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Abstra
t

It is well known that one 
an build models of full higher-order dependent type theory

(also 
alled the 
al
ulus of 
onstru
tions) using partial equivalen
e relations (PERs)

and assemblies over a partial 
ombinatory algebra (PCA). But the idea of 
ategories

of PERs and ERs (total equivalen
e relations) 
an be applied to other stru
tures

as well. In parti
ular, we 
an easily de�ne the 
ategory of ERs and equivalen
e-

preserving 
ontinuous mappings over the standard 
ategory Top

0

of topologi
al

T

0

-spa
es; we 
all these spa
es (a topologi
al spa
e together with an ER) equilogi
al

spa
es and the resulting 
ategory Equ. We show that this 
ategory|in 
ontradis-

tin
tion to Top

0

|is a 
artesian 
losed 
ategory. The dire
t proof outlined here uses

the equivalen
e of the 
ategory Equ to the 
ategory PEqu of PERs over algebrai


latti
es (a full sub
ategory of Top

0

that is well known to be 
artesian 
losed from

domain theory). In another paper with Carboni and Rosolini (
ited herein) a more

abstra
t 
ategori
al generalization shows why many su
h 
ategories are 
artesian


losed. The 
ategory Equ obviously 
ontains Top

0

as a full sub
ategory, and it nat-

urally 
ontains many other well known sub
ategories. In parti
ular, we show why, as

a 
onsequen
e of work of Ershov, Berger, and others, the Kleene-Kreisel hierar
hy

of 
ountable fun
tionals of �nite types 
an be naturally 
onstru
ted in Equ from

the natural numbers obje
t N by repeated use in Equ of exponentiation and binary

produ
ts. We also develop for Equ notions of modest sets (a 
ategory equivalent to

Equ) and assemblies to explain why a model of dependent type theory is obtained.

We make some 
omparisons of this model to other, known models.

1 Introdu
tion

The genesis of this paper is the manus
ript [38℄ \A New Category?" privately


ir
ulated by Dana S
ott in De
ember of 1996. During the last part of his
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graduate 
ourse on Domain Theory he had realized that by using some basi


and well-known properties of domains (spe
i�
ally, algebrai
 latti
es) the 
at-

egory of equivalen
e relations on T

0

-spa
es not only was an extension of the

topologi
al 
ategory but was 
artesian 
losed.

The present paper in
orporates original motivation, de�nitions, and proofs of

the earlier manus
ript, and we then give an equivalent de�nition suggesting

relationships to the extensive work on partial equivalen
e relations over par-

tial 
ombinatory algebras (hereafter, PCAs). In our 
onferen
e paper [9℄, the

reader will �nd an abstra
t framework due to Carboni and Rosolini in whi
h

the 
ategories of equilogi
al spa
es and partial equivalen
e relations over PCAs

�t. Indeed, it is shown that there is a larger 
ategory than that of equilogi-


al spa
es that is 
artesian 
losed. However, we shall not dis
uss the abstra
t


ategori
al framework here (namely, that of exa
t 
ompletions of 
ategories).

As in the earlier manus
ript, our desire here is to give a fairly 
on
rete des
rip-

tion of the stru
tures involved and the 
onstru
tions from them. By extending

the �rst treatment, we use an alternate equivalent de�nition of the 
ategory

of equilogi
al spa
es to give a de�nition of a model of dependent type theory

and logi
, analogous to the work over PCAs. We also dis
uss how far that

analogy extends.

The �nal se
tion of the paper shows how the work of Y. Ershov and E. Berger


on
erning the Kleene-Kreisel hierar
hy of 
ountable fun
tionals and exten-

sions 
an be in
orporated into the 
ategory of equilogi
al spa
es. In terms of

the type theory, it turns out that the higher types over the integers N ! N ,

(N ! N ) ! N , ((N ! N ) ! N ) ! N , et
., are indeed the 
ountable

fun
tionals, as expe
ted. In order to see this, we have to add appropriate


ategori
al de�nitions to Berger's work.

Note added in February, 2001. Sin
e the writing of this paper in 1998,

mu
h progress has been made in understanding equilogi
al spa
es and their

relationship to other 
ategories. The relationship to tripos theory hinted at in

the dis
ussion in Se
tion 4 has been worked out [7,8℄; in parti
ular, the open

problem mentioned at the end of the dis
ussion in Se
tion 4 has been solved,

see [7,8℄. Also, the relation between equilogi
al spa
es and domains with to-

tality des
ribed in Se
tion 5 has been extended to hierar
hies of dependent

types [4,3℄, and a relation to type-two e�e
tivity has been dis
overed [3℄. Also

other resear
hers have 
ontributed greatly to the study of equilogi
al spa
es;

see the papers 
ited here for referen
es and dis
ussions of their related work.

2 Motivation

The familiar 
ategories Set andTop, 
onsisting of sets and arbitrary mappings

and of topologi
al spa
es and 
ontinuous mappings, have many well known 
lo-
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sure properties. For example, they are both 
omplete and 
o
omplete, meaning

that they have all (small) limits and 
olimits. They are well-powered and 
o-

well-powered, meaning that 
olle
tions of subobje
ts and quotients of obje
ts


an be represented by sets. They are also ni
ely related, sin
e Set 
an be

regarded as a full sub
ategory of Top, and the forgetful fun
tor that takes

a topologi
al spa
e to its underlying set preserves limits and 
olimits (but

re
e
ts neither).

The 
ategory Set is also a 
artesian 
losed 
ategory, meaning that the fun
tion-

spa
e 
onstru
t or the internal hom-fun
tor is very well behaved, in the sense

that the fun
tor � � B is adjoint to B ! � for all obje
ts B. However, it has

been known for a long time that in Top no su
h assertion is available, be
ause

in general it is not possible to assign a topology to the set of 
ontinuous fun
-

tions making this adjointness valid|ex
ept under some spe
ial 
onditions on

the spa
e B. Many remedies have been proposed, notably, (a) 
utting down

to 
ompa
tly generated spa
es, or (b) expanding the 
ategory to the 
ategory

of �lter spa
es (or a related kind of limit spa
e). These are interesting sugges-

tions, but both have some drawba
ks. Suggestion (a) applies only to Hausdor�

spa
es, and suggestion (2)|whi
h the authors 
onsider the more interesting

from a logi
al point of view|introdu
es very unfamiliar spa
es at the higher

types (i.e., after iterating the fun
tion-spa
e 
onstru
t several times). It re-

mains to be seen whether the suggestion of this paper 
an be regarded as more


on
rete or more helpful than either (a) or (b).

Our solution to the problem of 
artesian 
losedness is motivated by domain

theory. The new 
ategory is formed from the 
ategory Top

0

of topologi
al

T

0

-spa
es by using spa
es together with arbitrary equivalen
e relations, to

form the 
ategory, to be 
alled 
alled Equ, where the mappings are (suitable

equivalen
e 
lasses of) 
ontinuous mappings whi
h preserve the equivalen
e

relations. (A more pre
ise de�nition will be given below.) Let us 
all these

spa
es equilogi
al spa
es and the mappings equivariant. It seems surprising

that this 
ategory has not been noti
ed before|if in fa
t it has not. It is easy

to see that Equ is 
omplete and 
o
omplete and that it embeds Top

0

as a full

and faithful sub
ategory (by taking the equivalen
e relation to be the identity

relation).

What is perhaps not so obvious is that Equ is indeed 
artesian 
losed. The

proof of 
artesian 
losedness outlined here uses old theorems in domain theory

originally dis
overed by S
ott: in parti
ular, an inje
tive property of algebrai


latti
es treated as topologi
al spa
es and the fa
t that they form a 
artesian


losed 
ategory (along with 
ontinuous fun
tions). A more abstra
t, 
ategori-


al proof 
an be found in [9℄ or in [37℄. Also, in Se
tion 4 we give an alternative


on
rete proof. Of 
ourse, algebrai
 latti
es are just one of many 
artesian


losed 
ategories proposed for domain theory|and not the most popular one.

They allow, however, for some helpful embeddings of T

0

-spa
es.

For a long time S
ott has been distressed that there are too many proposed
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ategories of domains and that their study has be
ome too ar
ane. It was

hoped that the idea of syntheti
 domain theory would be the natural solution|

but that theory has been slowed by many te
hni
al problems. The related idea

of axiomati
 domain theory is likewise hampered by the need to over
ome

te
hni
al diÆ
ulties. Despite very good work in both these dire
tions, he does

not feel that a �nal theory has emerged. Perhaps some of the ideas that have

been used in these other approa
hes 
an be transplanted to the study of Equ,

whi
h seems to be a ri
h and fairly natural 
ategory with many sub
ategories.

