
Elementary Axioms for Loal Maps of ToposesSteven Awodey� Lars BirkedalyJanuary 24, 2001Dediated to Saunders Ma Lane on his 90th birthday.AbstratWe present a omplete elementary axiomatization of loal maps oftoposes.1 IntrodutionWe reall the de�nition of a loal map of toposes [9, 10, 7℄ (see in partiular [7,Proposition 1.4℄).De�nition 1.1. Let E and F be elementary toposes. A geometri morphismf = (f�; f�) : E ! F is loal if it is bounded and the diret image funtor f�has a right adjoint f ! whih is full and faithful.There are many examples of loal maps of toposes, the lassial one being(the struture map of sheaves on) the spe of a loal ring (arising, e.g., fromloalization at a point). See, e.g., [7℄ for many other topologial and presheafexamples. See [1℄ for an example of a loali loal map between realizabilitytoposes; this example is the one that gave rise to this work.Suppose (�;�): E ! F is a loal map of toposes. Then sine the rightadjoint, all it r, of � is full and faithful, it follows easily that the inverse imagefuntor � is full and faithful. Thus the geometri morphism is onneted.Moreover, �� �= 1 �= �r. Therefore there is a geometri inlusion (�;r) : F !E and thus there is a Lawvere-Tierney topology j on E and an equivaleneF ' ShjE suh that (�;r), under this equivalene, is identi�ed with (a; i), theassoiated sheaf funtor and the inlusion of sheaves. Sine � has a left exatleft adjoint �, it follows that a has the same (namely ��i). Summarizing, aloal map from E is essentially a sheaf subtopos with a left exat left adjoint toshea��ation.Next, reall that a sheaf subtopos ShjE of E an be haraterized as the fullsubategory of objets orthogonal to all morphisms inverted by the assoiated�Department of Philosophy, Carnegie Mellon University, Email: awodey�mu.eduyShool of Computer Siene, Carnegie Mellon University, Email: birkedal�s.mu.edu1



sheaf funtor a [4, 6℄. Dually, de�ne an objet D 2 E to be disrete i� Dis oorthogonal to all morphisms inverted by a. (Reall that an objet X isoorthogonal to a morphism f : A ! B in a ategory C , written f > X , if, forall b : X ! B, there exists a unique a : X ! A suh that the diagramAf
��X a >>~

~
~

~ b // Bommutes.) We let DjE denote the full subategory of E on the disrete objets.By Theorem 2.4 of Kelly and Lawvere [8℄ it follows that DjE is equivalent toShjE just in ase DjE is oreetive in E , making ShjE an essential loalization.Hene to show that there is a loal map from E to ShjE it suÆes to show thatthe inlusion of DjE � � //E of the disrete objets has a right adjoint and isitself left exat. This, �nally, is the approah we shall take to axiomatizing loalmaps|we assume given a topos E with a topology j and �nd onditions on Eand j suh that the inlusion of DjE into E is left exat and has a right adjoint.The �nal setion of the paper is devoted to analysing the \internal logi"of a loal map of toposes. This is determined to be a modal logi with twopropositional operations, one of whih is an S4 box operation and the other, itsright adjoint.AknowledgmentsSome of the work presented here forms part of the seond author's PhD thesis [2℄,written under the guidane of Prof. Dana Sott. We refer the reader to lo. it.for more details than we an inlude here. We are both grateful for usefuldisussions with Dana Sott, Andrej Bauer, Martin Hyland, Peter Johnstone,Jaap van Oosten, and Pino Rosolini. We also thank the organizers of CT'99 inCoimbra, Portugal, for a nie onferene.2 PreliminariesThroughout this setion, let E be an elementary topos with a Lawvere-Tierneytopology j, and write ShjE for the subategory of sheaves, with assoiatedsheaf funtor a : E ! ShjE . Write DjE for the subategory of disrete objetsas de�ned above.Observe that sine DjE is de�ned by a oorthogonality ondition, the at-egory DjE is losed under olimits in E and the inlusion funtor DjE � � //Epreserves them.We write V 7! V for the j-losure operation on subobjets V � X .De�nition 2.1. We say j is prinipal if, for all X 2 E , the losure operationon Sub(X) has a left adjoint U 7! UÆ, alled interior; that is,UÆ � V () U � V in Sub(X). (1)2



