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DIFFERENTIAL OPERATORS ON THE BASE
AFFINE SPACE AND A STUDY OF g-MODULES

I. N. BERNSTEIN, I. M. GELFAND, 8. I. GELFAND

The present work consists of two parts. In the first part we study the ring of
regular differential operators on the base affine space of a complex semisimple
group. By the base gffine space of a group we mean the quotient space 4 =N, NG
of the group G by a maximal unipotent subgroup N,.. Experience in representa-
tion théory suggests that for many problems in representation theory the solu-
tion results from a careful study of the base affine space. In particular, the structure
of the ring of regular differential operators on .4 seems to be closely connected

with the representations of the real forms of the group G. In addition to the

connections with representation theory, the study of this ring yields an instructive
and rather advanced example for the study of the rings of regular differential
operators on algebraic varietics, an area in which not much is known so far.

- We approach the study of the differential operators on A by establishing a
connection between the regular functions on the group G and the regular dif-
ferential operators on the base affine space 4. We would also like to draw the
reader’s attention to Conjecture I, where the notion of the generalized Segal—
Bargmann space for a representation of a compact Lie group is introduced.

The second part of the work is formally independent of the first and is devoted
to the algebraic study of modules over the Lie algebra g of the group ¢. We
restrict ourselves to a category of g-modules, which is closely conmected with
the theory of highest weight. We shall call this category of g-modules the category
0. The category O contains in a natural way every finite-dimensional representa-

“tion of the Lieal gebra g, The fundamental result of this part lies in constructing a

resofution for finite-dimensional g-modules. The simplest objects of the category O
are the modules M, and it seers important that the resolution consists of modules
which are direct sums of these simplest modules. The description of the modules
occutring in the composition series of the modules A, which is given in the
Appendix, is also useful. Unfortunately, the complete structure of these com-
position series is not known to us vet.

‘We think that the methods developed in the second part of this paper may turn
ouf to be useful in the further study ‘of questions considered in the first part.

The fundamental content of this work is concentrated in Theorem 6.3 and -
Conjectures 1 and IT in the first part and Theorems 8.12 and 10.1 in the second.
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-§ 1. Notations and preliminaries

g is a semisimple Lie algebra of rank r over C, b is a Cartan subalgebra of g.
A denotes the root system of g corresponding to §, with a fixed ordering, 4,
and 4_ the system of the positive and negative roots, respectively, X the set of

simple roots, and g=—%— 2 V- E,€gis the root vector corresponding to the root
yéad,
y€d. Here we have y((E,, E_,])=2.

1, is the subalgebra of g spanned by the vectors E,, y€d.,, while n_ is the
subalgebra of g spanned by E,, ycA_. b=bdn,. U(g), U(n,), Un_) are the
universal enveloping algebras of g, n,, 1., respectively; Z{g) is the cenire of
U(g).

b* is the dual space of §. _

G is a complex semisimple Lie group with Lie algebra g; H, N +>» N_. and B
are the subgroups of G corresponding to the subalgebras b, 1., n_ and b, re-
spectively. _

A=N,\G is the base affine space of the group G.

Additional notations, used in Part 2.

Z, is the set of non-negative integers. _

ba denotes the real linedr subspace of h* spanned by all roots p¢ A.

{,) is the scalar product in §* constructed with the help of the Kiliing form
of the algebra g; ||+ || is the corresponding norm in ba.

bz is the lattice in b} consisting of those y ¢h* for which 20, 72/, ) € Z for
all pEA.
- K= {xch*|x = gnx-a,naéz),}; Kby,

X1EXp means that x,—x, € K (g4, x2€5%). _ -

W is the Weyl group of the algebra g, o,€ W is the reflexion corresponding
to the root ye4, ie. oyx=x—2{x, Y, 1> "'y. We note that 6,0=¢—a for
%EZ, '

Xa~Xa for x1, xs € H™ means that there exists an element we W such that y; =wy,.

I(w) is the length of the element we¢ W, ie. the smallest possible number of
factors in a decomposition W0, + ... 00, , €2,

WO = Lwew|i(w) = i}.
&,={x b3 [<% ¥) =0}; the connected components of hiN( Ua Z,) are called the
PE
Weyl chambers; C is the closure of the Weyl chamber C; C¥ is the Weyl chamber

containing ¢. The group W acts on the set of Weyl chambers simply transitively.

Two Weyl chambers C; and Cy are called neighbouringif dim (TN Cy)=dimb}—1.
In this case there exists a unique element y¢ 4, such that o,Cy=C, and the
hyperplane &, separates C, and Cy;

D = §:NCH.
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An clement y €% is called regular if {x, )0 for all y¢ 4.
: Let M be a h-module, y €h*. Put
L M® = {feM|xf = y(x)f for all x€b};
| P(M) = {x€H*| MDD 5 0).
Let M be a g-module and O0=M,C M, ...C M,=M its Jordan—H&lder com-

position series, L;=M/M,_, are simple g-modules. The collection of the modules
L,, with multiplicity, is called the Jordan—Hdlder decomposmon of M and is

denoted by JH(M).
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- PARTI

DIFFERENTIAL OPERATORS

§ 2. Introduction

Let & be a connected complex semisimple Lie group of rank r, B a Borel sub-
group, N, the unipotent radical of B, Hc B the Cartan subgroup of B. The
quotient space 4=N,\G plays a fundamental réle in representation theory; it
is called the base gffine space of the group G.

The aim of this part is to study the ring 2 (4) of regular differential operators
on A. ' '

First of all we study the possible connections between the space of regular
differential operators on 4 and the space & (G) of regular functions on G. More
precisely, Conjecture I claims the possibility of embedding #(G) into P (A)
(operation f—~7); here P (4) = U(I))%)ﬁ((}), where U(D) is the universal envelop-

/ing algebra of the Lie algebra § of the group H, In this part we prove a result

(Theorem 6.6) weaker than Conjecture I, namely we construct an isomorphism

between the L-modules LQE(G) and L. ® 2(A), where L is the quotient field
< .

v
of the ring U(H).

-Further on we construct a scalar product inithe ring &(4) of regular functions
on 4 which js invariant under the action of the maximal compact subgroup
K G. The completion of the space & (A) by this scalar product consists of analytic
functions on the complex manifold A. This space is a generalization of the Segal-—
Bargmann space. Conjecture I states that an operator adjoint to a differential
operator is again a differential operator, hence the ring D (A) is selfadjoint with
respect to the introduced scalar product, It has to be noted that the introduced
involution in 2(4) does not preserve the order of a differential operator, For
instance, in the case of the group of matrices of order 4, the adjoint to the simplest
operator of order zero will be an operator of order A—1.

§ 3. Regular differential operators

In this section the rings of regular differential operators on G and A4 are in-
troduced. We shall consider G and A as algebraic varieties over C. The projec-
tion m: G-~ A is a morphism of algebraic varieties. The rings of regular functions
on G and 4 will be denoted by #(G) and &(4), respectively. Let 7* :8(6)—~&(A)
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be the embedding induced by the mapping =. The image n*&(4) consists of
exactly those functions which are constant on the left cosets of the subgroup N.
" The variety A is non-singular and quasi-affine. More precisely, let

A=Spec max #(4)

be the affine algebraic variety corresponding to &(4). Then there is a natural
isomorphism between 4 and a dense open subset of A. :

Let us define in the space &(G) the left and right representations L% and R% of
the group G by the usual formulas

L@ = fg'e), R ) (g) =flge), & &E€G.

It is a common property of both of these representations that every element
f€&(G) is contained in some finite-dimensional invariant subspace.

The group G acts naturally on the space A (right translations). In addition -
one can also define the left-hand action of the Cartan subgroup on A by associating
to each element ¢ H the transformation x--Ax. The element Ax€A is well
defined because H normalizes N. '

Let us define in the space & (4) the representations L4 of the group H and R*
of the group G by means of the formulas

(LAY (x) = f(h1x), (RGF) (%) = f(xg); x€4, heH, g&G.
Obviously, Lfn* == n*L# and Rfn* = =* Rf.

By differentiating R4 we obtain for each X¢€g an operator Rg:&(A)~&(A).
These operators determine a representation of g that extends to a representation
of U(g); here the operator corresponding to an element X' U(g) will also be
denoted by R%. We define the similar representations R§ and LS of the algebra
U(g) in #(G) and the representation L§ of the algebra U(g) in £(4).

Definition 3.1. Let X be a quasi-affine variety and &(X) be the ring of regular
functions on X, A linear mapping D:&(X)-~&(X) is called a regular differential
operator of order =k (k=0) on X if it satisfiés the condition

Lerlfoon: Ui D] = 0 G.1)

for any fi, fas s Jrer €6(X). In (3.1) f; denotes the operator of multiplica-
tion by f;.

The differential operators on X form a ring which will be denoted by F(X).

Remark. The definition given here coincides with that of a differential operator
on an arbitrary algebraic variety given in [1].

It is easy to see that a differential operator of order zero is an operator of

. multiplication by a function f€&(X).
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Any vector field over X determines a differential operator of order =1 on X.
It can be verified that on composing an operator of order =% with an operator of
order =] we obtain a differential operator of order =k+/1, moreover the com-
mutator of two such operators is of order =k-+I1—1.

We shall use the following properties of differential operators (see [n.

Lemma 3.2. 1. If YCX is a dense open subset (in the Zariski topology) of a
quasi-affine var iety X, than every regular differential operator can be restricted to
Y. More precisely, there exists a unigue differential operator D':8(¥Y)~&(Y)
whose restriction to & (X< &(Y) coincides with D.

2. Let X be a non-singular variety and Z,, ..., Z, be a system of vector fields
over X which defines a basis in the tangent space at each point xC X. Then every
differential operator D on X has a unigue representation in the form

D = Z aij_ ig.. En(x)zilzég e Z:tn:'

where i; are nown-negative integers, a, ,; areregular functions only a ﬁm‘te number
of which are different from zero.

For any element X¢ U(g) the operators RS and LS are differential operators
~on G, moreover L, YcU®) and R are dlﬂ'erentlal operators on 4. The de-
scription of thé‘rmg of differential operators on @ yields the following pro-
' position.

Propo.s‘zt;on 3.3. The mappmg
9:6(@) & U(g)~*@(G)
given by the formula
_ 8 fi®X) = z'ﬁLfé,.
is an isomorphism of left & (G)-modules.
The proof of Proposition 3.3, follows easily from Lemma 3.2.
In what follows the element 3" 1{(D)c &(GIQU (g) will be calted the standard
Jorm of De Z(G).

Now let us turn to the study of the ring 2(d4). In this ring we can defive a
representation of the group G. Indeed, we put

DY = RIDR}-1, g€G, DED(A).
Similarly, we put _
"D = Li DL, he H, DeD(A).

- ‘We notice that the variety 4 is smooth, but it is not an affine variety and there
may exist differential operators on 4 which cannot be expressed by operators of

“.the first order, (Sce e.g. Example 2.)

- Woe shall say that a differential operator D’ on G is a kfting of the operator
Dond,if

D'n*f = n*Df, feé(d).
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Theorem 3.4. [2). Everj; differential operator on A can be lifted to G
In order to prove this theorem we need the following lemma,

Lemma 3.5. Let O0=n(e)cd. There exists a mapping n:2{A)~U(g)/n, U(g)
such that for all D¢ D (A) and all f€ &(A)
(B¢ 1) (0) = (D) (0) (3.2)
Jor every element X cU(g) belonging to the coset (D).

Proof. 1t is Ieasy to see that if J(e n, then R4 £(0)=0 for all fc £(4). There-
fore the validity of the equality (3.2) does not depend on the choice of the element
X in a . Ulg)-coset.

Now let X;, ..., Xy be a basis in hdn_. ‘Then the vector fields RX form a
basis in the tangent space at each point of a certain affine nclghbourhood V of

- the point 0€ A. According to Lemmna 3.2, in this neighbourhood ¥ the operator

D can be expressed in the form

D= 2 iy, iN(Rﬁl e (RﬁN):N-

X = Zaelis...iN(O)XJfl XJ{rNEU(El)-

It is easy to see that the image #(D) of the element X in U(g)/n,. U(g) satisfies the
condition of the lemma.

Note that the element n(D) is umquely determined by the equahty (3. 2) (see
[2D.

Let =:U(g)—~U(g) be an anti-automorphism such that ©(X) =—X for X¢qg.
Obviously, 'r(n+ U(g))z Ulgn, , so ¢ determines an isomorphism

@ Ulp)fn, U@-~U@/Ugn,. |
Definition 3.6, Let D€ D (4). Define a function o,(g) on G with values in
Ulg)/U(gn, by the formula

Put

op(g) = (D).
One can verify [2, § 8] that o,(g) is a regular function on G, i.e.

ap(g) EE(DRU(g)U(g)n.,..

Now we ate ready to complete the proof of the theorem. Let D €D (A) and
consider an arbitrary element ¢}, € £(G)® U(g) which is sent into o,(g) by the

natural projection
C(G)BU(g)~¢(HRU@)/U(gn, .

Put
= 9(%(3))€ P (G).
We shall show that D’ is a lifting of D to G, i.e. that
(D) (g) = (W Df)(g), [EE(M), g€G (3.3




(3.3) can be rewritten in the form
Ry D’ Ri-17* Ry f) (e) = (" DYRS) (e).
Yt is easy to se¢ that RSD’ RS, is a regular differential operator on G and that
3‘1(}23 D’Rf., 1) is projected into g, under the natural mapping
@RV (~s(@HOUW/U(gn. .
- Therefore (replacing D by D? and /by Rj )it suffices to prove that (D' n*f)(e)=

=(z* Df)(e).
Let X=0ap(e) € U(g). Clearly, then (L ) (e)=(D'f)(e) for fc £(G). Moreover,
the image of 771(X) in U(g)/n, U(g) is equal to n(D), hence

(@*Df) () = (Df) () = (Ri-1x/) (0) = (Ri=x7*f) (e), fEE(d).
Therefore, the required equality is implied by the following lemma.,
Lemma 3.7. If YcU(q), f€&(G) then
L&) (@) = (RES) (e).
Proof. If ¥¢g then the lemma follows from the definitions of L% and RS,
Assume now that the lemma is valid for ¥;, ¥, €U(g). Then we have
(RY,v, /X&) = (Ry, Ry, 1) () = (Ligy RY, ) (@) = (R¥, Ly £) (&) =
= Ly Liny 1)(©) = Likrrpl) (©).

(Here we use the faci:that. LY and R, commute for any ¥, ¥* € U(g).) Hence
we have the lemma for Y=Y, - Y,, and the proof is complete.

Proposition 3.8. Let us denote by 1, the left ideal in the ring @ () spanned
by the operators LE, X €u,, .

1) Let Deg(G). Then D gives rise to a differential operator on 4 (e
D(&(4d))c &(A4)) if and only if

(L%, Dlel, for X¢n,.

2) D¢ (G) gives rise to the zero operator on A if and only if D€, .

The proof of this proposition is rather simple and is left to the reader.

We shall now describe how these conditions can be expressed in terms of the
standard form of the operator D. We remark that |

f) D¢l if and only if
I HD) LR U (gt

2) 3 YD) = F £,@X,c&(D®U(g) and X€g then
$71(ILE, D) = Z LS fi®@ X+ 3 /i01X, X)),
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Corollary 3.9. Let D €% (A). Then it has a unique lifting D’ such that
SHDYELD QU B D).

Definition 3.10. 1) The element YD (QRUB®n_)is cailed the standard
Jorm of the operator D € D(4) and will be denoted by s(D).

2) The lowest term s5y(D) of an operator DeP(4) is defined as the ele-
ment of &(G)® U(H) which is equal to the projection of s{D) under the decomposi-
tion

. Uhon.) =Umen. Ubhodn_)

Definition 3.11. Let us denote by Wu the subring of 2 (4} consisting of the

operators
L%, XU ®).

§ 4. Conjecture I; examples

Conjecture 1. There exists a mapping &(G)~D(4), f~F with the Jollowing
. Properties:

1) =1 for fe&(d)c & ().

2) The mapping f—~F commutes with the representations R, and L,.

3) The mapping 8(G)Q@ Wu—P (4) given by the formula

2NH®Zi~3fi7,, f:¢8(6), Z,¢wu

Is an isomorphism of Wu-modules.

4) Let so( )= 51,0 X,. Then f=2f;» Xi(~ o) (here g €h* is half-sum of the
positive roots; X, € /() is considered as a polynomial function on h*).

A weakened version of Conjecture 1 is

Conjecture 1. B(d) is a Jiree Wu-module,

We remark that the mapping /- 7 (if it exists) is not uniquely determined by -
the properties 7 )—4 ). We assume however that there exists a “natural” mapping
f—F The following examples will pethaps illuminate to the reader what we
have in mind. . .

We shall now present several examples illustrating the notions and facts ex-
pounded above, '

Example . G=SL(2, C) is the group of 2X2 matrices of determinant 1. We _
choose as N, c G the subgroup of all matrices of the form '

(o 1)




< 1In this case A=N,\G can be identified with the punctured complex plane i.e.
A=CN{(0, 0)}), while the mapping #:G-4 is of the form '

| w, U '
o g= (3 ).
o Let

A 00 1 0 01
E—:(I o]s H:[Oﬁl)’ E+“[0 0)

] be a basis of g. Then

!
! : | | 9 d
G = e —_—— - e

|
L
| - ‘ | P P 8

. : Lf=zym—ty- 2 Ao by e,
' . & 1 321 2 C’Zg i 31{1 2 3&3

-, The algebra of regular functions ¢(G) is £(GC)=C(uy, us, z,, 20)/(ty 25— 11y 2, ~ 1)
“ and £(A)C#(G) consists of the functions f€&(G) which satisfy
- o o

G o b Y
S g T2 Jug = O

The ring Wuc @ (4) coincides wiih the ring of polynomials of the single generator
J d

4, 9 8

LH =7 1’921 ‘f.'zg 32'3 '
‘Now we show how to construct the mapping f—~7. Let T be an irreducible
representation of SL(2, C). We denote by &y the largest subspace of &(G) such

. that the restriction of RS to this subspace is a multiple of T, Furthermore, for
cach n¢Z we denote by &% the subspace of &, consisting of all functions JEE,

Lemmadl, 1) @)=g o

Ton

2) Let dim T=I+1. Then dim &h=[1.1 for r=—b —]42,...,1-2,1 and
&+=0 for the remaining values of n. Those n Jor which &%.#0 are weights of T.
3) &% is invariant under RS and she restriction of R% 1o &% is equivalent to T'
4). &4 consists of vectors of highest weight with respect to I° (ie. LS f=0 for
NfE8y and Xen, ),

suffices to construct the mapping f-~f on each Space €. separately. We
\Ssume that the restriction of 7.6 to the smallest invariant subspace of &( )
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containing fis equivalent to 7. Let us put f;=(L§ )'f. Then obviously f; ¢ &5+%,
and in particular ;=0 for i“—‘-=~-—~ (I—mn). In accordance with property 2 of the

mapping f—f (see Conjecture I), we shall look for the operator f in the form

F="3" 5 o | @)

where «, € Wu. _

Let us assume now that the right-hand side of (4.1) defines an operator on A.
Applying the relations . :
| [E,, EL] = EEL i(H—i+1)
we find easily that the elements «; ¢ Wu satisfy the equations

0[1_1+5(H'—"i+ 1)051 = 0.

Therefore, putting —;—(l—n)mp we obtain

o = (—HI)P“‘—‘f,!—I(H—-p+1)- oo (H = D)aty.

Consequently, we have the operator fif we determine . 1t is clear that prop-
erty 2) requires a, € C. Moreover, so(f)=/f®«,and H{o)=1. Therefore, to assure
the validity of property 1) we have to take '

| = (p)7%
Then all statements 1)—4) of Conjecture I will be valid.

Example 2. Let G=SL(3, C)and N be the subgroup of upper triangular ma-
frices with units on the diagonal.

Let T} be the i-th fundamental representation of G, i=1, 2. Both representa-
tions T; are three-dimensional and the spaces &y (see Example 1) are of dimen-
sion 9. Here &, consists of the linear combinations of the matrix elements g, 7
=i, j=3 of the matrix gcdG, and &, consists of the linear combinations of
the second order minors of g. Let us construct the mapping /- f for f¢ &r . Put
fi=ogntosgntasgs, i=1,2,3. Then for arbitrary oy, o, o3 the elements
Jfiform a subspace of &'y, such that the restriction of R to this subspace is equivalent
to 73. Here f3 is a vector of highest weight, that is f3=/;. Let us now give for-
mulas for f; and f,. Let E; (i), Eyp—Fs, and Eyy—Eyy be the basis in g.
We put

Lgu = EU’ L‘gﬁ'"EjJ = ZU'

These operators act on the functions f, as follows

Eijfk = 51.': ﬁs
thj;: = (5;';; —dptfis

where d;; is the Kronecker symbol.
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Let us consider in 2(G) the following operators:

Jfo=re
ﬂ: = f3232 ”faEfJe
A= f121z(z13 +1) +f2E21(Z13 +1) +fs(E32Em 4 B Zy).

It is casy to verify that the operators fi fas 7, belong to D(4) (ie fi€ A<
£(4)) and the mapping fi~Ji satisfies all conditions of Conjecture L. Thus the
mapping f—f has beent constructed for f€&, -

We also remark that the operator ﬂ is an operator of the second order on 4
which cannot be expressed in ferm of first order operators on A.

. The mapping f— f for fcé&y, can be constructed in the same way.

.n Examples 1 and 2 we Wer© dealing with representations T for which all |
weight subspaces were one-dimensional. It is a more difficult task to construct _ 1
the operation f’ ~f in the case when these subspaces are not one-dimensional. ’
Now let us see 2 simple example of that kind.

9

Example 3. Let us put, as in Example 2, G=SL3, 0O and T be the adjoint | |
representation of G in its Lie algebra g. Let f be a vector of highest weight with
. yespect to LE in &r. We shall introduce the following notations o

fe=r fu= Eufi fu=" wf |
hig = — Foas Jfaus has = — By fss
fo = — By g, S22 = —Ego h3ns S = Fya far- .Iii'.

~ Then the sestriction of L¢ to the subspace spanned by f,; and By 18 gquivalent |
 to 7. Here hyp and figg generate 2 two-dimensional welght subspace of T. We -

define the operation f— Fin the following way

\ | 2n = {212223+% Zy “%’ Z‘z.s) + s ["213293 +"1§' Zy— %’ Zas] +
o (32 D~ FraBes O+ D+ OB Tt B
hos = b [“‘" Z1aZn— %‘ 2t "l;“ 229] + has[zmzas “":2?"‘ Zyg+ —23' Zy ]"’

—f 12821(3Zsa +2) +fasEsa(3zis +1) “‘flseﬁmﬁsg +2E).-

S We emark that in the subspace spanned by A, and Fipy, there is, up 10 multi-
L plication, only one operator of first order namely Frs— J1,4; other operators in
s this space are of order 2. '

i 3 Gelfand 13




§ 5. The generalized Segal—Bargmann spaces

In this section we shall consider a generalization of Bargmann’s construction
[3] of representations of the group SU2). : _

Let K be a maximal compact subgroup of the group G, ¥ be its Lic algebra,
and i:g—g be the corresponding Cartan involution. We assume that X is chosen
so that i(n,)=n.. Let T;, 1=i=r be the representations of G corresponding
to the fundamental highest weights of g. Let f; be a vector of highest weight in

T,. We define a function H.(g) on G by the formula

H(g) = IT @Al
where ||+ ||, is a K-invariant norm on 7 such that || fil,=1. Clearly, H;(ng)=H(2)
for n€N, , hence H; can also be considered as a function on 4. Let u(f) be a
positive, rapidly decreasing function defined for £>0. Let g, (1 =i=r) be positive
numbers, We define the weight function ¢(x) on 4 by the formula

e(¥) = (2 e Hi(x))-
Definition 5.1. The Segal-—Bargmann space of the group G is defined as the
completion of &{A) with respect to the scalar product

{8} = ! f®HEFe e,

where @ denotes the G-invariant measure on 4.
It is obvious that this scalar product in &(4) is invariant under R, k€K,

Conjecture 1. There exists a function u(t) such that for any D €D (4) we have
D* ¢ B (A); here D* denotes the adjoint operator of D with respect to {, }.

Let us comsider the simplest case G=SL(2, C), K= SU2). In this case 4
is the plane C? without the point (0, 0), and &(4) is the space of polynomials
of two variables z,, z,. The scalar product is introduced in £(4) by the formula

(£, 8} = [e=etnltt i g di, day d2, .
Now the ring @(4) is generated by the operators 2, and 5—2—' , i=1,2, It is

_ * - '
easy to verify that [3—‘2-] == gz, and therefore
_ i
J

o) =1 -1 .
("i) e 331 .

This shows that Conjecture II is true in the present case.

The above construction for SU(2) was suggested by Bargmann [3].

Using the examples given in § 4 we can show that Conjecture II is also valid
for G=SL(3, C). As u(¢) we take the decreasing positive solution of the equation

' d?u du

f—‘}}?'{-zm‘*l-u = 0,
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It seems that for G=SL(n, C) the function #(?) has to satisfy the equation

a—1

d
W (ut”"’) + ("-" 1)"u z= ()

A more precise version of Conjecture II is the following

Conjecture 1V, Let g—+g* be the anti-qutomorphism of G corresponding io the
anti-involution (~1):8—~g. The rumbers g, can be chosen in such a way that

for any function f€&(G) the equality (f)*=(f F%) is satisfied. Here f*(2)=7(g").

§ 6. The mapping 7,

In this section we shall give a construction which yields a weaker version of
Copjecture I. More precisely, for every function /¢ £(G) a collection of regular
differential operators on 4 will be constructed. In addition to this, we shall show
that all differential operators on 4 can be obtained in this way. In the consiruc-
tion we apply an operation x, which maps functions on G into functions on 4
and which, we believe, is of independent interest. This operation is an algebraic
analogue of the averaging operation over a subgroup (which is unipotent

_in the present case). It is remarkable that x, transfers the operation of multi-
plication by a function f(g) into an “almost” differential operator on 4. The exact
formulation of these facts is given in Theorems 6.3 and 6.5.

Lemma and Definition 6.1. There exists o unigue mapping w,:8(G)—~>&(4)
such that

1) T, RS = R‘*m:* e tyig = Lim,
'i_for all gcG, heH,
2) mnte == ¢ for all pc&(A).

- Proof. First we prove that =, f is uniquely determined by the conditions 1)
and 2). It'is enough to consider the case when f lies in a subspace ¥ irreducible
and invariant with respect to LY; further we can assume that fis a weight func-
of welghg’& with respect to the restriction of L¢ to H. If y is a highest weight
e given irreducible representation, then felm n*, i.e. f=n*gp, hence in view
s T J=9.

ssume now that y is not a highest weight. Let us denote by f; a vector of
t-weight in V and by y, the corresponding highest weight. Then, under
of RS, fand f, are transformed by the same irreducible representation
m 1) and the fact that every irreducible representation of G' occurs
only once (see[2]) it follows that =, f and =, f, belong to the same sub-
rreducible and invariant with respect to R% But then the weights of
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., fand m, f, with respect to L4 coincide (see [2]). From 1) it follows that the weight
of =, f is equal to y and the weight of =, f; is equal to y,>y. Since =, f,70 we
bave =, f=0. _

From this proof we immediately obtain a construction for n,. Indeed, if f
is a weight vector, not of highest weight, lying in & subspace, irreducible and
invariant under L%, then we put m, f=0. On the other hand, if f is a vector of
highest weight then f=n*¢ and we put =, f=¢. The lemma is proved.

Let us denote for each y €4 the operator LG by E It follows from the con-
struction of =, that = (E f)=0 for all fe& (G) and y€d..

By means of the mapping =%, one can construct dffferentlal operators on A in
the following way. :

Definition 6.2. Let f€ & (G). We define an operator £ in the space #(4) by the
formula f(p)==,(f-n*@), ¢ €&(4).

Theorem 6.3. There exists a non-zero element Z € Wu such that Zf is a regular
differential operator on 4.

Proof. A differential operator D on G is called a chain if it can be expressed
in the form E, E, ..E, , y,€4,. The weight of this chain is defined to be
Pr+yet . Y% €I)* Let us denote by = the set of ail chains D such that Df=0
and by Z,cbh* the set of all their weights. Obviously, & and Z, are finite sets.
For any function ¢ € &£(4) and any chain D we have D(frn*@)=Df-n*¢p, since
E‘ a*@=0 for y€4, . Therefore, if D45 then D(fx*¢)=0. Let us denote by

- U the subspace of &(G) consustmg of all functions u such that Du=0 for*any
chain D¢ =,

Lemma 6.4. There exist a regular differential operator T on G and an element
Z €Wy such that Tu=Zn*n, U for all ucU.

The theorem is an immediate consequence of this lemma, since for any function
@ €&{4) we have f+a*p €U, and so

T(fﬂ.‘* P) = Zﬂ?*ﬂ‘*(fl’ n* Q) = 'm*-Zf(q)),

ie. T'o for*=n*oZo /. It follows from this equality that the differential operator
To fpreserves & (A)< £(G), or in other words, that Z f is a differential operator
on A.

Proof of the lemma. Let Hy, ..., H, denote a basis in h. The elements of Wu
are polynomials of H,, ..., H, and, as above, we may consider them as polyno-
mial functions on h* Let A be the Laplace operator of the second order on G
{constructed by means of the Killing form). Then there exists an element P € Wu
such that for any vector ¢ €£(4) the equality Ap=Pg is satisfied, or equiva-
lently, Ap=P(y,)+ @, where y, is the weight of the vector ¢.
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Let B be the restriction of the Killing form of the algebra g to b, and Q(x)
the dual quadratic form on h*. It follows from resulis of Harish-Chandra [4]
that P(¥)=0(¢+0)—Q(@), where ¢ is half-sum of the positive roots.

For an arbitrary weight 8 we denote by P, and Z; the elements of Wu corre-
sponding to the polynomial functions

Py() = P +P)

Zy(x) = 2(B, x+0)—<B: B)

respectively ({,) denotes the scalar product in h* corresponding to the quadratic
form Q). Let T= {j’[ (Py—A), Z= ][] Z;, whete § runs through E,\ {0}.
B

We shall show that for all #€ U the equality Tu=2Zr*rn,u is satisfied.

Clearly, it suffices to verify this equality when u is a weight vector lying in a
subspace ¥ which is irreducible and invariant under LE, Let uy be a vector of
highest weight in ¥, x and y, be the weights of u and u,, respectively, with re-
spect to h. It follows from the uniqueness of the vector of highest weight that
u,=cDu where D is an appropriate chain and c¢C, and therefore xo-yx€&,.

and

Case 1, x5y, The restriction of A to V is multiplication by P(x). There-
fore

(Py— Ay = (P ()~ PO = (PO+B— Plag))u = 0,

if pe=yg—1x €8\ {0}.-Thus Tu=0, and since =, u=0 in this case, we have Th=

=Zn*n, u=0.
Case 2, x——4 Y- Then
(Py— A)yu = (P(to-+-B)— Pt = (Q(to+F+ )~ Qo+ o))y =
= (2<XO+Q’ ﬁ>+<ﬁa ﬂ))u = zp(Xo)“’ -
hence
Tu = (n(Pp— M) = nZ; ()t = Zu = Zn*m,u.

The proof of the lemma and of Theorem 6.3 is complete.
Tt can be shown that the order of the operator Zf is equal to card Ey~1, ie.

the order of Z’,

Theorem 6.5, Every regular dzﬁ“érenﬁal operator D on A can be written in
the form D=3 Z, f,, where Z;¢ Wu and f,<&(G).

Proof. Let IV be a lifting of D to G (Theorem 3.4). By means of simple trans-
formations I’ can be transformed to the form

D= 3Zf;+ 3 AL, + 3 BB,

where 4, and B, are differential operators on G, ZjGWu-,- FEEG), nedy,
sed.. | '
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Since E, n*¢ =0 and 7 Es, f = 0, we have
D(P = n,a* Do = n, D'n'o = 2 Zym (fim* @) = Z Zf(o),

which proves theorem 6.5.
Let L be the quotient field of the ring Wu. Then the operation f— f cxtcnds
to a mapping Q: L® E(GY—L Q® D (4). Here Q commuies with the actions of

Wy

R, and L.
Theorem 6.6. Q is an isomorphism of L-modules L® &(G) and L ® G (A).

Proof. 1t follows from Theorem 6.5 that 2 is a suzjection.
In Theorem 6.3 we constructed for every function €& (G) an operator Z, € Wu
such that Z, - feD(A).

Lemma 6.7.
| 5olZs ) =f®Z;+ 2 fi®Z,
where deg Z,<deg Z,.

Proof. The lifting of the operator £, f'bas the form To f, where T'= [J(P;— A)
]
(see the proof of Theorem 6.3). It follows from [4] that

& = ,P+ Z C?E'__?E?, CyEC-
YEA,

Pﬁ"‘A "—'_Zﬁ— Z C.},E_,?E‘,.
FEA,

Consequently

Let K=card (Z,\{0}). It is easy to show by induction on K that -
7= %Izﬁ"{-zl e, X, X,
A

where ¢, €C,and H,, X, and ¥, are products of suitably chosen operators i, € Wu,
AH}, yed,, and E,, y€A,, respectively. We also have deg H,+deg X, =K
for all 4, and deg Ha--:K if X,=1. Moreover, Z,= HZH From this it follows

that the operator Tof is of the form f~Z,;+ Zf, H X.Y,, where f,¢£(0),
H,, X, and ¥, satisfy the same conditions as H,, X,, ¥,. Therefore, AN VAL -f)
(seaDeﬁmtlon 3, 10} is of the form ,(Z;-f) = Z,+ 2 f;® Z,, where deg Z, =K,
deg Z,~< K. The lemma i3 proved.

Let us now consider the element D= 3Z,® f; € #(G), where Z, cl, Z,#0,
and the f; are linearly independent. We shall show that Q(D)=0. Let us multiply
D by an element Z € Wu such that ZD = 3 Z,® f;, where Z, € W, and Z;is divisible
by Z, . Let /=max deg Z;. Then 2(ZD)€P(4) and by Lemma 6.7

5(QEZD)) = ZA®Zi+ T f19Z;,

where deg Z; /. This 1mp11es that so(€ (ZD))#O consequently Q(D)#O
We have now proved that £ is an injection and therefore an isomorphism.
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PART H

THE RESOLUTION OF A FINITE-DIMENSIONAL g-MODULE

§ 7. Introduction

Let g be, as above, a complex semisimple Lie algebra, Let ¥ be a finite-dimen-
sional irreducible g-module. The cohomology groups Hin_, V) play an im-
portant role in the theory of representations (see [5] and [6]). They have the follow-
ing properties expressed in Bott’s theorem [3]. Let W be the Weyl group of the
algebra g. Then dim H'(n_, V)=card W, where WW={wecW:l(w)=i} and
I(w) is the length of the element w € W.

The fundamental result of this part is Theorem 10.1 which improves on Bott’s
theorem. _

For any y ¢h* we denote by M, the U(g)-module generated by a vector of
highest weight y--¢ (the exact definition is given below). In Theorem 10.1 we

construct a resolution

04—' V‘(-“ C{)*‘" Cl"*—‘...*'" Cs*‘—‘O

of the g-module V such that
Ci = @ M Wy

weWwiD .

where x—-g is the highest weight of V. Bott’s theorem foliows from Theorem 10.1

since M, is a free U(n_)-module with one generator.

In this part we shall make a systematic use of a certain category of g-modules
which we cail category O (see [12]). § 8 is devoted to the exposition of the properties
of category O. '

In § 9 several results concerning the cohomologies of Lie algebras are presented.
In particular, in this section a purely algebraic proof of Bott’s theorem is given

which, it seems to us, is simpler than the proofs presented in [5] and [6]. This

proof has several points of contact with Kostant’s proof [6], but it does not make
any use of the Hermitian structure. The observant reader will notice that the
resolution constructed in the proof of Bott’s theorem is dual to a part of the

de Rham resolution well-known from the theory of formal differential forms.

In the Appendix we describe the modules occusring in the Jordan—Hélder
decomposition of the modules M,. T he study of the structure of the modules
M, was initiated in Verma’s work [7]. We remark that the works [7], [8] and [9]
contain everything we know about the modules M,. All these facts are also
contained in Theorems 8.7, 8.8, 8.12 and 10.1 of the present work.
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§ 8. The category O

Definition 8.1. Category O is the full subcategory of the category of left U (a)-
modules consisting of all modules M such that

1) M is a finitely generated U(g)-module,

2) M can be made )-diagonal, i.e. there exisis a basis In M consisting of weight
vectors,

3} M is U(n,)finite, ie. for any FEM the space U(n,)f is finite-dimensional.

Definition 8.2. Let x €h*. We denote by Jy the Ieft ideal in U(g) generated by
the elements E,, ycd, and H—y(H)+e¢(H), Heh. Let us put M, =U(g)/7,.
We shall denote by Jy the image of 1 ¢ U(g) in M,.

For the sake of convenience we formulate the elementary properties of the
category O and the modules M, in Propositions 8.3, 8.5, 8.6. These proposi-
tions are simple consequences of Harish-Chandra’s theorem about Laplace
operators (see [4]).

Proposition 8.3. 1) The category O is closed under taking submodules, factor
modules and finite direct sums.

2) Let McO. Then all the spaces MW ¥ €D* are finite-dimensional and
M= @ MW, In addition to this P(M) is contained in a fistite union of sets y,— K,

W Ep :

X €b*. " '

3) Every element M €O has a finite Jordan—Hglder composition series.

4) M, is a free U(n._)-module with Jy as a generator.

5) M,€0.

6) In M, there exists a mazximal proper submoduls. The corresponding ir-
reducible factor module will be denoted by L,. :

7) Every irreducible module in the category O is of the form L,, x €h*.

We denote by Z(g) the centre of the algebra U(g) and by @ the set of all homo-
morphisms 9: 7 (g)-—+C.

Definition 8.4. Let M be an arbitrary g-module. To each element J€M which
is an eigenvector with respect to all the operators z¢ Z (8) we can assign a homo-
morphism &, €@ such that zf= 8;(2)« f for all 2 €Z(g). The set of all such honio-
morphisms § will be denoted by @ (M). '

Proposition 8.5. 1) O (M,) consists of a single element which we shall denote
by 9,. :
2) lexsh if and only if y; ~,.

Proposition 8.6. Let M €0, Then

1) @(M) is finite,

2) For any €& we put I,=Ker dCZ(g). Let M= {feM|iy f=0}. Then
M stabilizes for large values of 7. The obtained submodule of M will be denoted
by M,.
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3) O(M,) = {9.

) M= @ M,.
:, © REB(M)
3) The mapping M —+M, is an exact functor in O,
Now we shall pass on to the stndy of the modules M,. The following . two

theorems give a complete description of the homomorphisms between imodules
M, : '
a{ iz

Theorem 8.7 [1]. Let y, ¢ € b¥. Then either
1) Homyey (M, M,) = 0.
or
L 2) Homu@ (My, My} = C, and every non-trivigl homomorphism My~ M, is an
=' _ Injection. '
Theorem 8.8. Let ¥, Y e,

then N
HOH]U(R)(M)C, M,ﬁ,) =

S

if and only if there exists a sequence of roots y,,
condition (4) for the pair {x,¥).
Condition (A4).

1) x=0,-a, ... <0, .
2) Put o=y, g = Oy,

T T e

s Y €4 Satisfying the Jollowing

e Oy Then y,. — Xi=nYyy, where n is a non-nega-

- 1o particular Homy, (M, M,)50 only if y~y and y=y.

Theorem 8.8 was formulated in [7] as a conjecture; a proof of the sufficiency
of condition (4) was also given there. A complete proof of Theorem 8.8 was
given in [9].

' The structure of the submodules of the modules M, is most interesting when

X €D. We shall study this case in more detail. For this purpose we introduce the
following partial ordering in the Weyl group w.

Wa CW and,._q;,ﬁdl.,h then wy—2. w, means that Wy =0, Wy and
Wi =Il(w;)+1. (Sometimes we shall omit the symbol y above the arrow.) We
it w<w’ if there exists a sequence wy, wy, ..., w, of elements of W such tha

w**wl—'*‘“@""" res —*'Wk‘*“ w,-

heorem 8.8'. Let yeD, w,, Wa €W, Then Homy ¢, (M,, ,, My )=C if and
Ef wléwk. ’

-what follows all modules

Myo WEW, y€D will be considered as sub-
tles of M,.
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Theorem 8.8 is an immediate consequence of Theorem 8.8 and the following
lemamas.

Lemmao 8.10. Let 3 €D, y€4, weW. Then wy—o,wy=ny, where n€Z, n#0,
while n=0 if and only if o, w)=I(w).

Lemma 8.1, Let weW and y€4 be such that l(o,w)<I(w). Then w<a,w.

The proofs of these lemmas will be presented in § 11,

The complete structure of the submodules of the modules M, is not yet known.
Some information is contained in the following theorem.

Theorem 8.12. Let W, x€B*. Then L, cJH(My) if and only if there exists a
Sequence Yy, Yau ---» Y €44 satisfying condition (4) for the pair (x, ¥) (see Theo-
rem 8.8). _

Since we shall need this theorem in §10, we shall give the proof in the

Appendix.

Corollary. Let y €D. Then the Jordan—Hdlder decomposition of the module
M,, consists of the modules L., where w'=w (possibly counted with multi-
plicities). L,,, occurs in this decomposition exactly once. The example in [9]
shows that the modules M, may contain submodules M which are not geverated
by submodules M, M. :

In fact, even the following proposition can be proved.

Proposition 8.13. Let g=sI(4, C). Consider the module M, corresponding to
a weight W €D. Then M, contains a submodule M such that

M5 M,y

M oM

This statement is equivalent to the fact that the number of elements in JH (M) is
greater than the number of elements of W.

§ 9. Cohomology of Lie algebras

In this section we shall recall a number of results concerning the cohomology
of Lie algebras: Moreover, Bott’s theorem will algso be proved here.
Let o be an atbitrary complex Lie algebra and M an a-module. The exact

“sequence of a-modules

0 e M — Cy <2 C ~2—..., 9.1)

where each module C; is free over U(a) is called a free resolution of M.
Let N be another a-module. Consider the complex

0—— Hom (Co, N2+ Hom (Cy, N) ...

and put '
Ext'{(M, N) = Kerd, 1./Im df.
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< Let 7:U(a)~U(a) be the anti-automorpilimn defined by the formula t(X) =
= —X for X ¢a. We denote by N*the right U(a)-module whose underlying space
coincides with that of N and on which the action of U(a) is defined by the for-
; mula f« X=1(X)f for fEN, XcU(n).
i . Now consider the complex
0*"_'_'N:®Co *iN'(B)Cli

and put -
Tor, (N®, M) = Kerd//[Imdy,,.
The following standard facts hold (see [10]).
1) The groups Tor, (N*, M) and Ext’ (M, N) are independent of the choice
of the resolution (9.1).
-~ 2) Let a be a finite-dimensional Lie algehra and M, N be ﬁmtc-dnmensnonal
» a-modules. Then

a) [Bxt' (M, N)I* = Tor; (N*¥, M)

“ ' where N*=Homc (N, C) is a right a-module (ttol, Chapter XI, §3, Proposi-
tion 3.3),

b) Tor,(N*, M) = Tor (M, (N9*).

([10], Chapter VI, §1). :
The cohomology group of a with coefficients in M is defined by the formula
" H'(a, M)=Ext*(C, M), where C is the trivial one-dimensional a-module. .

" The computation of the cohomology groups is done by means of the standard

“y-zolution V(o) of the module C, which is defined in the following way.

- We put

Cy = U(a)?/l"(a), k=01, ..

Then we define a homomorphism d:C,—~C,_, of a-modules by means of the
ula

k
A(XQXiA...NX) = Z(ml)”l(XX;@XlA...AXiA,..AXk)+

+ :Z; k(—l)‘”(XWa,Xj}/\le\ AZALAGALLAX.

=mixjs

e X€U(a), X;€a and the symbol ~ means that the corresponding element
be omitted. Furthermore, we define &:C,—+C by the formula s(X)=(the
nt part of X), X¢ U(w).

‘was shown in [10], Chapter XIlI, §7, the sequence

d;

0 C 2, g+

l_ution of the e-module C.
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Subsequently we shall need a generalization of the resolution ¥(a) for the case

of relative cohomeology. :
Let a be a complex Lie algebra and p a subalgebra. The adjoint action of p

in a yields a representation $ of the algebra p in the linear space a/p. The cor-
responding representations of P in the linear spaces A*(afp) will be denoted by

the same symbol 3, _ )
Let us consider for each k, k=0,1,2, ..., the module

D, =U(w [%)A"(ﬂfp)-

We define the operators dk:Dk»Dk_l in the following way. Let Xy, ..., X; be
elements of a/p. Let Y1, Y, ..., Y3 €6 be arbitrary representatives for Xy, ..., X4

respectively, and put
K
GXRX A ... AXY) = g,; (DXL XA L AZA AKX+

+ ¥ (DX, BIA XA DAZA AN LA XD,

L=k
Here X ¢ U(a), and Y is the image of the element Y'€a in afp. It is easy to verify
that the operator d, is well defined, i.e. independent of the choice of the representa-
tives ¥;. '
In addition to this, we introduce the augmentation e: Dy—~C by putting
8 (X ® 1)=(the constant part of X ). Thus we have constructed a sequence V(w, p)

of U(a)-modules _
' 0 «— C +——Dy~2- D, ~— ...

Direct computation shows that this sequence is a complex, 1.6, dj-14,=0, 8d,=0.
We shall call this complex ¥(a, p) the relntive chain complex of the algebra a
with respect to the subalgebra . