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w 1. Introduction 

On a compact complex manifold X it is an interesting problem to compare the 
continuous and holomorphic vector bundles. The case of line-bundles is classical 
and is well understood in the framework of sheaf theory. On the other hand for 
bundles E with d i m E > d i m X  we are in the stable topological range and one can 
use K-theory. Much is known in this direction, for example the topological and 
holomorphic K-groups of all complex projective spaces are isomorphic. 

This paper deals with what is perhaps the simplest case not covered by the 
methods indicated above. We shall consider 2-dimensional complex vector 
bundles over the 3-dimensional complex projective space P3. Our aim is to prove 

(1.1) Theorem. Every continuous 2-dimensional vector bundle over P3 admits a 
holomorphic structure. 

The corresponding result for P2 was proved by Schwarzenberger [13], but 
this falls into the class of stable problems. In particular 2-dimensional vector 
bundles over P2 are determined by their Chern classes c 1 , c 2 . This is no longer 
true on P3 and therein lies the main difficulty and also the interest of this paper. 
In fact Horrocks in [-10] has already constructed holomorphic (actually algebraic) 
bundles with arbitrary cl,  c 2 subject only to the topologically necessary condition 
that c~c 2 be even [8; p. 166]. 

It is not hard to see that, topologically, there are at most two bundles on P3 
with given cl,  c 2 . The two possibilities arise because the homotopy group 

n 5 (U(2)) ~ n 5 (S 3) 

which classifies 2-dimensional bundles over S 6, and acts on the bundles over P3, 
has order 2. It turns out that there are two sharply different cases depending on 
the parity of c~. 

In w 2 we study the case of even c 1 . By tensoring with line-bundles one reduces 
to the case of cl = 0  in which case the structure group is SU(2)~-Sp(1). We view 
our 2-dimensional complex vector bundle as a quaternion line-bundle and this 
simplifies the classification because quaternion line-bundles over P3 are already 
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stable. The abelian group KSP(P3) which classifies these is shown to be Z 2 ~3 Z 
so that (Theorem (2.8)) in addition to the integer invariants c I (E), c 2 (E) there is 
also in this case a mod 2 invariant ~(E). In other words zc s (U(2)) acts freely when 
cl is even. 

In w 3 we examine the case of odd q .  To apply similar methods to those of 
w 2 it is necessary to consider twisted symplectic bundles and the corresponding 
twisted K-theories. The conclusion (Theorem (3.3)) is that c~ (E), c 2 (E) are now 
the only invariants, or that 7z s (U(2)) acts trivially when q is odd. 

In view of Horrocks'  result, Theorem (1.1) for odd c 1 follows from Theo- 
rem (3.3). The interesting and more subtle case is for Cl even. In w 4 we show that, 
if E is holomorphic, c~ (E) can be computed in terms of sheaf cohomology. Namely 
if 2n = -  (q (E)+ 4), and if E (n)= E | H ~, where H is the Hopf  bundle, then 

(1.2) ~ (E) = dim n ~ (P3, E (n)) + dim n 2 (P3, E (n)) mod 2. 

This identification of the topological invariant ~(E) with a holomorphic semi- 
characteristic is a special case of the general index theorem of [5]. Another 
related special case was considered in [3] and we take this opportunity in w 4 of 
giving a more general version (Theorem (4.2)), valid for any odd-dimensional 
compact complex manifold. Algebraic geometers may find Theorem (4.2) of some 
independent interest. 

With the explicit formula (1.2) it is then quite easy to compute ~(E) for the 
Horrocks examples. This is carried out in w 5 and the final formulae are given in 
Theorem (5.9). 

To prove Theorem (1.1) for c~ even it is then only necessary to show that, by 
varying the parameters in Horrocks '  construction, we get all possible triples 
c~, c 2 , ~. This involves a certain amount of elementary computation which is the 
content of w 6. 

In w 7 we show (Theorem (7.2)) that only one of the two bundles E on P3 with 
given Cl, c 2 (c 1 even) extends topologically to P4. Moreover we show that the 
~-invariant of the one which extends is given by 

A (a - 1) 
(E) = - -  mod 2 

12 

where 4 A = q (E) 2 - 4 r (E). Again this is best understood in a wider context and 
we establish a more general result, both holomorphically (Theorem (7.4)) and 
topologically (Theorem (7.9)). 

On P~ we have standard generators for H2~(Pn, Z) (q<n) and it is convenient 
therefore to identify cohomology classes with integers. In particular we shall 
regard the Chern classes ci(E) as integers. 

w 2. Topology of Symplectic Bundles 

In this section we shall give the complete topological classification of 2-dimensional 
complex vector bundles over P3 with even first Chern class. Because of the formula 

c 1 (E | L) = c I (E) + 2 c 1 (L) 
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where E is 2-dimensional and L is a line-bundle, we can normalize the problem 
by fixing c t (E) to be any even multiple of the generator of H 2 (P3, Z). 

If we take c 1 (E)=0 the structure group of E reduces canonically from U(2) 
to SU(2): this follows by using the fibration BSU(2 ) - - - ,BU(2 )~BS  ~ and the 
fact that H ~ (P3, Z) = 0. 

Now SU(2)-~Sp(1), so we can view E as a symplectic line-bundle. The ad- 
vantage of this is that, over a base space of dimension < 6, symplectic line-bundles 
are already stable. In other words the inclusion Sp(1) ~ Sp(n) given in quaternion 
matrix form by 

1 
Q~-~ 1 

1/ 
induces a bijection between S p (1)-bundles and S p (n)-bundles. The reason is that 
Sp(n)/Sp(1) is 6-connected (recall the fibrations Sp(1)~-~Sp(2)~ S 7 etc.) and so 
B Sp (1)~--~BSp(n) is a homotopy equivalence up to dimension 6. 

Note that U(2) bundles over P3 are not stable as unitary bundles because 
U(3)/U(2)=SS: we have to go to U(3) before unitary stability sets in. 

Stable symplectic bundles over a space X form an abelian group which in 

K-theory notation is denoted by KSP(X) .  In virtue of the Bott periodicity theo- 

rems this group is isomorphic to KO-4(X) .  Complete information about all the 
groups Koq(P.) is given by the following proposition which will be used also in 
the subsequent sections. 

(2.1) Proposition. 

(i) Koq(P2,)=O for q odd 

=Z" for q even, 

(ii) K 0 ~ (P2,- 1) -~ K 0 q (P2 , -  2) G K O q- 4, + 2 (point), 

(iii) ~,q(P2,)-, K Oq(P2,) is surjective for all q. 

Proof We prove (i) by induction on n. For  n = 1 this is contained in a much 
more general theorem of R. Wood which asserts that, for any X, we have a can- 
onical isomorphism 

KO~( X • P2, X • Po)~Kq(X). 