Remark 2.2. The interior operation is not assumed to ommute with pullbak.It follows that in general, unlike losure, the interior operation is not induedby an internal map on the subobjet lassi�er 
 in the topos E . Indeed, theinterior operation is indued by an internal map if and only if the topology j isopen.Lemma 2.3. A topology j in a topos E is prinipal i�, for all X 2 E, thereexists a least dense subobjet UX of X.Proof. Given a prinipal topology, the least dense subobjet UX of X is XÆ.Conversely, given least dense subobjets UX , de�ne V Æ = UV � V � X . Theondition (1) then follows easily.For the remainder of this setion, we assume j is a prinipal topology. Observethat, then, for all X 2 E and all V 2 Sub(X), V Æ = V and V Æ = V Æ in Sub(X).The interior operation X 7! XÆ extends to a funtor on E as follows: givenf : X ! Y , onsider the diagramXÆ //___
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##GG
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GG
GG
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f�(Y Æ) //

��

��

Y Æ
��

��X f // Y;where the right hand square is a pullbak. Sine pullbak preserves dense sub-objets, we have that f�(Y Æ) is dense in X ; hene XÆ � f�(Y Æ) as shown in thediagram. Letting fÆ be the omposite morphism aross the top of the diagram,we learly get a funtor on E . We refer to this funtor as the interior funtor;it learly preserves monomorphisms.For f : X ! Y in E we write 9f for the left adjoint to the pullbak funtorf� : Sub(Y ) ! Sub(X). Sine losure ommutes with pullbak, by taking leftadjoints we see that, when j is prinipal, 9f (V Æ) �= (9fV Æ), for all X;Y 2 E ,V 2 Sub(X), and f : X ! Y in E (this is why the interior V Æ � X does notdepend on the superobjet X). Thus:Lemma 2.4. The interior funtor X 7! XÆ : E ! E preserves epis.Proof. If f : X � Y , then 9f (X) = Y , so 9f (XÆ) = (9fX)Æ = Y Æ. ThusXÆ fÆ // // Y Æ // // Yis the epi-mono fatorization ofXÆ // // X f // Y:De�nition 2.5. An objet X 2 E is open if XÆ �= X .3



Lemma 2.6. Every disrete objet is open.Proof. Sine UX � X is inverted by a, if X is disrete, then idX : X ! X mustfator through UX .Lemma 2.7. A quotient of an open objet is open.Proof. Suppose X is open and e : X � Y . Then we haveY �= Im(e) = 9eX �= 9e(XÆ) �= (9eX)Æ �= Y Æ:We de�ne OjE to be the full subategory of E of open objets. Note that OjEis a oreetive subategory of E , the oreetor being, of ourse, the interiorfuntor.To determine whether an objet is a sheaf, one does not need to onsiderorthogonality with respet to all morphisms inverted by a, but an restritattention to dense monos, as in the usual de�nition of a sheaf. We next showthat in the ase of disrete objets, we need not require oorthogonality withrespet to all morphisms inverted by a, but just with respet to the smallerlass of odense epis.De�nition 2.8. Let e : X � Y be an epi. Write �X � X�X for the diagonaland write Ke for the kernel of e, viewed as a subobjet of X �X . We say thate is odense if �X � Ke is dense.Lemma 2.9. Let e : X � Y be an epi. Then e is odense i� KeÆ = �XÆ inSub(X �X), i� a(e) is iso, i� e is bidense (the latter by [6℄).Proposition 2.10. An objet C is disrete if and only if C is oorthogonal toall odense epis in E.To prove the proposition we shall make use of the following lemma.Lemma 2.11. Let C 2 E be oorthogonal to all odense epis in E. Then C isoorthogonal to all dense monos.Proof. Let C, m : Y � X , and f : C ! X be as in the diagram:Y
�� m
��C f 0 >>}

