point~wise

multiplication, i, e,,
fs{x} = flx)s(x) fec(x), se I(xs) .
Moreover a homomorphism ¢ : E - F determines a C(X) ~module
homomorphism
Te: DE)—— T(F) .
Thus T is a functor from the category U of vecior bundles
over X to the category M of C(X}-modules, T E is trivial

of dimension n , then I'(E} is free of rank n. I F is alsg

trivial then

T : HOM(E, F)-—> Homg x( T(E), T (F))

is bijective. In fact, choosing isomorphisms E< X x V ,
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F 5 X xW we have

HOM(E, F) = Hom.(V, W)X 2 C(X) ® Hom(V, W)

1

Homc(x)( T(E), () .

Thus ¥ induces an equivalence between the category T of
trivial vector bundles to the category 3 of free C{X)-modules
of finite rank, Let Proj {J) denote the sub~category of U
whose objects are images of projection ocperators in I , and
let Proj (F) ol be defined similarly, Then it follows at once

that I' induces an equivalence of categories

Proj (¥ ) —> Proj (3) .

But, by (}.4.14), Proj (T) =V . By definition Proj (F) is the
category of finitely-generated projective C(X)-modules, Thus

we have established the following!

PROPOSITION, I' induces an equivalence bstween the

vategory of vector bundles over X and the category of finitely~

pencrated projective modules over C(X) .
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§1.5, Additional structures, In linear algebra one frequently

considers vector spaces with some additional structure, and we
can do the same for vector bundies, For example we have already
discussed hermitian metrics. The next most obvious example is to
consider non-degenerate bilinear forms, Thus if V isa vector
bundle a non-degenerate bilinear form on ¥ means an element T
of HOM(V @V, 1) which induces & non-degenerate element of
Hom(V_ @ Vs C) for all x€X., Equivalenily T may be
regarded as an element of 150(V,V¥) . The vector bundle V

together with this isomorphism T will be called 2 self-dual bundie .

1f T is symmetric, fe., if Ty is symmetric for all

x €X , we shall call (v, T) an oxthogonal bundle, Iif T is skew=
symmetric, ij,e., i Ty is skew-symmetric for all x €X, we

shall call (V, T} a symplectic bundle,

Alternatively we may consider pairs {V, T} with ]

T € IS0V, 7)), where ¥V denoctes the complex conj ugate bundle
of V (obtained by applying the ngomplex conjugate functor” to V).

Such a (V, T) may be called a self-conjugate pundle. The

;
tsomorphism T may also be thought of ag an anti-linear isomorphism
2 :

v -V, Assuch wemay form £ ., 1 T° = identity
we may call (V, T) a real bundle, In fact the subspace weV
consisting of all ¥ €V with Tv =v has the structure of 2 veal

vector bundle and V may be identified with W @ C , the
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complexification of W, If ‘I‘z = -jidentity then we may call (V,T)

a quaternion bundle, In fact, we can define a quaternion vector

space structure on each V_ by putting ilv) = Tv

the quaternions are generated over R by i, j§ with ij = -ji, i“2 =jz= =i
Now if V has a hermitian metric h then this gives an

lvomorphism ¥V «V* and hence turns a self-conjugate bundle into

n #elf-dual one, We leave it as an exercise to the reader to examine

in detail the symmetricf and skew-symmetric cases and to show

ihat, up to homotopy, the notions of self-conjugate, orthogonal,

nymplectic, are essentially equivalent to self-dual, real, guaternion.

‘I'hus we may plck which ever alternative is more convenient at any

pnrticular stage, For example, the result of the preceeding sections

exlend immediately to real and quaternion vector bundles although the

rxlension of (1. 4, 3} for example to orthogonal or sympletic bundles is

nol g0 immediate, On the other hand the properties of tensor producis

nt¢ more conveniently dealt with in the framework of bilinear forms,

Thug the tensor product of (V,T) and (W,S) is (VOW, T®S) and the

Aymmetry properties of T@S follow at once from those of T and

' . Note in particular that the tensor product of two sympletic

hmimndles is orthogonal.

' ‘The point is that GL(n, R) and O(n, C) have the same maximal compact

aubgroup O(n,R). Similar remarks apply in the skew case.
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A self-conjugate bundle is a special case of a much more
general notion, Let F, G be two continuous functors on vector
spaces, Thenbyan F -G bundle we will mean a pair (V, T)
where V is a vector bundle and TE€ISO{F(V), G(V)}. Obviously
a self-conjugate bundle arises by taking F = identily, G = *,
Another example of some importance is to take F and G tio be

multiplication by a fixed integer m, i.e,,

FiV) = G(V) =V eve.. gV (m times) .

Thus an m ~m bundle (or more briefly an m-bundle} i{s a pair
{V, T) where T €Aut(mV), The m-bundle (V, T} is trivial if
there exists § €Aut{V} sothat T=mS.

In generai for F =G bundles the analogue of (1. 4, 3} does
not hold, i, e, , homotopy does not imply isomorphism, Thus the
good notion of equivalence must incorporate homotopy, For
exampie, two m-bundles (Vo, TO) and (V,, T)) will be called

equivalent if there is an m-bundle (W, 5} on X X1 so that

v, T) = (W, 8)|x x {i}, i=0,1,

Remark: An m-bundle over K should be thought of as

a "mod m vector bundle" over S5{X).
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§ 1.6, G-bundles over G-spaces. Suppose that G is a

topological group. Then by a G-space we mean a topological space
X together with a given continucus actionof G on X, f.e,, G
acts on X and the map G x X ~X is continucus. A G-map
hetween (i-spaces is a map commuting with the action of G .

A G-space E is a G-vector bundle over the G-space X if

{i) E is a vector bundle over X,
{ii) the projection E ~X is a G-map,
(i) for each g €G the map E - Eg(x) is a vector

space homomorphiasm,

If G is the group of one element then of course every space
is a G-space and every vector bundle is a G-vector bundle, At
the other extreme if X is a point then X is a G-space forall G
and a G-vector bundle over X is just a (finite-dimensional)
ropresentation space of G, Thus G-vector bundles form a natural
grneralization including both ordinary vector bundles and G-modules,
Much of the theory of vecior bundles over compact spacea generalizes
o G-vector bundles provided G is also compact. This however,
presupposes the basic facts about representations of compact groups,
For the present, therefore we restrict ourselves to finite groups

where no questions of analysis are involved.

There are two extreme kinds of G-space:
(i) X is a free G-space if g #1 => g{x) #x,
{i1) X is a trivial G-space if g(x) =x forall x€X, g€G,
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We shall examine the structure of G-wector bundles in these two

extreme cases,

Suppose then that X is a free G-space and let X/G be
the orbit space, Then T3 X ~X/G is a finite covering mAaP.
Let E bea G-vector bundle over ¥. Then E 18 pnecessarily a
free G-space, The orbit space E/G has a natural vector bundle
structure over X/G ¢ in fact E/G » X/G is locally isomorphic to

E =X and hence the local triviality of E jmplies that of E/G.

Conversely, suppose V is a vector bundle over %/G. Then T *v
is a G-vector bundle over X ; in fact, © Ay X xV and G acts on '_
x x v by gha v) = (@kh v). 1t is clear that E - E/G and

v - 7 ¥V are inverse functors. Thus we have

PROPOSITION L. 6,1, If ¥ 12 G-free G-yector bundlos

-___._——l—_—-

over X correspond bijectively to vector pundles over X/G _b__y

E-~E/G.

Before discussing trivial G-spaces 1et us recail the basic
fact about representations of finite groups, namely that there exists
a finite set Vi, **°s Vk of irreducible representations of G 80
that any representation v of G is jgomorphic to & unique direct
sum Eﬁgl nivi . Now for any two G-modules (3. 00 s representation ]
spaces) V, W we can define the vector space HomG(V,W) of |

G-~homomorphisms. Then we have
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-
B
L 5

HomG (Vi, Vj)

L b}

Hence for any V it follows that the natural map
z v;® HomG(Vi, V) —>V

ig 2 G- isomorphism, In this form we can extend the result to
G-bundles over a trivial G-space, In fact, if E is any G-bundle
over the trivial G-space X we can define the homo-

morphism AvE€END E by

Av(e) = ~lu Y gle) e GE
| gEG

where [G| denotes the order of G (This depends on the fact
that, X being G-trivial, each g € G defines an endomorphism
of E}. Itis immediate that Av is a projection operator for E
and so its image, the invariant subspace of E , is a vector bundle,
We denote this by EC .and call it the invariant sub-bundle of E .
Thus if E, F are two G-bundles then Hom(E, F) = (Hom(E, F))%
is again a vector bundle, In particular taking E to be the trivial

bundle Vi = X x'Vi with its natural G-action we can consider

the natural bundie map

i v, ® Hom (Wi, F} —>F .

i=1
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We have already observed that for a G-module F this is &
G-isomorphism. In other words for any G-bundle F over X
this is 2 G -isomorphism for all x€X . Hence it is an s omorphism

of G-bundies. Thus every G-bundle F is jsomorphic toa

G-bundle of the form zvi e E; where E; is a vector pundle

with trivial G-action. Moreovel the Ei are unique UpP to 1someorphisy

In fact we have

k
Homg(Vi» F) = T Homg(Ve Vi eE))

Thus we have established

PROPOSITION 1. 6. 24 Let X bea trivial G-5pace,

.

Vo, eevs Vi 2 complete set of irreducible G-modules, v, =X %V, i
1 , complete seb o= -modules, i i |
the corresgonding G-bundles, Thus every C-bundle  over X
;s isomorphic 0 2 direct surn EE v. @ E, where the E. are

"'E""_......-—-——"'""'——’_— j=1 % j ———— § —

vector pundles with trivial G-action. Moreavel the Ei aye unigue 1

up to jeomorphisnl and are given by E, = HomG(Vi, F).

We return now £0 the case of 2 general (compact) G-space

X and we ghall show how to extend the results of §1,4 to G -bundl d
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Observe first that, if E is a G-bundle, G acts naturally on

T(E) by
(gs)x) = gls(g™ () s €T(E) .
A section s is invariant if gs =g forall g €G, The set of

all invariant sections forms a subspace I‘(E)G of T'(E). The

averaging operator

.
AT e L8

tlefines as usual a homomorphism TE) - I‘(E}G which is the

identity on I‘(E)G .

LEMMA 1,6,3, Let X be a compact G-space Y € X

a closed sub G-space (i.e,, invariant by G)andlet E bea

ti~bundle over X . Then any invariant section s : Y ~ E|Y extends

lv an invariant section over X.

Proof: By {l.4.1} we can extend s to some section t of
Ii over X, Then Av(t) is an invariant section of E over X,

while over Y we have
Av(t) = Av(s) = s

winve g is invariant, Thus Av(t) is the required extension.
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1f E, F aretwo G-bundles then Hom(E, F) is alsoa

G-bundle and we have
om(, FNC = HOMG(E: F) .

Hence the G-analogues of {l.4.2)and (1. 4. 3} follow at once from

(1, 6, 3) . Thus we have

LEMMA 1,6, 4. Let ¥ bea compact G-space, X a
G-space, £t vy-X (0<ts 1} a G-homotopy and E a G-vector
bundle over X . Then £EE and £:‘E are isomorphic G-bundles,

A G-homotopy means of course a G-map F:Yxl=X
where 1 is the unit interval with trivial G-action. A G-space is

¢ -contractible if it is G-homotopy equivalent to & point. In

particular, the cone over 8 G-space is always G-contractible. By
a trivial G-bundle we shall mean a G-bundle isomorphic to & product
X x V where V is2 G-module, With these definitions {1,4.4) —
(1, 4.11) extend without change ¢ G-bundles, We have only to obaserve

that if b is 2 metric for E then Av(h) is an jnvariant metric .
To extend {l. 4 12) we cbserve thatif V<C T(E) is ample
then Egec; gv c T(E) is ample and invariant, This leads at once
to the appropriate axtension of (L4 14} .
In extending (L. & 18) we bave to consider Grassmannians

of G-subspaces of m E:il vy for m — @, where as before
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Vit Vk denote a complete set of irreducible G-modules,
We leave the formulation to the reader,

Finally,considar the module interpretation of vector bundles,
Write A = G(X)., Thenif X is a G-space G actson A asa
group of algebra automorphisms, If E is a G-vector bundle over
X then T(E) iz a projective A~-module and G acts on INE),
the relation between the A -~ and G- actions being

glas) = gla)g(s) a€A, g€G, s €THME).

We can look at this another way if we introduce the twisted group
algebra B of G over A, namely elements of B are linear
combinations r’gGG agg with ag €A and the product is defined
by

(agia‘g’) = (agla')leg’

In fact, I(E} is then just a B-module, We leave it as an exercise
Lo the reader to show that the category of G-vector bundles over
X is equivalent to the category of B-modules which are finitely

gonerated and projective over A,
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CHAPTER II. K-Theory

§ 2.1. Definitions. I X is any space, the set Vect(X}
has the structure of an abelian semigroup, where the additive structure
is defined by direct sum. If A is any abelian semigroup, we can
associate to A an abelian group K(A) with the following p.roperty:
there is a semigroup homomarphism o : A ~ K(A) such thatif G
is any group, ¥ : A »~ G any semigroup homomeorphism, there is 2
unique homomorphism % : K{A) ~G such that v = xx. If sucha

K(A) exists, it must be unique.

The group K(A) is defined in the usua! fashion. Let F{A)
be the free abelian group generated by the elements of A, let E{A)
be the subgroup of F(A) generated by those elements of the form
a+a'-{a@a'), where @ is the additionin A, a, a' €A . Then
K(A) = F(A)/E(A) has the universal property described above,

with o : A -~ K(A) being the obvicus map.

A slightly different construction of K(A} which is sometimes
convenient is the following, Let A: A = A X A be the diagonal
homomorphism of semi-groups, and let K(A) denote the set of -
cosets of A{A) in A XA, It is a quotient semi-group, but the
interchange of factors in A X A induces an inverse in K{A) so that
K(A) is a group, We then define ¢, tA- K(A) to be the composition

~of a~(a, 0) with the natural projection A x A -+ K{A) (we assume
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A has a zero for simplicity), The pair (K(A), aA) is a functor
of A sothatif v 1A ~+B is a semi-group homomorphism we

have a commutative diagram

A . > K{a)
yJ K(y)
BB . K(B)

If B isagroup ap is an isomorphism. That shows K(A) has the

vwuired universal property.

If A isalsoa semi-ring (thatis, A possessesa
multiplication which is distributative over the addition of A) then

¥{A)} is clearly 2 ring.

If X is a space, we write K(X) for the ring K(Vect(X)).
No confusion should result from this notation, If E € Vect (X) , we
shall write [E) for the image of E in K(X). Eventually, to avoid
#xcussive notation, we may simply write E instead of [E] when

thare is no danger of confusion.

Using our second construction of K it follows that, if X

{a n npnce, every element of K(X) is of the form [E] - [F], where
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E, F are bundles over X, Let G be a bundle suchthat F 9 G

is trivial. We write n for the irivial bundle of dimension n .

Let F®G=n. Then [E]- [F]=[E]+[G] - ((F]+[G]) =[E®G] - [4

Thus, every element of K(X) is of the form [H] - [n].

Suppose that E, F are such that [E]= [F), then again
from our second construction of K it follows that there is a bundle
G suchthat E@G= F@G., Let G' be a bundle such that
GOG =n. Then EGGOG £ F@G@G, so E@nSFon.

If two bundles become equivalent when a suitable trivial bundle is é
]

added to each of them, the bundles are said to be stably equivalent,

Thus, [E] = [F] if and only if Eand F &xre stably equivalent,

Suppose f:X - Y is a continuous map. Then {¥ : Vect{Y)
- Vect(X) induces a ring homomorphism ¥ : K(Y) -~ K(X}. By

(1. 4. 3) this homomorphism depends only on the homotopy class of f.

§2.2, The periodicity theorem, The fundamental theorem

for K-theory is the periodicity theorem. In its simplest form, it

states that for any X, there is an isomorphism between K(X) @ K(Sz) 2

and K(X x Sz) . This is a special caze of a more general theorem

which we shall prove.

H E is a vector bundle over a space X, and if EO =E~X,
where X is considered to lie in E as the zero section, the non-zere¢
complex numbers act on Eo as a group of fiber preserving auto-

morphisms. Let P(E} be the quotient space obtained from Ey by

A S A R S S Gt Y SR Pt s L e S
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dividing by the action of the complex number, P(E) is called

the projective bundle associatedto E. I p : P(E}) =X is the
projection map, p-l(x) is a complex projective space for all
x€X, If V is a vector space, and W isa vecior space of
dimension one, V and V @ W are isomorphic, but not naturally
Isomorphic, For any non-zero element w€W themap v-~r&@uw
defines an isomorphism between V and V @ W, and thus defines
an isomorphism P(w): P(V) - P(V ® W). However, if ' is any
other non-zero element of W, @ = \w for some non-zero
complex number X, Thus P({w) = P(w'), so the isomorphism
between P(V) and P(V ® W) is natvral, Thus, if E is any
vector bundle, and L is a line bundle, there is a natural isomorphism

PE}YSEP(E L),

If E is a vector bundle over X then each point a € P(E)x
" P(Ex) represents a one-dimensional subspace H*rcE_ . The
union of all these defines a svbspace H* Cp*E + where
p: P(E} ~X is the profection, It is easy to check that H* isa
sub-bundle of p*E . In fact, the problem being local we may
mssume E is a product and then we ars reduced to a special case
of the Grassmannian already discussed in § 1, 4. We have denoted
our line- bundle by H¥ because we want its dual H (the choice
of convention here is dictated by algebro-geometric considerations

which we do not discuss here},
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We can now state the periodicity theorem.

THEOREM 2,2, 1. Let L be a line bundle over X,

Then, as a K(X)-algebra, K(P(L @ 1)} is generated by {H],

and is subject to the single relation ([H] - [I}}([LYH] - {1 =0 .

Before we proceed to the proof of this theorem, we would

like to point out two corollaries. Notice that Pl ®1) = X x s? .

COROLLARY 2.2.2. K(S°) is generated by [H] asa

K {point) module, and [H] is subject to the only single relation

(#) - )l =o.

COROLLARY 2.2.3. If X is any space, and if

g1 K(X) ® K(5%) » K(X x 8%) is defined by pfa @b} = (uj‘a)(«gb) .

where Ty Ty are the projections onto the two factors, then

M is an isomorphism of rings.

The proof of the theorem will be broken down info a

series of lernmas,

To begin, we notice that for any x €X, there is a natural
embedding L, - P(L 1), given by the map y ~{y, 1). This
map extends to the one point compactification of L _, and gives
us a homeomorphism of the one point compactification of L onto
P(L @ l)x . Ifwemap X +P(L@1) by sending x to the image

of the ""point at infinity" of the one point compactification of I"x '
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we obtain a section of P(L @ 1) which we call the ""'section at
{nfinity". Similarly, the zero section of L gives us a section

of P(L @1}, which we call the zero section of P(L & 1),

We choose a metricon L, and we let Sc L be the
unit circle bundle. We write P° for the part of L consisting
of vectors of length <1, and P® for that part of P(L @ 1)
runsisting of the section at infinity, together with all the vectors
of length >1, We denote the projections 5§ + X, PY - x , P® - x

hy =, o » and LI respectively.

Since o and Moo &7 homotopy equivalences, every
hundte on P° is of the form ﬂ‘é(Eo) and every bundle on P®
In of the form ﬂ’;o(Eoo) ., where E? and E® are bundles on X.
Thus, any bundle E on P{L @ 1) is isomorphic to one of the form
(5 E0), 1, 7% (E®)), where £€150(x*(ED), v *(E®)) isa

viutching function, Moreover, if we insist that the isomorphism
¥ 0 * OO
E e (TI'OE,f,‘leE)

toincide with the obviocus ones over the zero and infinite sections,

It follows that the homotopy class of { is uniquely determined by

tho isomorphism class of E. This again uses the fact that the

U -nection is a deformation retract of Po and the oo-section a
delormation retract of P | We shall simplify our notation

F
slightly by writing (E°, £, E®) for (v (29, ¢, =* (E).



Our proof will now be devoted to showing that the bundles
E® and E® and the clutching function { can be taken to have a
particularly simple form, In the special case that L is frivial,
S is just X x st , the projection S -S! is a complex-valued
function on 8 which we denote by =z (here sl is identified with
the complex numbers of unit modulus). This allows us to consider
functions on 8§ which are finite Laurent series in z whose

coefficients are functions on X :

n

z a.k(x):r.k

k=-n

These finite Laurent series can be used to approximate functions

on 5 ina uwiform manner,

If L is not trivial, we have an analogue to finite Laurent
series. Here z becomes a section in a bundle rather than a
function, Since w*(L} is 2 subset of S x L, the diagonal map
§~5x5€c5xL gives us a section of 7¥(L}. We denote this
section by z . Taking tensor products we obtain, for k >0, a
section zk of (n* (L}]k , and a section z-k of (w*(L* ))k .
We write Lk for (L* )k . Then, for any k, k', Lk @ k! ng+k'
Suppose that aj €:{L_k) . Then w*(a,) ® 2* €T(r*(1)), and
thus rr*(ak) ®z° is a functionon S. We write akzk for this

functicn, By a finite Laurent series, we shall understand a sum

of functions on § of the form
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n
L me
k=-n

where a, SI‘(L-k) for all k.

0, E® are two vector bundies on

More generally, if E
k 0 o . k
X, and 8y €THom{L"@E" , E7), then if we write a,z  for

a® zk » we see that any finite sum of the form
n
_ k
f = z L
k =-n

{s an element of T(#*(EY), r*(E®)). If f €I150(r*(E?), r*(ED)),

we call £ a Laurent clutching function for (Eo, E® .

The function z is a clutching function for (I, L}). Further,
{1, z, L) is just the bundle H* which we defined earlier. To
see this, we first recall that H* was defined as a sub-bundte of
v*(L®1). Foreach yEP(LO 1, . H’; is a subspace of
(L& l)x , and
H* = L eo, H
o x

*
o0 2061,

Thus, the composition

HY* — s¥ (Lo 1) — a%(1)
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induced by the projection L @1 ~1 defines an isomorphism:

£ :H*IPO-——bwg(l) .

0

Likewiss, the composition

H* —> ¥ (L@ 1) —> o¥ (1)

induced by the projection L @1 —> L defines an isomorphism:

. HE | p@ *

Hence {= fmf';l :w¥{l) —> 7% (L} is a clutching function for u*

*

Clearly, if yG S fly) is the isomorphism whose graph is Hy .

x ?
Since H’; is the subspace of I“x @ lx spanned by y &1
{y €5, cL_,1€C), weseethat { Is exactly our section z .

Thus

H* = (1, 2, L)

Therefore, for any integer k,

The next step in our classification of the bundles over P
is to show that every clutching function can be taken to be a Laurent
clutching function, Suppose that f 6T Hom(n*E®, #*E®) is

any section, We define its Fourier coefficients
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a, €T Hom(L* o E?,E%)

by
_ 1 k-1
ak{x_} T Iwi j fx Zx dzx
5
x
Here fx » Ty denote the restrictions of £, z to Sx , and dzx
is therefore a differential on Sx with coefficients in Lx . Laet

Sn be the partial sum

Then the proof of Fejer's theorem on the {C, 1) summability of
Fourier series extends immediately to the present more general

case and gives

LEMMA 2.2.4. Let { be any clutching function for

0

(7, E®), and let fn be the sequence of Cesaro means of the

Fourier series of f. Then { converges uniformly to f .

Thus, for all large n, f 1is a clutching function for (Eo, Em)

nnd (E°, £, E®) = (89, £, E®}.
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Proof; Since ISO(ED, E®) is an open subset of the
vector space HOM(EO,EOD), there exists an ¢ > 0 such that
g GISO(EO,EOQ) whenever |[f - g| < e , where | | denctes the
usual sup., norm with respect to fixed metrics in Eo, E®.
Since the fn converge uniformly to fn we have |f - fnl <e¢
for large n. Thus, for 6<t<1, [tH+(1-0 € ISO(E®, E®)
f and f_ are homotopic in 1SO(E?, E®), so (E?, £, E®)

0
= (£, £, E).

Next, consider a polynomial clutching function; that is,

one of the form

k=0

Consider the homnomorphism

n -n
£p) : w? Z Xere®l —>¢*E®0 Z ke E?

k=0 k=1

given by the matrix

ao I.l &z .o a

) = . ] .

-2 |
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It is clear that &(p) is linear in z. Now, define

the sequence pr(z} inductively by

P, =P zp . (z) = p.(z) - p.(0) .

Then we have the following matrix identity:

1 P Pz "¢ Pa\ /P 1
1 1 -5 1

p) = i -z 1

or, more briefly
£Mp) = {1+ N)}p @ 1)(1 + Np)

where N’l and Nz are nilpotent, If N is nilpoient, 1 +tN

is nonsingular for 0<t<t, sowe ohtain

PROPOSITION 2.2,5. £'(p) and p @1 define

isomorphic bundles on P, i. e,,

n n
@, p, 2% 0 [ ) tker’ 1, ) 1Xex’
k=1 k=1

n n
2y *e £’ "p), 0 ) ek’
X=0 k=1
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Remark: The definition of £7(p) is, of course,
modelled on the way one passes from an ordinary differential

equation of order n to a system of first order equations,

For brevity, we write .S'.n(Eo, P E®) for the bundle

n
i L*eE, ™), E® @ E 1k o £°
k=0 k=i

LEMMA 2,2,6, Let p be a polynomial clutching

function of degree <n for (EO, E®). Then

(=0 5, E®) @ (LPM oD, 1, LM o E

9

. +1,..0 ~
(1) & (B :PrEm) =
@) YL E, zp, 8P 2= e, pE®) @ (L 0 ED, 2, EY)

Proof: We have

. £%(p) 0
n+ _
£ f\go-re -z 1

Multiplying the z on the bottom row by t gives us a homotopy
between £n+l(p) and En(p) @1, This establishes the first part,

Similarly,

-z 1

£ ep) = -z

-z ]
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We multiply the 1 on the second row by t and obtaina
homotopy between £n+1(zp) and £M(p) @ (-z). Since -z is
the composition of z with the map -1, and since -1 extends

o 0

to E, (L1oE?, -z, E9 = (LYo E? 2, E%. The second

part is therefore proved.

We shall now establish a simple algebraic formula in

K(P). We write [E°, p, E®] for [(E®, p, E)].

PROPOSITION 2,2, 7. For any polynomizal clutching

function p for (E®, E®), we have the identity

(=°, p, E®)- (€% 1, EOpQLymI- 1) = o .

Proof: From the second part of the last lemmea, together

with the last proposition, we see that

n n
(L' oE?, 2p,E®) @ Z t*e£’ 1, ) ez’
k=0 k=0

n n
= (an P Em) < Z Lk @Eo.l, E Lk @Eo
k=1 k=1

o (L leE’ 2, Y

Thus, in K(P),

¢

(Ll sE°, 2p, E°) 0 [E®,1,E% = (E®,p, E®] @ L") 0 £%, 2, E]
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since [1, z, L] = [H),
[y e, p £ @ (£°,1,£°) = [£%, 5, 2%) @ (L7 )07 (2O, 1, 2°)

In particular, if we put EO =l,p=sz, E® =L, we

obtain the formula
({11 - DIMLYH] - 1)) = ©

which is part of ocur main theorem.