The proof of Wood's theorem consists in comparing the exact KO-sequence of 
the triple (X • P2, X • P1, X • Po) with the exact sequence [2; (3.4)-] 

(2.2) KO ~-2 (X) ~ Kq(X) ~ KOq(X) ~-~ KO q-~ (X) 

andshowing that they are naturally isomorphic (where rl denotes multiplication 
by the generator of KO -1 (point)= Z2). 
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For  the inductive step we use the exact sequence 

(2.3) --~ K O q (P2 n, P2 n- 2) ~ K 0 q (P2 n, Po) ~ K 0 q (P2 n- 2, Po) --~ 0. 

Since P2JP2n_2 is the Thorn space of (2n-1)-copies  of the Hopf bundle over 
P1, it is the (2 n -  2)-suspension of P2, and so 

KO~(P2n, PEn- 2) ------- KOq- 2n +2 (P2, Po)" 

Substituting this in (2.3) we see that (i) follows and moreover (2.3) breaks up 
into short exact sequences. Comparing (2.3) with the exact sequence for 
(P2n-l, P2n-2, P0) it follows that this latter also breaks up into short exact sequences 

(2.4) 0 --~ K O q (P2,- , ,  P2 n- 2) ~ K O q (P2,-, ,  Po) ~ K O q (P2 n- 2, Po) --~ 0. 

Since the last group in this sequence is free abelian (2.4) splits. Since 

KOq(P2n_x, P2n_z)=KOq(S4"-2)=KO q-4n+2 (point), 

this proves (ii). Finally, since KOq(P2,, Po) is torsion-free, the homomorphism t/ 
in (2.2) applied with X = (P2n, P0) is zero, and hence the preceding homomorphism 
is surjective, proving (iii). 

There is a canonical choice for the splitting of (2.4), i.e. for the isomorphism 
(ii), arising from the fact that P2n-1 is a Spin-manifold. We recall that, if X, Y are 
Spin-manifolds of dimension m, n respectively, then a proper map f :  X--~ Y 
induces a natural homomorphism (for KO with compact supports) 

f,.: K O q ( X ) ~  KOq+n-m(Y). 

In particular taking f to be first the inclusion of a point in a compact manifold 
X and then the projection X--~ point, we see that KO~-n(point) is a direct factor 
of KOq(X). Moreover, for the inclusion i: point ~ Xi! is defined as the composi- 
tion of the Them isomorphism 

K O ~- n (point) --~ K 0 q (U) 

(U an open ball around the point) and the natural map 

KO~(U) ~ Koq(x ) .  

This shows that i,: KO~-n(point)--> KOq(X) coincides with the homomorphism 

f * :  KOq(Sn)--. KOq(X) 

induced by the collapsing map X--. S n of degree one obtained by compactifying U. 

Since c 1 (P:n_l)=2n the second Stiefel-Whitney class co2, which is c I mod2, 
vanishes. Hence P2,-~ has a Spin structure and, since P2n-~ is simply -connected, 
the Spin-structure is unique. Hence, applying the above remarks concerning 
direct image homomorphisms, we see that the projection 

(2.5) a: KOq(P2n_l,Po)--*KOq-4n+E(point) 

in the decomposition (ii) can be taken to be the direct image associated to the 
map P2 n-1 --* point. 
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We now return to the special case of P3 in which we are interested. Putting 
q =  - 4 ,  and n = 2  in (2.1) (ii), we get (using (i) also) 

(2.6) KSP(Ps)~-Z2GZ 

the projection onto the Z2-component being given by the direct image homo- 
morphism ~. The Z-component is easily identified with the second Chern class. 
Adding a component for the augmentation to (2.6) we clearly get a decomposition 
for the unreduced group 

(2.7) K S P ( P 3 ) ~ Z 2 G Z @ Z .  

Now as we shall see at the end ofw (Remark (3)) we have ~(1)=0, where 1 denotes 
the trivial quaternionic line bundle. This is also a consequence of the index 
theorem of [5; (3.3)], identifying ~(1) with the dimension rood 2 of the space of 
harmonic spinors, together with Lichnerowicz's theorem I11] that this space is 
zero if the scalar curvature is positive. Thus the projection onto the Z2-component 
in (2.7) is still given by ~. 

If E is a 2-dimensional complex vector bundle over P3 with vanishing cl, we 
shall also denote by ~(E) the value of ~ on the symplectic class [E]~KSP(P3). 
More generally if cl(E ) is even we shall put ~ ( E ) = ~ ( E |  L) where L is the line- 
bundle with c 1 (L)= - � 8 9  1 (E), so that c 1 (E | L)=0 .  We can now summarize our 
results as follows: 

(2.8) Theorem. A 2-dimensional complex vector bundle E over P3 with even first 
Chern class is uniquely determined by the three invariants c 1 (E), c 2 (E), ~(E). More- 
over all possible triples occur. 

w 3. Twisted Sympleetic Bundles 

In w 2, for bundles with c 1 even, we converted an unstable problem into a stable 
one by passing from the unitary group to the symplectic group. If c 1 is odd we 
shall now show that an analogous device works provided we "twist" the symplectic 
theory in an appropriate sense. 

Consider in general a complex line-bundle L over a space X. By an /_,- 
symplectic bundle over X we shall mean a complex vector bundle E over X 
together with a non-degenerate skew-symmetric L-valued bilinear form: 

c~ : E | E--~ L. 

For example a vector bundle E of dimension 2 has a canonical L-symplectic 
structure, where L = A 2 (E) is the second exterior power. In particular Eo = L @ 1, 
where 1 is the trivial line-bundle, is naturally L-symplectic. 

If E, F are L-symplectic, E G F has a natural L-symplectic structure so we 
can form a Grothendieck group KSPL(X). As usual the corresponding reduced 

group KSPL(X ) can be identified with stable L-symplectic bundles, where we 
stabilize by adding copies of E o. We just have to observe that any L-symplectic 
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bundle E is locally isomorphic to n E 0, for some integer n, and hence using a 
partition of unity we can construct an epimorphism N E  o ~ E (compatible with 
the bilinear forms). Moreover stability sets in, i.e. E~--~EOE o gives a bijection 
on L-symplectic classes, as soon as d i r n c E > � 8 9  In fact if dirn~F> 
� 8 9  there is a non-zero section s of F, unique up to homotopy, and the 
sub-bundle E 0 can be constructed from s: it is spanned by s and Ann(s) • where 
A n n ( s ) c F  is the codimension one bundle of elements annihilating s (for the 
bilinear form) and d_ denotes an orthogonal complement (using any auxiliary 
metric). 

Suppose now that dim X < 6 ,  then 2-dimensional L-symplectic bundles are 

stable and so KSPL(X ) classifies complex 2-dimensional vector bundles E over X 
together with a choice (up to homotopy) of isomorphism A zE~-L.  Since the 
automorphisms (up to homotopy) of any line-bundle L are given by H 1 (X, Z) 

it follows that, if H 1 (X, Z)=0 ,  KSPL(X ) classifies 2-dimensional bundles E with 
c I (E)= c 1 (L). In particular this holds in our ease when X = P  3. 