The basi
 idea of the syntheti
 approa
h is to establish a typed �-
al
ulus

on
e and for all, and then to single out useful types (or domains) by means of

spe
ial properties|just as is done in several other bran
hes of mathemati
s.

As far as Equ is 
on
erned, the possibilities seem good, but this is still work

in progress. We are en
ouraged, however, by the results so far obtained, some

of whi
h are presented here.

3 Equilogi
al Spa
es

We begin by de�ning some notation and 
alling to mind some basi
 de�nitions

and theorems 
on
erning T

0

-spa
es and algebrai
 latti
es. We then turn to the

de�nition of equilogi
al spa
es.

T

0

-Spa
es and Algebrai
 Latti
es. Topologi
al spa
es will be 
onsidered

as stru
tures T = hT;


T

i, where T is the set of points of the spa
e, and where




T

is the set of open sets of T . We shall often write jT j = T , so as not to

have to use a spe
ial letter for the points of a spa
e. Complete latti
es (and,

more generally, posets) will be 
onsidered as stru
tures L = hjLj;�

L

i, where

�

L

is the partial ordering of the set jLj. Completeness of 
ourse demands that

every subset S � jLj has a least upper bound

W

S 2 jLj.

De�nition 3.1 The neighborhood �lter of a point x 2 jT j of a topologi
al

spa
e T is de�ned by the equation:

T (x) = fU 2 


T

j x 2 U g:

The spa
es we shall be 
on
erned with are the T

0

-spa
es, where the topology

distinguishes the points.

De�nition 3.2 A topologi
al spa
e is a T

0

-spa
e provided that for every

pair of distin
t points there is an open set that 
ontains one but not the

other. Another way to say this 
ondition is to say that for all x; y 2 jT j, if

T (x) = T (y), then x = y. The 
ategory of all su
h spa
es and 
ontinuous

mappings between them is denoted by Top

0

.
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De�nition 3.3 The spe
ialization ordering of a topologi
al spa
e T is

de�ned by:

x �

T

y () T (x) � T (y);

for all x; y 2 jT j.

De�nition 3.4 Let L be a 
omplete latti
e. The �-topology on the latti
e

is de�ned as the 
olle
tion of all upward 
losed subsets U � jLj su
h that

whenever S � jLj and

W

S 2 U , then

W

S

0

2 U for some �nite subset S

0

� S.

The 
olle
tion of all su
h subsets is denoted by �

L

.

The following theorems are now well-known. Proofs 
an, e.g., be found in [16℄.

Theorem 3.5 Given a 
omplete latti
e L, the stru
ture hjLj;�

L

i is a T

0

-spa
e

whose spe
ialization ordering is exa
tly �

L

.

For the powerset spa
es PA the �-topology is very easy to des
ribe: the open

sets U � PA are the families of \�nite 
hara
ter"; that is, a subset X � A

belongs to U if, and only if, some �nite subset of X belongs to U . This is the

same as giving PA the topology that 
orresponds to the produ
t topology

on 2

A

where the two-element set has the topology with one open point and

one 
losed point. The powerset spa
es have an important role as being able to

embed every T

0

-spa
e. The following elementary result is key to the subsequent

development.

Theorem 3.6 (The Embedding Theorem) Given a T

0

-spa
e T , the map-

ping x 7! T (x) is a topologi
al embedding of T into P 


T


onsidered as a spa
e

with the �-topology.

Powerset spa
es also have another important property 
on
erning 
ontinuous

fun
tions whi
h allows for the transfer of fun
tions over to the powerset spa
e.

Theorem 3.7 (The Extension Theorem) If Y is a subspa
e of a topolog-

i
al spa
e X , and if f : jYj ! PA is 
ontinuous, then the fun
tion f has a


ontinuous extension to all the points of X .

S
ott noti
ed the above theorems in 1970/71 and also pointed out that it in

fa
t holds for all 
ontinuous retra
ts of the powerset spa
es|these are the


ontinuous latti
es|but for our purposes here, the above suÆ
es.

Powerset latti
es 
an be generalized to algebrai
 latti
es, namely those 
om-

plete latti
es that 
an be represented isomorphi
ally as 
omplete sublatti
es

of a powerset 
losed under arbitrary interse
tions and dire
ted unions. (These

latti
es 
an be 
hara
terized in other ways as well; see, e.g., [13,16℄.) The �-

topology on an algebrai
 latti
e is just the restri
tion of the topology of the

powerset spa
e. An algebrai
 latti
e is a 
ontinuous retra
t of the powerset


ontaining it, but not all su
h retra
ts are algebrai
.

The reason for 
onsidering algebrai
 latti
es is that the latti
e of 
ontinuous

fun
tions between powerset spa
es is not usually a powerset spa
e, but it is

an algebrai
 latti
e. And this extends to all algebrai
 latti
es. Hen
e, we have

the well known theorem (see [13,16℄):
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Theorem 3.8 The 
ategory ALat is 
artesian 
losed.

The Category of Equilogi
al Spa
es. We have now reviewed suÆ
ient

material to be able to give two de�nitions of the 
ategory of equilogi
al spa
es

and to show that the two de�nitions are equivalent. We will then prove that

the 
ategory is 
artesian 
losed.

De�nition 3.9 The 
ategory Equ of equilogi
al spa
es is de�ned as fol-

lows.

(1) Obje
ts are stru
tures E = hjEj;


E

;�

E

i, where hjEj;


E

i is a T

0

-spa
e

and �

E

is an (arbitrary) equivalen
e relation on the set jEj.

(2) The mappings between equilogi
al spa
es are the equivalen
e 
lasses of


ontinuous mappings between the topologi
al spa
es that preserve the

equivalen
e relation (equivariant mappings), where the equivalen
e re-

lation on mappings is de�ned by

f �

E!F

g () 8x; y 2 jEj:

�

x �

E

y =) f(x) �

F

g(y)

�

:

We remark that it has to be proved that �

E!F

a
tually is an equivalen
e

relation, but this is an elementary exer
ise. It also has to be proved that the

equilogi
al spa
es and equivariant maps form a 
ategory, but this 
an also be

safely left to the reader.

One odd feature of this de�nition is that the equivalen
e relation of an equi-

logi
al spa
e may have very little to do with the topology. This means that

in some 
ases the only equivariant mappings between two spa
es might be

the 
onstant maps, or the only automorphisms of a given spa
e might be the

identity|despite a ri
h underlying topology. Thus, future investigations may

suggest limiting the equivalen
e relations. But, for now, the general properties

of the 
ategory seem to work out well for arbitrary equivalen
e relations, so

we have not been motivated to make any further restri
tions in this paper.

Re
all that a 
ategory is 
omplete if it has all (small) produ
ts and equalizers

of all pairs of parallel arrows. Similarly, a 
ategory is 
o
omplete if it has

all (small) 
oprodu
ts and 
oequalizers of all pairs of parallel arrows. Also

re
all that a regular subobje
t is a subobje
t whi
h arises as the equalizer of

a pair of parallel arrows and that a 
ategory is regular well-powered if the

regular subobje
ts of every obje
t 
onstitute a set. Dually, a regular quotient

is a quotient whi
h arises as the 
oequalizer of a pair of parallel arrows and

a 
ategory is regular 
o-well-powered if no obje
t has a proper 
lass of non-

isomorphi
 regular quotients.

Theorem 3.10 The 
ategory Equ is 
omplete, 
o
omplete, and it is regular

well-powered, and regular 
o-well-powered.

4

4

The authors are indebted to Peter Johnstone for pointing out that, 
ontrary to

the assertion made in S
ott's original unpublished manus
ript, Equ is not well

powered, for there are fairly simple examples of obje
ts in the 
ategory with an
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Proof. The proof pro
eeds along standard lines making use of the 
orre-

sponding properties of topologi
al spa
es.

Take produ
ts �rst. The produ
t (of any number) of topologi
al spa
es is a

spa
e with a produ
t topology. The produ
t of equivalen
e relations is an

equivalen
e relation. The proje
tion mappings are 
learly equivariant. And,

if we have a family of (equivalen
e 
lasses of) equivariant mappings into the

various fa
tor spa
es, then (after applying the Axiom of Choi
e to pi
k repre-

sentatives) we 
an obtain in the usual way one equivariant mapping into the

produ
t that 
ombines all the separate mappings.

Next, take equalizers. Suppose f; g : jEj ! jFj are two (representatives of)

equivariant mappings. Form the set f x 2 jEj j f(x) �

F

g(x) g. Endow this set

with the subspa
e topology and with the restri
tion of the equivalen
e relation

�

E

. This stru
ture, along with the obvious in
lusion mapping into E , is the

desired equalizer. Thus, Equ is a 
omplete 
ategory.