}
}

} f // X:
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Consider the following diagrams Y
�� m
��C f 0 88r

r
r

r
r

r f // Xu
��
v

��We
����P

aY
�� am; �=
��aXau
��
a v

��aWa e
����aP;where u; v is the okernel pair of m and e is the oequalizer of u; v. Sine ais a left adjoint, it preserves okernel pairs and oequalizers, so au; a v is theokernel pair of am, whih is an iso by assumption that m is dense. Heneau = a v. Therefore a e is an iso and thus, by Lemma 2.9 e is odense. Sineeuf = evf : C ! P and sine C > e by assumption, we get that uf = vf byuniqueness. Hene f fators uniquely through the equalizer of u; v. But m isthe equalizer of u; v as every mono in a topos is the equalizer of its okernelpair, so f fators uniquely through m via an f 0 as shown in the diagram.Proof of Proposition 2.10. This follows immediately by the lemma sine a mor-phism is bidense i� it fators as a odense epi followed by a dense mono.We now de�ne an exterior operation on quotients, whih one an think of asdual to the losure operation on subobjets.De�nition 2.12. For an epi e : X � Y , we de�ne the exterior of e, writtenee : X � eY , to be the oequalizer of the interior KeÆ of the kernel pair Ke of eas indiated in the following diagram:Ke k
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eY= CoEq(km; k0m)h
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�X ee :: ::vvvvvv e $$ $$IIIIIIKeÆOOm OO km 99rrrrrr k0m 99rrrrrr Y (2)By the universal property of the oequalizer, there is a unique map h : eY ! Ysuh that hee = e, as shown in the diagram. Sine e is epi, h is also epi.Lemma 2.13. Referring to the diagram (2) above, the epi h is odense.Proof. By Lemma 2.9 it suÆes to show that ah is iso. Apply a to the dia-gram (2): sine m : KeÆ � Ke is dense, am is iso. Hene, sine a preserveskernel pairs and oequalizers, a h is iso.5



3 Axioms for Loal MapsWe an now state onditions under whih the ategory of disrete objets is\lex oreetive." For simpliity, and beause it is an important speial ase,we �rst onsider the axioms for loali loal maps. We then briey mention howthe axioms an be relaxed for arbitrary (bounded) loal maps.Let E an elementary topos with a topology j.Axiom 1 j is prinipal.Axiom 2 For all X 2 E , there exists a disrete objet D and a diagramS // //

����

DXin E , presenting X as a subquotient of D.Axiom 3 For all disrete D 2 E , if X � D is open, then X is also disrete.Axiom 4 For all disrete D;D0 2 E , D �D0 is disrete.Note that Axiom 2 essentially says that E is loali over DjE .Theorem 3.1 (Completeness). Let E be a topos with a topology j satisfyingAxioms 1{4. Then DjE is equivalent to ShjE and there is a loali loal mapfrom E to DjE ' ShjE.We break the proof down into two steps, designated Propositions 3.2 and 3.3below.Proposition 3.2. Let E be a topos with a topology j satisfying Axioms 1{4.Then the ategory of disrete objets DjE is oreetive in E.Proof. We show how to onstrut an assoiated disrete objet for any objetX 2 E . By Axiom 2, we have a diagramS // m //e
����

DXXin E presenting X as a subquotient of a disrete objet DX . Now onsider thefollowing diagram KeÆÆ // // KeÆ
�� ��SÆ // m //eÆ
����||||xxxxxxxx

S // //e
����

DXfXÆ h // // XÆ // // X6



Sine interior preserves epimorphisms by Lemma 2.4, eÆ : SÆ ! XÆ is epi. Theexterior fXÆ of the interior XÆ of X is obtained as in De�nition 2.12, as theoequalizer of the interior KeÆÆ of the kernel pair KeÆ of eÆ. By Axiom 3, SÆ isdisrete and thus alsoKeÆÆ is disrete by Axioms 3 and 4. Hene fXÆ is obtainedas the oequalizer of a diagram of disrete objets, namely:KeÆÆ //// SÆ // // fXÆThus fXÆ is also disrete. We laim that fXÆ � XÆ � X is universal amongarrows from disrete objets into X , thus establishing the existene of a rightadjoint to the inlusion DjE � � //E . Indeed, let D be any disrete objet andlet f : D ! X be arbitrary. Consider the following diagramfXÆ h // XÆ // // XD:f 00 OO�
�

�

�

f 0 >>|
|

|
|

|
|

f 66nnnnnnnnnnnnnnnnnnnnnSine D is open by Lemma 2.6 and the interior funtor �Æ : E ! OjE is rightadjoint to the inlusion of open objets into E , as already noted, there is aunique morphism f 0 making the right triangle ommute. Then sine h is aodense epi by Lemma 2.13 and D is disrete, we have by Proposition 2.10 thatD is oorthogonal to h, so there exists a unique f 00 making the left triangleommute. This shows the required universality.It follows by Proposition 3.2 and [8℄ that DjE is equivalent to ShjE .Proposition 3.3. Let E be a topos with a topology j satisfying Axioms 1{4.Then the inlusion DjE � � //E is left exat.It is useful to name the inlusion funtor and the oreetor, say:DjE L? // E ;Roowhere L a R and R ÆL �= id . Reall that the assoiated disrete funtor R is aknown to have a right adjoint, sine by Proposition 3.2, DjE ' ShjE and underthis equivalene R is identi�ed with the assoiated sheaf funtor, whih has aright adjoint.The proof now proeeds by a series of lemmas.Lemma 3.4. The funtor LR : E ! E preserves �nite produts, monomor-phisms, and all olimits.Proof. LR : E ! E learly preserves all olimits sine both L and R are leftadjoints. To show that it preserves the terminal objet 1, it learly suÆes to7



show that 1 is disrete. By Axiom 2, we an present 1 as a subquotient of adisrete objet D, S // //

����

D1:Sine S � 1 is epi, it follows that the unique morphism from D to 1 is alsoepi. Hene 1 is a quotient of a disrete objet, and thus disrete by Lemma 2.7.Binary produts are preserved by Axiom 4.It remains to show that LR preserves monos. Thus let m : M � N be amonomorphism in E . For larity, let us denote the omposite funtor LR byd. We write � : d ) id for the ounit of the adjuntion L a R. Consider thefollowing diagramdM dm
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(m�dN)Æv]]

%% a
%%LLLLLLLLL m�dN //  //b

��

dN�N
��M // m // N;where the inner square is a pullbak. The outer (elongated) square ommutesby de�nition of dm. Hene there exists a unique morphism u : dM ! m�dNsuh that bu = �M and u = dm:Sine (m�dN)Æ is an open subobjet of a disrete objet dN , (m�dN)Æ is disreteby Axiom 3. Hene by ouniversality of �M , there exists a unique morphismv : (m�dN)Æ ! dM suh that �Mv = ba:One now shows without diÆulty that:vuÆ = 1 and uÆv = 1;that is, that dM is isomorphi to (m�dN)Æ, from whih it follows that dm ismoni, as required.Lemma 3.5. Let E and F be toposes and suppose the funtor F : E ! F pre-serves �nite produts, monomorphisms, and pushouts. Then F is left exat.8



Proof. Folklore, but see [3, 2.61℄ for a related argument.Corollary 3.6. The funtor LR : E ! E is left exat.Proof of Proposition 3.3. From Corollary 3.6 it now follows by a familiar ar-gument that L : DjE ! E is left exat, whih ompletes the proof of Proposi-tion 3.3.We leave it to the reader to show that Axioms 1{4 are sound, in the sensethat they are satis�ed by every loal map. (For this it is useful to note that theleast dense subobjet UX of X 2 E is the image of the ounit of L a a.)Remark 3.7. The axioms for bounded loal maps are as for loali loalmaps, exept that Axiom 2 is replaed by the following two Axioms 2a and 2b.Axiom 2a There is an objet G 2 E suh that, for all X 2 E , there exists adisrete objet D and a diagramS // //

����

D �GXin E , presenting X as a subquotient of D �G.Axiom 2b Given G as in 2a, there is a disrete objet G0 and a diagramG0 // // GÆ // // Gin E .The axioms for bounded loal maps are sound and omplete, but we omit theproof.4 Logi of Loal MapsWe now show how the logi of the disrete objets DjE relates to the logi of E .We de�ne OpenSubj(E) to be the full subategory of Sub(E) on the opensubobjets, where Sub(E) is the total ategory of the subobjet �bration overE . The proof of the following proposition is a straightforward alulation.Proposition 4.1. The odomain funtor od : OpenSubj(E)! E is a �brationwith reindexing of X � J along u : I ! J given by u�(X)Æ, the interior of thepullbak of X along u.We let ClSubj(E)! E denote the �bration of losed subobjets over E . Wethen have: 9



Proposition 4.2. The interior operation and the losure operation establish a�bred equivalene, as inOpenSubj(E)
%%KKKKKKKKKK