If E is L-symplectic and N is another line-bundle, then E |  N is L |  N 2- 

symplectic, and so 

KSPL(X)~KSPL| 

so that the different twisted theories are really parametrized by H 2 (X, Z) reduced 
modulo 2. For  X = P3 there are therefore just two theories corresponding to the 
parity of c 1 . The even case is just the ordinary symplectic theory used in w 2. The 
group KSPH(P3) is the group we now want: it classifies 2-dimensional E with 
C 1 (E)= 1. 

The twisted K-groups can be computed from the usual K-groups in virtue of 
the following version of the Thorn isomorphism theorem: 

(3.1) Proposition. K S P L ( X ) ~ K O - 2 ( L ) ,  where we use K-theory with compact 
supports. 

Postponing till later the proof of (3.1) we proceed to apply it in our case. 
Taking L =  H, the Hops bundle on P3, we can identify the Thom space of H with 
P4 and so 

(3.2) KSPn(P3)~KO-2(P, ,  Po) 

~ Z  2 by (2.1) 
or  

KSPn(P3)~-Z. 

Thus there is no torsion and the integer invariant, which can be computed 
rationally, is certainly determined by c2: in fact it is �89 2 . Hence we have proved: 

(3.3) Theorem. A 2-dimensional complex vector bundle over P3 with c 1 odd is 
uniquely determined by cl, c 2 . 

We return now to (3.1) which we shall prove by reinterpreting our twisted 
K-groups in terms of equivariant K-theory and then using the Thorn isomorphism 
theorem of [1]. 
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We let S(L) denote the unit circle bundle of L. This is a free G-space where 
G = U(1) so that the K-theory of X can be reinterpreted as the G-equivariant 
theory of S(L). For example 

(3.4) KSPo(S(L))~KSP(X ). 

To obtain the twisted theories we now introduce the connected double covering 
d - ~  G. Let N denote the trivial bundle S(L)x ~,  with d acting on r via its 
standard faithful representation. Note that N 2, which may be viewed as a G-vector 
bundle, corresponds to the line-bundle L on X. Now it is easy to see that any 
(~-vector bundle E over S(L) has a canonical decomposition of the form 

E~_E+ O ( N * |  -) 

where E § and E-  are (lifts of) G-vector bundles. A symplectic structure on E, 
compatible with the action of G, corresponds to symplectic structures on E + and 
on N* | E- .  Thus E § gives a symplectic bundle on X, but the pairing 

(N* | E - )Q(N*  Q E-)--~C 

gives a pairing 

E- | N 2 

and so E -  gives an L-symplectic bundle on X. Hence, when G is replaced by G, 
(3.4) becomes 

(3.5) KSPg(S(L))~-KSP(X)~) KSPL(X). 

The decomposition of (3.5) is canonical and it may be regarded as a grading into 
even and odd parts. 

We now consider the G-vector bundle N 2 on S(L). Since it has a square-root, 
namely N, it is a Spin-bundle and so the equivariant Thom isomorphism theorem 
[1; w holds: 

(3.6) KO~(S(L))'~KO~+E(N2). 

In particular, letting q = - 4 ,  we get 

(3.7) KSPo(S(L))~-KO~E(N2). 

Since the fundamental class for the Thorn isomorphism is constructed from the 
Spin representotion it is an odd element for our grading and so (3.6) interchanges 
the even and odd parts. Hence using (3.5) and (3.7) we get 

K S PL (X)~-(K O~ E (N2)) . . . .  = K O- 2 (L) 

proving (3.1). 

We conclude this section with a few further remarks about these twisted 
K-theories. Although not necessary for our particular problems on P3 they are 
relevant for other manifolds and help to clarify the general situation. 

First it is clear that there is an analogous twisted orthogonal theory in which 
we consider symmetric bilinear forms E | E---, L. The corresponding Grothen- 
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dieck group is denoted by KOL(X ) and (3.1) becomes 

(3.8) KOL(X)~KO2(L). 

A small point of difference from the symplectic case arises because E need not 
have even dimension. However since E~-E*| L we have 2c 1 (E)=mc I (L) where 
m = dim E. Thus, if m is odd, c 1 (L) must be even so that L has a square root and 
the twisted theory is isomorphic to the usual theory. 

If we put as usual 

K O ~ ( X ) =  K OL (R q x X), 

then the Thom isomorphisms (3.1) and (3.8) imply that 

(3.9) KOL4(X)'~KSPL(X). 

If X is a complex manifold it is particularly interesting to take L=K,  the 
canonical line-bundle. As a routine consequence of the twisted Thorn isomorphisms 
it follows that a proper map f :  X--~ Y of complex manifolds induces a natural 
direct image homomorphism 

(3.10) f.,: KO~(X)--*KOqr-2n+2"(Y). 

Here, n, m denote the complex dimensions of X, Y and the suffix K denotes the 
appropriate canonical line-bundle in each case. It is not necessary that f be 
a holomorphic map, nor in fact that X, Y be complex analytic. All that is necessary 
is that X, Y should be Spine-manifolds, i.e. that the structure group of their 
tangent bundles is lifted from SO(k) to SpinC(2k)=Spin(2k)xz2U(1). Also we 
can twist one stage further and define a direct image 

q ~ f ) q - 2 n + 2 m g v ~  (3.11) f :  KOK| tL~(X)---~LVK| L ~--j 

for any line-bundle Lon  Y. In fact (3.11) can be deduced from (3.10) by putting 
f*(L) and L for X, Y. It is also not hard to check that (3.10) is compatible with 
the K-theory direct image by the functor KO r --~ K, and similarly for (3.11). 

Taking Y to be a point and X to be compact in (3.10) we get the special cases 
which concern us most, namely homomorphisms 

(3.12) ~x: KOr(X)--*KO-2(point)=Z2 n - l m o d 4  

~tr: KSPK(X)--,KO-2(point)=Z2 n -  - l m o d 4 .  

Finally we should remark that twisted K-theories were introduced by Donovan 
and Karoubi in [7], where they are treated by more categorical methods. The 
approach followed above, reducing to the equivariant case, is due to G.B. Segal. 

w 4. Analysis of Symplectic Bundles 

Our aim now is to identify the c~-invariant of w 2 in the case of holomorphic bundles. 
We shall show that ~ can be computed in terms of sheaf cohomology as a mod 2 
semi-characteristic. The particular features of P3 play no special role in this 
section and our results will be valid much more generally. 
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Let X be a compact complex n-dimensional manifold and let E be a holo- 
morphic vector bundle over X. Then we have the sheaf cohomology groups 
Hq(x, E) and the corresponding Euler characteristic 

(4.1) z(X, E ) = y ' ( -  1) q dimHq(X, E) 

which figures in the Riemann-Roch theorem. If K denotes the canonical line- 
bundle (so that holomorphic sections of K give holomorphic differential n-forms) 
then the Serre duality theorem asserts that Hq(X,E) and H"-q(X, E* |  are 
dual vector spaces, where E* is the dual bundle of E. In particular 

dim Hq(X, E)=dimH"-q(X,  E* | K). 

Hence, ifn is odd and if E--- E* @ K, the terms in (4.1) cancel in pairs and Z (X, E) = 0. 
The isomorphism E ~ E * |  is equivalent to giving a non-degenerate holo- 
morphic bilinear form 49 on E with values in K: 

49: E|  E--~ K. 

If 49 is symmetric or skew-symmetric we shall show, for appropriate values 
of n, that we can introduce an interesting "semi-characteristic". This is in formal 
analogy with the Kervaire semi-characteristic which is defined for odd-dimensional 
mani fo lds-where  the usual Euler-Poincar6 characteristic vanishes. 

We shall prove the following theorem which constitutes the main result of 
this section: 

(4.2) Theorem. Let X be a compact complex manifold of odd dimension n, and 
let E be a holomorphic vector bundle over X with a non-degenerate holomorphic 
bilinear form 49 with values in the canonical line-bundle K. Assume further that 49 
is symmetric if n - 1  mod4 (so that E is K-orthogonal) and skew-symmetric if 
n - - 1  mod4 (so that E is K-symplectic). Then the holomorphic semi-char- 
acteristic 

f l ( E ) = ~  dimnZq(X, E) mod2  
q 

is a deformation invariant. It can be computed topologically by applying the direct 
image homomorphisms of(3.12) 

ctK: KOr(X)  ---~ KO-Z(point)=Z2 n - 1  m o d 4  

aK: KSPK(X) -~KO-2  (p~ ZE n -  - 1  m o d 4  

to the twisted K-class of E: fl(E)=Tr[E]. 

Before proceeding to the proof we shall make a few explanatory remarks. 
The words "deformation invariant" mean that if X, E, 49 depend continuously on 
a real parameter t then fl is independent of t. This statement has a clear analogue 
in abstract algebraic geometry (for algebraic dependence on t) and i t  would be 
interesting to produce an algebraic proof. The proof which we shall give is 
analytical and has no obvious translation to the algebraic context. 

If the first Chern class of X is even, X is a Spin-manifold and the different 
Spin-structures correspond precisely to holomorphic square roots L of K 
[3; (3.2)]. Choosing such an L we can replace E by E | L -1 which will now be 
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an orthogonal or symplectic bundle in the usual sense. Instead of the twisted 
direct images of (4.2) we now have the usual direct images for a Spin-manifold: 

or: KO(X)--,, Z 2 n = l  m o d 4  

o~: KSP(X)--~ Z 2 n -  - 1  m o d 4  

and ~tc(E)=ct(E| so that (4.2) becomes 

(4.3) fl(E)=~t[EQL-1]. 
The two simplest cases of Theorem (4.2) arise when n = 1 and n = 3. In the 

first case X is a Riemann surface and fl(E)= dim H ~ (X, E). In particular if E = L 
is a line-bundle then q5 is just an isomorphism L 2 = K  and this case was investigated 
in detail in [3]. For n = 3 the simplest case is when E is 2-dimensional. Then ~b is 
just an isomorphism A2(E)'~K, where A 2 is the second exterior power; in 
particular q5 (if it exists) is unique up to a constant (provided X is connected). This 
is the only case needed for w 2, but it seemed better to state and prove Theorem (4.2) 
in full generality so that its real features would stand out more clearly. 

The proof of (4.2) is a straightforward extension of the methods explained in 
[3]. The idea is that • H 2q (X, E) can be identified with the null-space of a certain 
elliptic skew-adjoint anti-linear operator P. The dimension of this null-space 
mod 2 is then a homotopy invariant as proved in [6]. It is moreover a mod 2 
" index" for which the index theorem of [5] yields a K-theory formula in terms 
of the symbol of P. This leads to the direct image formula. 

We proceed to spell out the details. As far as possible we shall use the same 
notation as in [3]. The bilinear form qS: E | E---, K induces a homomorphism 

fJ~ I2~ (E)---~ Q~ (K)~_Qn,q+r 
denoted by u^v: here f2 p'q denotes forms of type (p, q) and f2 p'q (E) the E-valued 
forms of type (p, q). Since ~b is holomorphic it follows that 

(4.4) O(UAV)=~u^v+(- 1)qUA~V. 
We now choose hermitian metrics on X and E and define (for all q) an anti-linear 
isomorphism h: f2~ f2~ by 

(4.5) (u,h(co))=~u^c,. 
X 

Here uef2~ ogef2~ and ( , )  denotes the inner product induced by 
the metrics on X and E. Assuming that q5 is e-symmetric (e= + 1), i.e. that 
q5 (x, y) = e tk (y, x), we have 

co^ u=e( -  1)~"-q)UACO=eu^co since n is odd. 

Hence 

(u, h(co))= ~ u^co=e ~ co^u=e(co, h(u)) =e(h(u), co) 
X X 

which implies that, as a real linear operator h* = eh (because the real inner product 
is given by Re ( , ) ) .  Together with (4.4) this shows that the anti-linear operator 

ht~: f2~ f2 ~ (E) 

satisfies 

(4.6) (ht~)* = ( -  1)q+~ e(h0) 

or equivalently 0* = ( -  1) ~+1 h~h -1. 
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We now consider the anti-linear operator 

P" ~, 0 0,2 P(E) ---* ~ f2~ P(E) 
P 

defined on f2~ by 

(4.7) P = ( - 1 ) P + l h ~ + ( - 1 ) P ~ h  -l .  

Using (4.6) a littlc computation shows that 

(4.8) P*= -e~IP  

where t/= + 1 according as n -  + 1 mod 4. But the hypothesis of our theorem is 
precisely that ~/= e and so P* = - P. If we define an operator j by 

j(~b)=(- 1)P+lh(qS) for ~bet2~ 

= ( -  1)Peh-1 (~) for OE ~'20' 2 P+I(E) 

then j2=  _ 1 and P can be written in the form 

(4.9) P=j(O+~*)=(~+O*)j .  

In particular this shows that P is elliptic (since ~ +0"  has square equal to the 
complex Laplacian A = ~0" + ~'3) and hence dim Ker P mod 2 is a well-defined 
deformation invariant. But by (4.9) 

Ker P =  Ker (c3+c~*) on EQ~ 

= ~  Ker A 2 p 
P 

= ~ H  2 P(X, E) by the Dolbeault isomorphism. 
P 

This proves the first part of the theorem. To compute this mod 2 index we 
can now appeal to the general formula of [5]. The skew-adjoint anti-linear 
operator P has a symbol class [a (P)] e K R - 2  (TX)  and the main theorem of [5] 
asserts that the mod 2 index of P is obtained by applying the topological index 

K R -  2 ( T X )  -~ K R -  2 (point) = Z 2 

to [a(P)]. 
It remains therefore to identify ind [(P)] with ~r [E]. Now we have Thom 

isomorphisms 

K O K ( X ) _ ~ K O - 2 ( K ) ~ - K R - 2 ( T K ) ~ - K R - 2 ( T X )  n = l  mod4, 

K S P r ( X ) ~ _ K O - 2 ( K ) ~ _ K R - 2 ( T K ) ~ _ K R - 2 ( T X )  n = - l m o d 4  

and it is a routine matter (cf. [9; w to check that these are compatible with 
ak and ind r Thus we have commutative diagrams 

K O  K (X) --~ K R -  2 ( T X )  K S P  K (X,) ~ K R -  2 (TX)  

~ / indt ~ / indt 

n - 1 (4) Z 2 n -  - 1 (4) Z 2 
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To complete the proof  of Theorem (4.2) we must finally check that the element 
[El in the twisted K-theory corresponds to [a(P)] under the above isomorphisms. 
For simplicity we shall only carry out this verification in the case that K has a 
square root L so that X is a Spin-manifold. This is more than adequate for our 
purposes, when X = P3, and the general case follows by passing to equivariant 
K-theory as in the proof  of (3.1). 

As before put e =  +__1 according as n =  +1  mod4.  Then F = E |  -1 has an 
e-symmetric bilinear form. The metric on X gives a metric on K, hence one on L 
and together with the metric on E this gives a metric on F. Using this metric 
the bilinear form converts as usual into an anti-linear operator 7: F-- ,F  with 
y*=eT.  Now let S § S -  denote the two complex �89 bundles of X. Since 
d i m s X = 2 n = 2 m o d 4  there is a natural anti- isomorphism I 6: S+--,S - with 
6 2 = - e  (recall that e =  + 1 as n =  + 1 mod 4). This follows from properties of 
the Clifford algebras (see [4; w Hence 

"f| F | S+---} F |  - 

is anti-linear and satisfies (~/@ 6) 2 = - 1. 
Now it is well-known (see [4; (5.11)]) that there are natural bundle iso- 

morphisms 

A o . . . . .  |  +, AO, o d d |  - 

where A ~ P= A ~ P(T* X) is the (0, p) part of the exterior power. In terms of spaces 
of sections 

12o . . . . .  (L) ~ F (S +) f2o, odd (L) ~ F (S-)  

where F denotes C ~o sections. Tensoring with F gives 

f2o . . . . .  ( E ) ~ F ( F |  +) f2O,odd(E)~F(FQS-). 

Comparing definitions one can check that, via these isomorphisms. 

(4.10) j = 7 |  

Moreover [9; w 2.1] the operator  ~+~*  has (up to a factor 1/2) the same symbol 
(Clifford multiplication) as the Dirac operator (with coefficients in F) 

Dr: F(F | S• F(F | S:~). 

In view of (4.9) and (4.10) it follows that P has the same symbol (7 | 6)o~ 
acting on F(FQS+).  But 

(4.11) Ea((7 @ 6)DF) ] = [F, 7] Ea(6D)]~ K R - 2  (TX).  

Here F with the antilinear map 7, satisfying 7 2 = e, gives the element in K R  2- 2 ~ (X) 
which is just the orthogonal or sympletic class of F (with its bilinear form). The 
anti-linear operator 6D satisfies 

(6D)* = -e (6D)  

1 There is an ambiguity of sign in the choice of 6 which can be made explicit, but since our final 
index is in Z 2 the sign is unimportant and will be left in decent obscurity. 
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and hence has a symbol in KR-2~(TX) (cf. [9; w 4.2]), so that the product in 
(4.11) ends up in KR-2 (TX) in both cases (e = + 1). Finally we need to know that 
[a(fD)]~KR-Z~(TX) is precisely the fundamental class for the Thom iso- 
morphism 

KR(X)~-KR-2"(TX)=KR-2~(TX) 

(recall that 2 n - 2 ~  mod 8). For the verification of this see [-9; 34.2]. 

Remarks. 1) If X is a K~ihler manifold, and if we take the unique connection 
on E which preserves both the metric and the bilinear form, one can check that 
the operators t3+t3* and D e not only have the same symbol, but they actually 
coincide (cf. [-9; w for similar results). Thus ~'H2p(X,E) can be identified 
with the space of harmonic spinors with coefficients in E. 

2) The rather tedious verification above that ct~ (E) coincides with the topo- 
logical index is not vital for our application to P3. We could simply replace ~ by 
ind t in w 2: it does just as well. 

3) We can use Theorem (4.2) to show that the splitting (2.7) of KSP(P3), 
given by ~t, coincides with the splitting obtained by lifting the geometric generators 
of KSP(Pz)~ZO Z. In fact the two generators are the trivial bundle H ~  ~ 
and H ~3 H -  ~, and 

~(H ~ G H~ fl (H-Z)=O, 
o~(H G H-a)= fl(H-1)+ fl(H- 3)=O. 

w 5. The Horroeks Examples 

We shall now combine the results of w 2 and w 4 and apply them to the explicit 
examples of algebraic vector bundles over P3 constructed by Horrocks in [10]. 

Let E be a holomorphic 2-dimensional vector bundle over P3 with c 1 even. 
We then put 

(5.1) n=--�89 ) 

so that E(n)=E| (where H is the Hopf  bundle) satisfies 

c 1 (E (n)) = - 4 = c 1 (K), 

K being the canonical line bundle of P3. Since holomorphic line-bundles on P3 
are determined by c~ it follows that A 2 (E (n))_-_ K, and hence that there is a skew- 
symmetric non-degenerate holomorphic linear map 

q~: E(n)| E(n)---~ K 

unique up to a constant. By Theorem (4.2) 

(E (n)) = dim H ~ (P3, E (n)) + dim g 2 (P3, g (n)) mod 2 

is then equal to the invariant ~ (E) of w 2. According to Theorem (2.6)the underlying 
topological bundle of E is determined by c 1 (E), c z (E) and ~(E). Since c~ (E) and 
c 2 (E) are easy to compute, and since ~(E) can be replaced by [3(E(n)), we are now 
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in a good position to compute all the topological invariants of any explicitly given 
holomorphic vector bundle E. 

In [10] Horrocks gave a construction for algebraic (and therefore holo- 
morphic) vector bundles over P3 and he computed their Chern classes. He showed 
that, by varying the parameters in his construction, all possible pairs ca, c a with 
c I c 2 even could be realized. We shall compute the ~-invariant of Horrocks'  
bundles and show again that varying the parameter gives all possible triples 
Cl, C2, 0~ with c 1 even. 

We begin by reviewing briefly the main points of Horrocks' construction, 
which is done in the framework of coherent sheaves: we recall that locally free 
sheaves correspond to vector bundles. Horrocks considers locally free sheaves 

of rank 2 which fit into exact sequences 

(5.2) 0 ~ ( 9 ( - p ) - ,  ~ - *  ( 9 - ,  ~ i - ~  0 

where (9 is the structure sheaf on P3, (9 (n) is the sheaf of sections of H", ~t i is a 
sheaf supported on a disjoint set of lines in P3 and p > 2. Horrocks' main result 
is that two sequences of the form (4.2), taking i=  1, 2, can be combined to give 
a third (i=3) provided ~1,  ~2 have disjoint supports. Moreover we then have 
~3 = ~ 1  E)~t2. The first Chern class of the sheaves ~ is always equal to - p .  