We now turn our attention to linear clutching functions,
First, suppose that T is an endomorphism of a finite dimensional
vector space E, and let S be a circle in the complex plane which

does not pass through any eigenvalue of T, Then

1
ari

fe-1'a
s

is a projection operator in E which commutes with T. The
decomposition E=E, 6E_, E_=QE, E_={1-QJE is therefore
invariant under T, sothat T canbe writtenas T = T,OT,

Then T, has all of its eigenvalues inside S, while T_ has ail

of its eigenvalues outside S. This is, of course, just the spectral
decomposition of T corresponding to the two components of the

complement of §.
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We shall now extend these resulis to vector bundles, but
first we make a remark on notation, So far z and hence p(z)
have been sections over S, However, they extend in a natural
way to sections over the whole of L, It will also be convenient
to include the co=section of P in certain statements. Thus, if
we assert that p(z} = az +b is an isomorphism ontside S, we shall

take this to include the statement that a is an isomeorphism.

PROPQSITION 2.2.8, Let p bea linear clutching

function for (Eo, E®), and define endomorphisms Qo, o® of

1%, E% by putting
o _ 1 -1 w _ 1 -1
Qx T em .[ Py ap, Ry = 77 .[ dp, 7,
S s
%« x

Then QO and Q% are projection operators, and

p® = 0%p

Write Ei:QiEi, El=0-aYE', 120, », sothat Ei=E§reEi.

Then p is compatible with these decompositions, so that p = Py @p_.

Moreover, Py is an isomorphism outside 8, and p_ is an isomorph-

Ism inside S

Proof: It suffices to verify these statements at each point

x €X ., In other words, we may assume that X is a peint, L =C,
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and z is just a complex number. Since p{z) is a2n isomorphism
for |z} =1, we can find a real number « with &> 1 such that

prlo) : Eo -—> E® isan isomorphism, For simplicity of computation,
we identify E° with E® by this isomorphism, Next, we consider

the conformal transformation

which preserves the unit circle and its inside, Substituting for z ,

we find (since we have taken p(a) = 1)

- T
plz) = 2T
where TGEnd(Eo). Hence
0 1 -1
Q" = 2 -[ P dp
|z]=1
1 i -1 -1
= S I ('(W"I‘C!) dW"‘(W—T) dw) .
]w|=1
1 ol
o | ]I-l (w - T) "dw since || >1 .
wl=
Similarly,
Q® = L [ (awyw - ! = Q°
- 2w .
[w}=1

so our assertions follow from the corresponding statements concerning

a linear transformation T .
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COROLLARY 2.2.9. Let p be as in (2, 2, 8), and

write

P, = 2,24b,, p = az+b,
Then, if p(t) =p (t) ® p_(t) ., where

pft) = az+tb,, p.{t} = ta_z+b_, 0gts1,

we obtain a homotopy of linear clutching functions connectizg p

with a 2z @b_ . Thus

(% p, £®) = (£, 2, Lozl @, 1, E?)

Proof: The last part of the last lemma implies that p_(t)
and p_{t) are isomorphisms on S for 0<t<1, Thus, pft} is

a clutching function for 0<t<1. Thus,

(€% p(), E®)

n

(€%, p, E®)

= (£}, a2 EDOEY, b, 7).

Since a  : L @EE - ET, b_: E? - Efo are necessarily

isomorphisms, we see that

0 o0 ~ 0
(€, a2 £,) & (€], 2, Lox))
€, ,®) = (£°%,1, EY)
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Apgain, consider a polynomial clutching function p of

degree <n. Then £™(p) is a linear clutching function for (Vo, ve)

where
Qo n
v0 - Z kel | v o E‘I’e'z 1k e r?
k=0 ' k=1

Hence, it defines a decomposition

as above, To express the dependence of V?_ on p and n, we write

0
v-l- = Vn(E » P Em)

Note that this is a vector bundle on X, If [ is a homotopy of
polynomial clutching functions of degree < n, it follows by

constructing V_ over X x1 that

o

0 0
vn(E + Pgr Em) = vn(E : Py Em)

Hence, from the homotopies used in proving the two parts of (2, 2, 6),

we obtain

0

0 0
V,uE . p, EY) TV (E°, p, E¥),

v, (LeE% zp, ) S v _(£°, p, E®) @ (L ET)

or, equivalently
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0 ~ 0 0
V. alE zp. L&E®) & LoV (E', p, E))BE" .

Combining this with the above corollary and (2. 2. 5},

we obtain the following formula in K(P):

[£%,p.E%) +4Y (e E)p 1) = (v, (E°, p, £
k=1 :
n
+2) (L0E") - [V &% 0. M1
k=0

and hence the formula
[£%,p,E®) = (v (%, p, E®)CH"'] - (2]) + [E°)0)

This shows that [V;] €K({X) completely determines [Eo, p, E°]E€K(P).
We can now prove our theorem,

Let t be an indeterminant over the ring K(X)}. Then

the map t - [H] induces a K(X}-algebra homomorphism (since

([H] - LDALIH] - (1) = 0)
2 KEU/( - DILE - 1)) —>  K(P)

To prove that g is an isomorphism, we explicitly constiruct an
inverse,

First, suppose that f is a clutching function for (E°, E®).
Let fn be the sequence of Cesaro means of its Fourler series,

and put P, = znfn . Then, if n is sufficiently large, P, isa
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polynomial clutching function {of degree < 2n) for (Eo, L® @ E®).
Wa define

Vn(f) € K(X){t]/({t - 1)([L]t - 1))

by the formula
v () = [V (EO LB Em”(tn-l _ tn) + {EO]tn
n 2n'\™ » Py

Now, for sufficiently large n, the linear segment joining
Pn41 and zp, provides a homotopy of polynomial clutching functions

of degree < 2(n+1). Hence, by the formulae following (2. 2. 9),

0 +
Vine2(E » 2P, LT @ E®)

(1§

0 n+l oo
Vone2lE » Py L7 @ ET)

0 +1
Vst (E + 2P, L @ E%)

ne

1

L® Vzn(Eo,pn, L"eE®) 0 E® ,
Hence
v n® = {ILAV, (% p_, L” @ E®)) + [E°1}6™ - ¢**) + (03"
= vl
since (t - 1)({L}t - 1) =0 . Thus, p (f) is independent of n if
n is sufficiently large, and thus depends only on f, We write it

as p({f). If g is sufficiently closeto f, and n is sufficiently

large, the linear segment joining f, and g, Pprovides a homotopy
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of pc;lynomial_clutching functions of degree < Zn, and hence

vlf) = yn(f) = vn(g) = y{g) . Thus, p{f) is a locally constant
function of £, and hence depends only on the homotopy class of f,
However, if E is any bundle on P, and f a clutching function
defining E, we define (E) = p(f) , and p(E) will be well defined
and depend only on the isomorphism class of E, Since p(E)} is

clearly additive for +, if induces a group homomorphism

v : K(P}) —> KX)t]/((t - I([L}t - 1))

From our definition, it is clear that this is a K(X)-module
homomorphism.
First, we check that gy is the identity. With our

notation as above,

wE) = piv, (£°, p, LM @ B! - t7) 4 [£%1¢7}

= [V, (8% b, L @ EX)N(S - (17 + [EO)RT

It

(£, p, ,» L® @ E®YH]

0
[£”, f

0 B

(%, ¢, E%]

E [

Since K(P) is additively generated by elements of the form [E],

this proves that py is the identity.



Finally, we show that p) is the identity. Since b
is a homomeorphism of K(X}-modules, it suffices to show that

v (t") = t" for all n>0., However,

vift") v(H")

]

v[la z-n' L-n]
[V, (1 1 DI - %) + ]e®

", since Vzn(l, L, 1}=0 .
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§ 2, 3. KG(X) . Suppose that G is a finite group and

that X is a G-space, Let VectG(X) dencte the set of isomerphisra
classes of G-vector bundles over X, This is an zbelian semi-
group under & . We form the associated abelian group and dennte
itby Ko(X). I G =1 is the trivial group then K%)= X(X) .

If on the other hand X is a point then K (X} & R(G} the
character ring of G .

If E is a Ge~vector bundle over X then P(E} iz a G-space
I E=L&1 when L isa G-bund.le then the zero and infinite
sections X - P(E) are both G-sectiona., Also the bundle H over
P(E} is a G- line bundle., If we now examine the proof of the
periodicity theorem which we have just given we see that we could
have assumed a G-action on everything, Thus we get the pericdicily

theorem for KG .

THEOREM 2.3.1. If X is a G-space, and if L is a

G-line bundle over X, the map t —[H] induces an isomorphism

of KG(x) = modules:

Ko (X))/HL] = 1t ~ 1) —> K (P(L @ 1)) .
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$2.4, Cohomology theory properties of K. We next

define K(X, Y) for a compact pair (X, Y). We shall then be able
to establish, in a purely formal faghion, certain properties of K,
Since the proofs are formal, the theorems are equally valid for

any "cohomology theory' satisfying ceritain axioms, We leave this

formalization to the reader,

Let C denote the category of compact spaces, ¢t the
category of compact spaces with distinguished basepoint, and Cz
the category of compact pairs, We define functors:

t—s ¢t

C—-—-?'Cz

by sending a pair (X, Y} to X/Y with basepoint Y/Y (if Y #¢,
the empty set, X/Y is understood to be the disjoint union of X
with a point.j We send a space X to the pair (X, @) . The

composite c-¢ is given by x~x+, where X' denotes x/d .

It X isin C', we define K(X) to be the kernel of the
map i* : K(X} ~ I{(xo) where i:x, - X is the inclusion of the base=
point, If ¢t X ~ %o is the collapsing map then c¢* induces a
splitting K(X) = R(¥) @ K(xo) . This splitting is clearly natural
for maps in (.'.+ « Thus K is a functor on c+ . Algo, it is clear
that K(X) S K(X*). We define K(X, Y) by K(X,Y)=R(X/Y).

In particular K(X, ¢} ¥ K(X), Since K is a functor on ct &

follows that K(X 4 Y) is a contravariant functor of (X, Y) in CZ .
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We now introduce the “smashk product" operation in ct.

K X,Y€C we put
XAY = XXY/XVY

where X vY =X Xyy Uxy XY, x4, ¥q being the base-points of X, Y
respectively. For any three spaces X,Y, Z € C+ we have a

natural homeomorphism
XAa{YaZ)m(XAaY)A2Z

and we shal} identify these spaces by the hemeomorpkism ,

Let I denote the unit interval [0, 1] and let 2I = {0} U {1}
be its boundary., We take I/31€ c+ as our standard model of the
circle Sl » Similarly if 1" denotes the unit cube in R” we take
/3" as our model of the n-sphere 5”. Then we have a natural

homeomorphism

1,1 1

AS Asve AS {n factors} .

s"w 8

For X C.+ the space S1 AXE C+ is called the reduced suspension

of X , and often written as SX, The n-th iterated suspension
55 ¢es SX (n times) is maturally homeomorphic to st AX andis

written briefly as $°X .
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DEFINITION 2,4,1, For n>0

E™™x) = K(™) for X€c'
KX, ¥) = B™%x/Y) = KE™(X/Y)) for (x,Y) €c®
K™2(x) = KX, @ = RPxY)  for Xec .

. It is clear that all these are contravariant functors on the
appropriate categories,

Before proceeding further we define the cone on X by

cX = Ixx/{0} xxX ,

Thus C is a functer C : 0 -~ C+ . We identify X with the subapace
{1} XX of CX, The space CX/X =1 xX/3l xX is called the
unreduced suspension of X, Note that this is a functor C -~ C+

whereas the reduced suspension S ig a functor C+ - C+ . If

Xe C+ with base-point Xq then we have a natural inclusion map
) c‘.:x(,/x0 —» CX/X

arnd the quotient space obtained by collapsing I in CX/X is just
8X, Thus by (1.4,8) p : CX/X -SX induces an isomorphism
K(SX) & K(CX/X) and hence also an isomorphism K(SX) & K(CX, X)
Thus the use cf SX for both the reduced and unreduced suspeasicns

leads to no problems .
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{X,Y) Gcz we define X UCY to be the space
obtained from X and CY by identifying the subspaces YcX
and {1} x YcCY. Taking the base~point of CY as base-point

of X UCY we have

xucyec ,

We note that X is a subspace of X UCY and that there

is a natural homeomorphism

X UCY/X =~ CY/Y ,

Thus, if YEC,

K(X UCY, X) & K(CY, Y)
K(5Y)
By .

N

I

Now we begin with a simple lemma

LEMMA 2.4,2, For (X, Y) €C° we have an exact

seguence

K(X, ¥) > K(X) ———> K(Y)

where 1 :Y~X and j: (X, ) ~ (X, Y) are the inclusions,
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Proof: The composition i*j* is induced by the
composition ji: (Y, ¢} - (X, Y), and so factors through the
zero group K(Y,Y)., Thus i*j* =0, Suppose now that
§{ €Ker i* , We may represent { inthe form [E]~ [n] where
E is a vector bundle over X, Since i*{ =0 it follows that
[E£]¥] =[n] in K(Y). This implies that for some infeger m

we have

(Eom)|Y=no@m

i, e, , we have a trivialization o of (E & m)'Y + This defines a

bundle E @ m/a on X/Y and so an element
n=[EQ@m/a]~[n ®m]EK((X/Y) = K(X, Y} .

Then
[E®@m]-[n@m]

[E]«[n)=§ .

*(n)

Thus Ker i% = Jm j* and the exactness is established,

COROLLARY 2,4.3, ¥ (X, YV €c? and Yec'

(so that, taking the same base-point of X , we have X e¢ct also) .

then the sequence

K{X, Y) —> K(X) —> K(Y)

is exact ,



Proof: This is immaediate from (2, 4, 2) and the

natural isomorphisms

18]

K(X) % K(X) ®K(y,)

R

K(Y) = K(Y) @Ky, .

We are now ready for our main proposition:

PROPOSITION 2,4.4, For (X,Y) €¢’ there isa

natural exact sequence (infinite to the left}

cve K345 K“l(x,r)-L>'* k200 25 k" Yv)-8 5 k0x, ¥)

—ﬁ> Ko(x) —i:—a KO(Y) .

Proof: First we observe that it is suificient to show that,

for (X,Y)}€ Cz and YeEcC s we have an exact sequence of five terms

() &) s Ry 85 Rox, v) > BOpx) L5 RO(v) .

In fact, if this has been established then, replacing (X, Y) by (5" X,s"Y)
for n=1, 2, «+++ we obtain an infinite sequence continuing (*}, Then
replacing (X, Y) by (X+ ’ Y*) where (X,Y) is any pair in Cz we

get the infinite sequence of the enunciation, Now (2,4, 3) gives the

exactness of the last three terms of (%}, To get exaciness at the
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remaining places we shall apply (2.4, 3} inturn to- the pairs
{(XUCY, X) and (X UCY)UCX , X UCY). First, taking the
pair (X UCY,X) we get an exact sequence (where k,m are the

natural inclusions)
K (X UCY, X) =255 &(x UCY) - K(X) .
Since CY is contractible 1,4, 8) implies that
p* 1 R(X/Y) — K(X UCY)

is an isomorphism where

P:XVUCY——> X UCY/CY = X/Y

is the collapsing map, Also the composition k*p* coincides with
j¥ . Let

8 : K(X UCY, X) —> K }(¥)
be the isomorphism introduced earlier, Then defining
8 2 K HY) s K(X, Y)
by 6 =m* 6~! we obtain the exact sequence

Kl (v) 0> k(x, v) —is B(x)
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which is the middle part of (*).

P

Finally, we apply (2. 4, 3} to the pair

(x u&.l'? UC,X, X UC,Y)

where we have labelled the cones Cl and C2 in order to

distinguish between them, (see figure),

AN

Thus we obitzain an exact sequence
K(X UC,Y UC,X, X UC,¥) —> KX UC,YUC,X) —> K(x vc,Y)
It will be sufficient to show that this sequence is isormorphic to the

sequence chtained from the first three terms of {(*). Inview of the

definition of § 1ii will be sufficient to show that the diagram

K(X UC,Y UC,X, X UC|Y) ——> Bx ue Y ucex)
i i
(D) R(C,X/X) K(qy/v)
} i

K™x) 4 xy
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v

commutes up to sign, Wy lies, of course, in the fact

that i* is induced by+the inctusion
CZY > €, X

and that in the above diagram we have C,Y and not C,Y. Teo
deal with this situation we iniroduce

the double cone on Y namely CIY ueG,Y, CY

This fits into the commutative diagram

of maps

X UCIY u%x ey, cly/y e, SY

Nevver?

{E) CYUGC,Y

CZX/X < CZY/Y === 5Y

where all double arrows =2 induce isomorphism in K, Using
this diapram we see that diagram (D} will commute up to sign

provided the diagram induced by (E)
K(CIY/Y) s B(5Y)
K(C,Y U C,Y) |

K(C zY/Y) G R(5Y)

comamutes up to sign, This will follow at once from the following
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lemma which is in any case of independent interest and will be

needed later

LEMMA 2,4.5, Let T :S' -8 be defined by T(t)
=l=-t t€1 (we recall that S1 =1/31) andlet TAl:;SY ~SY be
the map induced by T on S' and the jdentity on Y (for Y €cC*).

Then (T A 1)*y ==y for y €R(sX) .

This lemma in turn is an easy corollary of the following:

LEMMA 2,4,6, Foranymap f:Y ~GL(n,C) let E,

denote the corresponding vector bundle over 5Y, Then f — [Efj = {n)

Induces a _group isomorphism

lim [Y,GL(n, O] & K (SY)
n—+00

where the group structure on the left is induced from that of GL{n,C).

In fact, the operation (T A1)* on K (5Y) corresponds by
the isomorphism of (2,4, 6) to the operation of replacing the map
y =-fly} by v = f(y)-l s i.&,, it corresponds to the inverse in the group,
Thus (2,4, 6) implies (2.4,5) and hence (2.4.4) . It remains therefore
to establish (2.4, 6). Now (L 4. 9). implies that f ~[E] - [n] induces

a bijection of sets

lim [¥, GL{n, C)] —> K(5Y) .
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The fact that this is in fact a group homomorphism follows from
the homotopy connecting the two mapa GL{(n) x GL{n} - GL(2n)
given by

AXB ey (3’ OB
and

This homotopy is given explicitly by

e axB) = (§ D(aint cos (o B)Gint Tos
where 0<t<w /2 ,

From {2.4.4) we deduce at once!

COROLLARY 2.4.7. I Y is a retract of X, then

for all n> 0, the sequence K (X, Y) ~K X) ~K "™(Y) is a

split short exact sequence, and

KxX) 2 K*X, V)oK Y .

COROLLARY 2,4.8. If X,Y are two spaces with

basepoints, the projection maps L X xY~X, Tyt XxXxY=-Y

induce an isomorphism for all n> 0

B x¥) & B A v) o B X) 0 K(Y) .
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Proof: X isaretractof X XY, and Y is a reiract

of (X x Y})/X ., The result foliows by two applications of (2.4. 7} .

Since KU(X A Y) is the kernel of i} @i% : K% x )
+k%%) ® K¥(¥), the usual tensor product K°(x) & KO(¥) ~x%(x x ¥)
induces a pairing ﬁ“(x) ® ﬁo(Y) - 'IEO(X A Y). Thus, we have a
pairing

K™x) @ K™ (Y) —» K™ (X A ¥),
since SPK ASPY =St AS™ AXAY =5 ax Y. Replacing
X by XV, ¥ by ¥, we have
KX)o K™™Y) —> K" ™X xv) .

Using this pairing, we can restate the periodicity theorem as follows:

THEOREM 2.4,9. Forany sﬁace X and any n<0,

the map K™ “(point) @ K™2(X) - K™®"%(X) induces an isomorphism

B:K™(x) »K ™ 4x)

Proof: K'z(point) = ﬁ(Sz) is the free abelian group
generated by [H] - 1], ¥ (X,Y)é€ cz the maps in the exact
scquence (2, 4. 4) all commute with the periodicity isomorphism §.
This is immediate for i* and j* and is also true for § since this
was also induced by & map of spaces. In other words £ shifts ihe

whole sequence to the left by six terms, Hence if we define
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K™*(X,Y) for n> 0 inductivelyby K " = K22 e can extend
(2. 4, 4) to an exact sequence infinite in both directions, Alternatively

using the periodicity g we can define an exact sequence of six

terma

K%x, v) — k(%) ~— k%(v)

!

kYY) < kY(x) ¢ kX, ¥) .

Except when ctherwise siated we shall now always identify K"

and Kn-Z « We introduce
% 0 i
K'(X) = KX)oK(X} .

We define K*(X) tobe KC(X)@K!(X). Then, for any pair (X, Y),

we have an exact sequence

x%(x, v) > KO(x) > K'(7)

|

k'Y) e——— xlx) <o K{x,7) .

The form of the periodicity theorem given in (2.4. 9} is
& special case of a more general "Thom isomorphism theorem" ,
If X is a compact space, and E is a real vector bundle over X,

the Thom complex XE of E is the one point compactification
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of the total space of E, Alternatively, if E is a complex
bundle, XE = P(E®1)/P(E) . Thus, we see that K (X*) is
a module over K(X), The Thom isomorphism theorem for

complex line bundles can now be giated,

THEOREM 2,4,10, lf_ L is a complex line bundle,

K(XL) is a free K(X)-module on one generator u{L), and the

image of u(L) in K(P(L®1)) is [H) - [L*] .

Proof; This is immediate from our main theorem
determining K(P(L @1)) and the exact sequence of the pair
P(L@1), P(L) (note that P(L)=X) ,

We conclude this section by giving the following extension

of (2.4,5) which will be needed later,

LEMMA 2,4,11, lLet Ta:s"x-s“x be the map

induced by a permutation ¢ of the n factors in 5 =8 A stA...as!

Then (TU)*x = sgno)x for x €K(ES"X) .

Proof: Considering §" as the one-point compactification
of R® we can make GL{n, R) act on it and hence on E{s“x) .
‘This extends the permutation actions TO' . Since .GL(n, R) has
Just two components characterized by sgn det it is sufficient to
rheck the formula T*x = =x for one T €GL(n,R) with det T=-1,

fut (2, 4,5) gives this formula for

-1
T= ( 1. ) R
-’1
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§2,5, Computations of K*(X) for some X,

From the periodicity theorem, we see that K™ =0 if n

is odd, and K(5") = Z if n is even, This allows us to prove the

Brouwer fixed point theorem ,

THEOREM 2,5,1, Let D" be the unit disc in

Euclidean negpace, If f: D" » D™ is continuous, then for some

x€D”, flx)=x,

Proof: Since K (D" =0, and R*(* Y fo, s*t

is not a retract of D", I f{x) # x for every x €D", define
g : D%~ 5™t by olx) = (1 - alx))(x) + alx)x , where afx) is
the unique function such that afx) >0, |g{x}| =1. ¥ flx}#=x
for all x , clearly such 2 function afx} exists. ¥ x GSn‘I ’

afx) =1, and g(x) =x, Thus g is a retraction of D® onto

sn-l

We will say that a space X is a cell complex if thers
is a filtration by closed sets X_, cX,c X, c*++ Xn = X such

that each Xk - xk-l is a disjoint union of open k-cells, and

X, 9.

PROPOSITION 2,5,2. UM X jis acell complex such

that ka = szﬂ for all k,

kK (x) = o

K9(X}) is a free abelian group with generators in a

one-one correspondence with the cells of X.
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Proof: We proceed by induction on n. Since

x2n/x2n.z is a union of 2n~spheres with a point in commaon
we have?
KXy Xppp) = 0
KO(XZn’ xZn—-Z) = xk
where k is the number of 2n~cells in X . The result for in
now follows from the inductive hypothesis and the exact sequence
of the pair (X, , X, ,) . As examples of spaces to which this
proposition applies, we may take X to be a complex Grassmam
manifold, a flag manifold, a complex quadric (a gpace whose
homogeneous defining equatid:r-n is of the form I Zf =0), We
shall return to the Grassmann and flag manifolds in more detail

Inter,

PROPOSITION 2,5,3. Let Ly, +++, L, be line bundles

over X, and let H be the standard bundle over P(L, ®.+« O L ).

Then, the map t - [H] induces an isomorphism of K(X) ~modules
- . )
K(x)m/il-ll t - {Li 1) —— zc(p(x_,l Dere® Ln)) .

Proof: - First we shall show that we may take L_=1.

In fact for any vector bundle E and line bundle L over X we
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have P(E ® L) = P{(E) and the standard line bundles G,H over
P(E @ L¥), P(E) are relatedby G* =H* ®L , i,e., G=H®L*
Taking E = Ly ®«++ ® L and L = L% we see that the
propositions for Ly ®+++ @ Ln and for M, @..» & Mn with

M, = Li @ L: are equivalent, We shall suppose therefore that

L, =1 and for brevity write

P = P(Ly@c 0L )} for 1<m<n

so that we have inclusions X=P1-'P3--n —-Pn . K H

n 3

denotes the standard line bundle over P then H mIPm-l Hopnl

New we observe that we have a commutative diagram

8 %
Pn-l a3 P(H n=1 3:)1)
-1 1
in
P! = Pn

(w n-i 18 the projection onto X = P, , i is the inclusion, # is

the zero section) which induces 2 homeomorphism

P(H:_l em)/s(lnn_l)———-;-1=n/1='1 .

Moreover q* (H,) = G, the standard line bundle over P(I-I’:;_'1 @1)

Now l:((l?(:[—l’:;__1 @1)) is a free K(Pn_l)-module on two generators
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1] and [G],and [G] satisfies the equation ([G] -~ [1]MIC] - [Hn_l])

Since s*[G] =[1] it follows that 1{(1'-*(}!]::,1 ®I1), S(Pn_l)} is

the submodule generated freely by [G] - [I] and that, on this
submodule, multiplication by [G] and [Hn-l] coincide, Hence
K(P , P)) is a free K(P, ;}*module generated freely by ([(H ] - 1]}

and this module structure is such that, for any x € K(Pn, Pl) ’
Mk = [H]x .