�
,,' ClSubj(E)

zzuuu
uu

uu
uu

uÆmm E :Proof. Easy using the already noted fat that XÆ = XÆ and XÆ = X.Proposition 4.3. The �bration OpenSubj(E)
��E of open subobjets is a higher-order�bration [5℄ with extensional entailment, in whih the following hold (we labelthe onnetives et. in OpenSubj(E)

��E with a subsript Æ):� ?Æ, _Æ, 9Æ, EqÆ are as for ordinary subobjets.� >Æ = >Æ, X ^Æ Y = (X ^ Y )Æ, X �Æ Y = (X � Y )Æ, (8Æ)fX = (8fX)Æ,and thus :Æ(X) = (X � ?)Æ.� true : 1� 
 is a split generi objet.Hene interior (�)Æ de�nes a �bred funtor Sub(E) ! OpenSubj(E) over Ewhih preserves all this struture, exept the generi objet.Proof. The �rst-order struture is de�ned ategorially and thus preserved alongequivalenes. Therefore, the �rst-order struture is obtained from the well-known desription of the logial operations of the losed subobjet �bration(expliitly stated, e.g., in [5℄). For example, for X;Y 2 OpenSubj(E) over I wehave that X_ÆY = X _j Y Æ, where _j is the disjuntion in the losed subobjet�bration, so X _Æ Y = X _ Y Æ = (X _ Y )Æ = XÆ _Y Æ = X _Y (where we usedthat interior preserves _ as a left adjoint). It is easy to verify that true : 1� 
is a split generi objet.Proposition 4.4. There is a pullbakSub(DjE) //

��

OpenSubj(E)
��DjE � � // E :Proof. Let X � J be an open subobjet of a disrete objet J ; then X itself isdisrete by Axiom 3. Moreover, sine the disrete objets are losed under �nitelimits in E , the pullbak u�(X) of X along a map u : I ! J between disrete10



objets is disrete and hene also open. Thus the reindexing of X along u inOpenSubj(E)
��E , namely u�(X)Æ, is equal (as a subobjet of I) to the reindexing ofX in Sub(DjE), namely u�(X).Combining the above proposition with Proposition 4.2 we have the followingpiture, omplementing Lawvere's \adjoint ylinder" piture of loal maps [9℄(where the disrete objets ome in to E on the left, the sheaves ome in to Eon the right, and the ategory of disrete objets is equivalent to the ategoryof sheaves).Sub(DjE) //

��

OpenSubj(E)
%%JJJJJJJJJJJ
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{{vvvv
vv
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vvÆmm Sub(ShjE)oo

��DjE � � // E ShjE? _ooCombining Propositions 4.4 and 4.3, we of ourse derive a translation of theinternal logi of DjE into the logi of E . Sine we are restriting attention tothe disrete objets in the base, we an make some simpli�ations ompared towhat we get diretly from Proposition 4.3:Proposition 4.5. The internal logial operations of DjE are given as follows(we label the onnetives et. with a subsript d):� the geometri operations (>d, ^d, ?d, _d, 9d) are, of ourse, as for ordi-nary subobjets in E� X �d Y = (X � Y )Æ and (8d)fX = (8fX)Æ.Proof. The �rst item is obvious sine the inlusion of disrete objets is theinverse image of a geometri morphism. To show X �d Y = (X � Y )Æ notethat X �d Y = X � Y , by Propositions 4.4 and 4.3. Now let I be a disreteobjet of E and let X;Y 2 SubE(I) be subobjets of I . Suppose that X is open.Then (X � Y )Æ = (X � Y Æ)Æ using Axiom 3 and the fat that disrete objetsare losed under �nite limits in E . The ase of 8 is similar.Observe the following easy orollary of Proposition 4.5.Corollary 4.6. Let u : I ! J be a morphism of disrete objets in E and letX 2 SubE(I) be a subobjet of I. Then (8uXÆ)Æ = (8uX)Æ.4.1 Preservation of Valid Stable FormulasWe now show that a wider lass of sentenes than the geometri sentenes ispreserved by the inlusion of the disrete objets.Let � ` ' : Prop be a formula (in ontext) of �rst-order logi over a �rst-order many-sorted language. Suppose that the basi types in the ontext � of the11