We shall only be concerned here with the case of even first Chern class so we 
put p = 2 q  (q> 1). The integer n of (5.1) is therefore equal to q - 2  and 

~(.~)= fl(~(q - 2)) = dim n ~ (/'3, ~ (q  - 2)) + dim n 2 (P3, ~ ( q  - 2)) mod 2. 

In fact it is convenient to apply Serre duality and replace H 2 here by H I so that 
(since ~ ( q  - 2)* | K ~-~(q - 2)) 

(5.3) ~t(~)= dim n ~ (P3, ~ ( q  - 2)) + dim n 1 (P3, ~ ( q  - 2)) mod 2. 

To compute this we use the following lemma: 

(5.4) Lemma. ~ ( ~ ) =  dim H ~ (Pa, (9 ( q -  2)) + dim H I (Pa, ~ ( q -  2)) mod 2. 

Proof We tensor (4.2) with (9 ( q - 2 )  and then break it up into two short exact 
sequences 

(5.5) 0 --~ (9 ( -  q - 2) ~ ~-(q - 2) --~ d ~ 0, 

(5.6) 0 - - , d - - ,  (9 (q - 2) ~ ~t (q - 2) - *  0. 

Since q > 1 we have 

H ' (P  3, ( 9 ( - q - 2 ) ) = 0  for i<3 ,  

H ' (P  3, O ( q - 2 ) ) = 0  for i>0 .  

(5.5) then shows that ~ ( q - 2 )  and ~r have isomorphic cohomology groups in 
dimensions 0, 1. The Lemma now follows from the 4-term exact cohomology 
sequence arising from (5.5). 

(5.7) Corollary. ~(~)  + dim H ~ (Pa, C ( q -  2)) mod 2 is additive for the Horrocks 
construction. 

Proof This follows at one from (5.4) and the additivity of the sheaf 9~ in the 
Horrocks construction. 
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To obtain interesting bundles Horrocks  starts from the case ~ = (9 ( -  m) ~) (9 ( -  k) 
where m + k = p = 2 q and m, k > 0. The roles of the two factors of ~ are symmetric 
so we may assume m < q. Then 

~ ( q -  2)=(9 (q-- m -  2) G (9 ( m - q -  2) 

and so ~ ( ~ ) = d i m  H~ C ( q - m - 2 ) ) m o d  2. Taking a sequence m 1 . . . . .  m r of 
such integers m, Horrocks combines the corresponding sheaves ~ . . . . .  ~ to 
obtain finally a new locally free sheaf ~ .  Applying (5.7), and the above formula 
for each c~(~), we get 

ct (~)+ d(q - 2) = ~ (d(q - 2) + c~ ( ~ )  
i = 1  

o r  
r 

(5.8) c t (~)=( r - -  1 ) d ( q - 2 ) +  ~ d ( q - m i - 2  ) 
i = 1  

where we have put for brevity d (s )=d im H~ (9(s))mod 2. 
Now H ~ (P3, (9 (s)) is the space of homogeneous polynomials of degree s in 

4 variables and so 

d(s)--0 for s < 0  

= ~ ( s + l ) ( s + 2 ) ( s + 3 )  m o d 2  for s ~ 0  

= 1 only if s is divisible by 4. 

Together with Horrocks '  computat ion of the Chern class c 2 we have therefore 
proved: 

(5.9) Theorem. Let q > l  be an integer and let m 1 . . . . .  m r be integers with 
0 < m i < q .  Then there exists a locally free  sheaf (or holomorphic vector bundle) 

o f  rank 2 on P3 such that 

c I ( ~ ) =  - 2 q, 
r 

c2 (~ )=  ~ mi(2q--mi) ,  
i = 1  

r 

a(~,~)=(r-- 1 ) d ( q - 2 ) +  ~, d ( q - m , - 2 )  
i = 1  

where d(s) = 1 if  s -  0 rood 4 and s > 0 

= 0 otherwise. 

It is convenient to define A by 

4A = c  2 - - 4 C  2 

Since c 1 is even A is an integer. It has the merit of being unchanged under 
tensoring with line-bundles. For  the bundle in Theorem (5.9) we have 

r 

(5.10) d(~-~)=q 2 -  ~ m i ( 2 q - m , ) .  
i = 1  

Replacing ~- by ~-(r) we can alter q to any even integer without changing A(.~-) 
or, because of its very definition, ct(~-). Thus to show that every triple (c x , c 2, ~) 
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with c 1 even arises from some if ( r )  we must show that, for any k~Z,  otEZ2, the 
equations 

(5.11) k = q  2 -  ~ m i ( 2 q - m i )  
i = 1  

~ = ( r -  1 ) d ( q - 2 ) +  ~ d ( q - m i - 2  ) 
i = l  

can always be solved for r, q, m I . . . . .  mr. This involves some elementary but 
lengthy computation and will be treated in the next section. 

w 6. Arithmetical Computations 

In this section we shah prove the following result: 

(6.1) Proposition. Let kEZ, ~ Z 2 ,  be given. Then there exist integers q, r>_ 1 
and integers ml , . . .  , rn r with 0 < m i <=q such that 

r ~ 

k = q  2 -  ~ mi(2q--ml), 
i = 1  

r 

c t = ( r -  l ) d ( q - 2 ) +  ~ d ( q - m , - 2 )  
i = 1  

where d(s) is the function defined in (5.9). 

For the proof it will suffice to consider q_--3 mod 4 and q__> 15. Moreover 
we shall take mi= 1, 2, 3, l0 for t, x, y, z values of i respectively. Some of the 
integers t, x, y, z may be zero, but at least one must be non-zero (so that r >  1). 
Because of our restrictions on q, cr equals t mod 2. The equation for k becomes 

k = q  2 - t ( 2 q -  1 ) -  2 x ( 2 q -  2 ) -  3 y ( 2 q -  3 ) -  1 0 z ( 2 q -  10). 

If t = 2 s, we get c~ = 0 and 

(6.2) q2 _ k = fq (s, x, y, z) 

where 

f~(s, x, y, z)= s ( 4 q - 2 ) + x ( 4 q -  4)+ y ( 6 q -  9)+ z ( 2 0 q -  100). 

If t = 2 s + l ,  t h e n ~ = l  and 

(6.3) ( q - 1 ) Z - k = f ~ ( s , x , y , z ) .  

Now a well-known result of elementary number theory says that, if 1, m, n . . . .  
are positive integers with no common factor, then the semi-group P(I, m, n,...) of Z 
which they generate contains all sufficiently large integers N, say N => tr (l, m, n . . . .  ) 
-with  tr the minimum choice. 

Since the integers 

4 q - 2 ,  4 q - 4 ,  6 q - 9 ,  2 0 q -  100 

have no common factor the equations (6.2) and (6.3) will be soluble (with 
s, x, y, z > O) provided 

( q -  1) 2 - k > a ( 4 q - 2 ,  4 q - 4 ,  6 q - 9 ,  2 0 q -  100). 
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Since k is given and we are allowed to choose q it will be sufficient to show that 

(6.4) a ( 4 q - 2 , 4 q - 4 , 6 q - 9 , 2 0 q - l O O ) < c q  2 for large q 

for some constant c < 1. Now 

a ( 4 q - 2 ,  4 q - 4 ,  6q - 9 ,  2 0 q -  1 0 0 ) < 6 q -  9 + 2 a ( 2 q -  1, 2 q - 2 ,  1 0 q -  50) 

and so the following lemma with n = 2 q - 2 ,  will establish (6.4) with c=16/17. 

40 < 2n2 
(6.5) Lemma. a(n+ l,n, 5 n -  )=--~-f for large n. 

Proof Note first that every interval [rn, r(n+l)] is clearly contained in 
P (n, n + 1, 5 n - 40). Next we shall prove by induction on l > 0 that 

I z = [(5 n - 40) l + 40 n, (5 l + 40) (n + 1)] c P. 

For /=0,  Io=[40n, 40(n+l)]cP as just noted. Assume now that I t c P  , then 
adding 5 n - 40 

( 5 n -  40)+I1= [(5 n -  40)(1 + 1)+ 40 n, 45n+  5/ (n+ 1)] c P .  

Since this interval overlaps with [rn, r ( n + l ) ]  for r = 5 ( l + 1 ) + 4 0 ,  their union, 
which is just It+ 1, is contained in P; this establishes the induction. Now the 
number of integers in I z is 

(5 l+40)(n + 1 ) - ( 5 n - 4 0 ) l - 4 0 n +  1 =45 l+41 .  

If we choose l so that 4 5 / + 4 1 > n ,  the intervals rn+l  t for r=0 ,  1,2 . . . .  are 
contiguous and so 

a(n + 1, n, 5n-40)<(5n-40) l  + 40n. 

If we take the smallest possible value for l, then 45 ( / -  1)+ 41 < n, hence 

a(n+ 1, n, 5 n - 4 0 ) <  ( 5 n -  40)(n +4) ~-40n 
45 

n 2 
< - - + 4 0 n  
- 9  

2n 2 
< ~ f  for large n. 

This completes the proof of Proposition (6.1). In view of Theorem (5.9) this 
completes the proof of Theorem (1.1) for the case of c 1 even. 

w 7. Bundles  on P4 

If a 2-dimensional vector bundle E on P3 extends topologically to P4 then its 
Chern classes must satisfy certain integrality relations arising from the Riemann- 
Roch formula [8; p. 155]. Tensoring by line-bundles does not affect the question 
of extension to P4 so the conditions on cl, c 2 can best be expressed in terms of 
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A = C _ 4 C  2 2  and the parity of c 1. If c 1 is even we may normalize it to be - 4 .  
4 

Note that A is now an integer. Then applying the Riemann-Roch formula, i.e. 
the formula for the direct image f:: K(P4)-* K (point)= Z, a little computation 
gives: 

A ( A - 1 )  
(7.1) f,. [E] = 12 

Alternatively, instead of carrying out the cohomological computations, it is 
sufficient to verify (7.1) (which is a polynomial in A) for the special cases 
E = H V G H  -~-4  (7>1), where H is the Hopf bundle. We can now use the 
analytical interpretation of f.,[E] as the holomorphic Euler characteristic 
z(P4, E). Substituting the known formulae for dim H q (P4, H0  we find 

Z (P4, H~ �9 H -  ~- 4) = d 4 (7) + d,  (7 - 1) 

(7 + 2) 2 (7 + 1) (7 + 3) 

12 

A(A-1 )  

12 ' 
where 

(7 + 1) (7 + 2) (7 + 3) (7 + 4) 
d*(7) = 12 

Thus, when c 1 is even, a necessary condition for E to extend to P4 is that 
A (A- 1) should be divisible by 12. The sufficiency was shown in [12] and will 
be reproved more simply at the end of this section. Now we know from w 2 that 
there are two bundles on P3 with given cl, c 2 (if c I is even) and that these are 
distinguished by their ct-invariant. It turns out that, when A (A - 1)/12 is integral, 
only one of these two bundles on P3 extends to P4. Moreover there is a formula 
for ~ in terms of Cl, c2 telling us which bundle extends, namely: 

(7.2) Theorem. Let E be a 2-dimensional complex vector bundle over P3 with 
c 1 (E) even. I f  E extends to P4 then 

A (a - 1) 
a ( E ) = - -  rood 2. 

12 

In view of (7.1) we see that (7.2) is equivalent to 

(7.3) ~ (E) = f,. [E] mod2.  

Note that a (E) is an invariant for bundles on P3, while f,. [E] is an invariant for 
bundles on P,. 

Theorem (7.2), or equivalently (7.3), is a special case of a much more general 
result in the context of w 4. In the first instance we shall formulate and prove this 
in the holomorphic case: 
(7.4) Theorem. Let Y be a compact complex manifold of dimension 2n, X c  Y a 
non-singular divisor, H the associated line-bundle on Y and L = K  r | H where 
K r is the canonical line-bundle of  Y. Assume now that E is a holomorphic vector 



Vector Bundles on Projective 3-Space 149 

bundle on Y which is L-orthogonal, for n odd, and L-symplectic for n even. Then 
we have 

f l ( X , E ) = z ( Y , E  ) mod2 

where 

fl (X, E) = ~ dim H 2 q (X, E) mod 2 

x(Y, E ) = ~  ( -  1)q dim Hq(Y, E) 

are the holomorphic semi-characteristic (on X )  and Euler characteristic (on Y) 
respectively. 

Proof. Since H[x is the normal bundle of X in Y we have LIx ~- Kx,  the canonical 
bundle of X. Thus, restricting E to X we are in the situation of w 4. Now consider 
the standard cohomology sequence relating E on Y to E on X: 

(7.5) --~ H q-1 (X, E) --, Hq(Y, E | H-1)  ~ Hq(y, E) ---, H q (X, E ) ~  .... 

On Ywe have 

E ~ - E * | 1 7 4 1 7 4  

o r  

E (g H - I  _~E* @ Kr 

and so by Serre duality, 

(7.6) Hq(Y ,E)~- [n2n-q (Y ,E(gn-1 ) ]  *. 

On the other hand, as in w 4, on X we have 

E~-E * | Kx 

and so by Serre duality 

(7.7) Hq(X,E)~-[H2"-I -q(X,E)]* .  

Using (7.6) and (7.7) we see that the terms in (7.5) occur in dual pairs. Taking 
alternating sums of dimension up to the middle in (7.5) we get: 

O--1 

( -  1) q dim Hq(Y, E (9 H -1 ) -  ~ ( -  1) ~ dim Hq(Y, E) 
q = 0  q = 0  

n--1 

+ ~ ( -  1) q dim Hq(X, E ) = ( -  1) n rank ~n. 
q=O 

Reducing modulo 2 and using (7.6) and (7.7) this gives 

(7.8) f l (E)=z(Y,E)+rank~b n mod2 .  

To complete the proof of the Theorem it remains to show that rank ~b n is even. 