On to 
oprodu
ts. The 
oprodu
t of topologi
al spa
es is just a disjoint union

of the underlying sets with the topology on the union generated by the union

of all the topologies. For equivalen
e relations, we have only to note that the

union of equivalen
e relations on disjoint sets is indeed an equivalen
e relation.

The inje
tion mappings from the separate spa
es into the union are obvious,

as well as is the lifting property of a family of mappings from the separate

spa
es into a given target spa
e.

Next, we dis
uss 
oequalizers. Suppose f; g : E ! F are two (representatives

of) equivariant mappings. On jFj we form the least equivalen
e relation 
on-

taining both �

F

and the set of pairs f (f(x); g(x)) j x 2 jEj g. Using this

equivalen
e relation on jFj, we form the equilogi
al spa
e G. There is an ob-

vious equivariant mapping 
 : F ! G represented by the identity. This is the

desired 
oequalizer. Thus, Equ is a 
o
omplete 
ategory.

Finally, we turn to well-poweredness. The properties of being regular well-

powered and regular 
o-well-powered follow from the 
orresponding properties

of Top

0

and the 
ategory of equivalen
e relations; one just has to be 
areful to


he
k that the regular subobje
ts are obtained by sele
ting some equivalen
e


lasses and taking the union of them to form a subspa
e; likewise, forming

a regular quotient is just making the equivalen
e relation 
oarser (putting

equivalen
e 
lasses together). And, be warned that there are subobje
ts and

quotients whi
h are not formed in this simple way.

The proof just given is sket
hy in the handling of equivalen
e 
lasses of maps,

and, in the 
onstru
tion of the equalizer and 
oequalizer, it has to be 
he
ked

that the stru
tures suggested have the required universal properties. But, this

argument|modulo equivalen
e 
lasses|is exa
tly similar to what is done for

the 
ategory Top

0

. We remark that the 
ategory of equivalen
e relations on

sets is in
luded here: a set is just a dis
rete topologi
al spa
e (and these form

unbounded number of non-isomorphi
 subobje
ts.

7



a full sub
ategory of Top

0

). Of 
ourse, with the aid of the Axiom of Choi
e, it

is qui
kly shown that the 
ategory of equivalen
e relations is equivalent to the


ategory of sets (via the obvious use of quotient sets). However, the 
ategory

Equ introdu
ed here is not equivalent to the 
ategory Top

0

. For one thing,

no topology is being put on the quotient spa
e jEj=�

E

. And this 
ategory has

a property|
artesian 
losure|that Top

0

does not share.

To investigate Equ further, we introdu
e a 
losely 
onne
ted 
ategory.

De�nition 3.11 The 
ategory PEqu of partial equilogi
al spa
es is de-

�ned as follows.

(1) Obje
ts are stru
tures A = hjAj;


A

;�

A

i, where hjAj;


A

i is the �-

topology of an algebrai
 latti
e, and where �

A

is a partial equivalen
e

relation, i.e., re
exive only on a subset of jAj.

(2) The mappings between partial equilogi
al spa
es are the equivalen
e


lasses of 
ontinuous mappings between the algebrai
 latti
es that pre-

serve the partial equivalen
e relation, where the equivalen
e relation on

mappings is de�ned as before by

f �

A!B

g () 8x; y 2 jAj:

�

x �

A

y =) f(x) �

B

g(y)

�

:

These mappings will also be 
alled equivariant.

If we 
onsider the relation f �

A!B

g as being de�ned between arbitrary


ontinuous fun
tions, then equivariant maps for the 
ategory PEqu are the

(equivalen
e 
lasses of) the fun
tions f satisfying f �

A!B

f , sin
e that means

that the fun
tion preserves the underlying equivalen
e relation. This remark

gives a hint as to how we will de�ne fun
tion spa
es, but �rst we want to 
he
k

the equivalen
e of 
ategories.

Theorem 3.12 The 
ategories Equ and PEqu are equivalent.

Proof. The naturally suggested fun
tor from PEqu to Equ is the one that

takes hjAj;


A

;�

A

i and restri
ts the topology to the subspa
e on the subset

f x 2 jAj j x �

A

x g. On this subset the equivalen
e relation is \total". The

mappings are likewise restri
ted. Call the fun
tor R (for \restri
tion"). Now,

if f : A ! B is a map of PEqu, then R(f) = f � jR(A)j : R(A) ! R(B) is

valid as a map of Equ, and identities and 
ompositions are preserved.

We note �rst that the fun
tor R is faithful by de�nition. Then, the fun
tor R is

full in view of The Extension Theorem (be
ause 
ontinuous fun
tions between

T

0

-spa
es 
an be extended to any algebrai
 latti
es embedding them). Finally,

the fun
tor R is essentially surje
tive on obje
ts by virtue of The Embedding

Theorem (and note that the equivalen
e relation on the T

0

-spa
e does not

have to be extended but remains partial). This is enough to show that the


ategories are equivalent.

The idea of partial equivalen
e relations has been very widely employed. S
ott

believes he �rst 
alled general attention to it in the late '60s after extra
ting
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it from the studies by G. Kreisel and A. Troelstra on extensional theories

of higher-type fun
tionals in re
ursion theory. However, it has been mostly

used re
ently in the 
ontext of giving types to (quotients of) subsets of a

universal model of some sort. We think allowing partial equivalen
e relations

over a large 
ategory (su
h as algebrai
 latti
es) is possibly a new idea; but,


ertainly, many familiar proofs get reused in the new 
ontext. The following

theorem is an example of this reuse.

Theorem 3.13 The 
ategory Equ is 
artesian 
losed.

Proof. In view of the previous theorem, we will show that PEqu is 
artesian


losed. Given stru
tures A and B in PEqu we de�ne the stru
ture A! B so

that

(i) jA ! Bj is the set of 
ontinuous fun
tions between the latti
es jAj and

jBj;

(ii) 


A!B

is the �-topology on this algebrai
 latti
e;

(iii) �

A!B

is the partial equivalen
e de�ned previously.

We have to show, that for any three stru
tures in PEqu, say, A, B, and C,

there is a one-one 
orresponden
e between fun
tions in the two spa
es:

(A� B ! C) and (A! (B ! C)):

As we know, there is a parti
ular one-one 
orresponden
e that is an isomor-

phism of the underlying algebrai
 latti
es (and a homeomorphism of topo-

logi
al spa
es). It only remains to show that the isomorphism preserves the

partial equivalen
e relation on the 
ompound spa
e. This is a \self-proving"

theorem, in the sense that on
e the question is stated it is just a matter of

unpa
king the de�nitions to �nish it o�.

4 Equilogi
al Spa
es, Type Theory and Logi


We have now already seen that the 
ategory of equilogi
al spa
es provides a

model of the simply-typed �-
al
ulus, inasmu
h as Equ is 
artesian 
losed. In

this se
tion we show that Equ in fa
t supports a mu
h more expressive type

theory and logi
, whi
h 
an be introdu
ed by using the method of assemblies.

Here, as elsewhere in the paper, we have favored a 
on
rete exposition over a

more abstra
t and e
onomi
al presentation.

For simpli
ity, we sometimes write an obje
t A = hjAj;


A

;�

A

i of PEqu as

(A;�

A

) with A the algebrai
 latti
e hjAj;


A

i and �

A

the partial equivalen
e

relation �

A

. We then write jAj for the underlying set of the algebrai
 latti
e

A.
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Modest Sets and Assemblies. We �rst introdu
e yet another equivalent

de�nition of the 
ategory Equ, whi
h will allow us to pro
eed by analogy to

the 
ategory of partial equivalen
e relations over a PCA (see, e.g., [11℄).

De�nition 4.1 The 
ategory Assm(ALat) of assemblies over the 
ate-

gory of algebrai
 latti
es is de�ned as follows.

(1) Obje
ts are triples (X;A;E) with X 2 Set, A 2 ALat, and the mapping

E : X ! P jAj in Set is su
h that E(x) is non-empty for all x 2 X. We


all the elements in E(x) realizers for x.

(2) The morphisms from an obje
t (X;A;E) to an obje
t (X

0

; A

0

; E

0

) are

fun
tions f : X ! X

0

in Set for whi
h there exists a 
ontinuous fun
tion

g : A! A

0

in ALat su
h that

8x 2 X:8a 2 E(x):g(a) 2 E

0

(f(x)):

We 
all su
h a fun
tion g a realizer for f , and say that g tra
ks f .