language are interpreted in E by disrete objets and that the atomi prediatesare interpreted by open subobjets of disrete objets in E , orresponding tosubobjets in DjE . We then write [['℄℄ for the interpretation of ' in E . Likewise,we write [['℄℄d for the interpretation of ' in DjE , i.e., in the subobjet �brationover DjE . For notational simpliity we allow ourselves to onsider [['℄℄d as asubobjet in E , thus omitting the inlusion funtor from disrete objets intoE . Finally, we say that ' is valid in E , written in short as E � ', i� > � [['℄℄in SubE([[�℄℄), where [[�℄℄ is the interpretation of �. Likewise, we say that ' isvalid in DjE , written DjE � ', if >d � [['℄℄d in SubDjE([[�℄℄d).De�nition 4.7. Let ' be a formula of �rst-order logi over a �rst-order many-sorted language. We say that ' is stable if, for all subformulas ( � #) of ',the formula  is geometri.Lemma 4.8. Let ' be a stable formula. Then [['℄℄Æ = [['℄℄d.Proof. The proof is by strutural indution on '. Note that [['℄℄d is disrete,and thus open, so [['℄℄dÆ = [['℄℄d. For ' atomi we learly have [['℄℄ = [['℄℄d andthus also [['℄℄Æ = [['℄℄d. Given the result for atomi formulas, for ' a geometriformula, we learly also �nd that [['℄℄ = [['℄℄d, and thus also [['℄℄Æ = [['℄℄d. Itremains to onsider impliation and universal quanti�ation.Suppose that ' = ( � #). Then we have that[[ � #℄℄d = ([[ ℄℄d � [[#℄℄d)Æ see de�nition of �d, Prop. 4.5= ([[ ℄℄Æ � [[#℄℄Æ)Æ by indution hypothesis= ([[ ℄℄Æ � [[#℄℄)Æ by Prop. 4.5= ([[ ℄℄ � [[#℄℄)Æ sine  is geometri by stability of ';as required.Finally, suppose that ' = (8x : X:  ). Then we have that[[8x : X:  ℄℄d = (8x : X: [[ ℄℄d)Æ see de�nition of 8d, Prop. 4.5= (8x : X: [[ ℄℄)ÆÆ by indution hypothesis= (8x : X: [[ ℄℄)Æ by Corollary 4.6= [[8x : X:  ℄℄Æ;as required.Theorem 4.9. If ' is stable, then E � ' i� DjE � '.Proof. Let I = [[�℄℄ = [[�℄℄d be the disrete objet interpreting �, the ontext offree variables of '. Then, writing �d for the ordering in SubDjE(I) and � in
12



SubE(I), we have thatDjE � ' () >d �d [['℄℄d() > � [['℄℄d sine >d = >() > � [['℄℄Æ by Lemma 4.8() > � [['℄℄ sine I is disrete and [['℄℄ is thus open() E � ':4.2 A Modal Logi for Loal MapsWe now onsider interior as a logial operator. Interior is not a logial operationin the subobjet �bration over E beause it does not ommute with substitution,see Remark 2.2. (See also Lawvere's disussion of o-Heyting operations inpresheaf toposes [11℄, where a similar phenomenon arises.) However, when werestrit attention to disrete objets, interior does ommute with substitution:Proposition 4.10. Let u : I ! J be a morphism between disrete objets Iand J in E and suppose X � J is a subobjet of J . Then (u�X)Æ = u�(XÆ) assubobjets of I.Proof. First note thatXÆ is disrete by Axiom 3 and thus also u�(XÆ) is disreteand hene open. Thus u�(XÆ) = u�(XÆ)Æ � u�XÆ. The other diretion alwaysholds (regardless of I and J being disrete): (u�X)Æ � u�(XÆ) i� u�X �u�(XÆ) = u�X.The following de�nition makes preise the idea of onsidering the logi of Erestrited to disrete objets.De�nition 4.11. We de�ne the �bration Pred
��DjE of E-prediates over DjE byhange-of-base along DjE � � //E as inPred //

��

Sub(E)
��DjE � � // E :Thus in the internal logi of Pred

��DjE , types and terms are interpreted by objetsand morphisms of DjE and prediates over a type �, interpreted by a disreteobjet I� , are interpreted as subobjets of I� in E . In other words, we onsiderall the prediates of E , but only on types and terms from DjE .13



The pulled-bak �bration Pred
��DjE is learly a �rst-order �bration. By Proposi-tion 4.10, the interior operation is a logial operation in Pred

��DjE . So is, of ourse,the losure operation. We an now give axioms for the interior and losure op-erations to obtain what we will refer to as a modal logi for loal maps. In thesyntati alulus we denote interior by ℄ and losure by [. The hoie of thisnotation omes from our realizability model RT(A;A℄) disussed in [1℄.The alulus is an extension of standard intuitionisti �rst-order logi. Wewrite logial entailment as � j ' `  , where � is a ontext of the formx1 : �1; : : : ; xn : �n giving types to variables, and where ' and  formulas withfree variables in �. There are two additional logial operations: if ' is a formula,also ℄' and [' are formulas. Substitution of terms for variables in these newformulas is de�ned in the obvious way. There are the usual rules of many-sorted�rst-order intuitionisti logi plus the following axioms and rules:(ml-1)� j ℄' ` ' (ml-2)� j ℄' ` ℄℄'(ml-3)� j > ` ℄(>) (ml-4)� j ℄' ^ ℄ ` ℄(' ^  )� j ℄' `  ======== (ml-5)� j ' ` [ (ml-6)x : �; y : � j x =� y ` ℄(x =� y)Intuitively, Axiom ml-1 says that ℄ is a deationary operation, Axiom ml-2then says that ℄ is idempotent, Axioms ml-3 and ml-4 say that ℄ is left exat,Rule ml-4 says that ℄ is left adjoint to [, and Axiom ml-6 expresses that all thetypes are disrete and hene equality is ℄.From the above axioms and rules one an easily prove the neessitation rule:> ` '> ` ℄'and that ℄ distributes over impliation:℄(' �  ) ` ℄' � ℄ Thus ℄ has the formal properties of the box operator in the modal logi S4,whih is why we refer to the �rst-order logi axiomatized here as a modal logifor loal maps.Referenes[1℄ S. Awodey, L. Birkedal, and D.S. Sott. Loal realizability toposes and amodal logi for omputability. In L. Birkedal, J. van Oosten, G. Rosolini,14



and D.S. Sott, editors, Tutorial Workshop on Realizability Semantis,FLoC'99, Trento, Italy, 1999, volume 23 of Eletroni Notes in TheoretialComputer Siene. Elsevier, 1999.[2℄ L. Birkedal. Developing Theories of Types and Computability. PhD thesis,Shool of Computer Siene, Carnegie Mellon University, 1999.[3℄ P.J. Freyd. Aspets of topoi. Bull. Austral. Math. So., 7:1{76, 1972.Corrigendum in same volume, pp. 467{480.[4℄ P.J. Freyd and G.M. Kelly. Categories of ontinuous funtors, I. Journalof Pure and Applied Algebra, 2:169{191, 1972.[5℄ B. Jaobs. Categorial Logi and Type Theory, volume 141 of Studies inLogi and the Foundations of Mathematis. Elsevier Siene PublishersB.V., 1999.[6℄ P.T. Johnstone. Topos Theory. Number 10 in L.M.S. Monographs. Aa-demi Press, 1977.[7℄ P.T. Johnstone and I. Moerdijk. Loal maps of toposes. Pro. LondonMath. So., 3(58):281{305, 1989.[8℄ G.M. Kelly and F.W. Lawvere. On the omplete lattie of essential loal-izations. Bull. So. Math. Belg. Ser. A, XLI(2):289{319, 1989.[9℄ F.W. Lawvere. Categories of spaes may not be generalized spaes as exem-pli�ed by direted graphs. Revista Colombiana de Matem�atias, XX:179{186, 1986.[10℄ F.W. Lawvere. Toposes generated by odisrete objets in ombinatorialtopology and funtional analysis. Notes for Colloquium letures given atNorth Ryde, New South Wales, Australia on April 18, 1989 and at Madison,USA, on Deember 1, 1989, 1989.[11℄ F.W. Lawvere. Intrinsi o-heyting boundaries and the leibniz rule in er-tain toposes. In A. Carboni, M.C. Pedihio, and G. Rosolini, editors, Cat-egory Theory. Proeedings of the International Conferene held in Como,Italy, July 22{28, 1990, volume 1488 of Leture Notes in Mathematis,pages 279{281. Springer-Verlag, 1991.
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