Now we can define a bilinear form ~n on Hn(y, E (9 H-l) ,  associated to ~bn, 
by putting 

�9 n(u, v) = u .  ~,~(v) 
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where u. co is the Serre duality pairing. Thus ~, is induced by the cup-product 
on H", together with the bundle pairing 

~ b ' : ( E | 1 7 4 1 7 4  ~| , ( E Q H _ I ) |  , , L Q H _ ~ _ K v  

where s is the section of H vanishing on X and q/is the given pairing E | E ~ L 
tensored by the identity on H -1. Since ~O is ~-symmetric, with ~ = ( - 1 )  TM, the 
same is true of ~'. Since the cup-product on H" is ( -  1)"-symmetric it follows that, 
in all cases, ~. is skew-symmetric. Hence 

rank qb. = rank ~. - 0 mod 2 

completing the proof. 

Remark. Topologists will note a close formal analogy between Theorem (7.4) 
and the situation of a real manifold Ywith boundary X. The exact sequence (7.5) 
is the counterpart of the ordinary cohomology sequence of the pair (X,Y), and 
Poincar6-Lefschetz duality gives the analogues of (7.6) and (7.7). One concludes 
that the Kervaire semi-characteristic of X coincides with the Euler characteristic 
of Y, reduced modulo 2, provided dim Y -  2 mod 4. If one introduced an ortho- 
gonal or symplectic local coefficient system E the analogy would be even closer. 

The topological version of (7.4) is 

(7.9) Theorem. Y, X and L being as in (7.4) we have commutative diagrams 

KSPr(Y ) ~ , Z  KOL(Y ) ~ , Z  

I 1 
KSP K(X) ~ , Z 2 KO K ( X ) ~  Z 2 

where ~K is the map of (4.2), 7L is the composition of KSPL(Y)--~K(Y) (or 
KOL(Y)---~K(Y)) and the direct image K(Y)--,K(point)=Z, and p is reduction 
rood 2. 

Clearly, if KSPL(Y ) (or KOL(Y)) is additively generated by holomorphic 
L-symplectic (or L-orthogonal) bundles (7.9) follows from (7.4), together with 
(4.2) and the Riemann-Roch theorem (which identify ~K and 3'L with fl and )0. 
We apply this observation to the case Y=P2,, X=P2.-1. Then c l ( K x ) = - 2 n  
is even, hence L _ ~ H  -2n has a square root and so KSPL(P2,)~-KSP(P2,), 

KOL(P2.)~-KO(P2, ). Proposition (2.1) asserts that K(P2.)---,KSP(P2, ) and 

/~(P2,)--' K'~(P2.) are surjective. Since K(P2. ) is well-known to be generated by 
the holomorphic line-bundles H k it follows that KSP(P2, ) and KO(P2.) are 
generated by holomorphic bundles. Tensoring by H-"  the same is then true for 
KSPL(P2. ) and KOL(P2, ). This proves (7.9) for the case of projective spaces and 
in particular, taking n=  2, this includes the special case of (7.2). 

The general case of (7.9) can now be reduced to the case of projective spaces. 
For brevity we shall treat only the case of n odd: the case of n even is entirely 
similar. For N sufficiently large we can construct a commutative diagram of C ~ 
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embeddings 

Y f ~P2N 

X g -~ P2N-1 

where X is the transversal intersection of Y and P2 N-1- Choosing N = n mod 4 
and using the direct images explained in w 3 for Spine-manifolds we get a com- 
mutative diagram 

Y 
KSPL(Y) 
\ 

~ Z 

K(Y)  , K(P2 N) 
/ 

/ 
/ 

f' ' KSPn~(P2N) ( ~  
\ 

| 

KSPr(X  ) g' , KSPn~(P2N_ 1) 

~ ~ Q Z  2 

( ~  commutes because direct images are compatible with the functor K S P  L--. K 
as explained in w 3. (~) and �9 commute by the functoriality of direct images 
in K-theory and twisted KSP-theory. ( ~  commutes because X is a transversal 

intersection and finally (~) commutes by (7.4) for projective spaces which we have 
already proved. Following the perimeter of the diagram we get the assertion of 
Theorem (7.9), which completes the proof. 

Finally, as promised, we shall reprove the result of [12] that, if A is any integer 
with A (A - 1) divisible by 12, then there is a 2-dimensional complex vector bundle 
E on P4 with c 1 (E)=0 and c2(E)= - A .  The proof in [12] is rather complicated 
and, for the case of c 1 (E) odd treated below, requires further investigation, 
whereas our symplectic approach leads to a quick and simpler proof. 

It will be enough to show that there is a stable symplectic bundle over P4 with 
c4=0 and c 2 = - A .  In fact 2-dimensional symplectic bundles (i.e. dime=4) 
over P4 are stable and c 4 = 0 is the condition for a non-zero section, hence reduces 
us to a symplectic line-bundle (i.e. d ime=2  ). For a symplectic bundle the odd 
Chern classes c 1 and c 3 necessarily vanish so c 4 = 0, c 2 = - A  gives the following 
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values for the components of the Chern character: 

A 2 
(7.10) chl =0 ,  ch2 =A,  c h 3 = 0  , ch4 =-i~.  

Now the bundles H �9 H* and H2@ (H2) * are clearly symplectic and so 

= A (H @ H*) + B (H 2 G (n2)*), 

for integer A, B gives a stable symplectic bundle. Computing its Chern character 
we find 

ch ~ = 2 A cosh x + 2 B cosh 2 x 

so 

A + 1 6 B  
(7.11) ch2 ~ = A + 4 B ,  c h , ~ -  12 

Solving for A, B from (7.9) and (7.10) we get 

4 A - A  2 A 2 - A  
A = - -  B =  

3 ' 12 

which are integral if A 2 -  A is divisible by 12. This completes the proof. 

For completeness we can treat the case of c 1 odd in a similar way using the 
twisted symplectic theory of w 3. If c t = 1, c 2 = - a, then Schwarzenberger's con- 
dition [9, p. 155] is that a ( a + 4 )  must be divisible by 12. To prove the converse 
we shall exhibit a stable H-symplectic bundle with the right Chern classes. Note 
however that, since we now must stabilize by adding copies of H ~ 1, the Chern 
classes depend on the dimension of our stable bundle. It is convenient to work 
with a stable bundle of virtual dimension zero and this alters the required Chern 
classes to q = O ,  c2~---a,  c 3 = a  , c 4 = - a .  The bundles H k I ~ H  -k+i are now 
H-symplectic and we put 

~ = A ( H ~  1) + B ( H  2 ~ H - i ) +  C(H 3 @ H -z)  

with dime ~ = 2 (A + B + C) = 0. Taking 

a 2 - -2a 2 a - - a  2 a 2 - -2a  
A - - -  B = - -  C -  

12 ' 8 ' 4 

/a  2 
gives ch ~ = a x 2 + ~ X 3 +  

a \  
[ ~ + g )  x 4 and this has the required Chern classes. 

Note that a ( a + 4 )  divisible by 12 implies that A, B, C are integers so that ~ is 
indeed a stable H-symplectic vector bundle. 
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