De�nition 4.2 An obje
t (X;A;E) of Assm(ALat) is 
alled modest if, and

only if,

8x; x

0

2 X:

�

x 6= x

0

=) E(x) \ E(x

0

) = ;

�

:

The full sub
ategory of Assm(ALat) formed by the modest obje
ts is re-

ferred to as the 
ategory of modest sets over algebrai
 latti
es is denoted

Mod(ALat).

Roughly speaking a modest set is an assembly where a realizer a 2 E(x) 
arries

enough information to determine the element x 2 X uniquely. An example of

an assembly whi
h is not isomorphi
 to any modest set is (f0; 1g;P f0g; E),

where E(0) = E(1) = P f0g. Here, the realizers tell us nothing at all about

the di�eren
es between 0 and 1. (A term su
h as \separated" might have

been more des
riptive than \modest" | but see the further 
omments on

terminology below.)

Readers familiar with 
ategories of realizability models based on PCAs will

immediately note the similarity of the above de�nitions to the well-known

de�nitions of the 
ategories of modest sets and assemblies over a PCA (see,

e.g., [19,11,28,26℄). Those 
ategories both embed into the so-
alled realizability

topos over the PCA [19℄. We do not get a 
orresponding embedding into a

topos, however; we shall dis
uss why below.

One useful intuition is to think of the 
ategory of algebrai
 latti
es as providing

a typed universe of realizers (
f. the untyped universe of realizers provided by

a PCA). Indeed for many 
on
lusions we do not use any properties of algebrai


latti
es beyond the fa
t that it is a 
artesian 
losed 
ategory. For example, we

might use the 
artesian 
losed 
ategory �

0

ALat of 
ountably based algebrai


latti
es, equivalent to the 
ategory of algebrai
 sublatti
es of P N . In this 
ase,

modest sets are really modest in the sense of having their 
ardinality bounded

by 2

�

0

. It turns out also that one 
an obtain more general results based on

10



only a weakly 
artesian 
losed 
ategory of realizers [9℄; we shall not go into

that here, preferring for 
on
reteness to stay with the example of all algebrai


latti
es.

Theorem 4.3 The 
ategories Equ, PEqu, and Mod(ALat) are all equiva-

lent.

Proof. De�ne a fun
tor F : Mod(ALat)! PEqu by F (X;A;E) = (A;�

A

),

where a �

A

a

0

() 9x 2 X:a; a

0

2 E(x). When applied to a morphism

f : (X;A;E) ! (X

0

; A

0

; E

0

) in Mod(ALat), the fun
tor F gives the equiva-

len
e 
lass of a realizer g : A ! A

0

(g in ALat) for f whi
h exists by virtue

of f being a morphism in Mod(ALat). The de�nition of F is 
learly inde-

pendent of the 
hoi
e of g. It is straightforward to verify that the fun
tor F is

full and faithful and essentially surje
tive on obje
ts. For the latter, given an

obje
t (A;�

A

) 2 PEqu, 
onsider the obje
t (f a 2 jAj j a �

A

a g=�

A

; A; E) 2

Mod(ALat) with E the identity fun
tion on equivalen
e 
lasses.

We now use the alternative des
ription of Equ provided by the above theorem

to present some of its 
ategori
al properties in a di�erent way. Some of the

properties we have already seen, but the alternative des
riptions below are

useful. Along the way, we 
onsider Assm(ALat), sin
e the 
onstru
tions are

basi
ally the same and we shall make use of Assm(ALat) below.

First, let us denote that in
lusion fun
tor fromMod(ALat) to Assm(ALat)

by I. We now 
he
k some 
ategori
al properties dire
tly.

Theorem 4.4 Both Assm(ALat) and Mod(ALat) are 
artesian 
losed and

the in
lusion preserves the 
artesian 
losed stru
ture:

Proof. The terminal obje
t of Assm(ALat) is (1

Set

; 1

ALat

; E

1

) with 1

Set

=

f�g, 1

ALat

= f�

0

g, and E

1

(�) = f�

0

g. Clearly it is modest and terminal in

Mod(ALat).

The binary produ
t of (X;A;E

X

) and (Y;B;E

Y

) is (X � Y;A � B;E) with

E(x; y) = E

X

(x) � E

Y

(y). Here we make use of the binary produ
ts in the


ategory of algebrai
 latti
es, in analogy with the way in whi
h the produ
t

operation of a PCA is used to prove that the 
ategory of assemblies and

modest sets over su
h has binary produ
ts. If (X;A;E

X

) and (Y;B;E

Y

) are

both modest, then also their produ
t so de�ned is modest.

The exponential of (X;A;E

X

) and (Y;B;E

Y

) is (Z;B

A

; E) with Z = f f 2

Y

X

j 9g : A ! B:g tra
ks f g; E(f) the set of elements of B

A

whi
h tra
k f ,

i.e., E(f) = f g 2 B

A

j 8x 2 X:8a 2 E

X

(x):g(a) 2 E

Y

(f(x)) g. If (X;A;E

X

)

and (Y;B;E

Y

) are both modest, then also (Z;B

A

; E) is modest.

Theorem 4.5 Both Assm(ALat) and Mod(ALat) have �nite limits and

the in
lusion preserves the �nite limits.

Proof. By the previous theorem it suÆ
es to 
onsider equalizers. The equal-

izer of f; g : (X;A;E

X

) ! (Y;B;E

Y

) is (f x 2 X j f(x) = g(x

0

) g; A; E

0

X

),

11



where E

0

X

is E

X

restri
ted to the subset, together with the obvious in
lusion

map. Let us also write out the pullba
k of f and g in

P

//

��

_
� (Y;B;E

Y

)

g

��
(X;A;E

X

)

f

//
(Z;C;E

Z

)

The obje
t P is (f (x; y) 2 X � Y j f(x) = g(y) g; A� B;E) with E(x; y) =

E

X

(x)� E

Y

(y).

A morphism f : (X;A;E

X

)! (Y;B;E

Y

) is a monomorphism inAssm(ALat)

(or in Mod(ALat)) exa
tly if f is an inje
tive fun
tion of sets; it is an epi-

morphism exa
tly if f is a surje
tive fun
tion. Let us now 
onsider regular

subobje
ts.

Re
all that a regular 
ategory is a 
ategory with �nite limits and (stable under

pullba
k) image fa
torizations (see, e.g., [10℄).

Theorem 4.6 Both Assm(ALat) and Mod(ALat) are regular 
ategories.

Proof. By the previous theorems, it suÆ
es to show that we have stable

image fa
torizations. The image fa
torization of f : (X;A;E

X

) ! (Y;B;E

Y

)

is

(X;A;E

X

)

f

//

e

(( ((QQQQQQQQQQQQ
(Y;B;E

Y

)

(X=�; A; E

0

X

)

66
m

66mmmmmmmmmmm

where

8x; x

0

2 X:

�

x � x

0

() f(x) = f(x

0

)

�

and E

0

X

([x℄) =

[

x

0

2[x℄

E

X

(x

0

):

For the mappings, we set e(x) = [x℄ (whi
h is tra
ked by the identity), and

m([x℄) = f(x) (whi
h is tra
ked by a realizer for f).

Theorem 4.7 The regular subobje
ts of an obje
t (X;A;E

X

), both in the 
at-

egory Assm(ALat) and in Mod(ALat) are in bije
tive 
orresponden
e with

the powerset of X.

Proof. This follows easily from the des
ription of equalizers.

In terms of PEqu, a regular subobje
t of an obje
t (A;�

A

) 
onsists of the

algebrai
 latti
e A together with a partial equivalen
e relation 
orresponding

to a 
olle
tion of the equivalen
e 
lasses of �

A

.

The well-known relationship between the 
ategory of assemblies over a PCA

and the 
ategory of sets (see, e.g., [20,19℄) 
an easily be generalized to our situ-

ation as well: The 
ategory Set of sets embeds into the 
ategory of assemblies

by the fun
tor r : Set ! Assm(ALat) where r(X) = (X; 1

ALat

; E) with

E(x) = �, for all x 2 X, and r(f : X ! Y ) = f , trivially realized. Then one
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an show that r is full and faithful, preserves �nite limits, and 
oequalizers of

kernel pairs (hen
e is exa
t in the sense of Barr [2℄) and exponentials. De�ne

the \global se
tions" fun
tor �: Assm(ALat)! Set by �(X;A;E) = X and

�(f) = f . Then � is faithful and exa
t. Moreover, one 
an easily prove the

following theorem.

Theorem 4.8 The fun
tor � is left adjoint to r with �r = id.

The 
ategori
al relationship between modest sets and assemblies is given by

this theorem:

Theorem 4.9 The 
ategory Mod(ALat) is a re
e
tive sub
ategory of the


ategory Assm(ALat).

Proof. The re
e
tion fun
tor R : Assm(ALat) ! Mod(ALat) is de�ned

as follows. On obje
ts (X;A;E), let R(X;A;E) = (X=�; A; E

0

) where x � x

0

if, and only if, E(x) \E(x

0

) 6= ; and E

0

([x℄) =

S

x2[x℄

E(x

0

). On morphisms f ,

let R(f) be the mapping [x℄ 7! [f(x)℄.

Modeling Dependent Type Theory. In this subse
tion we show that the


ategoryMod(ALat), and thus PEqu, models dependent type theory. Types

are indexed obje
ts ofMod(ALat); the indexing is by obje
ts ofMod(ALat).

The regular subobje
ts 
an be used to give us logi
 to reason about the types

and with respe
t to whi
h we have full subset types and full quotient types.

See [18,24,26℄ for more on subset types and quotient types. The same holds for

Assm(ALat), but here, in addition, the logi
 is higher order | in short, the

point is that the regular subobje
t 
lassi�er is not an obje
t of Mod(ALat)

but it is an obje
t of Assm(ALat); we explain this in more detail below.

All this works by analogy to the situation for modest sets and assemblies over

a PCA. But the analogy seems to stop here; for example, the modest sets over

a PCA form essentially an internal 
ategory in the 
orresponding 
ategory of

assemblies and 
an be used to give a model of the 
al
ulus of 
onstru
tions

with an impredi
ative universe of types. We do not have a 
orresponding result

with modest sets and assemblies over the 
ategory of algebrai
 latti
es as we

will explain.

Before embarking on the te
hni
al development, let us 
onsider an example.

Let Y be a 
losed type (an obje
t of Mod(ALat)) and let N denote the

type of natural numbers. Further assume u : Y ! N in Mod(ALat). In the

dependent type theory we 
an then form the type

Q

y : Y: fn 2 N j n � u(y) g


onsisting of all fun
tions, whi
h, given a y produ
es an n greater or equal to

u(y). Here fn 2 N j n � u(y) g is a well-formed (subset) type in the 
ontext

y : Y .
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For the te
hni
al development, we make use of B. Ja
obs' �brational de-

s
ription of models of dependent type theory [23,25,26℄, whi
h is related to

the D-
ategories [14℄, 
ategories with attributes [12,30℄, display-map 
ate-

gories [40,21℄, and 
omprehensive �brations [32℄. See [23℄ for a 
omprehen-

sive introdu
tion. We make a point of des
ribing the models in a so-
alled

\split" way, so as to avoid problems with interpreting dependent type theory.

See, for example, [29,34,31,35,17℄ for a dis
ussion of this issue. As this se
-

tion progresses, we assume more and more familiarity with the 
ategories of

modest sets, assemblies and realizability toposes over PCAs. See, for example,

[19,22,33℄ for ba
kground on these 
ategories.

We �rst de�ne a 
ategory of uniform families of obje
ts of the 
ategory

Mod(ALat). Uniformity refers to the fa
t that ea
h obje
t of the family will

have the same underlying algebrai
 latti
e. The idea is that a dependent type,

in a 
ontext interpreted as the obje
t I, will be a family of obje
ts indexed by

the obje
t I in Mod(ALat).

De�nition 4.10 The 
ategory UFam(Mod(ALat)) is de�ned as follows.

(1) Obje
ts are triples of the form (I; A; (X

i

; E

i

)

i2X

I

), where

I = (X

I

; A

I

; E

I

) 2Mod(ALat) and

(X

i

; A; E

i

) 2Mod(ALat), for all i 2 X

I

:

(2) Morphisms from (I; A; (X

i

; E

i

)

i2X

I

) to (J;B; (Y

j

; E

0

j

)

j2X

J

), with

I = (X

I

; A

I

; E

I

) and J = (X

J

; A

J

; E

J

);

are pairs of the form (f; (f

i

)

i2X

I

), with

f : I ! J in Mod(ALat) and f

i

: X

i

! Y

f(i)

in Set;

for whi
h there exists a g : A

I

! A ! B in ALat su
h that g tra
ks f

uniformly, that is,

8i 2 X

I

:8a

i

2 E

I

(i):8x 2 X

i

:8a 2 E

i

(x):g(a

i

)(a) 2 E

0

f(i)

(f

i

(x));

(3) The identity morphism on an obje
t I = (X

I

; A

I

; E

I

) is (id ; (id)

i2X

I

).

(4) The 
omposition of (f; (f

i

)

i2X

I

) and (g; (g

j

)

j2X

J

) is (gÆf; (g

f(i)

Æ f

i

)

i2X

I

).

We think of a family (I; A; (X

i

; E

i

)

i2X

I

) as a type in 
ontext I, whose �ber

at i in X

I

is (X

i

; A; E

i

)

i2X

I

. There is an obvious forgetful fun
tor

U : UFam(Mod(ALat))!Mod(ALat)

given by (I; A; (X

i

; E

i

)

i2X

I

) 7! I and (f; (f

i

)

i2X

I

) 7! f .

Theorem 4.11 The fun
tor U : UFam(Mod(ALat)) ! Mod(ALat) is a

split �bration whi
h is equivalent, as a �bration, to the 
odomain �bration over

Mod(ALat).
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Proof. First de�ne split 
artesian liftings: Suppose u : I ! J inMod(ALat)

and let (J;B; (Y

j

; E

0

j

)

j2X

J

) be an obje
t over J . Then

(u; (id)

i2X

I

) : (I; B; (Y

u(i)

; E

0

u(i)

)

i2X

I

)! (J;B; (Y

j

; E

0

j

)

j2X

J

)

is the 
artesian lifting over u.

Now 
onsider the standard 
odomain �bration


od: Mod(ALat)

!

�!Mod(ALat)

where, as usual, Mod(ALat)

!

is the 
ategory of 
ommutative squares, with

obje
ts morphisms ' : X ! I of Mod(ALat) and with morphisms from

' : X ! I to  : Y ! J pairs (u; f) of morphisms in Mod(ALat) su
h

that

X

f

//

'

��

Y

 

��
I

u

//
J


ommutes.

De�ne the fun
tor P as in

UFam(Mod(ALat))

P //

**TTTTTTTTTTTTTTT
Mod(ALat)

!


od

uulllllllllllll

Mod(ALat)

by mapping an obje
t (I; A; (X

i

; E

i

)

i2X

I

), with I = (X

I

; A

I

; E

I

), to

(

`

i2X

I

X

i

; A

I

� A;E)

�

! I;

with E(i; x) = E

I

(i)� E

i

(x). The fun
tor P maps a morphism

(u; (f

i

)

i2X

I

) : (I; A; (X

i

; E

i

)

i2X

I

)! (J;B; (Y

j

; E

0

j

)

j2X

J

);

with I = (X

I

; A

I

; E

I

) and J = (X

J

; A

J

; E

J

), to the square

(

`

i2X

I

X

i

; A

I

� A;E)

fu;fg

//

�

��

(

`

j2X

I

Y

j

; A

J

�B;E

0

)

�

��
I

u

//
J

where fu; fg is the fun
tion (i; x) 7! (u(i); f

i

(x)) tra
ked by

�(a

i

; a): (r

u

(a

i

); g(a

i

)(a)) : A

I

� A! A

J

�B;

with r

u

: A

I

! A

J

a realizer for u : I ! J and g a realizer for the family

(f

i

)

i2X

I

. This is, of 
ourse, a morphism in ALat sin
e it is de�ned in the

internal typed lambda 
al
ulus language of ALat.
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One 
an now verify that P is a full and faithful �bered fun
tor. Moreover

we 
an de�ne a �bered fun
tor Q : Mod(ALat)

!

! UFam(Mod(ALat))

mapping ' : X ! I, with I = (X

I

; A

I

; E

I

) and X = (X

X

; A

X

; E

X

) to the

family (I; A

X

; (X

i

; E

i

)

i2X

I

) with X

i

= '

�1

(i) and E

i

(x) = E

X

(x); a morphism

(u; f) as in

X

f

//

'

��

Y

 

��
I

u

//
J

is mapped by Q to (u; (f)

i2X

I

). It 
an then be veri�ed that Q is also a �bered

fun
tor and that PQ

�

=

id verti
ally and that QP

�

=

id verti
ally.

Consider a type-in-
ontext (I; A; (X

i

; E

i

)

i2X

I

). The fun
tor P , from the proof

above, applied to this type-in-
ontext yields the proje
tion

(

`

i2X

I

X

i

; A

I

� A;E)

�

! I

morphism inMod(ALat). This proje
tion morphism gives rise to a substitu-

tion fun
tor

�

�

: UFam(Mod(ALat))

I

! UFam(Mod(ALat))

(

`

i2X

I

X

i

;A

I

�A;E)

:

We think of this fun
tor as follows. It takes a type in 
ontext I and views it

as a type in the extended 
ontext (

`

i2X

I

X

i

; A

I

�A;E), 
orresponding to the

weakening rule

I ` X : Type I ` Y : Type

I; x : X ` Y : Type

The interpretation of I; x : X ` Y : Type is the fun
tor �

�

applied to the inter-

pretation of I ` Y : Type. To model dependent sums and dependent produ
ts,

we need to have left adjoints

`

and right adjoints

Q

to the fun
tor �

�

.

It is easy to see that (I

Set

; 1

ALat

; (1

Set

; E

1

)

i2X

I

) is a terminal obje
t in the

�ber over I = (X

I

; A

I

; E

I

), where E

1

(�) = f�g. The terminal obje
t fun
tor

1 : Mod(ALat) ! UFam(Mod(ALat)) maps an obje
t I = (X

I

; A

I

; E

I

)

to the terminal obje
t over I and a morphism u : I ! J to the morphism

(u; (�x: �)

i2X

I

). This terminal obje
t fun
tor has a right adjoint

fg : UFam(Mod(ALat))!Mod(ALat)

de�ned by, for I = (X

I

; A

I

; E

I

), f(I; A; (X

i

; E

i

)

i2X

I

)g = (

`

i2X

I

X

i

; A

I

�A;E)

with E(i; x) = E

I

(i) � E

i

(x). That is, fg = domÆP where P was de�ned

in the proof of the previous theorem. Brie
y, if (u; (f

i

)

i2X

I

) is a morphism

from 1(I) to (J;B; (Y

j

; E

j

)

j2X

J

), with I = (X

I

; A

I

; E

I

) and J = (X

J

; A

J

; E

J

)

then its adjoint transpose from I to f(J;B; (Y

j

; E

j

)

j2X

J

)g is �i: (u(i); f

i

(�)),

realized by

�a

i

: �a: (r

u

(a); r

f

(a

i

)(�

0

)) : A

I

! A! B;
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where r

u

is a realizer for r and r

f

is a realizer for the family (f

i

)

i2X

I

. Thus

the 
onstru
tions are exa
tly analogous to the 
ase for modest sets over a

PCA. In summa, sin
e the terminal obje
t fun
tor has a right adjoint and the

proje
tion fun
tor P is full we have a split full 
omprehension 
ategory with

unit.

Next, we argue that the 
ompression 
ategory has split produ
ts. What this

means is that, for any family X = (I; A; (X

i

; E

i

)

i2X

I

) over I = (X

I

; A

I

; E

I

)

with proje
tion �

X

: fXg = (

`

i2X

I

X

i

; A

I

�A;E)! I, the reindexing fun
tor

�

�

X

has a right adjoint

Q

X

, whi
h satis�es a Be
k-Chevalley 
ondition. De�ne

Q

X

�

(

`

i2X

I

X

i

; A

I

� A;E); C; (Z

k

; E

k

)

k2

`

i2X

I

X

i

�

to be

�

I; A! C; (f f : X

i

!

[

x2X

i

Z

(i;x)

j 8x 2 X

i

:f(x) 2 Z

(i;x)

g; E

0

i

)

i2X

I

�

;

where

E

0

i

(f) = f g : A! C j \g tra
ks f" g

= f g : A! C j 8x 2 X

i

:8a 2 E

i

(x):g(a) 2 E

(i;x)

(f(x)) g:

It is easy to verify that E

0

i

is modest. The adjoint transposes are de�ned

essentially as for the 
ase of the family of sets �bration; one just has to verify

that one has the required realizers, but that is simple using the internal typed

lambda 
al
ulus of ALat. Now for the Be
k-Chevalley 
ondition, we are to

show that for a pullba
k

(

`

i2X

I

X

u(i)

; A

I

�B;E)

fu;idg

//

�

X

��

(

`

j2X

J

X

j

; A

J

� B;E

0

)

�

Y

��
I

u

//
J

in Mod(ALat), we have that the 
anoni
al natural transformation

u

�

Q

Y

!

Q

X

fu; idg

�

is an identity (not only iso, be
ause we 
laim to have split produ
ts). This is

straightforward to verify.

For the 
omprehension 
ategory to have strong split 
oprodu
ts (modeling

dependent sums) we need, with notation as in the previous paragraph, �rst to

have left adjoints

`

X

to �

�

X

, for proje
tions �

X

, satisfying a Be
k-Chevalley


ondition. De�ne

`

X

�

(

`

i2X

I

X

i

; A

I

� A;E); C; (Z

k

; E

k

)

k2

`

i2X

I

X

i

�

17



to be

�

I; A� C; (f (x; z) j x 2 X

i

; z 2 Z

(i;x)

g

i

; E

0

i

)

i2X

I

�

;

with E

0

i

(x; z) = E

i

(x) � E

(i;x)

(z), easily seen to be modest. On a morphism

(id ; (f

(i;x)

)

(i;x)2

`

i2X

I

X

i

) we de�ne

`

X

to give (id ; ((x; z) 7! (x; f

(i;x)

(z)))

i2X

I

),

whi
h is 
learly realizable. Again it is straightforward to verify that the Be
k-

Chevalley 
ondition holds, i.e., referring to the pullba
k in the previous para-

graph, that

`

X

fu; idg

�

! u

�

`

Y

is an identity. This shows then that we have

split 
oprodu
ts. To have strong split 
oprodu
ts, we have to show that the


anoni
al map � in the following diagram is an iso:

P

� //

�

��

Q

�

��
R

�

X

//
I

where

P =

�

a

(i;x)2

`

i2X

I

X

i

X

i

; (A

I

� A)� C;E

�

;

Q =

�

a

i2X

I

f (x; z) j x 2 X

i

; z 2 Z

(i;x)

g; A

I

� (A� C); E

0

�

;

R = (

a

i2X

I

X

i

; A

I

� A;E

00

) :

But � is just the map ((i; x); z) 7! (i; (x; z)), whi
h is 
learly realizable by the


orresponding map on algebrai
 latti
es, and obviously has an inverse. Hen
e

we have strong 
oprodu
ts.

We have thus shown the following theorem, with notation as in Theorem 4.11

and its proof.

Theorem 4.12 P : UFam(Mod(ALat)) ! Mod(ALat)

!

is a split 
losed


omprehension 
ategory. Hen
e, we have a model of dependent type theory.

We 
an use the regular subobje
ts to provide a logi
 with whi
h one 
an reason

about the types of the type theory. By Theorem 4.7, the regular subobje
ts of

an obje
t I = (X

I

; A

I

; E

I

) is isomorphi
 to PX

I

. Hen
e the 
ategory of regular

subobje
ts ofMod(ALat), denotedRegSub(Mod(ALat)), 
an be identi�ed

with the 
ategory with obje
ts (I;K), where I = (X

I

; A

I

; E

I

) 2Mod(ALat)

and K � X

I

and with morphisms from (I;K) to (J; L) maps u : I ! J in

Mod(ALat) satisfying that u(K) � L. In the regular subobje
t �bration

RegSub(Mod(ALat))

��
Mod(ALat)

reindexing of (J; L) along a map u : I ! J , i.e., u

�

(J; L) is given by taking

the inverse image of L along u.
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One 
an use this regular subobje
t �bration to get a (
lassi
al) logi
, essen-

tially as for sets and for regular subobje
ts of the modest sets over a PCA.

Moreover, with regard to this logi
, the 
omprehension 
ategory P admits full

(dependent) subset types and full (dependent) quotient types. However, for

reasons of spa
e, we do not spell that out here. Instead, let us mention that

the above models of type theory 
an be also be de�ned, in the exa
t same way,

for the 
ategory Assm(ALat) of assemblies over algebrai
 latti
es. For this


ase, the logi
 of regular subobje
ts will be higher-order: the regular subobje
t

�bration has a generi
 obje
t, a regular subobje
t 
lassi�er, namely the obje
t

r2 2 Assm(ALat). Note that this is an obje
t in Assm(ALat) whi
h is not

inMod(ALat) sin
e it is not modest. Again, this is analogous to the situation

of modest sets and assemblies over a partial 
ombinatory algebra [19,33,26℄.

Dis
ussion. We should mention that the analogy with 
ategories de�ned

over a PCA 
an be made mathemati
ally pre
ise in the sense that there is

a notion of a \weak tripos" | a tripos as in [20℄ ex
ept for the requirement

of a generi
 obje
t. For su
h a �bered preorder, one 
an de�ne a 
ategory of

assemblies and modest sets and show that they model dependent type theory.

The tripos for a PCA will then provide an example, as will the weak tripos


onstru
ted over the 
ategory of algebrai
 latti
es. The details will appear

elsewhere.

We 
an also dis
uss just how far one 
an 
onsider the analogy with 
ategories

de�ned over a PCA in an informal way and aimed at the reader already familiar

with the situation for the 
ategories de�ned over a PCA. We mainly highlight

a 
ouple of interesting questions.

One of the ni
e features of the modest sets and assemblies over a PCA is

that they 
an be used to give a model of the 
al
ulus 
onstru
tion (see, e.g.,

[22,29,35℄). In fa
t, instead of the 
ategory of modest sets one uses the equiv-

alent 
ategory of partial equivalen
e relations to get a small 
ategory. The


ru
ial point is that this small 
ategory 
an be seen as an internal 
ategory in

the 
ategory of assemblies and that the externalization of this internal 
ate-

gory is a �bration equivalent to the �bration of uniform modest sets over the

assemblies, whi
h thus has a generi
 obje
t allowing us to get an impredi
ative

small universe of types as in the 
al
ulus of 
onstru
tions.

An obvious next question is whether we 
an get something similar in our 
ase

with modest sets and assemblies over algebrai
 latti
es. It turns out that,

in our 
ase working over algebrai
 latti
es (or indeed any 
artesian 
losed


ategory), the �bration of uniform modest sets over assemblies is 
omplete,

but we 
annot show that it is essentially small. This is not surprising sin
e the


ategory of algebrai
 latti
es is not small. However, even if we only 
onsider a

small 
artesian 
losed 
ategory as our 
ategory of realizers, the 
orresponding

�bration is not small (is not equivalent to the externalization of an internal


ategory).
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The obvious solution to try, by analogy with the situation over a PCA, is

to 
onsider the small 
ategory of partial equivalen
e relations as an internal


ategory in the 
ategory of assemblies (simply by embedding it via r as is

done for the 
ase of PCAs), but then the externalization does not 
onsist

of uniform families: ea
h set in the family will have a di�erent underlying

obje
t of realizers. In fa
t, we have not been able to show that the �bration

of partial equivalen
e relations is small and, indeed, we believe that it is not,

unless further assumptions are made about the underlying 
ategory of realizers

(besides it being a small 
artesian 
losed 
ategory).

Another obvious question to ask, following the analogy with 
ategories over a

PCA, is whether PER(ALat) 'Mod(ALat) and Assm(ALat) embed fully

and faithfully into a big \realizability topos over algebrai
 latti
es" (su
h as

the exa
t 
ompletion of the regular 
ategory Assm(ALat)). The answer is

no be
ause PER(ALat) is not well-powered. For note that it embeds fully,

faithfully by a �nite limit preserving fun
tor into the exa
t 
ompletion of

Assm(ALat), and so the latter is also non-well-powered and, hen
e, not a

topos. Again, even if we take a small 
artesian 
losed 
ategory as the universe

of realizers, it does not appear to be enough. To over
ome this problem we

tried to mimi
 the proof of Robinson and Rosolini [36℄, but it 
annot be

easily generalized. In other words, it appears that something more needs to

be assumed about the universe of realizers, and we have to leave that as an

open question.

5 Equilogi
al Spa
es and Domains with Totality

Kleene-Kreisel 
ountable fun
tionals of �nite type [27℄ o

ur in various models

of 
omputation. Ershov [15℄ pla
ed them in a domain-theoreti
 setting, and

Berger [5℄ worked out a general notion of totality for domain theory whi
h

subsumes Ershov's hierar
hy of �nite types. He also extended this approa
h to

dependent types in his Habilitationss
hrift [6℄. We show that Berger's 
odense

and dense obje
ts in domain theory embed fully and faithfully in PEqu,

from whi
h it follows dire
tly by the previous work of Ershov and Berger

that the Kleene-Kreisel fun
tionals are 
onstru
ted in PEqu by repeated use

of exponentiation starting from the natural numbers obje
t. We begin this

se
tion with a qui
k overview of totality as de�ned by Berger [5℄. Please refer

to the original paper for details.

Domains with Totality. For our purposes, a domain D = hjDj;�

D

i is an

algebrai
 
onsistently-
omplete dire
ted-
omplete partially ordered set with

a least element. We may view domains as topologi
al spa
es with their �-

topologies, just as we did with 
omplete latti
es. Let Dom be the 
ategory of

domains and 
ontinuous fun
tions. Domains 
an also be 
onsidered as topo-

logi
ally 
losed non-empty subsets of algebrai
 latti
es. Thus ALat is a full
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sub
ategory of Dom. Additionally Dom is a 
artesian 
losed 
ategory (see,

e.g., [39℄ or [1℄), and ALat is a full 
artesian 
losed sub
ategory of Dom. A

domain be
omes an algebrai
 latti
e if a \top" element is added to the poset.

This 
onstru
tion produ
es a fun
tor whi
h, however, is not a re
e
tion and

it does not preserve the 


-stru
ture.

The following de�nitions are taken from Berger [5℄. We follow the terminology

of Berger [6℄ in whi
h the term total has been repla
ed by the term 
odense.

A subset M � jDj of a domain D is dense if it is dense in the topologi
al

sense, i.e., the 
losure of M is jDj. We write x " y when elements x; y 2 jDj

are bounded, and x 6" y when they are unbounded.

A �nite subset fx

0

; : : : ; x

k

g � jDj is separable if there exist open subsets

U

0

; : : : ; U

k

� jDj su
h that x

0

2 U

0

; : : : ; x

k

2 U

k

and U

0

\ � � � \ U

k

= ;.

We say that U

0

; : : : ; U

k

separate x

0

; : : : ; x

k

. It is easily seen that a �nite set is

separable if, and only if, it is unbounded. A family of open sets U is separating

if it separates every separable �nite set, i.e., for every separable fx

0

; : : : ; x

k

g �

jDj there exist members of U that separate it.

The boolean domain B

?

is the 
at domain for the boolean values tt and � .

A partial 
ontinuous predi
ate (p
p) on a domain D is a 
ontinuous fun
tion

p : jDj ! B

?

. The fun
tion-spa
e domain [D ! B

?

℄ is denoted by p
p(D).

With ea
h p
p p we asso
iate two disjoint open sets by inverse images:

p

+

= p

�1

(fttg) and p

�

= p

�1

(f� g):

A subset P � jp
p(D)j is separating if the 
orresponding family

n

p

+

�

�

� p 2 P

o

is separating.

Given a set M � jDj let

E(M) =

n

p 2 jp
p(D)j

�

�

� 8x 2M: p(x) 6= ?

o

:

A set M is 
odense in D if the family E(M) is separating. An element x 2 jDj

is 
odense if the singleton fxg is 
odense in D. Every element of a 
odense set

is 
odense, but not every set of 
odense elements is 
odense. If M � jDj is a


odense set then the 
onsisten
y relation " is an equivalen
e relation on M .

Thus, a 
odense set M � jDj 
an be viewed as a domain D together with a

partial equivalen
e relation �

M

, whi
h is just the relation " restri
ted to M .

A totality on a domain, in the sense of Berger [5℄, is a dense and 
odense

subset of a domain. Note that in the original paper by Berger [5℄ 
odense sets

are 
alled total. Here we are using the newer terminology of Berger [6℄.

Given domains with totality M � jDj and N � jEj, it is easily seen that the

set M �N � jDj � jEj is again a totality on the domain D � E . Similarly, by

the Density Theorem in Berger [5℄ the set

hM;Ni =

n

f 2 [D ! E ℄

�

�

� f(M) � N

o
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is a totality on the fun
tion-spa
e domain [D ! E ℄. This idea of totality

generalizes the simple-minded 
onne
tion between total and partial fun
tions

using 
at domains. If A is any set, let A

?

be the 
at domain obtained by

adding a bottom element. Then A itself is a totality on A

?

, and the total

fun
tions of A! B in Set 
orrespond to (equivalen
e 
lasses) of fun
tions in

hA;Bi 
onsidered as elements of [A

?

! B

?

℄.

Partial Equivalen
e Relations. Let PER(Dom) be the 
ategory formed

just like PEqu ex
ept that domains are used instead of algebrai
 latti
es, i.e.,

an obje
t ofPER(Dom) is a stru
ture D = hjDj;�

D

;�

D

i where hjDj;�

D

i is a

domain and �

D

is a partial equivalen
e relation on jDj. Category PER(Dom)

is 
artesian 
losed, and for D; E 2 PER(Dom) we 
hoose the 
anoni
al prod-

u
t and exponential D � E and D ! E whose underlying domains are the

standard produ
t and exponential in Dom, and the partial equivalen
e rela-

tions are de�ned by

(x

1

; y

1

) �

D�E

(x

2

; y

2

) () x

1

�

D

x

2

^ y

1

�

E

y

2

f �

D!E

g () 8x; y 2 jDj:

�

x �

D

y =) f(x) �

E

g(y)

�

:

We say that a partial equivalen
e relation �

D

on a domain D is dense when

its domain

dom(�

D

) =

n

x 2 jDj

�

�

� x �

D

x

o

is a dense subset of D.

Be
ause every algebrai
 latti
e is a domain, PEqu is a full sub
ategory of

PER(Dom). The top-adding fun
tor T : PER(Dom) ! PEqu maps an

obje
t D 2 PER(Dom) to the obje
t

T (D) = hjDj [ f>g ;


T (D)

;�

D

i

where hjDj [ f>g ;


T (D)

i is the algebrai
 latti
e obtained from the underlying

domain ofD by atta
hing a 
ompa
t top element. Fun
tor T maps a morphism

[f ℄ : D ! E to the morphism T ([f ℄) represented by the map

T (f)(x) =

8

<

:

f(x) x 6= >

> x = >:

The top-adding fun
tor is a produ
t-preserving re
e
tion, hen
e PEqu is an

exponential ideal and a sub-


 of PER(Dom).

In 
ategory Dom it is not the 
ase that every 
ontinuous map f : D

0

! jEj

de�ned on an arbitrary non-empty subset D

0

� jDj has a 
ontinuous exten-

sion to the whole domain jDj. Be
ause of this fa
t the 
ategory PER(Dom)

has 
ertain undesirable properties. However, it is true that every 
ontinuous

map de�ned on a dense subset has a 
ontinuous extension; this is an easy


onsequen
e of the Extension Theorem and the fa
t that a domain be
omes
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an algebrai
 latti
e when a top element is added to it. These observations

suggest that we should 
onsider only the dense partial equivalen
e relations

on domains.

Let DPER(Dom) be the full sub
ategory of PER(Dom) whose partial

equivalen
e relations are either dense or empty. We are in
luding the empty

equivalen
e relation here be
ause the only map from an empty subset always

has a 
ontinuous extension. The obje
ts whose partial equivalen
e relations are

empty are exa
tly the initial obje
ts of DPER(Dom). We have the following

theorem.

Theorem 5.1 DPER(Dom) and PEqu are equivalent.

Proof. In one dire
tion, the equivalen
e is established by the top-adding fun
-

tor T : DPER(Dom)! PEqu. In the other dire
tion, the equivalen
e fun
-

tor K : PEqu! DPER(Dom) is de�ned as follows. When A = (jAj;


A

; ;)

is an initial obje
t, de�ne K(A) = A. Otherwise K maps an obje
t A 2 PEqu

to an obje
t K(A) whose underlying domain is the set jK(A)j = dom(�

A

),

whi
h is the topologi
al 
losure of dom(�

A

) in jAj, equipped with the sub-

spa
e topology. The partial equivalen
e relation for K(A) is just �

A

restri
ted

to jK(A)j. The fun
tor K maps a morphism [f ℄ : A! B to the morphism rep-

resented by the restri
tion f �

jK(A)j

. Here we assume that the morphism from

an initial obje
t A = (jAj; ;) is represented by the 
onstant map f : x 7! ?.

If A is initial, K([f ℄) is obviously well de�ned. When A is not initial, K([f ℄)

is well de�ned be
ause 
ontinuity of f implies that

f(jK(A)j) = f(dom(�

A

)) � f(dom(�

A

)) � dom(�

B

) = jK(B)j:

It is easily 
he
ked that K and T establish an equivalen
e between PEqu and

DPER(Dom).

We would like to represent domains with totality as equilogi
al spa
es. If

M � jDj is 
odense and dense in D, let hD;�

M

i be the obje
t of PER(Dom)

whose underlying domain is D and the partial equivalen
e relation �

M

is

the relation " on M . This identi�es domains with totality as obje
ts of the


ategory DPER(Dom). The following result shows that the morphisms of

DPER(Dom) are the right ones, be
ause the 


 stru
ture of DPER(Dom)

agrees with the formation of produ
ts and fun
tion-spa
e obje
ts with totality.

Theorem 5.2 Let M � jDj, N � jEj be 
odense and dense subsets in do-

mains D and E, respe
tively. Then in DPER(Dom)

hD;�

M

i � hE ;�

N

i = hD � E ;�

M�N

i; and

hD;�

M

i ! hE ;�

N

i = h[D ! E ℄;�

hM;Ni

i:

Proof. Here it is understood that the produ
t hD;�

M

i � hE ;�

N

i and the

exponential hD;�

M

i ! hE ;�

N

i are the 
anoni
al ones for PER(Dom). They

are obje
ts in DPER(Dom) by the Density Theorem in Berger [5℄. The �rst
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equality follows from the observation that (x

1

; y

1

) " (x

2

; y

2

) if, and only if,

x

1

" x

2

and y

1

" y

2

. Let X = hD;�

M

i ! hE ;�

N

i and Y = h[D ! E ℄;�

hM;Ni

i.

Obje
ts X and Y have the same underlying domains, so we only have to show

that the two partial equivalen
e relations 
oin
ide. The partial equivalen
e

relation on X is

f �

X

g () f; g 2 hM;Ni and 8x; y 2M:

�

x " y =) f(x) " g(y)

�

:

Suppose f �

X

g. Then f; g 2 hM;Ni and it remains to be shown that f " g.

For every x 2 M , sin
e x " x and f �

X

g, f(x) " g(x), thus by Lemma 7 in

Berger [5℄ f and g are inseparable, whi
h is equivalent to them being bounded.

Conversely, suppose f; g 2 hM;Ni and f " g. For every x; y 2 M su
h that

x " y, it follows that f(x) " g(y) be
ause f(x) � (f _ g)(x _ y) and g(y) �

(f _ g)(x _ y). This means that f �

X

g.

Higher Types. The 
ategory PEqu is a full sub-


 of PER(Dom).

Sin
e DPER(Dom) is a full sub
ategory of PER(Dom) and is equivalent

to PEqu, it is a full sub-


 of PER(Dom) as well. Theorem 5.2 states

that for 
odense and dense subsets M � jDj and N � jEj, the exponential

hD;�

M

i ! hE ;�

N

i 
oin
ides with the obje
t h[D ! E ℄;�

hM;Ni

i. We may use

this to show that in PEqu the 
ountable fun
tionals of �nite types arise as

iterated fun
tion spa
es of the natural numbers obje
t. For simpli
ity we only


on
entrate on pure �nite types �, �! �, (�! �)! �, . . . and skip the details

of how to extend this to the full hierar
hy of �nite types generated by �, o, �,

and !.

The natural numbers obje
t in DPER(Dom) is the obje
t

DN

0

= hN

?

;�

N

?

; �

DN

0

i

whose underlying domain is the 
at domain of natural numbers N

?

= N [ f?g

and the partial equivalen
e relation �

DN

0

is the restri
tion of identity to N .

De�ne the hierar
hy DN

1

;DN

2

; : : : indu
tively by

DN

j+1

= DN

j

! DN

0

where the arrow is formed inDPER(Dom). By Theorem 5.2, this hierar
hy is


ontained in DPER(Dom) and 
orresponds exa
tly to Ershov's and Berger's


onstru
tion of 
ountable fun
tionals of pure �nite types. It is well known that

the equivalen
e 
lasses of DN

j


orrespond naturally to the original Kleene-

Kreisel 
ountable fun
tionals of pure type j, see Berger [5℄ or Ershov [15℄.

In PEqu the natural numbers obje
t is

N

0

= hN

?;>

;�

N

?;>

;�

N

0

i;

where N

?;>

= N [ f?;>g is the algebrai
 latti
e of 
at natural numbers

with bottom and top, and �

N

0

is the restri
tion of identity to N . The iterated

24



fun
tion spa
es N

1

;N

2

; : : : are de�ned indu
tively by

N

j

= N

j�1

!N

0

:

The hierar
hies DN

0

;DN

1

; : : : and N

0

;N

1

; : : : 
orrespond to ea
h other in

view of the equivalen
e between DPER(Dom) and PEqu, be
ause they are

both built from the natural numbers obje
t by iterated use of exponentiation,

hen
e the equivalen
e 
lasses of N

j


orrespond naturally to the Kleene-Kreisel


ountable fun
tionals of pure type j.
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