Now assume the proposition established for n -1, so that
» n-1 .
K(P__) = k()] /TT ¢ - {L5D)
n-l i=1 1

with t corresponding to [Hn_l] . Then it follows that t — [Hn]

induces an isomorphism of the ideal (t - 1) in

n-l
K(X)[t] / (¢ - I)IIl & - (L3

onto K{P_, P|}. Since
K(P ) & K(P,, P} @K(X)

aod since L, =1 this gives the required result for K(Pn)

rutablishing the induction and completing the proof.
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COROLLARY 2,5.4. K(P(C™)) & Z[t}/(t - )" under
the map t - [H].
Proof: Take X to be a point,

We could again have assumed that a finite group acted

on everything, and we would have obtained

n
KoO0le] /T € ~ 3D % sg(Py 00 L))
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$2, 6. Multiplication in K* (X,Y). Wefirstobserve

that the multiplication in K(X) can be defined 'externally’ ag
follows, Let E, F be two bundles over X, andlet E®F

be ng(E)en’g(F) over X xX, If p:X X xX is the diagonal
then EQF = p*(E 8 F),

If E isabundleon X, F abundleon Y, let ESF
=w%(E)®« {(F) on X x Y. This defines a pairing

KX)o K(Y)—> K{XxY) .
I X,Y have basepoints, K(X A Y) is the kernel of K(X x Y)
— K{X)@K(Y). Thus, we have K(X)@K(Y} -K(X A Y).
Suppose that (X, A), (Y, B) are pairs. Then we have
K(x/a) @ K(x/B) —> R((X/A) A (¥/B)) .
That is,
KX,A)®oK(Y,B)—> K{(X x Y, (X xB)U{A xY)).

We define (X,8) x (Y,B} tobe (X xY, (X xB)U{A xY)} .

In the special case that X =Y , we have a diagonal map
A3 (X, AUB) ~({X, A) x (X, B}, This gives us K(X,A) ® K(X,B)
—5>» K(X, A UB), In particular, taking B = ¢, we see that
K(X,A) is a K(X)module. Further, it is easy to see that



86,

K(X,A) ~—> K(X) ~> K(4)

is an exact sequence of K(X).-modules,

More generally, we can define products

K (X,A) @ K-™(Y,B) —» K 7 "((X,A) x (Y, B))

“for m, n<0 aa follows;

K™%X,A) = K(" A (X/A))

K™™(Y,B) = K™ A (Y/B) .

Thus, we have

K X, A) K™Y, B) —> K(S™ A (X/A) AS™ A(Y/B))

K(S® A S™ A (X/A) A (¥/B))

K™ ((x,A) x (Y, B)) .

Thus, if we define xy €K "(X, A UB) for x €K X,A),
y €K (X,B) tobe a*{x®y), where A: (X, A UR)+(X,A) x (X,B)

is the diagonal, then (2, 4, 11) shows that xy = (-1)""yx .

We define KF(X,A) to be

[v 4]
) KX, a) .
n=0
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Then K*(X) is a graded ring, and K*(x. A} is a graded
K#(X)-modu.le. I pE K'z(point) is the generator, multiplication
by B induces an isomorphism KX, A) -»K'““z(x, A) for all n,
We define K*(X, A) to be KT(X, A)/(1 - B). Then K*(X) ia
a ring graded by Z, , and K¥X, A) isa Z,-graded module
over K‘{X) .

For any pair (X, A), each of the rmaps in the-exact triangle

K*(x) > K'(A)

N4

K*(x, A)

is a K*(X)-module map. Only the coboundary § causes any

difficulty and so we need to prove

LEMMA 2.6.0. &:KXv)~K%X ¥) is a K(X)-module

homomorphism.

Preoof: By definition § is induced by the inclusion of pairs
i xfJuyxy vyx{oh~(xxffluyxy vyx{olux x{1p

{see figure)
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Hence § = j* is = module homomorphism over the absolute group
KX x{}uyxD= KXx) .

It remains only to cbserve that the K{X)-module structures of the
two groupe involved are the standard ones. For K'I(Y) this is
immediate and for K(X, Y} we have only to observe that the

projection I-{I} induces the isomorphisms

KX, Y)~ KX x{i}uyxL Y x{o}
KX}~ k(xxfiluyx1 .

We shall now digress for some time to give an alternative and often
illuminating description of K(X, A) which has particular relevance
for products,

Iif n>1, we define cn(x, A} to be a category as follows:

S P

An object of cn(x, A} is a collection E_, En-l' s, EO of bundles

over X, together with maps a Ei!A - Ei_llA such that

%

4 4
0 —> EnlA—-’-‘-—-b E A+ ——= EjlA —~—>0

ie exact, The morphisms ¢: E~F, where E= (Ei' ati)

F = (F,, ﬁi) » are collections of maps ¢, : E; ~ F, such that
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B, = @) % » Inparticular, C(X,A) consists of pairs of

bundles E;, E; over X and isomorphisms «:E A £E]A,
An elementary sequence in Cn(X »A) is & sequence of
the form 0, 0, **+, 0, E , E

p’ Tp-l
o« = identity map. We define E ~F if for some set of elementary

2 0y «se, 0 where Ep= ool ?

Object’ Ql‘ LAY Qn’ P1| LA Pm’
E@Qleﬂo @Qn“ FQPIQ"° Gpm .

The set of such equivalence classes is dencted by sn(x A,
It is clear that xn(X,A) is a semigroup for each n,

There is a natural inclusion cn(x Al C, ﬂ(x,A) which
Induces a homomorphism £ (X,A) ~ £, +1(J( sA) . We denote by
C,(XsA) the union of all of the cn(X,A), and by £ (X,A)
the direct Limit of the £, (X, A),

The main theorem of this section is the following:

THEOREM 2,6.1. For all n> 1, the maps ,gn(x,A)
£ 41(X,A) are isomorphisms, and & (X, A) = K(X,A),

We shail break up the proof of this theorem into a number
of lemmas,

Consider first the special case A=¢@, n=1., Then
(X, #) coneists of all pairs E,, E, of bundles. We see
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that (El, Eo) ~(F, Fo) if and only if there are
bundles Q, P such that E, @Q = FI®P, E,0Q é"Foep.
Then the map ,tl(X, £} -~ K(X} given by (El' Eg) ~ [EO] - [El.]
is an isomorphism, In fact ,;:l(x, £) coincides with one of

our definitions of K(X}.

DEFINITION 2,6.2, An Euler characteristic Xn

for .[’,n is a transfermation of funciors

Xy ! £, X, A) — K(X,A)

i
such that whenever A =@, X(E, Epap ot Eg) =L (~1)IE].

To begin we need a simple lernma,

LEMMA 2,6,3. Let AcX, andlet E, F be bundles

over X, let p:EJA+F|A, $:E «F be monomorphisms

{resp. isomorphisms} and assume y|A is homotopic to ¢.

Then ¢ exiends to X as a monomorphism (resp, isomorphism)

Proof: Let Y = (A x {0, 1}) U(X x [0]) . Then, if E', F!
are the inverse images of E, F under the projection ¥ - X,
we can define &: E' - F' which is a monomorphism (resp,
isomorphism) such that &JA x[1} =¢, @IX x[0]=p. We
can extend ¢ to (U x [0,_ 1} U (X x [0]}) for some neighborhcod
U of A, Let f:X~[0, 1] be suchthat f{A)=1, f{X-U)=0
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Let O = cb(x, £(x})- Then thig extends ¢ to X,
ILEMMA 2,6.4. If A is a point,
0 —> 5(X,A) —> 5HX)—> SI(A)

is exact, Thus, if y is ap Euler characteristic for I, ,

X * .r.l(x, A) - K(X,A) is an isomorphism when A is a point,

Proof: If (El, Eo) represents an element of SI(X)
whose image in etl(A) is zero, E; and E, have the same
dimension over A, Thus there is an isomorphism fp:ElfA =Eq
Thus we have exactness for £(X, A) - £,(X) ~5{A).

If (E; E,, ¢} has image zero in s:l(x) s there is a
trivial P end an isomorphism § : E, @ P = E, 0P, o @ l)-"
is an automorphism of E,® P|A, Since A is a point any such
automorphism must be homotopic to the identity and hence by
(2.6,3) it extends to a: E, @P= E,®P. Thus, we have a

commuting diagram:
(£, ® P)|a — 02l (g 0P)a

»|A ola

(Ey @ P)|& ——L s (E 0P)A .
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Thus (El.’ Eg» ¢} represents 0 in .tl(x, A). Thus .cl(x,A)

—_— :,l(x) is an injection,

LEMMA 2,65, :I(X/A, A/A) ~5/(X,A) is an isomorphism
for all (X,A), Thus, if % s an Fuler characteristic, X :.tl{x,A)

~ K(X,A) is an isomorphism for all (X, A).

Proof: Since the isomorphism £1(X/A, AJA) - K{X,A)
factors through .r.l(x, A), the map £1(X/A, A/A) ~&5{X,4A) is
injective,

Suppose that E,, E, are bundles on X, a: EllA ~E, |a
is an isomorphism, Let P be a bundle on X such that there is an
tsomorphism g EI @P ~F , where F istrivial, Then (El’ EO' a)
is equivalent to (F, B, ® P, y) where ¥ = (¢®1)§™ . Then,

(F, E,® P, y} is the image of (F, (Eq ® P)/y, v/Y) . Thus,
£,(X/A, A/n) - £(X,A) is onto,

LEMMA 2,6.6, I X x; are two Euler characteristics
for L% = Xi .

Proof: x; x'il is a transformation of functora from K to
itself which is the identity on each K(X). Since K(X,A) = K(X/A)
is injected into K(X/A), it is the identity on all K(X,A),
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LEMMA 2,6,7. There exisis an Euler characterisiic

X for &, .

Proof: Suppose (El, Eq a) represents an element of
£,(X,A). Let X, X, betwo copies of X, and let ¥ =X, U, X;
be the space which results from identifying corresponding points
of A, Then [El.’ oy EJ €K(Y}, Let =, :Y +X, be the cbvious
retraction, Then K(Y) = K(Y, Xi) @K(Xi) . The map (xo, A)

— (Y, xl) induces an isomorphism K(Y, X,) ~K(X,, A). Let
xl(El. Egs a) be the image of the component of [EI’ o, E0] which
lies in K(Y,X,}), X A=¢, then x(E, E;, o) =[E,] - [E|]. One
can easily verify that this definition is independent of the choices

made,

CORCOLLARY 2.6.8, Theclass of (El" Eys @) in

ll(x, A) only depends on the homotopy class of « .

Prooft Let Y=X x[0, 1], B=4A x[0, 1], Then, if g
Is a homotopy with oy = @, o defines B: ﬂ'*(El)IB = 'W*(EO)IB .
Let ij 1 (X,A) ~ (X x[j], A x[i}. From the commuting diagram
oM i*

.!.'.I(X,A) 0 (¥, B) 1 £(%,A)
|
i* i’;

K(X,A) <~ — K(Y, B) ——2—> K(X,A)
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we see that since every map is an jisomorphism, and gince

R -1 , . .
10(1';) is the identity, (EI' Egs ao) = (El’ Eqs l‘.'!l) .

LEMMA 2,6.9, Themap £ (X,A)-5 . (X,A) is

onto for n?_l.

Proof: If (E ., -+, Ep Capr "0 arl} represents an

element of sml(x,A), so does
(Eppps By @By B © By Bpoger s+ 1 BgiGyp % @Lieevy ) &

The two maps o ., ®0:E ., ~E ®E ., and 081:E ,, ~E GE
are (linearly) homotopic as monomorphisms, 0 @1 extends to X,

and thus by {2, 6, 3) 0,4 @0 extends to a monomorphism

B: En-l-l ~E, @Enﬂ on all of X. Thus we can write E,8E

as B(En-l—l) ®Q . Then we see that, f y:0Q ~E _®E_ , isthe
resulting map, (En'l-l“ TN EO,; Copp? "t al) is equivalent to

(0, Q. En-IQErﬂ-l’ ™ Eo: D, ¥y oo, &2) . Thus £,n(X,A)

— .s:nﬂ(x,A) is onto,

LEMMA 2,6,10, The map £n(X,A) —-:,nﬂ(x,A} iz an

isomorphism for ali n>1,

Proof: It suffices to produce a map .I:nﬂ(X.A) - £,(X,a)
which is 2 left inverse of the map £,(X,A) ~ j:nﬂ(X,A) .

LR TN
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Let (En, seey Egs o, 000, ml) represent an eiement of
£n(X, A) . Choose a Hermitian metric on each Ei . Lat
a; t E;_|A - E;|A be the Hermitian adjoint of o .

Put FO =EEzi » Fy =I.JE2i+1 , and define §: Fy~F,
by B=Za,, +Bcy . Then (F, Fo, f) €5,(X, A). This
gives us a map gn(x,A) - LI(X,A) . To see that it is well defined,
we need only see thai it does not depend on the choice of metrics,
But all cheices of metric are homotopic to one another, so that a
change of meirics only changes the homotopy class of 8., Thus
this map is well defined, It clearly is a left inverse to xl(X,A)

- Sn(xg A) .

COROLIARY .2,6,11, For each n there exists exactly

one Euler characteristic x, 1 & (X, A) ~K({X,A}, and it is always

an isomorphism, Thus, there exists x: sm(X,A) - K({X,A)

_l_somorﬂg'callv.
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We next want to construct pairings

S5 Y) @ £, (X Y) —> g, (X, ¥) x (X', Y'))
compatible with the pairings

K(x: Y) ® K(x'r Y') —— K((xr Y’ X (X'I Y')) .

To do this, we must consider complexes of vector bundles,

i.e,, sequences

.
0—>E —2>E

where 03954 = 0 forall i.

LEMMA 2.6.12. Let EO’ e, En be vector bundlas on

X,andlet ¢ :E|Y—E; |Y be such that
o
o'-—'—:En""P-—') En-l—i.l_::}_—:’ LR ] Eo'—-‘bo

is exact on Y . Thenthe g; cap be extendedto 4 : By —>E,

on X euchthat p.n., =0 forall i.

Proof: We shall show that there is some open neighborhood
U of Y in X and an extension 7 of A to U forall i euch

that
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T
- n . n-l. .
0— B, E .1 > —> Ey—>0

is exact on U . The extension to the whole of X is then achieved
by replacing T, byp ] where p is a continuous function on X

such that p =1 on Y and supp pcU.

Suppose that onp some closed neighborhood Ui of Y in X,

we could extend L UREAA TN 1 to e "t Ty such that on Ui '
T
E—>E, ,wup ¢+t —D E, -~ 0
i i-1 1)

is exact, Let Ki be the kernel of T; on Ui . Then G461 defines
a section of Hom(EHl. Ki) defined on Y . Thus, this section
can be extended to 2 neighborhcod of Y in U, , and thus
@Gyt Ei+l --Ki can be extended to el Ei+1 --Ki on this
neighborhood. %41 is a surjectionon Y, so Tl will be a
surjection on some closed neighborhood Ui of Y in Ui .

Thus, the lemma follows by induction on i.

We introduce the set en(x, Y) of complexes of length n
on X which are acyelic (i.e., exact) on Y. We say that two
such complexes are homotopic if they are isomorphic to the
restrictions to X x{0} and to X x {I} of an element in

8,(X xI, ¥ x1). There is a natural map

glven by restriction of homomorphismas,
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LEMMA 2.6.13, & induces a bijection of homotopy

clagses.

Proof: The last lemma shows that ¢ is surjective.
To show that @ is injective we have to show that any complex
over X x {0} uX x {1} U Y xI which is acyclic over Y x1 can be
exterded to a complex on the whole of X x1. We carry out this
extension in three steps., First we make the obvious extensions
to X x {0, 1/4) and X x[3/4, 1], Next we apply the praceding
lemma to the pair X x [1/4, 3/4), Y x[1/4, 3/4} UV x {1l /4}u v x{3/4}
where V is a closed neighborhood of Y in X over which the given
complexes are still acyclic. This gives a complex on X x {1/4, 3/4]
which agrees with that already defined at the two thickened ends
along the strips V x{1/4} and V x{3/4}. Thus if we now

multiply everything by a function p such that

(i) p=1 on Xx{oluxxfifuyxI
(i) p=0 on (X-Vyx{t/4}u(x.vVv)x{3/4 ,

we obtain the desired extension {(see figure: the dotted line

indicates the support of p ).

1
]’ ----------------------------
3/4 |
'
1 ;
'
i
/e
i
o Y e
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f E€H (X, ¥), FES (X', Y) then EOF isa
complex on X X X' which is acyclicon (X x¥)U(¥Y xX'}.

Thus we have a natural pairing

8(X, Y)® &_(X!, Y)—~s 8, ((X, ¥) X (X', ¥'))
which is compatible with homotopies, Thus, by means of &,
it induces 3 pairing

s.n(x. Y)@.Bm(}{', T — .\:Mm({x. Y) x(X, Y)) .

LEMMA Z2.6.14. For auny classes x € .sn(x. Y),

x €L (X, V),

X(x @x') = x(x}x(x') .

Proof: This is clearly true when Y = Y' = . However,
the pairing K(X, Y) @ K(X*, ¥'} —> K({X, Y} x (X', Y*)} which
we defined earlier was the only natural pairing compatible with

the pairings defined for the case Y= Y' = ¢.

With this lemmma we now have a very convenient description
of the relative product. As a simple application we shall give a

new construction for the generator of R(Szn) .

Let V be a complex vector space and consider the exterier

algebra A%(V), We can regard this in a natural way as a complex
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of vector bundles over V., Thus we put E, =V X Ai(‘V), and
define

v x V) —> v x aP*y)

by
(v, w)~> (v, v AW} .

1f dim V =1 the complex has just one map and this is an isomorphism
for v # 0, Thus it defines an element of K(B(V), S(V)) = K(s%)
where B(V), S(V} dencte the unit ball and unit sphere of V with
respect to some metric, Moreover this element is, from iis
definition, the canonical generator of ;((32) except for a sign -1,

Since

A* (VO W) 2 AT (V)e a¥ (W)

it follows that for any V , A*(V)} defines a complex over V
acyclic on V - {0} , and that this gives the canonical generator of
K®B(V), 85(V)) = R(s?"‘) except for a factor {~1)® (where n = dim V),

More generally the same construction applies to a vector
bundie V over a space X . Let us introduce the Thom space
xv defined as the one-point compactification of V or equivalently
as B(V)/S(V). Then K(B(V, S$(V)) ER(XV) and the exterior algebra
of V defines an element of 'ﬁ(xv) which we denete by Aye It has the

two preperties
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(A) )y restricts to a generator of ﬁ(Pv) for each

point PE€X.

(B) Avow = MW My s Where this product is from
’exY) x ®xY) 1o REXVOY),

A very similar discussion can be carried out for projective
spaces. Thus i V is a vector bundle over X let P = P(V 1)
and let H be the standard line-bundle over P, By definition we

have & monomorphism
HY — 2¥(vol)

when 7 :P X is the projection, Hence tensoring with H we
get a sectionof H@ rr*(v @1). Projecting onto the first factor

gives therefore a natural section

8 € P(HQR*V} .

Consider the exterior aigebn A*(H@ r*V), Each component is

a vector bundle over P and exterior multiplication by s gives us
& complex of vector bundles acyclic outaide the subspace where

s =0, But this is just the image of the natural cross=-section

X -+ P, If we restrict to the complement of P{V) in P(V&1})

then H becomes isomorphic to 1 and we recover the element
which defines Ay (identifying P(V @1} - P(V) with V in the usual
wny), This shows that the image of Ay under the homomorphism
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RxV) = K(B(V 1), P(V)) —> K(P(V ©1))
is the alternating sum
- .

We conclude this section by remarking that everything
we have been saying works equally well for G-spaces, G being
& finite group. We have only used the basic facts about extensions
of homomeorphisms etc, which hold equally well for G-bundles,
Thus elements of I{G(X, Y} may be represented by G-complexes
of vecter bundles over X acyclic over Y, In particular the

exterior algebra of a Gevector bundle V defines an element
dy €KG(XT)

as above,
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§2.7. The Thom isomorphism. U E=X L, isa

decomposable vector bundle over X (i.e., a sum of line-bundles)
then we have (2,5, 3) determined the structure of K{P(E)) as a

K{X)=algebra., Now for any space X we have a canonical isomorphism
K*x) & Kx xsh) .
Also, if 71X x S1 -+ X is the projection, we have
P(E) x §' = P(s*E)

and so

o

K*(P(E)) & K(P(r*E))
Thus replacing X by X x s in (2. 5. 3) gives at once

PROPOSITION 2,7.1, let E=L L, be a decomposable

vector bundle over X, Then K*(P(E)), as a K*(X)-algebra,

is generated by [H] subject to the single relation

n(LlE -y = o

Remark: As with (2,5, 3) this extends at once to G-spaces
giving KE{P{E)) as a K'E(X)-algebra.

Now the Thom space x® may be identified with P(E ® 1)/P(E),
and at the end of § 2, 6 we saw that the image of Mg in K(P(E®1)
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is
E -y'HNE] = o - (L .
Since this element generates (as an ideal) the kernel of
K*(P(E @ 1)) —> K' (P(E))
we deduce

PROPOSITION 2,72, let E be a decomposable
vector bundle over X, Then K* (XE) is a free K* (X) »module

on AE as generator,

Remark: This "Thom isomorphism theorem" for the
decomposable case also holds as before for G-spaces, We now

show how this fact can be put to use,

COROLILARY 2,7.3. Let X be a G-space such that

K(X) = 0 andlet E be a decomposable G-vector bundle. Then,

if S(E) denotes the sphere bundle, we have an exact sequence

0 —> K:':;(S(E)) — Kg(x) L Kg(X) — Kg(S(EJ) 0

where ¢ is multiplication by

el = 2t Er .
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Proof: This follows at once by applying (2. 7.2) in the

exact sequence of the pair (B(E), S(E}).

In order to apply this corollary when X = point we

need to verify
LEMMA 2.7.4. Ki (point) =0,
Proof: It is sufficient to show that

KG(SI) —> Ko (point)

.

is an isomorphism, But, since G is acting trivially on Sl s we

have
K6 = ki) o ()
£ K (point) @ R(G)

Thus we can take X = point in (2, 7. 3) . Moreaver if we
take G abelian then E is necessarily decomposable, Thuas we

obtain "

CORCLLARY 2,7,5, Llet G be anabelian group, E a

G~module, Then we have an exact sequence

0 —> KL(S(E) —> R(G) —£~> R(G) —> KL(S(E)) —> 0
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where ¢ is muliiplication by

A el = Z¢02E)

Suppose in particular that G acts frealy on S(E)
(it is then necessarily cyclic), so that
£ 3 - *
KLGsE) = k*EEYe) .

Thus we deduce

COROLLARY 2,7.6, Let G be & cyclic group, E a

G~module with S{E) G-iree, Then we have an exact sequence

0 —> KYs(£)/G) — R(G) 2> R(G) —> K)(S(E)/G) —> 0

where ¢ is multiplicationby X ,[E] .

Remark: A similar result will hold for other greoups

acting freocly on spheres once the Thom isomorphism for KG has

been extended to bundles which are not decomposable, However,
this will not be done in these notes.
As a special cage of (2. 7.6) take G = Z,, E = C" with

the (-1} action, Then

SEVG = Py (R)

T A i o R g
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is real projective space of odd dirnension .
F
R(zz) = 2z[pl/p" ~ 1

A E] = -0 ‘

Putting 0 =p =1 so that 02 = =20 and A_IIE] = (=0)% we see

0 n-1 . 1
that K°(P, .(R)) is cyclic of order 2" while K'(P,  (R))
is infinite cyclic, If we compare the sequences for n and n +1
we get a commutative diagram

+1
)—> r(z) 275 r(z,)

1
0 ——> K(Py 41

-0 1

n
0 — KNP, )~—> R(2,) %5 R(z.,)
2n-1 2 2
But in R(Z,) the kernel of (~0)" {for n> 1) is (2- 6) and so
coincides with the kernel of ~g, Hence the map
kip,  }—> KNP, )
2n+1 2n-1

is zero, From the exact sequences of the pairs (Pznﬂ' Pzn)“

(Pyny Py ) we deduce that
1
)— K (Pz }

1
KAPyna1
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is surjective, while
ki(p, ) — (P, )
2n 2n-1
is injective, Hence

1
K(P,) = 0.

The exact sequence of the pair (P, nbl? P, ) then shows that

ke, ) —> k%P, )

is an isomorphism, Summarizing we have established

PROPOSITION 2,7.7. The strucutre of K*(P (R)) is

as follows
ke, .} =2
2n+l

0

x'(p, )

®op, )= RKUP,) = z,;m

We leave it as an exercise to the reader to apply (2. 7, 6) to

other spaces,

We propose now to proceed to the general Thom isemogphism
theorem, It should be emphasized at this point that the methods
to be used do not extend to G~bundles. Entirely different methods

PRt
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are needed for G-bundles and we do not discuss them here,

We gtart with the following general result

THEOREM 2.7.8., Let w:B ~X be a map of compact

spaces, and let @, -+, B be homogeneous elements of K*(B) .

Let M* be the free (Z,) graded group gemeratedby pp,-e<, i
Suppose that every point x € X has a neighborhood U such that

for all V c U, the natural map
K*(v) e M* — K*(x “}(v))

is an isomorphism, Then, for any YcX , the map

K¥*(X,Y) @ M — x* (B, v "ty

is an isomorphism,

Proof: If UcX has the property that, for all VU,

K* (V)@ Mx & Kx(n (V) (1)

we shall say that U is good. If U is good then, using exact
sequences and the fact that ®M¥ preserves exactness (M* being

torsion free) we deduce
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KHU, V) @Mx & Kxz " @,r i) (2)
Here we use of course the compatibility of 0 with products
{Lemma 2. 6.0). What we have {o show therefore is

X locally good ® X good.
Since X is compact it will be enough to show that

Uy, Uy good DU, U Uy good.
Now any V& Uy U Ugy is of the form V = VU V, with V; < U;

(and so V; is also good). Since

%, %
Yy 1nVg

it follows that (2} holds for the palr (V, V, }. Since (1)
holds for V2 the exact sequence of (V, V2 } shows that (1)

holds for V. Thus U1 u U2 is good and the proof is complete,

COROLLARY 2,7.9. Let w:E—X be g vector bundle.
and let H be the usual line bundle over P(E). Then K*(P(E))

is a free K*(X)-module on the generators 1, [H], [H]Z,- .o [H?

[H] satisfies the equation E(-1)'[HF[\'E]=0.
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Proof: Since E is locally trivial it is in particular
locally decomposable. * Hence, by (2.7.1), each point x € X
has a neighborhood U so that for all Vc U, KY(P(E|V)) is
n-1

a free K¥(V)-module on generators i, [H], *+-, [H] Now

apply (2, 7.8). The equation for [H] has already been established

at the end of §2,6.

COROLLARY 2.7.10. If n: E~X ie a vector bundle,

and if F(E)} is the flag bundle of E with projection map p:F(E}-X
then p¥ : K¥X) ~ K¥¥(E)) is injective.

Proof: F(E} is the flag bundle over P(E} of a bundle
of dimension one less than dim (E) . We proceed inductively

on dim{E) usging (2.7.9).

COROLLARY 2.7.11. (The Splitting Principle). If

Ey +o+, E_ are vector bundles on X, then there exist a space

F and a map %: F = X such that
1) ¥ : K¥(X) - K¥F) is_injective

2) Each w*(Ei) is a sum of line bundles.

Proof: We take F to be the flag bundle of @ Ei .

The importance of the Splitting Principle is clear. It enables

Remark: Thig is the argument which doe¢s not generalize

to G-spaces,
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us to reduce many problems to the decomposable case.

(The Thom Isomorphism Theorsm).

COROLLARY 2.7.12.
~ %X is a vector bundle

_I.E'I‘:E

o: KH(X) —> &*%x%)

defined by &(x) = AgX is an isomorphism.

Proof: This follows from (2.7.9}) in the same way a8

(2.7.2) followed from (2.7.1)

We leave the following propositions a4 exercises for the

reader

PROPOSITION 2.7.13. Uk = E - X isa vector bundle,

the usual line bundles overl F(E), then the map
K*(X) modules

Ll' 'R s Ln
defined by t; ~ [Li] defines an jsomorphism of

KAy, o0e BRI KHF(E)

eal generated by elements

where 1 is the id

oMep o 0r tg) < B ollt, ety - \Z(E), - ++ 0%t "+ s t)-NE)

-th elemeniary sysm'netric function.

l:r1 being the i
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PROPOSITION 2,7.14. Let w: E~X be an

n-dimensional vector bundle and let Gk(E) be the Grassmann

bundle (of k-dimengional subgpaces) of E. Let F be the

induced k-dimensional bundle over Gk(E). F' thequotient

bundle p*(E}/F . Then the map defined by t - Ai(l-"),

g - li(F') defines an isomorphism of K*(x)-modules

K¥XMt), --e e 8,000, 8 (VI KNG(E) ,

where ] is the ideal generated by the elements

2 ti'j -A‘(E) for all £ .
i+j=t

(Hint: Compare Gk(E) with the flag bundle of E).

In particular, we see that if Gn,k is the Grassmann
manifold of k-dimensional subspaces of an n-dimensional vector
space, K*(Gn' k) is torsion free. This also follows from its
cell decomposition. By induction we deduce K% is torsion free

for a product of Grassmannians.

THEOREM 2.7.15. Let X be a space such that K'(X)

is torsion free, and let Y be a (finite) cell complex, Y' CY a

subcomplex. Then the map

K*X) e K*(y, ¥')—> K*X xY, X x Y')

i» an isomorphism.
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Proof: The theorem holds for Y a ball, Y' its
boundary as a consequence of 2.7.2, It thus holds for any

(¥, Y'}) by induction on the number of cells in Y .

COROLLARY 2.7.15. (The Klinneth Theorem).

Let X be a space such that K*{X) is a finitely generated

abelian group, and let ¥ be a cell complex, Then there is a

natural exact seguence

0 —> kHx) e ®I(x) —> K5 x ¥)
ifi

— ) Tor(k(x), KI(¥)—> 0
+jekt

where all suffixes are in Zz .

Proof: Suppese we can find a space Z and a map
f: X =Z such that K*(Z) is torsion free, and f*: K*2) - K*X)
is surjective. Then from the exact sequence K*(Z/X) is torsion
free. From the last theorem, K*Z x ¥) = K*2) @ K*(Y),
K*(Z2/X) x ¥) = K¥2/X) ® K¥(Y)} . The result will then follow

from the exact sequence for the pair (Z x ¥, X X ¥Y) .

We now construct sucha map g: 88X~ Z ., Let a), e, a,

generate K°(x) » and let bj,*++,b  generate K'I(x) = K{SX) .

Then each a, determines a map o, : X~ Gri’ 5 for T B
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suitable, and each b, amap #, : 58X~ G . Let
1 1 “i’vi
: — [N ] - 1 & ane X d
a: X G’l"l X xGrn’sn G’ Dbe a; x &, » an
ﬁ=$x"Gu1,v1x...xGuh1’vm= G" be B xe+XB .

Then
* 0 0 . R
oa*: K(G'y—> K (X) is surjective

8% KY%G" — K%sX) is surjective.

Thug if f:(Se)xp:8K~(S3')xG"=G
£*: K¥G) —> K¥(SX) is surjective,

and K%G) is torsion free as required. This proves the formula for

SX and this is equivalent to the formula for X,

We next compute the rings K*U(n)}, where U(n) is
the unitary group on n variables. Now for any compact Lie
group G we can consider representations p: G ~ GL{m,C) as
defining elements [p] € KI(G) : we simply regard p as a map
and disregard its multiplicative propertiea. Suppose now that
a, B are two representationa G ~ GL{m, C) which agree on the

closed subgroup H. Then we can define a map
¥ : G/H - GL{m, C)
L

by ¥{gH) = a(g)ﬂ(g)'l . This is well-defined because of the

multiplicative properties of &, 8. The map ¥ defines an element
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[v] € KI(G/H) whose image in KI(G) is just fo] - [B). As
a particular case of this we take
_ _ _ «2n-1

G=U{n), H=Un -1}, G/H = § .
For @, B we take the representations of G on the even and
odd parts of the exterior algebra A*(C"), and we identify these
two parts by exterior multiplication with the n-th basic vector
e, of c®. Since U{n -1) keeps e fixed this identification
is compatible with the action of Uln - 1). We are thus in the

situation being coneidered and so we obtain an element
1, .2n-1
fr) e K(s"°™) .

I we pass to the isomorphic group R(Szn) we ses from its

definition that {y] is just the basic element
Acn € K($7)

constructed esarlier from the exterior algebra. Thus [y] isa
generator of Kl(szn'l), and its irmage in KI(U(n)) is E(-l)‘[f}
where the xi are the exterior power representations. With

this preliminary discussion we are now ready to prove:
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THEOREM 2.7.17. K*(U(n)) is the exterior algebra

generated by [xl]. e, [;\n] s where A,i ia the i-th exterior

power representation of U{n) .

Proof: We proceed by induction on n . Consider the
mapping

Ua) —> Ua)/U(n - 1) = s*81 |

Since the restriction of Li te Uln-1) is uiw;.;i']', where pi

denotes the i-th exterior power representation of U(n - 1}, the
inductive hypothesis together with (2. 7. 8) imply that K*(U(n))
in a iree K"'(Szn'l)—module generated by the monomials in

[11]. tre, [ln.l] + But K‘(Szn'l) is an exterior algebra on one

generator [y] whose image in K#* (U (n)) i»

’i - iy,

i=0

as shown above. Hence K U(n)) is the exterior algebra on

[ ++«, [A®) ae required.
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CHAPTER IO, Operations,

§1 . Exterior Powers, By an operation F in K-theory,

we shall mean a natural transformation Fy : K(X) »K(X). That
is, for every space X , there is a (set) map Fy ¢ K(X) =~ K{x) ,
and if f:X = Y is any continuous map, Fyf* =*Fg,
Suppose that F and G are two operations which have
the property that F([E] « n) = G(IE] - n) whenever E is a sum
of line bundles and n is an integer, Then F(x) = G{x} for all
x € K(X), as we see immediately from the splitting principle of
the last chapter,
There are various ways in which one can define operations
using exterior power operations, The first of these which we shall

discuss is due to Grothendieck .

If V is a vector bundle over a space X , we define

),t[V] € K(X)[[t]] to be the power series

PRt 12
i=0

The isomorphism

Fvew) &) ) enw)
=k
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gives us the formula

ANV eW] - M VINW]
for any two bundies v, W. Forany W the power series )gt[w]
is a unit in K(X)[[t]], because it has constant leading term 1.
Thus we have & homomorphism

A t Vect(R) > 1+ e (I

raultiplicative group

of the additive semi=group Vect(X) into the
By the universal

or K(X) with constant term 1.

of power series oV
uniquely to a homomoxrphism

property of K(X) this extends
N  K(x) -1+ KOOUAT -

Thus, taking the coefficient of ti we have operations

W KM —> KX)

Explicitly therefore

V1 - 9D = XV Wit

In a very si
sltv). since

skvew) & ) stv) @ (W)
1+j=k

milap way we can treat the lmmtric powers

B R

A b £
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we obtain a hornomorphism
5, 1 K(X) —> 1 + R[]’
whose coefficients define the operations
st RE)— KX) .

Notice that if L is a line bundle,
A(l) = 14tL
5,(L) = 14tL+t°L 40

= (1-tL)

Thus

AellISL) = 1 .

Thus, if V is & sum of line bundles, A_t[V]St[V] =1 , Therefore,
for any =x € K(X), A_t(x)st(x) =1, and so

AllV] - (WD) = ALVIS_IW]

that is,

A1 - [w)) = ;

-hvisiwy .
itk

This gives us an explicit forrmula for the operations 3 in terms

of operations on bundles,
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Now recall that, for any bundle E, dim Ex is a
locally constant function of x . Since ¥ is agsumed compact

gimE = Sup dim E,
x€X

-~

is finite, The exterior powers have the basic property that

NE = 0 ¢ i> dimE .

Let us call an element of K(X) positive (written x 2 0) if it is
represented by 2 genuine bundle, i e., if it is in the image of

Vect (X). Then

x> 0 =% 1t(x) e K(X)tY .

- For many problems it is not dim E which is jmportant
but another integer Jefined as fcllows. First let us denote by rank £
the bundle whose fibre at x is Cd(x) where d(x)=dimE_ @ if
X is connected then rank E is just the trivial bundle of dimension
equal to dim E . Then E - rank E induces an (idempotent) ring

endomorphism

rank: K(X) —> K(X)

which is frequently referred to as the augmentation. The kernel of
this endomorphism is an jdeal denoted by KI(X) . For a connected

space with base~point we clearly have
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K,(X) = Kx) .

For any x € K(X) we have

x -~ rank x € Kl(x) .

Now define dimyx, for any x € K(X}, to be the least integer n
for which

x « rank x+n2_0

since every element of K(X} can be represented in the form [V] = n
for some bundle V it follows that dimyx is finite for all x € K{X}.

For a vector bundle E we clearly have

dirnK[E] € dimE ,

Notice that

dimK° x = dimel
where X =% - rank x , so that f.!imK is essentially a function on
the quotient Kl(x) of K(X}.

It is now convenient to introduce operations 'yl which
have the same relation to dimK as the 1" have to the dimension

of bundles, Again following Grothendieck we define

¥y) = Ay /p ) € KON
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so that -yt(x +y) = yt(x)yt(y) . Thus for each i we have an

operation
P K(X) = K(X)
The -/i are linear combinations of the ;\j for j<i and vice~

verea, in view of the formula

A6 = Vs 11s®)

g =t/l=1t, g=sfL+s. Note that

ok 42 D

obtained by putting

p = -7

and for a line~bundle L
v, (L1 - 1) = L+e({L] =1 . ;
PROPOSITION 3,L1 Let x € K,(X) , then ¥, x) is.

a polvnomial of degree < dimpx

Prooft Let n =dimyX, sothat x+n>0. Thus x+1n

a [E] for some vector bundle E . Moreover dim E =2 and so

for i>n .

Z () = 0

Thus ),t(x +n) isa polynomizal of degree <n. Now
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¥,lx + o}y, ()"

7, (x)

= Y pyalx )-8

n
Y X+ mpltt - g4
1=0

and so is a polynomial of degree < n ag stated,

We now define dimyx to be the largest integer n such

that 9'(x - rank x) £0 , and we put
dim, X = su di.mnx
K *€K(X)

dim X = U dimx .
4 xGKEK) Y

BY (3. lo l) we have
dimyx Ldimpx , dim,)E LdimpX .

We shall show that, under mild restrictions, dime
is finite, For this we shall need some preliminary lemmas on

symmetric functions,

LEMMA 3.L2, Let x), ***, X be indeterminates,

Then any hocmogeneous polynomiai in z[xl, very x ] of degree

> n(n - 1) lies_in the ideal generated by the symmetric functiona of

{xjp ¢4+, x_) of positive degree .
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Proof; Let ai(xl, vy xn) be the i-th elementary

symmaetric function, Then the equation

xD - o'lxn.l +ozxn'z Foeret (--l)"l o, * 0

ig in the ideal generated by 0y ¢ Op

n
Thus X
ivisible

has roots X =X;.
X, of degree > nln=1) isd

But any monomial in Xy, ¢
also in this jdeal.

by x? for some i and so is

tYm‘lg.

IJEMMA 3.1.3. _I-_DG_t_ xl. ""xn’ Yll

indeterminsates and let

ai = Ui(xla AR ] xn) bi = ai(yl’ AR Ym)

be ihe elementary symmetric functions. Let I be any jdeal in

J its extension in Z[x,y]. Then

zt‘nb]l

inzfab]l =I.

Proof; It is well-knows ihat 2[x] is a fres zfaj-module

with basis the monomials

r, ¢ r
1 F n~i °.<_fif.n'i
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Hence Z[x,y] = Z[x] ® Z{y] is a free module over Z[a,b} = Z[a] @ 2{b]
with basis the monomials x=y> . Then the ideal Jc Z[x,y]

consists of all elements { of the form

_ r s :
£ -sz.!ix b el with frsel .

—’-

Since the x= y2 are a free basis f belongs to Z[a,b) if and only if

£ =0 for r,s #{0,0) in which case
s ==

f = fo’OEI -

Thus TN 2{a,b] =1 as stated.

Remark: This lemma is essentially an algebraic form
of the splitting principle since it asserts that we can embed Z{a,b)/1
in 2[x,y]/¥. Itis of course purely formal in character and it
seems preferable to use this rather than the topological splitting
principle whenever we are dealing with formal algebraic resuita,
The topological splittiﬁg principle depends of course on the periodicity
theorem and should only be used when we are dealing with properties

that lie at that depth,

LEMMA 3,1.4, Let K be a commutative ring (with 1)

and suppose

= 2,... n
aft) = liattad” +eevta ¢

2 m
bt) L+ byt + byt 4-0r +b t
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are elements of K[t] such that

a(i)b(t) = 1,

Then there exists an integer N = Nin, m) so that any rnonomial

B, T r
1 "2 n
8 By eee 2,

of weight T jrj > N vanishes ,

Proof: Passing to the universal situation it is sufficient

nt Pyttt bm are indeterminates,

then any monomial & inthe a; of weight > N lies in the ideal

to prove that if ap ety

I generated by the elementis

ey = ): ap, k=1, «ro,mnlay xbo=1)
i+j=k

By (3.1, 3), introducing indeterminates Xys o00s Xp s Ypo oty Ve

it is sufficient to prove that o belongs to the extended ideal J.

But ¢, is just the k-th elementary symmetric function of the

(m + n) variables Xpa sevs X0 Yo ***s ¥y o The result now

follows by applying (3.1, 2) with N={m+a)m+n -1} ,

Remark: The value for N{m,n)} obtained in the above proof
is not best possible, It can be shown by more detailed arguments

il
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that the best possible value is mn ,

We now apply these algebraic results:

PROPOSITION 3.1.5. Let x€ Kl(x) + Then there

exists an inteper N, depending on x, such that any monomial

Y1) ¥'2(x) « + ¥k(x)

of weight Ej]f:l ij > N is equal to zero,

Proof: We apply {3. 1 4) to the polynomials 'yt(x), 'yt(-wx) .

Note therefore, that N depends on dirnyx . dimy(-x) .

Since yl(x) =x we deduce:
COROLLARY 3.L6, Any x €K(X) is nilpotent,

If we define the degree of each ¥" to be one, then for

any monomial in the y" we have

weight > degree.

In view of {3,.1,5), therefore, all monomials in yi (x) of sufficiently
high degree are zero if x € Kl(x) « Thus we can apply a formal

power series® in the ' toany x € K;(X). Letus dencte by

#* As usual a formal power series means a sum =X £, where f

is a homogeneous polynomiel of degree n (and so involves only a finite
number of the variables}),
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Op(Kl, K)the set of all operations Kl —+ K, This has a ring
structure induced by the ring structure of K {addition and

multiplication of values). Then by what we have said we obtzin

a ring homomorphism

@i Zlly' 4 oees ¥ oor Jl——> OP(K,K) .

THEOREM 3.. 7,

o:2lly', «+v, Yoo ] —> OplK,, K)

is an isomorphism,

Proof: Let Yn,m be the product of n copies of Pm(C) .
Using the base point PO(C) of Pm(C) the Yn,m form a direct

system of spaces with inclusions

— LIS [N
Yn,m Yn',m' for n' >n, m'>m,

Then K(Yn rn) is an inverse system of groups with
¥

+ 211
K(Yn, m) = Z[xl' cee, xn.]/(x;'n 1'...',‘:; )
Iim K(Yn, m) == z[[xli bl ¥ xn]]
m
Hm o RK(Y, ) = UmZllg, e, x ).

G
m,n n
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Any operation will induce an operation on the inverse limits,

Hence we can define a map

$: OP(KI.’ K} ~—» lim Z[[xl, seas xn]]
“=

by #{f) = 141:1 f(xl txy teeet xn) . Since, in K(Yn, m) we have

n
Yole) +x, Heestx ) = T;' (t +xt)
1=

it follows that

$dyi) = 2 ai(xl’ e, xn)
n

where o; denotes the i-th elementary symmetric function. In
particular, therefore ¢ ie injective and so ¢ is injective, Moreover

the image of P is
Z[[ﬂl, ey o'nﬂ

which is the same as

lim z[[xla trr, xn]]Sn
e

where [ ]"':in denotes the subring of invariants under the symmetric

group S . But, forall f¢ Op(KI, K),
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Be) = Hm fhg eee bx)

lies in this group., In other words 3
Imyep = ImPp .

To complete the proof it remains now to show that ¥ is injective, ;
Suppose then that ${f) = 0. Since any line bundle over a space X {
is induced by a map into some Pn(C) it follows that 1
f({E] - n) = © |

whenever E is a sum of n line ~bundles, By the aplitting principle ‘;
this implies that i

fix)=0 forall x €K, ,

FRL L ] R ad e

i.e,, f is the zero operation, as required,

AL ar ¥ R,

Let us define HO(X, Z) to be the ring of all continuous

maps X -+ 2Z, Then we have a direct sum decomposition of groups -

K(X) = K (x)on%(X,2)

determined by the rank homomorphiem, It is easy to see that there

are no non-zero natural homomorphisms

Ho(x, 2) —> K (%)
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and so Op(K) = Op(K,K) differs from Op(I{I,K) only by Op(Ho(Z))
which is the ring of all maps Z =~ Z, Thus (3,1 7) gives essentially

a complete description of Op(K) .

We turn now te a discussion of finiteness conditions on K(X).

First we deal with HO(X, z).

PROPOSI‘I’I'ON 3.1.8., The following ave equivaleni

(a) HO(X. z) is a Noetherian ring

(B) H%(X,Z)  is a finite Z-module .

Proof: (B)implies {A) trivially, Suppose therefore that
HO(X, Z) is Noetherian, Assume if possible that we can find a
strictly decreasing infinite chain of components {open and closed

sets) of X

x=x0:xl:.--:xn:xn“:-o- .

Then for each n we can find a continnous map fn + X ~Z sothat

in(xnﬂ') =0
fn(xn - xn-i-l)

onsider the ideal I of HO(X, Z) consisting of maps f: X ~ Z
uch that f(Xn} =0 for some n, Since HO(X, Z) is Noetherian

is finitely generated and hence there exists N so that
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f(}’.'N) =0 forall f€1.

But this is a contradiction because
fy€l, fN(xN);éo .

Thus X has only a finite number of compenents, soc that

with X, connected, Hence Ho(x, Z) is isomorphic to Z°.

Passing now to K{(X} we have

PROPCSITION 3,1, 9, The following are equivalent

(A) K({X) is a Noetherian ring

{(B) K(X) isa finite 2= module .

Proof: Again assume (A), then HU(X,Z) which is a quotient
ring of K(X) is also Noetherian, Hence by (3,1 8}, H(X,Z) isa
finite Z-module. Now Kl(x) is an ideal of K(X) consisting of
nilpotent elements {3.1,6). Since K(X) is Noetherian it follows
that KI(X) is a nilpotent ideal, For brevity put I= KI(X) . Then
I" =0 for some n and the Im/ImH, m=0,1, +s., n -1 are

all finite modules over K/I = H°(x, Z)}, Hence K(X) is a finite
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HO(X, Z)=module and so also a finite Z-rmodule,

Examples of spaces X for which K(X) is a finite Z-module

are cell-complexes,

'Y

Let us now define a filtration of K(X) by the subgroups

KK(X) generated by all monomials

Fxg) ¥20xy) oo+ ¥klx)

with Z;c=l :iJ. >n and x; € KI(X} . Since ‘,Vl(x) =X,
we have K’{ =K. I x¢€ Kﬁ(}() we say that x has y-filtration > n

and write Fy(x) >n,

PROPOSITION 3,110, Assume K(X) is a finita Z-module,

Then for some n

Kz(X) =0 .

Proof: Let x), +++, x, be generators of KI(X) and let

Nj = N(xj) be the integers given by (3.1.5). Because of the formula
Y (a +b) = y,(a) v,

it will be sufficient to show that there exists N so that all inonomnials

=1 )
we see that any suc! * ~uxt, for some j, have weight > Nj

in the ‘yi(xj) of total weight > N are zero. But taking N=L N,
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in the yl(xj) . Hence by (3,1, 5) this monomizal is zero,

COROLLARY 3,1,1l, Assume K{X) is a finite Z-module,

Then dimy}( is finite,

We call the reader's attention to certain further properties of

the operations y" «

PROPOSITION 3,112, I V is abundle of dimension n,
A lvl= (-1)" (V] - n). Thus K "ixv) is a free K¥(X) meodule

generated by yn({V] -n}.

PROPOSITION 3.1.13. There exist polynomials Pi' Qij

such that for all x, vy

Yoy) = Pt Y ¥om, YR e Al )

VO = Qe ooe, N

We leave these proofs to the reader, who may verify them easily

by use of the splitting principle.
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§2, The Adams Operations, We shall now separate

out for special attention some operations with particularly pleasing
properties, These were introduced by J.F, Adams, We define

$0(x) = rank {x) , In the ring K(X){[t]] we define p(x) = Z o tiq';i(x)
by

5,09 = 909 - t ~Biog A ) .

Notice that since all of the coefficients of this power series are

integera, this definition makes sense,

PROPOSITION 3,21 For any x, y € K(X)
D %+ v) = 056 + pMy) forall k
2) If x isa line bundle, P (x) ==~ .

3) Properties 1 and 2 uniquely determine the operations

#=.

Proof: $,(x +y) = f,(x) + gy, so that §(x +y) = ") + ")
for each k.,

I x is a line bundile, l-t(x) =l ~ tx, so that

T (loglt - x)) = 375
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Thus q’;t(x)-'-'l-i-tx+tzxz+... .

The last part follows from the splitting principle.

PROPOSITION 3.2, 2. Forany X ¥ € K(X)

1) Fay) = $50) $5y)  forall X
2) $k(lb‘ {x)) = dJk't {x) for all k2 .
3) }_i P is prime, $p{x) £ xp mod p

4) ¥ u€ %(Szn), tbk(u) =k"y forall k.

Proof: The first two assertions follow im mediately from
and the splitting principle.
Pz} == + pEA Lx), +++» WP(x)), where £
fficients, Finally, if h is

the last proposition Also, from the

splitting principle,
is some polynomial with integral coe

the generator of ‘i'{(sz), zpk(h) =kh.
y hah @+ @h , the last assertion

since §2° = 8% AeernSE,

and H(32%) is generated b
follows from the first,

k
ion of the Adams operations ¥ .

We next give an applicat

Suppose that f: .?-4“-]L - SZn is any map. We define the Hopf
jpvariant H{f) as follows, Let Xf be the mapping coné of .
be the inclusion, and let j@ X -'S B collapse

Let 118%™ <X,
From the exact

528 , Let u be the generator of K(S
sequence we seo that there is an element x

generates 'ﬁ(szn). ?((Xf) is the free abelian group g

€ KX f) such that £ (x)

enerated by

ST _
i R e, e By s VR AT e
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x and y = j*{u). Since (i¥ (x))z =9, x2 = Hy for some H .
This integer H we define as the Hopf invariant of f. Clearly,
up to a minus sign, H(f} is well defined, The following theorem

was first eatablished by J. F. Adams by cohomological methods,
THEOREM 3,2.3, If H(f) is odd, then n=1, 2, or 4.

Proof: Let :le(x) = 2™« +ay, ¢3(x) = 3™ + by, Since lﬁz(x)
2 x% mod 2, a is odd, aﬁk(y) = j*(q&k(u)) = kzny . Thus,we see
that

6% + (2™ + 32na)y

3% = i)

286 = p2P60) = 6% + (2% + )y

Thus 2% + 3% = 2°™ + 3%, or 2°(2% - b = 332 ~ 1)a.
Since a is odd, 2° divides 3" - 1, which by elementary number
theory can happen only if n=1, 2, or 4,

¥ n=1, 2, or 4, the Hopf maps determined by considering

S4n-1as a subspace of the non~zero vectors in 2-dimensional
complex, quaternionic, or Cayley space, and sén as the complex,
quaternionic, or Cayley projective line all have Hopf invariant

one, We leave the verification to the reader,

PROPOSITION 3,2,4, Let x € K(X) be_such that Fy(x) >n,

Then for any k we have

Fy(¢k(x) ~K'%)>n+t ,
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Praoof: If n=0 we have
k k k
¥ (x) = ¢ (rankx +xl)=rankx+¢ %) .

Here x, and so &kxl are in K (X). Thus
k k
px-x = §x-x € KiX) =K‘{(x} .

Consider now n> 0, Since abk is & ring homororphism it is
sufficient to prove that the composition lﬁk . 'yn - "-y“ (where
¢k € Op(K), ¥y~ ¢ Op(K,. K)) is equal to a polynomial

in the yi in which each term has weight >n +1. Asin(3,L.7)

we have isomorphisms

Zlly, -+« 1 & Op(K, K) T lim Zfxy, oor, %, 1P

m

in which 'yi corresponds to i-th elemeniary symmetric function

. ofthe x , Now
1 J

ey = rx)-1

aend so
P50 by oo M) = o ((Lrx)N -1, 0e0)

= kncrn(x) + f

where f{ is a polynomial in the ¢; of weight >n +1. Since



139,

&k + %" corresponds to gbk(crn) by the above isomorphisms the

proposition is established.

Iterating (3. 2.4) we obtain:

K
o
™

COROLLARY 3,2,5, I KY (X) =

n km )
[:11;0 (¥ (kmf“z}]

for any sequence of non-negative integera kO’ kl' vee, kn .

n
<

By (3,1.10} we can apply 3,2.5 in particular whenever K(X) is
a finite Z-~module,

Notice that #Jk acts as a linear transformation on the vector
space K(X)®Q . Taking k =k forall m in (3.2.5) we see

that

n -
;I:l:}(r,fa ™ =0 on K(X)e0Q .

Thus the eigenvalues of each q‘)k are powers of k not exceoding X,
Let V, . dencte the eigenspace of #;k correaponding to the
[ 4
eigenvalue it {we may have Vi ® 0). Thenif k> 1, we have
]

an orthogonal decomposition of the identity operator 1 of K(X)®Q:
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e Dm oo s TG

Thus K(X)® Q is the direct sum of the Vi g » Now putin
')

(3.2.5),
k.=24, k_= Kk for my{i

and we see that
£ -
(‘p = !i}vk'i =0
and so vk,i c v.l,i . Hence we deduce
PROPOSITION 3,2,6, Assume K(X) has finite y-filiration
and let V, . denote the eigenspace of ;bk on K({X)® Q correspond-
1 ]

ing to the eigenvalue ki' + Thenif k, £ >1 we have

Since the subspace Vy,j does not depend on k {for X>1} we
may denote it by a symbol independent of k, We shall denote it by
H24(X; Q) and call it the 2i~th Betti group of X, From (3,2.4)
it follows that the eigenvalue ko =] occurs only in HO{X, Z}eq.

Thus our notation is consistent in that
0 0
H(X,2) @ Q = H(X;Q) .

We define the odd Betti groups by
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where X' =X U point and S denotes reduced suspension, If

the spaces involved are finite-dimensional we put
B, = dimy H'(X; Q)
and the Euler characteristic E(X) is defined by
' k - 0 - 1
E(X} = Z{-1)" B, = d:mQ(K (X)eq) - d:mQ(K (X)eQ).
Note that the Kunneth formula {when applicable} implies
E(X x¥) s E(X)E(Y) .

The following proposition is merely a reformulation of (3. 2. 4)

in terms of the notation just introduced:

PROPOSITION 3,2, 1.

K ea =y HTXQ)
m>n

and so

K& /x¥ )} e = Bx;0).
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Since a,bku = ku for the generator u of ﬁ(Sz} it follows

that
s5e6) = kpYF(x)

where 8: K(X) - K™2(X) is the periodicity isomorphism. Thus

f induces an isomorphism
WMy . o) & giM iyt o) .

From the way the odd Betti groups were defined it follows that,

for all k
(3.2.8) o¥x ;) = v¥ex* ) .

If we now take the exact K-sequence of the pair X, A, tensor

with Q, decompose under :bk and use (3, 2,8} we obtain:

PROPOSITION 3,2.9. If AcX, and if both K*(X), K*(a)

are finite Z-modules the exact sequence

oo — KNa) 2 5 Kix,8) — i) — Ka) Lo

induces an exact sequence

veo —» B la;0) 85 Higx, a0) > ooy Hia) S -
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We next give a second application of the operations qbk .
Since Pn(C)/Pn_l(C) is the sphere sin , we have an inclusion
of S°® into P_lCV/2__|(C) forall k. We should like to
know for which values of n and k,Szn is a retract of P_ +k(cypn_l(c).
That is, we should like to know when can there exist & map
£: P (C)/2, _(C) »5°® which is the identity on 52", We shall
obtain certain necessary conditions on n and k for suchan f

to exist,

THECOREM 3,2,10, Assume a retraction

£: P, ,(C)/2,_(C)—> P (CY/P, _(C) = sN

i log 1 + x\"
exists, Then the coefficients of x for i<k in (—9—3—;‘-—)

are all integers,

Proof: Let { be the usual line-bundle over Py and
let x=%, =1, Then K(Pn +k) is a free abelian group on generators
x%, o Ss<n+t+k, and we may identify K(Pn-l-k' Pn-l) with the
subgroup generatsd by x® with n £s<n t+tk. In K(Pnﬂz’ 2 Q

put y = log {1 + x), sc that esey. Then

T = T s ) = D)

50 that $r(y, =ry. Thus HZ’(Pn+k/Pn_I;Q), for n<s<n+k
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is a one-dimensional space generated by y® . Now let u
generate ﬁ(sz“ , and let

ntk
- i
) = ) axt |
isn
Since f is a retract wehave a =1, Since t;bku = kP, % (u)

musi be a multiple of yn, so that

n+k
z a..::i = )gyn .

i=n

2n

Restricting to 57 we see that A =1, and so

Y" = (log(l + )"

has all coefficients from x° to -xn+k integral as required,
Remark: It has been shown by Adams and Grant-Walker
(Proc. Camb. Phil. Soc. 61(1965), 81-103) that (3. 2,10) gives a

sufficient condition for the existence of a retraction,

Suppose once more that we have a map f : glmtin-l , g2m

Then we can attach te f an invariant e(f} €2/Z in the following

fashion,
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Let X be the mapping cone of £, i= 2™ L X the

inclusion, j t X —+SZBT®M 4. map which collapses S°™ . Let
Pt Ll F
u generate K0(52n+2m)’ v generate Ko(Szm). and let x ¢ Ko(}{

be such that i*(x) =v, Let y=ji*(u}, Then for any k,
eﬁk(x) = kPx + ay .

Ag before, we know that rbk;’;’! = ;b‘aﬁk s 8o that

K™ - 1)a .= 0™ - 1a, .

Thus

of) = —E _ ¢q
EHE™ - 1)
is well defined once x is chosen. If x is changed by a multiple
of y, e{f) is changed by an integer, so that e(f) € Q/Z is well
defined, We leave to the reader the elementary exercise that
e:ql zn+zm-1(szm) -{/Z is a group homomorphism, It turns

out that this is a very powerful invariant,
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§3. _The Groups J(X). Inthis section we assume,
for simplicily, that X is connected., One can introduce a notion
of equivalence between vector bundles, known as fibre homotopy
equivalence, which is of much interest in homotopy theory, lLet
E, E' be two bundles over a space X , and supposa that both E,
E! have been given Hermitian metrica. Then E and E' are said
to be fibre homotopy equivalent if there exist maps f: S(E) - S(Ef),
g : S(E'}) » S(E), commuting with the projection onto X , and such
that gf and fg are homotopic to the identity through fibre-preserving
maps. Clearly this is an equivalence relation defined on the set

of equivalence classes of vector bundles over X,

Fibre homotopy equivalence is additive; that is, if E, E!
are fibre homotopy equivalent to F, Ft respectively, then E @ E!
is fibre~homotopy equivalent to F @ F', This follows from the fact
that S(E ® E'}) may be viewed as the fibre~join of the two fibre
spaces S5(E), S(E') : in general the fibre-joinof w:Y ~X,
w1 Y +X is defined as the space of triples (y, t, y') where
t€l, m({y})=r'(y') and we impose the equivalence relations

(Yt e, Y‘l) ~ (y, 0, Y’Z)

(Vz’ 1, Y') d (th 1, Y‘) .

We say that two bundies E, E' are stably fibre-homotopy

equivalent if there exist trivial bundles V, V! suchthat E®V is
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fibre~homotopy equivalent to E' ® V', The set of all stable
fibre=-homotopy equivalence classes aver X forms a semi-group
which we dencte by J{X}. Since every vector bundle E has a
complementary bundle F so that E®F is trivial it follows that

J(X) is & group and hence the map

Vect(X) —~=>» J(X)

sxtends to an epimorphism

K(X) —> J(X)

which we also denote by J.

If we have two bundles E, E! and if 7 : S(E}~ X,
m ' :S(E') X are the projection maps of the respective sphere
bundles, the Thom complexes xE ’ xE' are just the mapping
cones of the maps w, w! respectively. Thua, we see that if E
and E' are fibre homotopy equivalent, XE and XE' have the
same homotopy type, However, if E is a trivial bundle of
dimension n, X° =8%%(X*). Thus, to show that J(E) # 0, it
suffices to show that XE does not have the same stable homotopy

type as a suspension of x*t .

We shall now show how to use the operations q{rk of §2
to give necessary conditions for J(E} =0, By the Thom isomoxphigm

(2. 7,12) we know that fc(xE) is a free K(X)}-module generated by
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Ag » Hence, for any k, thers is 2 unique element pk(E) € K(X)

such that

P 0g) = ag AN(E) .

The multiplicative property of the fundamental class A established
in §2, together with the fact that abk preserves products, shows that

MEQE) = NE). E) .

Also, taking E =1, and recalling that

$ep = kg

where £ is the periodicity isomorphism, we see that

o) = x .

Now let Q, = Z[1/k] be the subring of Q consisting of fractions
with denominators a power of k, Then if we put

FE) = K g (E) n = dim E
we obtain a homomorphism
ok

+ K(X) ~ Gy

where G, is the multiplicative group of units of K(X) eQ, .

Suppose now E is fibre~homotopically trivial, then there exists
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u € k(}(E) so that l\bku =k"u. Putiing u= Ap & we find that
k k n
P Ap ga = Kk Ap @

and so

FE) - $5(a) = a .

Moreover, restricting to a point, we see that a has augmentation
} sothat a and q&k(a) are both elements of Gk . Hence we may

write

k a '
GIE) 2 —— €G .
) Pk (a) k

Since Ok(E) depends only on the stable class of E , we have

established the following

PROPOSITION 3,3.1, Let H, c G, be the subgroup

penerated by all elements of the form a/;bk(a) with a 2 unit of

K(X). Then

Uk : K{X) ~» Gy

maps the kernel of J into Hk , and so induces a homomorphism

J(X) Gk/Hk .
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In order to apply (3. 3.1) it is necessary to be able to

compute ok or equivalently pk . Now
1
P e OpK

is an operation. Its augmentation is known so it remains to determine
its vazlue on combinations of iine-bundles. Because of its
maultiplicative property, it is only necessary to determine pk(L)

for a line=buyndle L,

LEMMA 3,3.2, Fora line=bundle L, we have

k=
Py = ) .
§=0

Proof: By (2, 7.1) and (2. 7. 2) we have a description of
E(XL) as the X(X) sub-module of K(P(L. @®1)) generated by
n=1=[LHH]. The structure of X(P(L ®1)) is of course given

by our main theorem (2. 2,1), Hence

1~ [LN[%)
-1
@ - ) { i (L }
3=0

k-1
=u) (U], since (- [LNHDG-{H) =0 .
j=0

)

1]
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Thus

kel
k"L = XL{?;_.O [LJI}

proving that
k-1

5L = 2 Ly
=0

ag required,
As an example 'Iwe take X = Pzn(R), real projective

2n-space, As shownin (2.7, 7) R(X) is cyclic of order 2% with

generator x ={L] -1, where L is the standard line-bundle,

The multiplicative structure follows from the relation [L]™ =1

{since L is associated to the group Zz) » Now take k = 3 , then

¥ = -1 = x,

and so the group H; defined above is reduced to the identity, y
S
Using (3. 3. 2) we find
3 3 3
prlmx) = (o GN™ = (p’[L)™

370 + (L] + [L)D)™

]

o (mx)

1 +x/3™

z (- l)i-l Z (m)x {since x>= ~2x)

i=l

1+ -f,:-(l -(1- %)'“)x

- ™
L+ 372yl ) .

H
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Thus §f J(mx) = 0 we must have 3™ - 1 divisible by 2"},
This happens if and only if Zn-l divides m . Thus the kernel of

1 : R(P,,(R)) = J(P,, (R))

is at most of order 2, This result can in fact be improved by
use of real K-theory and is the basis of the solution of the vector-

field problem for spheres,

The problem considered in (3, 2, 10) is in fact a special
case of the more general problem we are considering new, In fact,
the space Pn+k(C)/Pn_l(C) is easily seen to be the Thom space of
the bundie nH over Pk(C) . The conclusion of {3, 2. 10) may
therefore be interpreted as a statement about the order of
J[H} € J(Pk(C)) . The method of proof in (3. 2, 10) is essentially
the same as that used in this section, The point is that we are now
considering not just a single space but a whole class, namely Thom
spaces, and describing a uniform method for dealing with all spaces
of this class,

For further details of J(X) on the preceding lines we
refer the reader to the series of papers ""On the groups J(X)" by
J, F. Adams (Topology 1964~).
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APPENDIX

The space of Fredholm operators. In this appendix we shall

give a Hilbert space interpretation+ of K{X). This is of interest

in connection with the theory of the index for elliptic operators.

Let H denote a separable complex Hilbert space, and
let G(H) be the algebra of all bounded operators on H. We
give G the norm topology. It is well-known that this makes G
into a Banach algebra. In particular the group of units ¥ of G
formas an open gset. We recall also that, by the closed graph theorem,
any T € G which is an algebraic isomorphism H~H is alsoa

topological isomorphism, i.e., T'1 exists in ¢ andso T €G¥,

DEFINITION: An operator T € G{H) is a Fredholm operator

if Ker T and Coker T zre finite dimensionzl, The integer

dim Ker T - dim Coker T

is called the index of T .

—

We firat observe that, for a Fredholm operater T, the
image T{H} is closed. In fact, since T(H) is of finite codimension
in H we can find a finite dimensional algebraic complement P .

Thenr T®j: H® P ~ H(where j: P—-+H is the inclusion} is

| ‘These results have been obtained independently by K. Janich
{(Bonn dissertation 1964).
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surjective, and so by the closed graph theorem the image of
any closed set is closed. In particular T(H) =T @ j{H® 0}

is closed.

Let 3 < ¢ be the subspace of all Fredholm operators.

If T, 8 are two Fredholm operators we have

dim Ker TS < diza Ker T + dim Ker S

dim Coker T8 < dim Coker T + dim Coker S

and s¢ TS is again a Fredholm operator. Thus 3 isa
topological space with an associative product Fx F~+3F . Hence
for any space X the set [X, J] of homotopy classes of mappinge
X =¥ is 2 semi-group. Our main aim will be to indicate the

proof of the following:

THEOREM Al. For any compact space we have a natural

isomorphism
index : [X, ¥) - K(X) .

Note: If X is a point this means that the connected components
of F are determined by an integer: this is in fact the index which
explains our use of the word in the more general context of

Theorem Al .
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Theorem Al asserts that ¥ is a classifying or representing
space for K-theory. Anocother closely related classifying space
may be obtained as follows. Let X< G denote 2]l the compact
operators. This is a closed 2-sided ideal and the gquotient
®= G/X is therefore again a Banach algebra, Let ®" be the
group of unite of @ . It is a topological group and so, for any

X, [X, ®*] is a group. Then our second theorem is:

THEOREM A2. @* is a classifying space for K-theory,

i.e,, we have a natural group-isomorphism

X, ¢"] = K(X) .

We begin with the following lemma which is essgentially

the generalization to infinite dimensions of Proposition 1. 3.2,

LEMMA A3, Let TE3F andlet V be a closed subspace

of H of finite codimension such that ¥V i Ker T = 0. Then there

exists a neighborhood u gf T im G such that, for all S€ U,

we have
(i) VnKerS=0

(ii) U H/S(V) topologized as a quotient space of U x H
Seu
is a trivial vector bundle over U.
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Proof: Let W = T{V)' (the orthogonal complement of T{(V)
in H.) Since T €F and dim H/V is finite it follows that dim W

is finite, Now define, for S5€ G,

@s:VGW-*H

by ¢S(v @W)=8(V)+ W. Then S- @g Bives a continucus linear

map

@e: G~ s(Vve w,H)

where £ stands for the space of all continuous linear mape with

the norm fopology. Now Py iz an isomorphism and the isomorphisme
in £ form an open set (like 6% in G) . Hence there exists a
neighborhood U of T in G so that ¢g is an isomorphism for

all S€ U. This clearly implies (i) and (i},
COROLLARY A4. 3 is openin G.
Proof: Take V = (Ker T)' in (A3).

PROPOSITION AS5. Let T:X -+ JF be a continuous map

with X compact. Then there existse Vc H, closed and of

finite codimension so that

(i) VNKerT =0 for all x € X,

Moreover, for any such V we have

(ii} v H/Tx(v} , topologized a8 a guotient space of
x€X
X xH, is a vector bundle over X .
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Proof: For each x € X take V_-= {(Ker 'Tx)"' and let
U_ be the inverse image under T of the open set given by (A3).
Let K, = Uxi be a finite sub-cover of this family of open sets.
Then V=g, in satisfies (i) . To prove {ii} we apply (A3) to
each T , and deduce that U, H/TY(V) is locally trivial near

x , and hence is a vector bundle,

For brevity we shall denote the bundle UxeX H/Tx_(V) 3
occurring in (A4), by H/T(V}. Just as in the finite-dimensional
case we can split the map 4 : X x H = H/T{V) : more precisely we

can find a continuous map

o' H/T(V)+ X v H

commuting with projection on X and such that

b = identity

One way to construct ¢ is to use the metric in H and map H/T(V) onto
the erthogonal complement T(V)* of T(V). This is technieally in-
couvenient since we then have to verify that T{V)* is a vector bundle,
Instead we observe that, by definition, 4 splits locally and so we can
choose splittings @, over Ui » where Ui is a finite open covering

of X. Then ¢ - ¢ = eij is essentially a map I-I/T(V)IUi n Uj

J
- Ui n Uj xV. If p; is a partition of unity subordinate to the
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covering we put, in the usual way

8, = Epj eij

1
s0 that §; is defined over all LA and then g@= @ -9 is
independent of i1 and gives the required splitting.

We can now define index T for anymap T: X «3F (X being

compact). We choose V as in (A5) and put

index T = [H/V] - [H/T(V}] ¢ K(X} ,

where H/V stands for the trivial bundle X x H/V . We must
show that this i# independent of the cheoice of V. If W is
another choice so is V N W, so it is sufficient to assume W V.,

But ther we have the exact sequences of vector bundles

0 —> V/W > H/W —> H/V —> 0

0 —> V/W o> H/T(W} —2> H/T{V}—> 0 ,

Hence

[H/V) - [H/W) = [v/w} = [H/T(V)] - [H/T(W}]

as required.

It is clear that our definition of index T is functorial.

Thus if f: ¥ » X is a continuous map then
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index Tf = £ index T .

This follows from the fact that a choice of the subspace V {for

T is also a choice for Tf,

¥ T:Xx1-+3 is a homotopy between To and Tl then
index T € K(X xI) restricts to index T, €K(X x {i}}, i1=0, 1.

Since we know that
KX xI) - KX x {i}} £ K(X)

is an isomorphism, it follows that
index T\, = index T, .

Thus

index : [X, 3] —> K{X)

is well=defined,

Next we must show that "index" is 2 homomorphism, Let
S:X =%, T:X -3 be two continuous maps, Let W&H be a choice
for T. Replacing S by the homotopic map = wS (1'1'W denoting projection
onto W) we can assume S (H)CW. Now let VCH be a choice for 8
then it ig also a choice for TS and we have an exact sequence of vector

bundles over X

0 ——> W/SV —2p H/TSV —> H/TW —> 0,
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Hence
index TS = [H/V] - [H/TSV]
= [B/V] - [W/sV] - [H/TW]
= [H/V] - [H/sV] + [H/W] - [H/TW]
= index § +index T
as required,

Having now established that
index : [X, F] — K{(X)

is a homomorphism the next step in the proof of Theorem (Al)} is

PROPOSITION A6, We have an exact sequence of semi~

groups

X, 6*] — [x, 3] —2R9EX 5 (%)~ 0 .

Proof: Consider firsta map T ;X + ¥ of index zero. This

means that
[H/v] - [H/TV] =0 in K(X) .
Hence adding a trivial bundle P to both factors we have

H/VeP = H/TV & P,
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Equivalently replacing V by a closed subspace W with

dim V/W =dim P,

L

H/W = H/TW .
If we now split X x H » H/TW as explained earlier we obtain a
continuous map

¢: X XH/W-—> X xH

commuting with projection on X , linear on the fibres, If

G X —> L{H/W, H)

is the map associated to ¢, it follows from the construction

of ¢ that
)
x—> & + ‘I'x
gives a continuous map
X s 6¥

Butif 0<t<1, T +t@ provides a homotopy of maps X - ¥

connecting T with T + &, This proves exactness in the middla,

It remains to show that the index is surjective, Let E
be a vector bundle over X and let F be a complerment so that

IS ®@F is isomorphic to the trivial bundle X xV , Let T eEnd V
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denote projection onto the subspace corresponding to Ex .
Let 'I‘k € 5 denote the standard operator of index k , defined

relative to an orthonormal basis {ei} {i=1, 2,...) by

"

Tyle) = e, if i-k>1

=0 otherwise ,
Then define 2 map
S:X-FH8V) £ F(H)

by S, =T _®n +Ty@(l-n), Wehave KerS =0 forall x
and HOV/5(H® V) =E, Hence

index 8 = -~[E} ,

The constant map T, : X - & givenby T, (x) = T has indexk
and so

index T,§ = k - [E].
Since every element of K(X) is of the form k ~ [E] this shows
that the index is surjective and completes the proof of the propusii

Theorem {Al} now follows from (Aé) and the following:

PROPOSITION A7, [X, 6¥]1=1 .
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This proposition is due to Kuiper and we ghall not
repreduce the proof here (full details are in Kuiper!s paper:
Topology 3 (1964) 19-30), In fact, Kuiper actually shows that

a* is contractible,

We turn now to discuss the proof of (A2), We recall first

that

1+ HcF

This is a standard result in the theory of compact operators: the

proof is easy,

FPROPOSITION A8, Let w :G-@®~ G/¥ be the natural

map. Then

3 = o He*) |

Proof: (a) Let T €F and let P, Q denote orthogonal
projection onto Ker T, Ker T* respectively., Then T*T + P
and TT* +Q are both in G¥ s and so their images by * are
in 8%, But P, Q€X andso  w(T%).n (T) € &%, n(T)r(T™ ¢
This implies that w{T)¢€ &* , |

(b} Let T €n '(a*), ie., there exists 5€G with

ST and TS €l+ X3, Since dim Ker T £ dim Xer ST
dim Coker T < dim Coker T8

il follows that T € 3.
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Theorem (A2) will now follow from (Al) and the following

general lemma (applied with L=g¢, M=@®, U=@g%) .

LEMMA A9, ILet m : L - M be a continuous linear

map of Banach spaces with 7(L) dense in M and let U be an

open setin M, Then, for any compact X

(x, = "Hu)] — (%, U]

is bijective,
Proof: First we shall show that if
* s L— M

satiafies the hypotheses of the lemma, then for any compact X,

the induced map
"X H Lx — M'x

also satisfies the same hypotheses, Since Lx, M‘x are Banach
spaces the only thing to prove is that wx(l..x) is dense in M> ,
Thus, let {:X -+ M be given, We have to construct g : X~ L
sothat |[wglx) - f(x)[] <€ forall x €X ., Choose a,, **+, a,
in £(X) so that their % ~neighborhoods {Ui} cover f(X) and
choose b, so that |[1r(bi) - ai|| <€/3 ., Let u(x) be a partition

of unity of X subordinate to the covering {f-IUi} and define
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g:X-L by

gle) = Z wlx) b, .

This is the required map,
Hence replacing ¥ by 7% and U by v (which is
open in Mx) we see that it is only necessary to prove the lemma

when X is a point, i.e., to prove that
-1
® (U)y— U

induces & bijection of path~components, Cleaz-'ly this map of
path-components is surjective: if P € U then there exists

Q € #{L) N U such that the segment PQ is entirelyin U. To
see that it is injective let P, P, € »“}(U) and suppose £:1~U
is a path with £(0) = n(Po) , f(1} = 'rr(Pl) . By what we proved at

the beginning there exists g:1~ ﬂ-l(U) such that
|7t -~ £)ff < ¢ forall £t €1 .

If ¢ is sufficiently small the segments joining wg(i) to f£(i),
for i =0, 1, will lie entirely in U, This implies that the
segment joining g(i)to P;, for =0, 1, Hesin 5 (U) .
Thus P, can be joined to F, by a path in « -I(U) (see figure)

and this completes the proof.,
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POWER OPERATIONS IN K-THEORY
By M. F. ATIYAH (Oxford)
[Received 10 January 1968]

Introduction

For any finite CW-complex X we can define the Grothendieck group
K(X). It is constructed from the set of complex vector bundles over X
[see (8) for precise definitions]. It has many formal similarities to the
cohomology of X, but there is one striking difference. Whereoas co-
homology is graded, by dimension, K(X) hag only a filiration: the sub-
group K (X) is defined as the kernel of the restriction homomorphism

E(X)~> K(X,y),

where X _, is the (¢g—1)-skeleton of X. Now K(X) has a ring structure,
induced by the tensor product of vector bundles, and this is compatible
with the filtration, so that K(X) becomes a filtered ring. There are also
natural operations in K(X), induced by the exterior powers, and one of
the main purposes of this paper is to examine the relation between
operations and filtration (Theorem 4.3).

Besides the formal analogy between K(X) and cohomology there is a
more precige relationship. If X has no torsion this takes a particularly
simple form, namely the even-dimensional part of the integral co-

homology ring H™(X;Z) = 3 H%(X; Z)
q

is naturally isomorphic to the graded ring
GK(X) = qE Koo X} Kyqo(X).

Since this isomorphism preserves the ring structures, it is natural to
ask about the operations. Can we relate the operations in K-theory to
the Steenrod operations in eohomology ?

If we consider the way the operations arise in the two theories, we see
that in both cases & key role is played by the symmetrie group. It is
well known [ef. (10)] that one way of introducing the Steenrod operations
is via the cohomology of the symmetric group (and its subgroups). On
the other hand, the operations on vector bundles come essentially from
representations of the general linear group and the role of the symmetric
group in constructing the irredusible representations of G'L(n) is of
course classical [ef. (11)]). A closer examination of the two cases shows
Quatt. J. Math. Oxford (1), 17 (1966), 165-93,
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that the symmetrie group enters in essentially the same way in both
theories. The operations arise from the interplay of the kth power map
and the action of the symmetric group &§,.

We shall develop this point of view and, following Steenrod, we shall
introduce operations in K-theory corresponding to any subgroup ¢
of 8. Taking k = p (a prime) and & = Z,, to be the cyclic group of
order p we find that the only non-trivial operation defined by Z, is
the Adams operation f?, This shows that ¢ is analogous to the total
Steenrod power operation 3y P* and, for spaces without torsion, we obtain
the precise relationship between y# and the Pt (Theorem 6.5). Inciden-
tally we give a rather simple geometrical description (2.7) of the opera-
tion P,

1t is not difficult to translate Theorem 6.5 into rational cohomology
by use of the Chern character, and (for spaces without torsion) we
recover a theorem of Adams (1). In fact this paper originated in an
attempt to obtain Adams’s results by more direct and elementary
methods.

Although the only essentially new results are concerned with the
relation between operations and filtration, it seems appropriate to give
a new self-contained account of the theory of operations in K-theory.
We assume known the standard facts about K-theory [cf. (8)] and the
theory of representations of finite groups. We do not assume anything
about representations of compact Lie groups.

In § 1 we present what is relevant from the classical theory of the
gymmetric group and tensor products. We follow essentially an idea of
Schur [zee (11) 215], which puts the emphasis on the symmetric group
8, rather than the general linear group GL(n). This seems particularly
appropriate for K-theory where the dimension = is rather a nuisance
(it can even be negative!). Thus we introduce a graded ring

R, = ; Homg(R(S,), Z),

where E(8,.} is the character ring of §;, and we study this in considerable
detail. Among the formulae we obtain, at least one (Proposition 1.9} is

probably not well known. In§ 2, by considering the tensor powers of a

graded vector bundle, we show how to define a ring homomorphism
’ ‘? R* - OP(K)’

EEE

Db maenim

where Op(K)} stands for the operations in K-theory. The detailed

information about B, obtained in § 1 is then applied to yield results in -

- K-theory.



ON POWER OPERATIONS IN K- THEORY

§ 3 is concerned with ‘externalizing’ and ‘relativizing’ the tensor
powers defined in § 2. Then in § 4 we study the relation of operations
and filtration. § 5 is devoted to the eyclic group of prime order and ita
related operations. In § 6 we investigate briefly our operations in
connexion with the spectral sequence H*{X,Z) = K*(X) and obtain
in particular the relation with the Steenrod powers mentioned earlier.
Finally in § 7 we translate things into rational cochomology and derive
Adams’s result.

The general exposition is considerably simplified by introducing the
funotor Kg(X) for a Q-space X (§ 2). We establish some of its elementary
properties but for a fuller treatment we refer to (4) and (9).

The key idea that one should consider the symmetric group acting on
the kth power of a complex of vector bundles is due originally to Grothen-
dieck, and there is a considerable overlap between our presentation of
operations in K-theory and some of his unpublished work,

Iamindebted to P. Cartier and B. Kostant for some very enlightening
discussions,

1. Tensor products and the symmetric group

For any finite group ¢ we denote by R{&) the free abelian group
generated by the (isomorphism classes of) irreducible complex represen-
tations of @. Itis aring with respect to the tensor product. By assigning
to each irreducible representation its character we obtain an embedding
of R(@)in the ring of all complex-valued class functions on ¢. We ghall
frequently identify (@) with this subring and refer to it as the character
ring of G. For any two finite groups ¢, H we have a natural isomorphism

R(&) @ R(H) > R(G'xH).

Now let S, be the symmetric group and let {V,} be a complete set of
irreducible complex §,-modules. Here = may be regarded as a partition
of k, but no use will be made of this fact. Let E be a complex vector
space, K®% its kth tensor power. The group 8, acts on this in a natural
way, and we consider the classical decomposition

E® = 3 V, @ n(E),
where #(E) = Homg(V,, E®*). We note in particular the two extreme
cases: if ¥, is the trivial one-dimensional representation, then »( ) is
the kth symmetric power o*(E); if ¥, is the sign representation, then
n(E) is the kth exterior power M*(¥). Any endomorphism 7T of & induces
an Si-endomorphism 7'®* of E®%, and hence an endomorphism =(7) of
m(E). Taking T ¢ CL{E), we see that n(E) becomes a representation
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space of GL(E), and this is of course the classical construction for the
irreducible representations of the general linear group. For our pur-
posed, however, this is not relevant. All we are interested in are the
character formulae. We therefore proceed as follows.

Let E = C* and let T' be the diagonal matrix (4,,...,¢,}. Since the
eigenvalues of 7% are all monomials of degree L in ¢,,...,¢,, it follows
that, for each =, Trace n(7") is a homogeneous polynomial in ¢,...,¢,
with integer coefficients. Moreover, Trace #n(7') = Trace{={S-171'8)) for
any permutation matrix & and so Tracen(7") is symmetric in i,,...,%,.
We define

A, i = Traceg (T9F) = 3 Tracen(T) @[V,] € Sym,[t;,...,t,] ® B(S),
Er
where [V,] € R(S,) i8 the class of V. and Sym,[t,,....{,] denotes the
symmetric polynomials of degree k. If we regard R(S;) as the character
ring, then A, ;. is just the function of #,,...,t, and g € .8, given by

Trace{gT®*). There are a number of other ways of writing this basic
element, the simplest being the following proposition:

ProrosrTION 1.1. For any parlition a = (ay,...,«,) of k let p, € R(S,)
be the representation induced from the trivial representation of

S == 85y X8y X X8,
th A= ,
en | ag{ M, & Pa
where m 18 the monomial symmetric function generated by &8 . 8% and
the summation is over all partitions of k.

Proof. Let E* be the eigenspace of 7'®* corresponding to the eigen-
value #{213*...#%. This has as a basia the orbit under 8), of the vector

ey = ef* Qefu .. QeP™,

where e,,..., ¢, are the standard base of C*. Since the stabilizer of ¢, is
just the subgroup 8,, it follows that E«is the induced representation p .
Since 8, and S are conjugate if « and B are the same partition of k, it

follows that
= t“ =
A Ia;-k @ ps agk Ma & Pa

where the first summation is over all sequences «, «,... With
|of = X o = k.
Now let us introduce the dual group
B (8} = Homz{ B(8,), Z).
Then A, ; defines (and is defined by} & homomorphism

;a.k: R*(Sk) - Symk[f’l:""tn]'
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From the inclusions S X8 —= 8.,
we obtain homomorphisms
R(Sg1) > R(S, X ) == R(S,} @ K(S)
and hence by duality
R, (8:) ® Ry(S) > By(Sp )
Putting B, = kz R ,(8,) we see that the above pairings turn R, into
1
a commulalive graded ring. This follows from the faet, already used in

Proposition 1.1, that S, and §p are conjugate if « and 8 are the same
partition. Moreover, if ws define

AL Ry — Symlt,,..., ¢,]
by A, = 3 A;, ., we see that A, is a ring komomorphism. This follows
from the multiplicative property of the trace:
Trace(g, g, T®%+)} = Trace(g, T'%)Trace(g, T'%),

where ¢, € 8;, ¢, € §;. Finally we observe that we have a commutative
diagram

. Nui . Symlt, oo ote]

Ap

Sym[t,...,6)

where the vertical arrow is given by putting ¢,,, = 0. Hence passing
to the limit we can define
A': R, - lim Sym[t,,..., 2,1
"

Here the inverse limi¢ is taken in the category of graded rings, so that
]jf Bymlt,,..., 0] = kzol;]{n Symy[ty,.... 4,1

n

is the direct sum (and not the direct product) of its homogeneous parts.
ProrostTioN 1.2. A": R, » lim Symft,,...,¢{,]

18 an tsomorphism, "
Progf. Let o* e Ry(S,) denote the homomorphism R(S)—+Z
defined by 1) =1, *F)=0 ifV,#1,
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where 1 denotes the trivial representation. Sinoce «(E) is the kth sym-
metric power of B when ¥, = 1, it follows from the definition of A}, ,, that
A:l,k(ak) = kk(t].’"‘!tﬂ)
is the kth homogeneous symmetric function (i.e. the coefficient of z* in
TI(t—=t,)'). Since the &, are a polynomial basis for the symmetric
functions, it follows that A, is an epimorphism for all z. Now the rank
of R(S,} is equal fo the number of conjugacy classes of 8, that is the
number of partitions of k, and bence is also equal to the rank of
Symgl¢,,..., 1, provided that » 2= k. Hence
Ar g B8} — Symy[ty,.... 1,]
is an epimorphism of free abelian groups of the same rank (for n = k)
and hence is an isomorpbism. Since
Symg[t,,..., 8 1q] = Symylt,,.... 1,1

i8 also an isomorphism for » = k, this completes the proof.

CoroLLARY 1.3. R, is a polynomial ring on generalors o\, o2,....

Instead of using the elements o* € R,(S,) we could equally well have
uged the elements A* defined by

M) =1 ifV, is the sign representation.
AV} = 0 otherwise.

Since =(E) is the kth exterior power when u is the gign representation
of §,, it follows that AL %) = e4ftirennr )

is the kth elementary symmetric function. Thus B, is equally well a
polynomial ring on generators Al,A%,....

CororLaRY 1.4, Let A, = 3 a, @b; with a; e Symyft,,...,t,} and
b; € R(S,), and suppose n == k. Then the a; form a base if and only if the
b, form a base. When this is so the a, determine the b; and conversely, i.e.
they are ‘dual bases’.

Proof. This is an immediate reinterpretation of the fact that A7 ; is
an isomorphism.

CoROLLARY 1.5. The represeniations p, form o base for B(S,).

Proof. Apply Corollary 1.4 to the expression for A, , given in Pro-
position 1.1. Since the m, are a basis for the symmetrioc functions, it
follows that the p, are a basis for B(S,).

CoroLLARY 1.6, The characters of 8y take tnfeger values on oll conjugacy
classes,
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Proof. The characters of all p, are integer-valued and so Corollary 1.6
follows from Corollary 1.5.

Note. Corollary 1.6 can of course be deduced fairly easily from other
considerations,

Let C(8,) denote the group of integer-valued class functions on 8,
By Corollary 1.6 we have a natural homomorphism

R(8:) > C(Sy).
This has zero kernel and finite cokernel, and the same is therefore true
for the dual homomorphism
OulSy) > Ro(Sy).
The direct sum ¢, =k20 C.(S.) has a natural ring structure, and
=
¢, >R,

is & ring homomorphism. We shall identify €, with the image subring
of R,. From its definition, C,(8,} iz the free abelian group on the
conjugacy classes of S, Let ¢* denote the class of a k-cycle. Then C is
a polynomial ring on ', 4?,.... The next result identifies the subring
A(C,) of symmetrie funetions:

1

Prorosrron 1.7. Ap(f*) = my(t,,....1,) = izl tF so that A’(C,) is the
subring generated by the power sums my,.
Proof. By definition we have
AL (%) = Trace(gT'®¥),
where g € 8, is & k-cycle. Now use Proposition 1.1 to evaluate this trace

and we get B = 3 mapa).

But,if H ¢ &, any character of & induced from H is zero on all elements of
G not conjugate to elements of H. Hence, taking H = S , ¢ = 8, we
see that p (g} = 0 unless « = k (i.e. « is the single partition k). Since

pilg) = 1, we deduce ALk = my,
a8 required.
Cororrary 1.8. Let @ be the Newton polynomial expressing the power
sum my, in terms of the elementary symmelric functions e,,..., e, .e.
My = Qrlersos &),
then e = Q... X*) ¢ R,.
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Remark. Let us tensor with the rationals Q, so that we can infroduce
e, € R(S) ®Q,

the characteristic function of the conjugacy class defined by the partition

«. Then Proposition 1.7 is essentially equivalent to the following
expression [ef. (11) VII (7.6)] for A,,,

Bap= 3 Palt) @co € Symyltn-ty) 8 RS Q,

where p, is the monomial in the power sums

3
pa= 1T tma, a=102m...
Since A'(A;) = e, it follows that we can write A, ; in the form

Aﬂ.k = “g’; ch(t) ®bm

where ¢, is the monomial in the elementary symmetrie functions

k
Gu = ;I-I: (e)%, o= 1m2m

and the b, are certain uniquely defined elements in B(S;). We shall not
attempt to find b, in general, but the following proposition gives the
‘leading coefficient’ b,.

Prorostrion 1.9. Let M denote the (k—1)-dimensional representation.
)
of 8, given by the emb&pace‘z 2; = 0 of the standard k-dimensional represen-
=1
tation. Let AYM) denote the ith exterior power of M, and put

A{M) = 3 (—1)AYM) € R(S,).
Then we have

Bpp = (—1)F e {8} @ A_ (M} +composite terms,
where ‘composite’ means involving o product of at least two et).
Proof. In the formula
Aﬂ,k = ng g.-x(t) ® ba»
the b, are the basis of R(S,) dual to the bagis of B,(S,) consisting of
monomials in the A%, Thus &, is defined by the conditions
<bk’ Ak) =1,
b uy =0

if » is composite in the Af, Since the Y are related to the X* by the
equations of Corollary 1.8

PF = Qu(AL,..., A¥) = (- 1)¥-1kx, 4 composite terms,
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we can equally well define b, by the conditions
(b %) = (— 1)1,
(bk’ 'Hr) =0
ifu is composite in the . To prove that b, = (—1)*-1A_,{M), it remains
therefore to check that the character A_ (M) vanishes on all composite
clagses and has value k on a k-cycle. Now, if g € 8, is composite, i.e. not a

k-cycle, it has an eigenvalue 1 when actingon M ;if g = (1...r}(r--1,... 8)...
is the cycle decomposition, the fixed vector is given by

1 . 1 ;
zi=; 1<), zj:_k__r (3 =1

Bince A_,(M)g) = det(1—g,,), where g,, is the linear transformation
of M defined by g, the existence of an eigenvalue 1 of g, implies
A (MX¥g) = 0. Finally take g = (1 2 ... k) and consider the k-dimen-
sional representation ¥ = M@ 1. Then g, is given by the following
matrix o 1

1

1
and so det(l1—tgy) = 1—tk, Hence
det(I—tgr) = det(l—tgy). (1—8)-2
1k
= T = LR,
and so A_(M)(g) = det(l —gy) = £,
which completes the proof,
If @ ¢ 8, is any subgroup, then we can congider the element
An,k(G) € Symk[tl!'"! "’n] ® R(G)
obtained from A, ; by the restriction 5: R(S,) - R(G). Similarly
AL (@): B (G) — Symylhy,..., 8,1
is the composition of A ; and
D Bul @) = Byl 8y).
Consider in particular the special case when & = p is prime and ¢ = Z,,
is the cyclic group of order p. The image of
n: R(S,) > B(Z,)
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is generated by the trivial representation 1 and the regular representation
N of Z,, (this latter being the restrietion of the standard p-dimensional
representation of S,). Hence we must have

BuplZp) = alf) ® 1+6(t) @ N
for suitable symmetric functions a(t), b(f). Evaluating R(S,) on the
identity element we get "eF = a+pb.
Evaluating on a generator of Z, and using Proposition 1.7 we get
my, = a.
Hence b = s which has, of course, integer coefficients since

(26 =268 modp.
Thus we have established the proposition:

ProposITioN 1.10. Let p be a prime. Then restricting A, , from the sym-
metric group to the cyclic group we get

D__
My

’Au,:p(zp) = My, @1 +i§"— ®N,
where N is the regular representation of Z,.

Let #* € R, (8,) be the element corresponding to

ef;m” e Sym,[t,,...,1,]

by the isomorphism of Proposition 1.2 (for » 2> p), i.e.

" e ef—mp.
b p

Then Proposition 1.10 asserts that #° is that homomorphism E(8,}—Z
which gives the multiplieity of the regular representation ¥ when we
restriot to Z,. Thus, for p € R(S}), '

7ip) = $P(p)1 + ()N, (L.11}
where n: R(S,) - R(Z,) is the restriction.

2. Operations in K-theory

Let X be a compact Hausdorf! space and let & be a finite group. We
sghall say that X is a G-space if & acts on X, Let ¥ be a complex vector
bundle over X. We shall say that E is a G-veclor bundle over the G-
space X if E is 8 G-space guch that

(i) the projection F — X commutes with the action of G,

(ii) for each g € & the map E, » E, is linear.
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The Grothendieck group of all @-vector bundles over the G-space X is
denoted by K, (X). Note that the action of ¢ on X is supposed given:
it is part of the structure of X. Since we can always construet an in-
variant metric in a G-vector bundle by averaging over @, the usual
arguments show that a short exact sequence splits compatibly with 4.

Henoe, if 0>E —+E—>.—~E -0

is a long exact sequence of G-vector bundles, the Euler characteristic
> (—1Y[E;] is zero in K {X). For a fuller treatment of these and other
points about K,(X) we refer the reader to (4) and (9).

In this section we shall be concerned only with a trivial G-space X,
i.e. g{x) = = for all x € X and g € . In this case a G-vector bundle is
just a vector bundle ¥ over X with a given homomeorphism

G- Aut E,

where Aut F is the group of vector bundle automorphisms of E. We
proceed to examine such a G-vector bundle.

The subspace of E left fixed by & forms a subvector bundle E€ of E:
in fact it is the image of the projection operator

1
m%g,

and the image of any projection operator is always a sub-bundle (4). If
B, F are two G-vector bundies, then the aubspace of Hom(E, F) con-
sisting of all ¢,: E, - F, commuting with the action of & forms a sub-
vector bundle Homg(Z, F): in fact Homy4( &, F) = (Hom(E, F))?. In
particular let ¥ be a representation space of &, and let V denote the
oorresponding G-vector bundle X XV over X, Then, for any G-vector
bundle E over X, Hom(V, E) is a vector bundle, and we have a natural
homomorphisin V @ Hom,(V, E}) —~ E.

Now let {V}... be a complete set of irreducible representations of &
and consider the bundie homomorphism

a: > {V, @Hom(V,, B}~ E.

For each x € X, «, is an isomorphism. Hence « is an isomorphism. This
establishes the following proposition:

ProrosrrioN 2.1. If X is a trivial (-space, we have a natural igo-
morphism K(X) ® R(G) — K,(X).

In particular we can apply the preceding discussion to the natural
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action of S, on the k-fold tensor product E®% of a vector bundle E. Thus
we have & canonical decomposition compatible with the action of S

E® o 3 (V, @ Homg (V,, E®)}.

We put #(F) = Homg(V,,, E®¥).

Thus # is an operation on vector bundles. In fact ={E) is the vector
bundle associated to E by the irreducible representation of GL(n)
(» = dim E) associated to the partition =, but this fact will play no
special role in what follows.

Qur next step is to extend these operations on veotor bundles to
operations on X(X). For this purpose it will be convenient to represent
K(X) as the quotient of a set ¢(X) by an equivalence relation (elements
of ¥ (X) will play the role of ‘cochains’). An element of ¥ (X) is & graded
vector bundle £ = ZZ‘ E;, where E; = 0 for all but a finite number of

values of ¢. We have a natural surjection
€(X) - K(X)
given by taking the Euler characteristic [E]= Y (—1){[F;]. The
equivalence relation on ¥'(X) which gives K{X) is clearly generated by
isomorphism and the addition of elementary objects, i.e. one of the form
> P, with
F, = F;,; (for somej), F=0 (¢4 3+1).

Similarly for a G-space X we can represent K (X) as a quotient of
¥+(X), where an element of €;(X) is a graded G-vector bundle.

Suppose now that F € ¥(X) is a graded veotor bundle. Then E®* is
also a graded vector bundle, the grading being defined in the usual way
a8 the sum of the degrees of the & factors. We consider S, as acting on
E®k by permuting factors and with the appropriate sign change. Thus a
transposition of two terms ¢, ® ¢, (where ¢, € E,, ¢, € E,) carries with it
the sign (—1)?9. The Euler characteristic [ £®*] of £ is then an element
of Kg (X).

ProPOSITION 2.2. The element {E®) ¢ Ky (X) depends only on the
element [B] € K(X). Thus we have an operation:
®k: K(X) > Ko,(X) = K(X) ® R(S,).
Proof. We have to show that, if P is an elementary object of €(X );
then {E® P)*+] = [B%] € Kg,(X).
But we have an §)-decomposition:
(ED P)® =~ Bk Q.
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We have to show therefore that [Q] = 0in K¢ (X). To do this we regard
E as a complex of vector bundles with all maps zero and P as a complex
with the identity map P; - F;,,. Then (& @ P)®* is a complex of vector
bundles, and 8, acts on it as a group of complex antomorphisms (because
of our choice of signs). The same is true for £%* and @. Now @ containg
P as a factor, and so  is certainly acyclio. Hence, by the remark at the
beginning of this section, we have [@] = 0 in Kg (X) as required.

Remark. If we decompose E®* under S,
B®k o z vV, @n(&),

where #(F) = Homg(V,, E®*), Proposition 2.2 asserts that K +— ={E)
induces an operation m K(X) > K(X).

Let Op(X) denote the set of all natural transformations of the functor
K into iteelf. In other words, an element T' € Op(K} defines for each
X a map P(X): K(X) - K(X),
which is natural. We define addition and multiplication in Op(K) by
adding and multiplying values. Thus, for ¢ € K{X),

(T+ 8} X)a) = T(X){a)+S8(X)e,
T8(X)a) = T(X)a.S(X)a.
If we follow the operation
®k: K(X) > K(X) ® R(8,)
by a homomorphism ¢: R(8S,) - Z we obtain a natural map
Ty: K(X) ~ K(X).
This procedure defines a map
i By(8i) > Op(K)
which is a group homomorphism. Extending this additively we obtain
a ring homomorphism j: Ry — Op(K).
We have now achieved our aim of showing how the symmetric group
defines a ring of operations in K-theory. The structure of the ring R,
has moreover been completely determined in § 1. We conclude this
gection by examining certain particular operations and connecting up
our definitions of them with those given by Grothendieck [ef (5); § 12]

and Adams (2).
To avoid unwieldy formulae we shall usually omit the symbol j and
just think of elements of R, as operations. In faet it is not difficult to
606.2,17 N
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show that j iz a monomorphism (although we do not really need this
fact), so that R, may be thought of as a subring of Op(K).

All the particular elements that we have described in § 1, namely
ok, A%, of% 8P, can now be regarded as operations in K-theory. From the
way they were defined it is clear that, if ¥ is vector bundle, then A*[ £]
is the class of the kth exterior power of E, and o*( F)} is the class of the kth
symmetric power of . A general element of K(X) can always be re-
presented in the form [ E,)—[F,], where E,, E, are vector bundles. Taking
(E, @ E,)®* as an S, -complex and picking out the symmetric and skew-
symmetric components, we find

BB = 3, (— 1Pt (BB, M
M(BI-UEY) = 3 (— )W) @

Putting formally A, = Y Xu*, o, = ¥ o*u¥, where u is an indeterminate,
and taking B, = E, in (1), we get

ol A PfE ] = 1. (3)
This identity could of course have been deduced from the corresponding
relation between the generating functions of ¢, and %, by using the iso-
morphism of (1.2). Now from (2) we get

A Ee]—[Ey]) = A [Eolo [ By]
= Au[EO]Au[El]—I by (3)

This is the formula by which Grothendieck originally extended the A*
from vector bundles to K. Thus our definition of the operations A*
coincides with that of Grothendieck. Essentially the use of graded tensor
producsés has provided us with a general procedure for extending opera-
tions which can be regarded as a generalization of the Grothendieck
method for the exterior powers.{

Adams defines his operations ¢* in terms of the Grothendieck A* by
use of the Newton polynomials

. ‘I’k = Qk(xl:"‘vhk)'
Corollary 1.8 shows that our definition of * therefore agrees with that
of Adams. An important property of the J* is that they are additive.
We ghall therefore show how to prove this directly from our definition.

Prorosition 2.3. Let E, F be vector bundles, then
YHEL[F]) = JEILH(F].

¥ This fact was certainly known to (irothendiock.
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Proof. Construot a graded vector bundle D with D, = ¥, D, = Fand
consider D®, The same reasoning as used in Proposition 1.1 shows
that

[De* ii.,(—nﬁndjw@*—f ® Foi] e K(X) ® R(S,),

where ind;: K(X) ® B(S;_; X8)) > K(X) ® R(S,) is given by the
induced representation. Here B®*-7 ig an S;_;-vector bundle via the
standard permutation, while S; acts on F® via permutation and signs.
To obtain #*[D] we have to evaluate B(S,) on a k-cycle. As in Proposi-
tion 1.1 all terms except j = 0, k give zero ; since the sign of a k-cyecle is
(—I)*-1 we get
I EI—(F]) = HEH-(— 1 (— 1)k F)
= Y E]—y*F].

For [E]4[F] the argument is similar but easier.

The multiplicative property

VE © F] = JHEWA(F]
follows at once from the isomorphism
(B @ F)®k o E®* @ FOk

and the multiplicative property of the trace.

Suppose now that we have any expansion, as in Corollary 1.4, of the
bagic element A, ; in the form

AnJc = 2 a; ®bi=
where the ¢, € Sym,[t,,...,£,] are a basis and the b, & E(S,) are therefore
a dual basis (assuming » 2> k). Then, for any x € K(X), we obtain &
corresponding expansion for z%¢:
x®* = ay(x) @ b; € K(X) @ R(S),

where a; = (A")a; € R,. This follows at once from the definition of A’
and the way we have made R, operate on K(X).

Taking the a; to be the monomials in the elementary symmetrio
functions the o, are then the corresponding monomials in the exterior
powers X, Proposition 1.9 therefore gives the following proposition:t

ProrosmioN 2.4. For any ¢ € K(X) we have
2B = (—1)5-1\k(x) @ A_,(M)--composite terms,
where ‘composite’ means involving a product of at least two X (x) and M iz
the (k—1)-dimensional representation of Sy.
+ Now that we have identified the X* of § 1 with the exterior powers we revert
to the usual notation and write AYM) instead of A*M), and correspondingly

Ay (M) ingtead of A_,{M).
N2
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Now let us restriet ourselves to the eyclic group Z,. The image of
x® in K(X) ® R(Z,) will be denoted by P¥z) and called the cyclic
kth power. In the particular case when & = p (a prime), (1.11) leads to
the following proposition:

Prorosrrion 2.5. Let p be @ prime and let « € K(X). Then the cyclic

pth power PP(x) is given by the formula
Pr(z) = §r(x) @ 1+0°(x) QN € K(X) ® R(Z,),

where N is the regular representation of Z,.

Now ¢® and 67 correspond, under the isomorphism

AR, —> liin Symfi,.... 1,1,
"
to the polynomials > & and Xtr—28 respectively. Hence they are
related by the formula ¥
PP = (1) —pt®,
so that, for any = € K(X), we have
PP (x) = xP—phix).

Substituting this in (2.5) we get the formula

Pr(z) = 2% ® 1 +07(x) @ (N—p). (2.6)
‘This is a better way of writing (2.5) since it corresponds to the decomposi-
tion R(Z,) = ZOLZ,),

where I(Z,) is the augmentation ideal, Thus

() @ (N—p) € K(X) @ I{Z,)
represents the difference between the pth cyelic power P?(z) and the
‘ordinary’ pth power 2# @ 1.

Proposition 2.5 leads to a simple geometrioal desoription for 4#[V],
where ¥ is a vector bundle., Let T’ he the automorphism of V®? which
permutes the factors cyclically and ¥; be the eigenspace of T’ corre-
sponding to the eigenvalue exp(2mij/p). Then

V] = {(K]—-1A) (2.7)
In fact from Proposition 2.5 we see that
{Vo] = ¢#[V]+-8°[V),
[K’] = Qp[V] (j = 1,"-)})_1)'
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3. External tensor powers

For a further study of the properties of the operation ® k it is neces-
sary both to ‘relativize’ it and to ‘externalize’ it.

First consider the relative group K,(X,Y), where X is a G-space,
Y agab G-space. As with the absolute case we can consider K (X, ¥)as
the quotient of a set ¥4{X,Y) by an equivalence relation. An object £
of €o(X,Y) is a G-complex of vector bundles over X acyclic over Y,
i.e. E consists of G-vector bundles E,; (with £, = 0 for all but a finite

number) and homomorphisms

d d
- Ez‘ - Eﬂl -

commuting with the action of @, so that d? = 0 and over each point of
¥ the sequence is exact. An elementary object P is one in which P, =0
(¢ #4, j+1), F;=F,,,, and d:F;» F;,, is the identity. The equi-
valence relation imposed on €;(X,¥) is that generated by isomorphism
and addition {direct sum) of elementary objects. Then, if £ £ $;(X,Y),
its equivalence class [E] € K (X, Y). For the details we refer to (4).
For the analogous results in the case when there is no group, i.e. for the
definition of K(X, ¥) as a quotient of €(X, ), we refer to (7) [Part IT].

