Let \(\Omega \) be an open set of \(\mathbb{R}^n \), star-shaped (at 0), then \(\Omega \) is \(C^\infty \) diffeomorphic to \(\mathbb{R}^n \).

Proof

Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be a \(C^\infty \) function such that \(F = \{ x \mid f(x) = 0 \} \)

We set \(\varphi : \Omega \to \mathbb{R}^+ \) by

\[
\varphi(x) = \left[1 + \left(\int_0^1 \frac{dt}{\varphi(t x)} \right)^2 \right]^{1/2} \| x \|_2,
\]

(whence \(\| x \|_2 = (\sum x_i^2)^{1/2} \))

\(\varphi \) is smooth on \(\Omega \). We set \(A(x) = \sup \{ t > 0, \frac{x}{\| t x \|_2} \in \Omega \} \). \(\varphi \) sends injectively \([0, A(x)] \cdot \frac{x}{\| x \|_2} \) into \(\mathbb{R}^+ \cdot \frac{x}{\| x \|_2} \).

Moreover, if we set \(u = \frac{x}{\| x \|_2} \), then

\[
\| \varphi(0) \|_2 = 0 \quad \text{and} \quad \lim_{t \to A(x)} \| \varphi(t u) \|_2 = \left[1 + \left(\int_0^1 \frac{dt}{\varphi(t u)} \right)^2 \right] A(x) = +\infty.
\]

Indeed, if \(A(x) = +\infty \) it is obvious

\[
\text{if } A(x) < +\infty \text{ then } \int_0^A \varphi(A(x) u) du = 0 \Rightarrow \varphi(t u) = 0 (t < A(x))
\]

\(\varphi \) smooth and so \(\int_0^A \varphi(A(u)) du \) diverges.

We infer that \(\varphi([0, A(x)] \cdot \frac{x}{\| x \|_2}) = \mathbb{R}^+ \cdot \frac{x}{\| x \|_2} \) and so \(\varphi(\Omega) = \mathbb{R}^n \).

To conclude, we have

\[
\frac{d}{dx} \left(\frac{d}{dx} \right) = A(x) \frac{d}{dx} + A(x) \frac{d}{dx},
\]

so if \(\xi \) with \(\xi \cdot x = 0 \), then there exists \(\mu \in \mathbb{R} \) such that \(\eta = \mu x \)

and we set \(\left[\lambda(\xi) + A(x) \frac{d}{dx} \right] \xi = 0 \) (note that \(\lambda(0) = 1 \) so \(x \to 0 \)).

But we have \(\lambda(x) > 1 \) and \(g(x) = \lambda(\xi x) \) increasing so \(g'(1) = \frac{d}{dx} \lambda(\xi x) \)

which gives a contradiction.

Nota bene - The Whitney Theorem is a classical result. In the case \(n = 2 \), the Hopf-Rinow Theorem implies that \(\mathbb{R}^2 \) is holomorphically diffeomorphic to \(\mathbb{C} \).