Consider next the external tensor power. If E is a vector bundle over
X, we define ERJ% o be the vector bundle over the Cartesian product.
X* (k factors of X} whose fibre at the point (x, Xx;X...Xz) I8
E, R, Q..%K, Thus ER% jg an Si-vector bundle over the S,-
space X*, the symmetrioc group 8; acting in the usual way on X* by
permuting the factors. Clearly, if

d:X ~ Xk
is the diagonal map, we have a natural §;-isomorphism
d*(E8k) o Eo*, (3.1)
If ¥ iz a complex of vector bundles over X, then we ean define in an
obvious way EE", which will be a complex of vector bundles over X%,

Moreover EB* will be an 8,-complex of vector bundles, X* being an 8,-

gpace as above. If X is acyclic over ¥ ¢ X, then E®k will be aecyclic over
the subspace of X consisting of points (x, Xy X... X&;} with z, € ¥ for
at least one value of s. We denote this subspace by X*-1Y and we write
(X, ¥)* for the pair (X*, X%-1Y). Thus we have defined an operation

Ri: €(X,Y) > € (X, ).
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The proof of {2.2) generalizes at once to this situation and establishes

PROPOSITION 3.2. The operation E —> ER* induces an operation
Rk: K(X,Y)— Kg (X, T)5.
CoROLLARY 3.3. If x i8 in the kernel of K(X) - K(Y), then 2B is in
the kernel of Kg(X¥) > Kg(X*-1Y),

Proof, This follows at once from (3.2) and the naturality of the
operation X &,
From (3.1) we obtain the commutative diagram

Kk
K(X) > (x%)
5,
Bk a (3.4)
@
&

4. Operations and filtrations

From now we assume that the spaces X, Y,... are finite OW-complexes.

Then K(X) is filtered by the subgroups K (X) defined by
E(X) = Ker{K(X) ~ K(X, )},
where X _, denotes the (g—1)-skeleton of X. Thus Ky(X) = K(X) and
K (X) = 0if dim X << n. Moreover, as shown in (8), we have
qu(x) = -qu—l(X )

for all ¢. Since any map ¥ — X is homotopic to a cellular map, it follows
that the filtration is natural.

In [8] it is shown that K(X) is & filiered ring, i.e. that K, K, c K, .
In particular it follows that

z € K (X) = a* € K (X).

‘We propose to generalize this result to the tensor power ®%k.

We start by recalling (5) that, for any finite group, there is a natural

homomorphism x: R(G) ~» K(Bg),
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where B is the classifying space of ¢. This homomorphism arises as
follows. Let A be the universal covering of By and ¥ be any G-module,
Then A X oV is a veetor bundle over By. The construction Vs 4 X oV
induces the homomorphism

a: RB(Q) > K(B,).
This construction ean be generalized as follows. Let X be a G-space and
denote by X the space 4 X o X. If Vis a (F-vector bundle over X, then

Vt:,- = A X o V
is a vector bundle over X,. The construction V +—» V; then induces a
homomorphism oyt KG(X) > K(XG).

A couple of remarks are needed here. In the first place there is a clash of
notation concerning B,. To fit in with our general notation we should
agree that ‘B’ ia a point space. Secondly X, like By, is not a finite
complex. Now B, can be taken as an infinite complex in which the
g-skeleton Bg , is finite for each ¢, and K(B,) can be defined by
K(B,) = lim K(B,).
q

If we suppose that @ acts cellularly on X, then we can put
Xgy = 4, Xg X, where A4, is the universal covering of Bg, and X4,
will be a finite complex. We then define

K(X(.') = ]En K(Xf.',.;)—

In fact, as will become apparent, there is no need for us to proceed to the
limit, All our results will essentially be concerned with finite skeletons.
We have introdueed the infinite spaces B, X, beecause it is a little tidier
than always dealing with finite approximations.

Applying the above to the group S, and the spaces X (trivial action)
and X* (permutation action} we obtain a commutative diagram

Ko (X9 "%, K(X%,)

d a
(4.1)

Ko (X)—— > K(Xg)

K(X) ® RB(S,)——K(X X Bg,),
where d* is induced by the diagonal map d: X — X*.
Prorosition 4.2. Let x € K (X), then
ax (2 B5) € K; (XE,).
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Proof. By hypothesis x is in the kernel of
E(X)—> K(X,_,).
Hence applying (3.3) with ¥ = X,_; we deduce that #®% jg in the kernel
of p in the following diagram

Ko (X—"2 L K(XE)

P
¥
KS;(Xk_IXq—l) — K (Xk‘qu—l)Sg)
The required result now follows from this diagram, provided that we
verily thet (X dig € (KX o),

But any cell o of the (kg-—1)-skeleton of X5 = X¥ x4, A arises from
a product of k cells of X and a cell of A. Hence at least one of the cells
of X oceurring must have dimension less than g, and 8o ¢ is contained in
(XF1X, )y, = X¥1X, 1 X 4,
a8 required.
Since the filtration in K is natural, Proposition 4.2 together with the
diagram (4.1) and Corollary 3.3 gives our main result:

THEOREM 4.3. Let Rk K(X)—»> K(X) @ R(S,) be the tensor power
operation, and let
w: K(X) ® R(S;) > K(X XBg,)

be the natural homomorphism. Then
z € K (X) = o(2®%) € K, (X X Bg,).

CoroLLARY 4.4, Let dim X < n and let « € KX}, Then the image of
2% in K(X) ® K(Bg, yy—n-1) 18 2er0.
Proof. By Theorem 4.3 % has zero image in K{X X By, 30 pn-1)- But
for any two spaces A, B the map
K{4) ® K(B)—+ K(A X B)
iginjective (6). Hence x®* giveszeroin K(X) @ K(Bg, 1,-n-1) at required.
Remark. Theorem 4.3 suggests that for any finite group & and G-
space X we should define a filtration on K{X) by putting
Eo(X), = o5 KX X By).
With this notation Theorem 4.3 would read simply
X e KG(X) = 2%k ¢ KSE(X)M.



ON POWER OPERATIONS IN K-THEORY

To exploit Theorem 4.3 we realty need to know the filtration on
K(Bg,) as is shown by the following theorem:

TREOREM 4.5. Assume that K{X)istorsion-frecand let dim X << n. Let
x € K (X} and assume that all products X(x)N{x) with¢,j > 0,i+j < b
vanish. Then Xe(x) i3 divisible by the least integer m for which

maA—I(M) € qu—'n(BSx):
M being as in Proposition 2.4. In particular this holds in the stable range
n << 2q.

Proof. The hypotheses and Proposition 2.4 imply that
20 = (=1 0() @ A,(M) € K(X) @ R(S,).

Let A = K(Bg)/K, .(Bg,), so that A is a subgroup of K(Bg,z, 4}
From Corollary 4.4 and the fact that K(X) is free it follows that the
image of ¥®*in K(X) ® 4 must be zero. Hence A*(x) must be divisible by
the order of the image of A_, (3 ) in A4, i.e. by the least integer m for which

med_y(M) € Kiy-nl(Bg,)-

Remark. In the proof of Proposition 1.9 we saw that the character
of A_,(M) vanishes on all composite cycles of S;,. Thus, if & is not a
prime-power, the character of A_,(M) vanishes on all elements of S, of
prime-power order and so by (5) {(6.10)] A_,{M) is in the kernel of the

homomorphism e
R(Sk) - R(.lqk).

Hence aA_;(M) =0 and sec Theorem 4.5 becomes vacuouvs. Thuys
Theorem 4.5 18 of interest only when k is ¢ prime-power.

In order to obtain explicit results it is necessary to restriet from 8,
to the eyclic group Z;. In this case the calculations are simple. First we
need the lemma:

Lemma 4.8. Let Y = By, then

K(Yo1) 22 R(Z) T(Z ).
Proof. Since ¥ has no odd integer cohomology, it follows that
K\ Y,Y,,,) = 0, and &0 from the exact sequence of this pair we deduce
K(Yzqﬂ) = K(Y)/qu( Y)-
But we know [(5) (8.1)] that
-
and K, (Y) is the idesl generated by I(Z;)?. Hence
R(V)Kol Y) = R(ZIZ,P,
and the lemma is established.



M. F. ATIYAH

Remark. The results quoted from (5) are quite simple, and we could
easily have applied the caleulations nsed there direotly to ¥,,_,.
Combining Corollary 4.4 and Lemma 4.6 we deduce the proposition:

ProrosiTioN 4.7. Let dim X < 2m and let « € K, (X). Then the kih
cyclic power P¥(x) € K(X) ® R(Z,) ts in the image of K(X) ® I(Z,)re—m,
The case when £ = p, a prime, is of particular interest becanse Z,, is
then the p-Sylow subgroup of §,. This means that, as far as p-primary

results go, nothing is lost on passing from S, to Z,,. In the next section
therefore we shall study this case in detail.

5. The prime cyclic case

LemMa 5.1, Let pe R(Z,) denote the canonical one-dimensional
representation of Z,,

the reqular represenfation and » = p—1.
o,
Then in B(Z,) we have
PHN —p) = (—1)5*+p-DL higher terms.

Proof. Sinee p? = 1, we have (14-5)? = 1. Thus »? = —pne, where
¢ = 1 mod x and s0 is a unit in . Hence

(= ~ 77, 1)
where we write a ~ b if # = b with ¢ = 1 mod . Now the identity
'Tf(l-{-t)i = &:?*1 = p+#*-1 modpt
=]

with ¢ replaced by » shows that
N—-p=9""1 modpy
= n?1 modxyP by (1)

Hence we have (N—p) ~ 5P, {2)
From (1) we have (—p)en ~ F@-1)y,
and so (—pYenp-1 ~v e +Xp-D, (3)

The lemma now follows from (2) and (3).

CoROLLARY 5.2. The order of the image of (N —p) in R(Z,)/I(Z,)" {8
p* where k i the least integer such that k43 > “ii

Proof. I{Z,) is the ideal ().



ON POWER OPERATIONS IN K-THEORY
We oan now state the explicit result for the prime case:

TreEoReEM 5.3. Suppose that dim X < 2(g--2) with ¢t << g¢{p—1) ond
let z € Ky{X), Then 8°(x) ts divisible by pt—-1, where

-}

Proof. Sinee dim X <7 2¢p, we have 22 = 0. Hence by Proposition
2.5 we have :
Poiz) = 0°(x) @ (N—p) € K(X) Q E(Z,).
By Proposition 4.7 it follows that 6°(x) is divisible by the order of the
image of (N—p) in B(Z,)/1(Z,)*, where
n = pg—q—*.
From Theorem 5.3 it follows that §7(x) is divisible by p*, where % is the

least integer for which

¢
k+1) 2 g—=3,

namely k=g— [Ll] —1.

CorOLLARY 5.4. Let the hypotheses be the same as in Theorem 5.3.
Then () is divisible by pt=r, where r = [;‘-'iﬂ

Proof. 4 and 8?7 are related by the formula

§P(x) = 2 —pfP(x}).
Sinee z¥ = 0 in our case, we have

YP(x) = —pb?(x),
and so the result follows at once from Corollary 5.2.

Remark. Taking t = 0 we find that 4*(z) is divisible by % on the
sphere 8%, Note that this result was not fed in explicitly anywhere. It
is of course a consequence of the periodicity theorem, and the computa-
tion we have used for K(Bj,,) naturally depended on the periodicity
theorem.

The preceding results take a rather interesting form if X has no
torgion. First we need a lemma;

Lemma 5.5, Suppose that X has no torsion (t.e. H*(X,Z) has no torsion)
and let x € K(X). Suppose that the image of « in K(X ) is divisible by d.
Then x t8 divisible by dmodulo K, (X)), 4.e.

z=dy+z, yek(X), zeK,,(X)
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Proof. 1et A, B denote the image and cokernel of
j*: K(X) > K(X,).

From the exact sequence of the pair (X, X ) we see that B is isomorphio
to a subgroup of K1(X, X,). But, since X is torsion-free, so is X/X,.
Hence KX, X ) is free and therefore also B. Hence, if a € 4 is divisible
by din K(X ), it is also divisible by 4 in 4. Taking a = j§*(x} therefore
we have j*(z) = dj*y) for some y & K(X),
and so x = dy -z, for some z € Kerj* = K ,;(X).

Using thislemma we now show how Corollary 5.4 leads to the following
Pproposition:

Prorosimior 5.6, Suppose that X has no lorsion and let © € K, (X).
Then there exist elements

#; € Koginip-n(X) (i =10,1,...,9)
such that () = 3 gz,
i=0
Moreover we can choose x, = xP.

Proof. By Theorem 5.3 the restriction of ¢*(x) to the 2(¢{t)-skeleton,
with ¢t = i(p—1)—1, is divisible by p?-+1. By Corollary 5.4 it follows
that §P(x) is divisible by p?-*+1 modulo K, . g,-1(X). The required
result now follows by induction on 7. Since YP(x) = 2?modp and
a? € Ky, (X), it follows that 2? is a choice for x,.

The elements x, occurring in Lemma, 5.6 are not uniquely defined by x.
If, however, we pass to the associated graded group GK*(X) and then
reduce mod p, we see that the element

£ e Gurrtv-DEK(X) R Z,
defined by x, is uniquely determined from the relation
wre = 3 priz,
=0

If we multiply = by p or add to it anything in Ky, .4(X), we see from
Lemma, 5.5 that £; is unchanged. Hence #; depends only on

£ e GUK(X) ® Z,.
Now we recall [(8)§ 2] that, since X has no torsion, we have an
isomorphism of graded rings

H*(X,Z) ~ GK*(X),

~ and hence H%(X,Z ) ~ G*K(X) @ Z,,.
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By this isomorphism the operation £ &; must correspond to some
cohomology operation. In the next section we shall show that this is
precisely the Steenrod power Pi,.

6. Relation with cohomology operations
In the proof of Proposition 4.2 we verified that there was an inclusion
J: {X*, ngq—l} (X, XSq—l)k'
Hence we can consider the map
K(X»qu—l) - K(X’g‘, {X':é;)qu—l)

given by z —> of 2k If we follow this by a cellular approximation to
the diagonal map X, — X%, we obtain a map

piK(X, Xy, ) > K(Xg,, (X )sng—1)-
From its definition this is compatible with the operation
2 > d*opdE — Ok
for the absolute groups, i.e. we have a commutative diagram
K(X’ qu--l) E— K(XSp (XS.;)SM—I)
(6.1)
K(X) K{Xg,)

On the other hand, by restricting X to X,, and X_‘g,i t0 (X g,)or, We obtain
another commutative diagram

KX, qu-l) "*_F——" K(Xs.» (XSg)!kq—l)

K(X o Xog1) K((X ) aner (Xsiderg-1) (6.2)
Cu(X) ——— 5 %X g)

where v is the map of cochains given by
ve) = d* (e ®@c ®... ®¢) @rl]) (6.3)
Here we have made the identification
C*(XE,) = (CHX) ©z... @z O*(X)) ®¢ OX(4),
where A - By, is the universa! Si-bundle and T' is the integral group
ring of 8, and similarly we identify
OHXg) = CHX) ®p C*(A).
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The commutativity of Diagram 6.2 depends of course on the fact that
the isomorphism K(Xy, Xypy) o O%(X)
is compatible with {(external} produects.
The map v defined by (6.3) induces a map of cohomology (denoted
also by v) v HN(X,Z) > H%(X 7).
The diagrams (6.1) and (6.2) then establish the following

ProrositioN 6.4. Let x € K, (X) be represented by a ¢ H*(X,Z) in the
spectral sequence H*(X,Z)= K*(X). Then ofa®*)e Ky, (Xg) 48
represented by via) € HE( X , Z) in the speciral sequence

H*(Xg,,Z) > K*Xg,),
where v i8 induced by the formula (6.3).

Remarks. (1) It seems plaugible that one could in fact define a tensor-
power operation mapping the spectral sequence of X into the spectral
sequence of X . Proposition 6.4 concerns itself only with the extreme
members E, and E_, (and only for even dimensions).

{2) The map v is essentially the parent of all the Steenrod operations,
while & - x®% is the parent of all the operations in K-theory introduced
in § 2. Proposition 6.4 contains therefore, in principle, all the relations
between operationain the two theories. We proceed to make this explicit
in the simplest case:

THEOREM 6.5. Suppose that X has no torsion so that we may identify
H*(X, Z,) with GK*(X) @ Z,. Ifx € K, X) we denote the corresponding
element of H¥(X,Z.) by &. Let

Py — 2-iy

PP ‘20 Py

be the decomposition of yPx given by (5.6). Then we have
;= Pyl#),

where Pi.H%(X,Z ) ~ Hu+e- (X 7 )

i3 the Steenrod power (for p = 2 we put PF = S¢%).

Proof. By Proposition 6.4 the map
P:E(X) > K(X) @ R(Z,)
induces P:H™X,Z,)~ H¥ZX, Z,) © H¥(Z,, 2,), (1)
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where P is v reduced modp., Now by (2.6) and Lemma 5.5 (choosing
z, = x7) we have the following expression for P(z),

P@) =2, ® 1~ 3. 2 @Y —p). @)
By definition of the Steenrod powers [{10) 112] we have
Pz = ‘go (— 1)e-1Pi(F) @ nfe-ixe-D;
where 7 is the canonical generator of H3(Z,; Z,).

Comparing (1) and (2) and using Lemma 5.1 we have the result.

Remark. Proposition 6.5, together with the kind of caloulations made
in (3}, leads to a very simple proof of the non-existence of elements of
Hopf invariant 1 mod p (including the case p = 2).

7. Relation with Chern characters

If the space X has no torsion, it is possible to replace the operations
¢%* by the Chern character

ch: K*(X) > H*(X; Q).
In fact ch is a monomorphism and §* can be computed from the formulae
che =3 chy(x), « e K(X), ohy(x) e H¥(X; Q)
T
chy*x = > k¥ ch(x).
q
Conversely one can define H*(X; Q) and ch purely in terms of the
% (3). It is reasonable therefore to try to express Theorems 5.6 and
6.5 in terms of Chern characters, We shall see that we recover the
results of Adamas (1), at least for spaces without torsion.

If X is without torsion, we identify H*(X;Z) with its image in
H¥X; Q). if a e HYX; Q)}, we can write a = bfd for b ¢ H¥(X; Z)
and some integer d. Ifd can be chosen prime to p, we shall say that o is
p-integral.

TaroreM 7.1, Let X bea space withoud torsion, x € Ky (X)) and p a prime.
Then P ehgn(2)

18 p-integral, where t = [-T;-n:i]

Proof. We proceed by induetion on n. For » = 0 {and all ¢) the result
is a consequence of the periodicity theorem (8). We suppose therefore
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that » > 0 and the result established for all r <{ n— 1. By Proposition
5.6 we have e
YPr = 3 priry,  xy € Kypupup-n(X),

=0

and so chyPz = i p*ichx,
<o
Taking components in dimension 2(g+»n) we get
: . ”
pch,,(r) = iztl p%tchy (2, ¢ = ["p—"—_l] (1)

In particunlar, for » = 0, we have
ch,() = ch,(x,). (2)
Since X has no torsion, this implies that
¥ = %p—& € Kpy,o(X).
Replacing z, by -ty in (1) and multiplying by p*-¢ we get

PO —Doltynfs) = byt T piohen@)  (3)

But by the inductive hypothesis (with ¢ replaced by ¢+1 and ¢+-i(p—1)
{¢ == 1)) we see that all terms on the right-hand side of (3) are p-integral.
Henoe pfch,,,(x) is p-integral and so the induction is established.

For any z € K, (X) we denote by # € H%(X, Z,) the corresponding
element obtained from the isomorphism

O*K(X)®Z, ~ HYX; Z,).

Now, by Theorem 7.1, p‘ch g,y # is p-integral. We may therefore
reduce it mod p and obtain an element of HX+¥®¢-1(X; Z ). It follows
from Theorem 7.1 that this depends only on #. We denote it therefore
by T%z), so that T¥ is an operation

HY®(X; Z,) » H*+#0 (X, Z ),
We now identify this operation.
TreroREM 7.2. The operation ; T i3 the inverse of the ‘total’ Steensod
iz0
pomr‘zo P
=
i.e, (3 T% o (3 P*) = identity.

Proof. As in Theorem 7.1 we have

g
|l;px = ‘gl pq-‘x“
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Now in equation (1) above take n — ¢ {(p—1) and multiply by p*-2. Then

reducing mod p we get !

0=3 T-Hz) (> 0),
=0

& = TO(%,).

But by Theorem 6.5 we have §; = P, and so we deduce
¢
0= T-iPi\g, F = TOPO%,

In other words, the composition
S THe (TP
is the identity operator as required.
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Introduction

TuE K-theory of complex vector bundles (2, 5) has many variants and
refinements. Thus there are:

(1) K-theory of real vector bundles, denoted by KO,
(2} K-theory of self-conjugate bundles, denoted by K€ {1)or KSC(7),
(3) K-theory of G-vector bundles over (-spaces (6), denoted by K.

In this paper we introduce a new X-theory denoted by KR which is,
in a sense, & mixture of these three. Qur definition is motivated partly by
analogy with real algebraic geometry and partly by the theory of real
elliptic operators. In fact, for a thorough treatment of the index problem
for real elliptic operators, our X R-theory is essential. On the other hand,
from the purely topological point of view, K R-theory has a number
of advantages and there is a strong case for regarding it as the primary
theory and obtaining all the others from it. One of the main purposes of
this paper is in fact to show how K R-theory leads to an elegant proof of
the periodicity theorem for KO-theory, starting essentially from the
periodicity theorem for K-theory as proved in (3). On the way we also
encounter, in a natural manner, the self-conjugate theory and varicus
exact sequences between the different theories. There is here a consider-
able overlap with the thesis of Anderson (1) but, from our new vantage
point, the relationship between the various theories is much casier to see.

Recently Karoubi (8) has developed an abstract X-theory for suitable
categories with involution. Our theory is included in this abstraction but
its particular properties are not developed in (8), nor is it exploited to
simplify the KO-periodicity.

The definition and elementary properties of KR are givenin§ 1. The
periodicity theorem and general cohomology properties for KR are
discussed in § 2. Then in § 3 we introduce various derived theories—
K R with coefficients in certain spaces—ending up with the periodicity
theorem for KO. In §4 we discuss briefly the relation of KR with
Clifford algebras on the lines of (4), and in particular we establish a
lemma which is used in § 3. The significance of K R-theory for the
topological study of renl elliptic operators is then briefly discussed in § 5.
Quart. J. Math. Oxford (3}, 57 (1966), 367-86,
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This paper is essentially a by-product of the author’s joint work with
I. M. Singer on the index theorem. Since the results are of independent,
topological interest it seemed better to publish them on their own.

1. The real category

By a space with involution we mean a topological space X together
with a homeomorphism 7: X — X of period 2 (i.e. +2 = Identity). The
involution = is regarded as part of the structure of X and is frequently
omitted if there is no possibility of confusion. A space with involution
i8 just & Zy-space in the sense of (6), where Z, is the group of order 2. An
alternative terminology which is more suggestive is to call a space with
involution a real space. This is in analogy with algebraic geometry. In
fact if X is the set of complex points of a real algebraic variety it has a
natural structure of real space in our sense, the involution being given
by complex conjugation. Note that the fixed points are just the real
points of the variety X. In conformity with this example we shall
frequently write the involution = as complex conjugation:

r(z) = .

By a real vector bundle over the real space X we mean a complex vector
bundle B over X which is also a real space and such that

(i} the projection F — X is real (i.e. commutes with the involutions

on £, X);
(ii} the map E, > E; is anti-linear, i.e. the diagram
CxE,~E,
4 v
Cx B, - E;

commnutes, where the vertical arrows denote the involution and
C is given its standard real structure {7(z} = £).

It is important to notice the difference between a vector bundle in the
category of real spaces (as defined above) and a complex veetor bundle
in the category of Z,-spaces. In the definition of the latter the map

is assumed to be complex-linear. On the other hand note that if £ is a
real vector bundle in the category of Z,-apaces its complexification can
be given two different structures, depending on whether

is extended linearly or anti-linearly. In the first it would be a bundle in
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the real category, while in the second it would be a complex bundle in
the Z,-category.

At a fixed point of the involution on X (also called 2 real point of X}
the involution on ¥ gives an anti-linear map

v B - E,

with 72 = 1. This means that E, isin a natural way the complexification
of a real vector space, namely the -}-1-eigenspace of r, (the real points of
E,). In particular if the involution on X i trivial, so that all points of X
are real, there is a natural equivalence between the category £(X) of
real vector bundles over X (as space) and the category #(X) of real
vector bundles over X (as real space):t define £(X}—~ F(X) by
E > E @y C {Gbeing given its standard real strueture) and F (X)) - £(X)
by F > Fp, (Fy being the set of real points of F). This justifies our use of
‘real vector bundle’ in the category of real spaces: it may be regarded as
a natural extension of the notion of real vector bundle in the category
of spaces.

If £ is a real vector bundle over the real space X then the space I'(E)
of cross-sections iz a complex vector space with an anti-linear involution:
if s € I'(E), 3 is defined by
' 5(z) = 8(%).

Thus I'(E) has a real structure, i.e. I'(E) is the complexification of the
real vector space I'(E)g.

If E, F are real vector bundles over the real space X a morphism
¢: E -~ F will be a homomorphism of complex vector bundles com-
muting with the involutions, i.e,

$(€) = ¢(e) (e B).

E®qF and Homg(E, F) have natural structures of real vector
bundles. For example if ¢, e Hom{E,, F,) we define ¢, € Homg(Ey, Fy)

by Fw) = (weky).

It is then clear that a morphism ¢: E — F ig just a real section of
Homg(E, F), i.e. an element of (I' Homg(E, F))g.

If now X is compact then exactly as in {3) [§ 1] we deduce the homo-
topy property of real vector bundles. The only point to note is that a real
section s over a real subspace ¥ of X can always be extended to a real
section over X ; in fact if ¢ is any section extending s then %(t+{) is a real
extension.

t The morphiams in F(X) will be defined below.
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Suppose now that X is a real algebraic space (i.e. the complex points of
a real algebraic variety) then, as we have already remarked, it defines in
& natural way a real topological space X, + Xy, A real algebraic
vector bundie can, for our purposes, be taken as a complex algebraic
vector bundle »: ¥ — X where X, E, n, and the scalar multiplication
C X E — E are all defined over R {i.e, they are given by equations with
real coefficients), Passing to the underlying topological structure it is
then clear that By, is a real vector bundle over the real space X,

Consider as a particular example X = P{C?), (n—1)-dimensional
complex projective space. The standard line-bundle H over P(C") is
a real algebraic bundle. In fact H is defined by the exact sequence of

vector bundles 0> E—>XxCr>H->0,
where B ¢ X X C® consists of all pairs ({2), u) € X X C" satisfying
2 uizi == 0.

Since this equation has real coefficients F is a real bundle and this then
implies that H is also real. Hence H defines a real bundle over the real
space P{Cr).

As another example consider the affine quadric

i 2241 =0
=1
Since this is affine a real vector bundle may be defined by projective

modules over the affine ring 4, = R[z,,...,2,}/( 3#2+1). Now the
intersection of the quadric with the imaginary plane is the sphere

L 2
Zy‘i =1,
1

the involution being just the anti-podal map y > —y. Thus projective
modules over the ring 4, define real vector bundles over 87 with the
anti-podal involution. If instead we had considered the quadric

>4-1=0
then its intersection with the real plane would have been the sphere with
trivial involution, so that projective modules over
Riz,,...,2,]
(22-1)
define real vector bundles over Sr-1 with the trivial involution (and so
these are real vector bundles in the usual sense). The significance of S»-1
in this example is that it is a deformation retract of the quadric in our
category (i.e. the retraction preserving the involution).

A_=
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The Grothendieck group of the category of real vector bundles over a
real space X is denoted by X R(X). Restricting to the real points of X we
obtain a homomorphism

KR(X)-> KR(Xp) o= KO(Xp).
In particular if X = X, we have
KR(X) ~ KO(X).

For example taking X = P(C*) we have X = P(R”) and hence a
restriction homomorphism

K R{P(C")) > KR(P(R") = KO(P(R")).

Note that the image of [ H] in this homomorphism is just the standard real
Hopf bundle over P{R").

The tensor product turns K B{X) into a ring in the usual way.

If we ignore the involution on X we obtain a natural homomorphism

¢: KR(X)—» K{X).

If X = X, then this is just complexification. On the other hand if ¥ is
a complex vector bundle over X, K @ +*E has a natural real structure
and so we obtain a homomorphism

r: K(X) > KR(X).

If X = X, then this is just ‘realization’, i.e. taking the underlying real
space.

2. The periodicity theorem

We come now to the periodicity theorem. Here we shall follow care-
fully the proofin (3) [§ 2] and point out the modifications needed for our
present theory.

If E ig a real vector bundle over the real space X then P(E), the projec-
tive bundle of E, is also a real space. Moreover the standard line-bundle H
over P(E) is a real line-bundle. Then the periodicity theorem for KR
asserts:

THEOREM 2.1. Let L be a real line-bundle over the real compact space X,
H the standard real line-bundle over the real space P{L ®1). Then, as
a KR(X)-algebra, K R(P{(L @ 1)) is generated by H, subject to the single
relation (L)~ N[ ZIH]=[1]) = o.

Bb

3M5.2.17
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First of all we choose 2 metric in I invariant under the involution. The

unit circle bundle S is then a real space. The section z of #*(L) defined
by the inclusion § — L is a real section. Hence so are its powers z*. The

isomorphiem HF o (1,275, 1% [(3) 2.5]
is an isomorphism of real bundles. Finally we assert that, if f is a real

section of Hom(r*E%, n* £~} then itz Fourier coefficients a4, are real
sections of Hom(L*® E9, E~°). In fact we have

- — 1 —k—
(1) = a(F) = —%ffzzf E-1 deg
8z

(since the involution reverses the

—_ 1 Tty k=1 do
~ %m f Jelze) 4z orientation of §)

&z

1 .
=5 ffx z7%1dz, (since f and z are real)
Sz
= ay(x).
It may be helpful to consider what happens at a real point of X. The
condition that f_ is real then becomes

J z(egﬁ;) = fz(eiﬂ)
which implies at once that the Fourier coefficients are real.

Since the linearization procedure of (3) {§ 3] involves only the ¢, and
and the z* it follows that the isomorphisms obtained there are all real
isomorphisms.

The projection operators @° and @« of (3) [§ 4] are also real, provided
p is real. In fact

= 5 | @i dp
=

= 5.11; fp;l dp,, since p is real.
Se

Similarly for €*. The bundle V,(E?, p, £} is therefore real and (4.6) is
an equation in KX RB(P). The proof in § 5 now applies quite formally.
We are now in a position to develop the usual cohomology-type theory,
using relative groups and suspensions. There is, however, one new feature
here which is important. Besides the usual suspension, based on R with
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trivial involution, we can also consider R with the involution 2 > —z.,
It is often convenient to regard the first case ag the real axis R ¢ C and
the second as the imaginary axis ¢{R ¢ C, the complex numbers C always
having the standard real structure given by complex conjugation. We
use the following notation:

Rra = RiIDiRP,

Br¢ = unit ball in Rr4,

8P2 = unit sphere in BP9,
Note that Er? ~ C?. Note also that, with this notation, §#% has
dimension p-+g—1.

The relative group K R(X, ¥} is defined in the usual way as Iﬁi’(X 1Y)

where K B is the kernel of the restriction to base point. We then define
the (p, ¢) suspension groups
KRB X,Y) = KR(X X BPY, X X SPtU Y x B4,
Thus the usual suspension groups K R-? are given by
KR-?= KR%,
As in (2) one then obtains the exact sequence for a real pair (X,7Y)
o> KRUX) > KR YY) > KR(X,Y)> KR(X) > KRY). (2.2)

Similarly one has the exact sequence of a real triple (X, Y, Z). Taking
the triple (X x B2?, X x §P0U Y x BPA X x 870 one then obtains an
exact sequence

wo— KRPYX) > KR?YY) - KRPO(X,Y) > KR»YX)—~ KR»(Y)
for each integer p 2= 0. '

The ring structure of K B(X) extends in a natural way to give external
products

KRoo(X Y} @ KRV (X', Y'y > KRe+0a+d (X" T,

where X" =XxX', Y"=XxY UX'xY. By restriction to the
diagonal these define internal products.

We can reformulate Theorem 2.1 in the usual way. Thus let

b = [H]—1 € KR"{point}) = K R(BV, 81Y) = K R(P(C?)
and denote by § the homomorphism
KRva(X Y)+ KRe 2+ X V)

given by 2 — b.x. Then we have

THEOREM 2.3. B: KR?4(X | ¥} KRe W +Y (X YY) is an isomorphism,

Note also that the exact sequence of a real pair is compatible with the
periodicity isomorphism. Hence if we define

KRX Y)= KRrYX,Y) forp =0
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it follows that the exact sequence (2.2} for (X,Y) can be extended to
infinity in both directions. Moreover we have natural isomorphisms
KRyt o~ KE?-0,

We consider now the general Thom isomorphism theorem as proved
for K-theory in (2) [§ 2.7). We recall that the main steps in the proof
proceed as follows:

(i) for a line-bundle we use (2.1},
(ii) for a decomposable vector bundle we proceed by induction using
(2.1),
(ii1) for a general vector bundle we use the splitting principle.

An examination of the proof in (2) [§ 2.7] shows that the only point
requiring essential modification is the assertion that a vector bundle is
locally trivial and hence locally decomposable. Now a real vector bundie
has been defined as a vector bundle with a real structure. Thus it has
been assumed locally trivial as a vector bundle in the category of spaces.
What we have to show is that it is also locally frivial in the category of real
spaces. To do this we have to consider two cases.

(i) € X areal point. Then B, = C* in our category. Hence by the
extension lemma there exists & real neighbourhood U of z such
that B|U = U x G* in the category.

(il # 5= £. Take a comp'ex isomorphism £, o~ C*. This induces an
isomorphism E; =~ CG*., Hence we have a real isomorphizm

E\Y =Y xC»,
where ¥ = {z,#}. By the extension lemma there exists a real
neighbourhood U of ¥ so that E|U o UXC".

Thus we have

TueoreM 2.4 (Thom Isomorphism Theorem). Let E be a real vector
bundle over the real compact space X. Then
$: KR(X) » K R(XF)

is an isomorphism where $() = Ag.w and Ay i the element of K R(XE)
defined by the exterior algebra of E.
Among other results of (2) [§ 2.7] we note the following :

ER(X x P{C") == KR(X)[f)/t"—1

2: KR(X) @z K(P(C?)).
We leave the computation of K R for Grassmannians and Flag mani-
folds as exercises for the reader. The determination of XK R for quadrics
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is a more interesting problem, since the answer will depend on the
signature of the quadratic form, -
We conclude with the following observation. Consider the inclusion
B =R3C=RM
This induces a homomorphism

K\(point) > K%(point)

o~ 1 ~

K R(P{C?) - K R(P(R¥).
Since ¢¥{H] is the real Hopf bundle over P(R? it follows that
n = ¢*(b) = i*([H]—1) is the reduced Hopf bundle over P(R?).

3. Coefficient theories

If Y is a fixed real space then the functor X +> K R(X x ¥) gives a new
cohomology theory on the category of real spaces which may be called
K R-theory with coefficients in ¥. We shall take for ¥ the spheres S0
{where the involution is the anti-podal map). A theory F will be said to
have period ¢ if we have a natural isomorphism F ~ F-2. Then we have

ProrosiTiON 3.1. K R-theory with coefficients in Sp® has period

t4ifp =2,

Proof. Consider B? as one of the threefields R, C,orH {p = 1, 2,0r 4).
Then for any real space X the map

Pp: X X80 ROP —» X X 803 Rp.0

given by u.(x,s,u) = (z,s,su), where su is the product in the field, is a
real isomorphism. Henceitinduces an isomorphism

pp: KBPYX x 8P) > KROWP(X x 8P4,
Replacing X by a suspension gives an isomorphism
ph: KRP(X X Sp0) — K RO+ X x 8P},
Taking ¢ = p and using the isomorphism
pr: KR -> KRp»
given by Theorem 2.1, we obtain finally an isomorphism
pip BP 1 K B(X X §78) K RO*2(X x §p)

I
K R-(X x §»9),
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Remark. p* is clearly a K R(X)}-module homomorphism. Since the
same is true of 8 this implies that the periodicity isomorphism

yp = pp P KR(X X 87°) » K R-27(X X §79)
is multiplication by the image ¢, of 1 in the isomorphism
K R(SpP)y — K R-29{S».9),
This element ¢, is given by
€y = yu{1) = p*(d?.1), 1 e KR(S89)
For any Y the projection X XY > X will give rise to an exact coeffi-

cient sequence involving KR and K R with coefficients in ¥. When ¥
is a sphere we get a type of Gysin sequence:

Prorosition 3.2. The projection «r: 829 > point induces the following
exact sequence

> KB4 X) X KR2(X) > KR(X x 89 5 .

where x 18 the product with (—x)?, and 4 € K R-1(point) o~ th(P(Rz)) is
the reduced real Hopf bundle,

Proof. We replace = by the equivalent inclusion 80% > Br® The
relative group is then K R?4(X). To compute y we use the commutative
diagram :
KREI(X) X xmoyx)

e
el

A

.
.y

-
KR¥Pi(x) X Tkmeei(x)

Let 8 be the automorphism of K#-»+¢(X) obtained by interchanging the
two factors RP® which ocour. Then the composition 857 is just multi-
plication by the image of b? in
K Rv-»(point) + K R%*(point).

But this is just y?. It remains then to caleulate §. But the usnal proof
given in (2) [§ 2.4] shows that § = {(—1)*" = (—-1)». :

We proceed to consider in more detail each of the theories in (3.1).
For p = 1, 87?5 just a pair of conjugate points {4-1, —1}. A real vector
bundle E over X x{+1,—1} is entirely determined by the complex
vector bundle E, which is its regtrietion to X X {+1}. Thus we have.

ProrosiTion 3.3. There is a natural isomorphism
KR(X x S1) ~ K(X).



ON K-THEORY AND REALITY

Note in particular that this does not depend on the real structure of X
but just on the underlying space. The period 2 given by (3.1) confirms
what we know about K(X}. The exact sequence of (3.2) becomes now

S ER-NE BB K4X) S ERX)>... (34)
where y is multiplication by —»n and =* = ¢ is complemﬁcatlon We
leave the identification of § as an exercise for the reader. This exact
sequence is wetl-known (when the involution on X is trivial) but it iy
always deduced from the periodicity theorem for the orthogonal group.
Our procedure has heen different and we could in fact use (3.4) to prove-
the orthogonal periodicity. Instead we shall deduce this more easily
later from the case p = 4 of (3.1).

Next we consider p = 2 in (3.1). Then K RB-%(X x §2%) has period 4.
We propose to identify this with a self-conjugate theory. If X is a real
space with involution = a self-conjugate bundle over X will mean a
complex vector bundie B together with an isomorphism «: B - 7*F.
Consider now the space X X 82° and decompose 5%° into two halves
8% and 820 with intersection {+1}.

sho

+1 -1

530

It is clear that to give a real vector bundle F over X x §%% ig equivalent
to giving & complex vector bundie F, over X X 8%° (the restriction of F)
together with an isomorphism
¢: PIX {41} > +*F| X x{—1}).
But X x {4-1} is a deformation retract of X X S%° and so [cf. (3) 2.3] we
have an isomorphiam
8: F X x{—1} -~ F X x{+1}

unique up to homotopy. Thus to give ¢ is equivalent, up to homotopy, to
giving an isomorphism o B> %F

where ¥ is the bundle over X induced from F, by z —(x, 1) and

Oy = 8@,—U¢(x,l)-
In other words isomorphism classes of real bundles over X X %0 corre-
spond bijectively to homotopy classes of self-conjugate bundles over X,
Moreover this correspondence is clearly compatible with tensor products.
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Now let KSC(X) denote the Grothendieck group of homotopy classes of
gelf-conjugate bundles over X. If r is trivial this agrees with the defini-
tions of (1) and (7). Then we have established

ProposrrioN 3.5. There is a natural isomorphism of rings
KSX) > KR(X x §29).
The exact sequence of (3.2), with p = 2, then gives an exact sequence

..—> KR4X) % KR(X) o K8C-4(X) 5 KER4(X)—>.. (3.6)
where y is multiplication by »* and «* is the map which assigns to any
real bundle the associated self-conjugate bundle {take o« = 7). The
periodicity in KS8C is given by multiplication by a generator of
K84 point).

Finally we come to the case p = 4. For this we need
Lemma 3.7. Let € K R-'(point) be the element defined in § 2. Then
7= 0.

Proof. This can be proved by linear algebra. In fact we recall [(4)
§ 11] the existence of a homomorphism a: 4, - K E-*(point) where the
A, are the groups defined by use of Clifford algebras. Then 5 is the
image of the generator of 4, ~ Z, and A4; = 0. Since the homo-
morphisms «; are multiplicative [(4) § 11.4] this implies that »* = 0.

COROLLARY 3.8, Forany p == 8 we have short exact sequences

0+ EB-9(X)™ KR-4X x 529 5 K Rv1-4(X) > 0.
Proof. This follows from (3.7) and (8.2).

According to the remark following (3.1} the periodicity for
K R(X X 8§49 ia given by multiplication with the element

¢y = us(bt.1) € KR-5(849).
Now recall [(4) Table 2] that 4, ~ Z, generated by an element A

(representing one of the irreducible graded modules for the Clifford
algebra C;). Applying the homomorphism

a: 43 - K R-8(point)
we obtain an element «{d) € KX R-3(point). The connexion between ¢,
and (A} is then given by the following lemma.:
LemMma 3.9. Lef 1 denote the identity of K B(8%0). Then
¢y = a(A).1 € K R-8(849),
The proof of (3.9) involves a careful consideration of Clifford algebras and
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is therefore postponed until § 4 where we shall be discussing Clifford
algebras in more detail,
Using (3.9) we are now ready to establish

TEEoREM 3.10. Let A € Ag, afr) € KR-¥(point) be as above. Then
multiplication by a(A) induces an isomorphism
KR(X)-> KR8X)
Proof. Multiplying the exact sequence of (3.8) by «(A) we get & commu-
tative diagram of exact sequences

0+ KR%X) - KR YXx 8" - KR*94X) =0

¢¢Q’ ir*f’a ¢ S—q
0+ KR-983X) > KR-78X x §49) -~ KR-34(X) -0,

By (3.9) we know that ;, coincides with the periodicity isomorphism y,.
Hence ¢, is a monomorphism for all g. Hence ¢;_, in the above diagram
is a monomorphism, and this, together with the fact that ¥, is an iso-
morphism, immplies that ¢, is an epimorphism. Thus ¢, is an isomorphism
as required.

Remark. If the involution on X is trivial, so that K R(X) = KO(X),
this is the usual ‘real periodicity theorem’.

By considering the various inclusions S99 - §79 we obtain interesting
exact sequences. For the identification of the relative group we need

Lenma 8.11, The real space (with base point) 87888 15 {somorphic to
§p-a0 x But{Sp-a0x Sao,
Proof. 8Sp0— 8¢9 iy isomorphic to §2-¢9x Re°. Now compactify.
CorOLLARY 3.12. We have natural tsomorphisms:
KR(X x 870 X x 8§39 o« K RO X x Sr-20),

In view of (3.8) the only interesting cases are for low values of p, ¢.
Of particular interest is the case p = 2, ¢ = 1. This gives the exact
sequence [ef. (1}] .

e > KUYX) > KSC(X) >~ K(X) > K(X) > ...
The exact sequence of (3.8) does in fact split canonically, so that

{for » = 3)
ER-YX x 87 o KB-%X) @K Ro1-o(X). (3.13)

To prove thig it is sufficient to consider the case p = 3, because the
general case then follows from the commutative diagram (p = 4)

0 > KR(X) > KR(X x 8»0
0> K}%(X) . KR(%( X §50)
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obtained by restriction. Now 8% iz the 2-sphere with the anti-podal
involution and this may be regarded as the conic ? 22 = 0 in P(C®),
In§ 5 we shall give, without proof, a general proposition which will imply
that, when ¥ is a quadric,
KR(X)—> KR(XXY)
has a canonical left inverse. This will establish (3.13).

4. Relation with Clifford algebras
Let CLff(R?4¢) denote the Clifford algebra (over R) of the quadratic

form i a .

_ 2 o2
on R4, The involution (y,x) — {—y,x) of BP¢ induces an involutory
automorphism of Cliff{ B#9) denoted byt a > &.

Let M == M® @ M! be a complex Z,-graded Cliff( R»¢)-module. We
shall say that M is a real Z,-graded Cliff(E?¢)-module if M has a real
structure (i.e. an anti-linear involution m > M) such that

(i) the Z,grading is compatible with the real structure, i.e.
Mi=M (=0,1),
(it) @m = am for a € Cliff{ RP9) and m ¢ M.
Note that if p = 0, so that the involution on CLff( R?9) is trivial, then
My =My My = {me M|m = m}
is a real Z,-graded module for the Clifford algebra in the usual sense
[a C,-module in the notation of (4)].

The basic construction of (4) carries over to this new situation. Thus
a real graded Cliff(E?9)-module M = M@ M! defines a triple
(M°, M1, o) where o: 8P4 X M°— 3r¢x M1is areal isomorphism given by

. 0'(8: m) = (35 m)‘
In this way we obtain a homomorphism
h: M(p,q) - K E*2(point)

where M(p,q) is the Grothendieck group of real graded CHLff(Rr4)-
modules. If M is the restriction of a Cliff( #7e+1}-module then o extends
over 24+l Since the projection

S§pa+l 5 Bra

1 This notation diverges from that of (4) [§ 1] where {for ¢ = 0) this involution
is called « and *bar’ is reserved for an anti-automorphism.
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i8 an isomorphism of real spaces (S, denotes the upper hemisphere with
regpect to the last coordinate) it follows that M defines the zero element
of K B*4(point). Hence, defining 4(p, g) as the cokernel of the restriction
M(p,q+1) > M(p,9),
we see that % induces a homomorphism
o A{p,q) > K RP4(point).
Moreover, as in (4), « is multiplicative. Note that for » = 0 this «
coincides essentially with that defined in (4), since
A0,q) = A,
X R%(point) ~ KO-¥poin}).
The exterior algebra A*(C!) defines in a natural way a Cliff(RM!)-

module by 2(ly =ze, z(e) = —2Z1

where 1 € A%C') and e € AY(Cl) are the standard generators. Let
A, € A(1, 1) denote the element defined by this module. In view of the
definition of & € K RY(point) we see that

and hence, since « is multiplicative,

afAf) = b4,

Let M be a graded Cliff( R*%)-module representing A (in fact as shown
in (4) [§ 11], we can construct M out of the exterior algebra A*(C4)), and
let w = ¢, e,e5¢, & Chff( B4%1) where ¢, ¢,, €5, ¢, are the standard basis of
R0, Then we have WA =1, B=w,
wz = Zw forze Gt = R,

Hence we may define a new anti-linear involution m — i on M by

il = —wm
[ Pro—— —— A
and we have M= —WEIM = —WIMm = — 2
= z#h.

Thus M with this new involution (or real structure) is a real graded
Chff{ R%%)-module, a C;-module in the notation of (4): as such we denote
it by ¥, From dimensicnal considerations [cf. (4) Table 2], we see that it
must be one of the two irreducible Cj-modules. But on complexification
(i.e. ignoring involutions) it gives the same as M and hence N represents
the element of 4, denoted in (4) by A.
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After these preliminaries we can now proceed to the proof of Lemma
3.9. What we have to show is that under the map

the element of X R%4(5%%) defined by M lifts to the element of K B-5(349)

defined by N. To do this it i clearly sufficient to exhibit a commutative
diagram of real isomorphisms

S1O5 REX N > S840 Cix M

4’ » 'l'

SO RIXN - SO Caix M (4.1)
where » is compatible with u, (i.e. v(s, z, y, n) = (8,2 +isy, m)forsomem)
and the vertical arrows are given by the module structures (i.e.
(s,2,5,7) > (5,2, 4, (2, )n).

Consider now the algebra Cliff{R%%) = ;. The even part (9 is
isomorphic to H (O H [(4) Table 1]. Moreover its centre is generated by
1 and w = ¢, e,¢,5¢,, the two projections being (14w} To be quite
specific let us define the embedding

¢ H — Clifl*(R**)

by
(1) =137,
) =10
g( )_-_ 1+we’183)

E(ky = 1 —]—w € ¢4

Then we can define an embedding

n: S(H) - Spin(4) c I
by 5{(8) = &(s)+4(1—w), where I is the Clifford group [(4) 3.1] and
S(H) denotes the quaternions of norm 1. It can now be verified that the
composite homomorphism

S(H) — Spin(4) - J0(4)
defines the natural action of S(H} on R* = H given by left multiplica-
tion.t In other words
nehyne) =sy (s € S(H), y e RY). (4.2)
If we give S(H) the anti-podal involution then % is not compatible with
involutions, since the involution on the even part €} is trivial.

t We identify 1, ¢, §, & with the standard basc ¢,, 2,, &, ¢, in that order.
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Regarding Cliff(R%°%) as embedded in Cliff{ B44)} in the natural way
we now define the required map v by

¥8, %, 9, 1) = (8,2 +isy, n(spn).
From the definition of w it follows that
8w = —y(—s)
and so (— 8} = n(—s){—wii} = n(s)fs = eI,
showing that v is a real map. Equation {4.2) implies that
n(8)(x, yin = (2+isy)y(shn,
showing that v is compatible with the module structures., Thus we have
established the existence of the diagram (4.1) and this completes the
proof of Lemma 3.9,

The definitions of M(p, ¢) and A(p, ¢) given were the natural ones from
our present point of view. However, it may be worth pointing out what
they correspond to in more concrete or classical terms. To see this we
observe that if M is a real C(R?<)-module we can define a new action [ ]
of RP+2 on M by [, ym = am+iym.

Then [, yFm = {—|x|P+|yl*}m.

Moreover for the involutions we have

[, ylm = am-iym
= amteyn (since § = —y)
= [, ylin.

Thus Mg is now a real module in the usual sensze for the Clifford algebra

G, , of the quadratic form
g

Qp,q) = iyf— > .

1

It is easy to see that we can reverse the process. Thus M(p, ¢) can equally
well be defined as the Grothendieck group of real graded C, -modules. From
this it is not difficult to compute the groups 4, , on the lines of (4)
[§ 4, 5] and to see that they depend only on p—g (mod 8) [cf. also (8)].
Using the vesult of (4) [11.4] one can then deduce that

o A{p, q) = K Br4(point)

is always an isomorphism. The details are left to the reader. We should
perhaps point out at this stage that our double index notation was
suggested by the work of Karoubi (8).
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The map « can be defined more generally for principal spin bundles as
in (4) and we obtain a Thom isomorphism theorem for spin bundles on
the lines of (4) [12.3]. We leave the formulation to the reader.,

5. Relation with the index
If 4 denotes the Fourier transform of a function ¢ then we have

diz) = d(—a).
Since the symbol ¢ P) of an elliptic differential operator P is defined by
Fourier transforms (9) it follows that
o(P)(x, &) = o Pz, —&)
where P is the operator defined by
P¢ = P§.

Here we have assumed that P acts on functions so that ﬁﬁ is defined.
More generally if X is a real differentiable manifold, i.e, a differentiable
manifold with ‘a differentiable involution z — &, and if B, F are real
differentiable vector bundles over X, then the spaces I'(E), I'(F) of
smooth sections have a real structure and for any linear operator

P T(E) > T(F)
we can define P: I'(E) - T'(F) by

P($) = P§.
If P iz an elliptic differential operator then
o(P)(z.£) = o( P)(Z, —%(8)). (5.1)

It is natural to define P to be a real operator if P = P. If the involution
on X is trivial this means that P is a differential operator with real
coefficients with respect to real local bases of E, . In any case it follows
from (5.1) that the symbol o(P) of a real elliptic operator gives an iso-
morphism of real vector bundles

7*E - o+ F,
where 7: S(X) - X is the projection of the cotangent sphere bundle and
we define the involution on S(X) by
(@, £) > (£, —7%(&).
Note that if = is the identity involution on X the involution on 8(X) is

not the identity but is the anti-podal map on each fibre. This is the basic
reason why our K E-theory is needed here. In fact the triple

(n*E, n*F, o(P)}
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defines in the usual way an element

[o(P)] € KR(B(X), 8(X))
where B(X), the unit ball bundle of §(X), has the associated real
structure.

The kernel and cokernel of a real elliptic operator have natural real
structures. Thus the index is naturally an element of K R(point). Of
course since K R(point) - K{point)
is an isomorphism there is no immediate advantage in defining this
apparently refined real index. However, the situation alters if we con-
sider instead a family of real elliptic operators with parameter or base
space ¥. In this case areal index can be defined as an element of X B(Y)
and KR(Y)—> K(Y)
is not in general injective.

All these matters admit a natural extension to real elliptic complexes
(9). Of particular interest is the Dolbeault complex on 2 real algebraic
manifold. This is a real elliptic complex because the holomorphic map
7: X - X maps the Dolbeault complex of X into the Dolbeault complex
of X. If X is such that the sheaf cohomology groups H4(X, @) = 0 for
g = 1, HYX, @} ~ C, the index, or Euler characteristic, of the Dolbeault
complex is 1. Based on this fact one can prove the following result:

Prorosrrion. Let f: X — Y be a fibering by real algebraic manifolds,
where the fibve F i3 such that
H{F,0)=0 (¢21, HYF, 0)=C),
then there i3 a homomorphism
' fo: KR(X) > KR(Y)
which iz a left inverse of
f*: KER(Y) > KR(X).
The proof cannot be given here but we observe that a special case is given
by taking X = ¥ X F where F is a (compact) homogeneous space of a real
algebraic linear group. For example we can take F to be a complex
_ quadric, as required to prove (3.13). We can also take F = SO{2n}{U(n),
or 80(2n){T™, the flag manifold of SG(2n). These spaces can be used to
establish the splitting principle for orthogonal bundles. It is then
significant to observe that the real space

{80(2n)/U(n)} x Boa»

t All this extonds of course to integral (or psendo-differential) operators,
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has the structure of a real vector bundle. A point of SH{2n)/T(n)
defines a complex structure of R?® and conjugate points give conjugate
structures, For n == 2 this is essentiallyt what we used in § 3 to deduce
the orthogonal periodicity from Theorem 2.1.

¥ In (3.1} we used the 3-sphere S%° Weo could just ag well have used the 2.
sphere §%°, This coineides with SO{4)/TU{2).
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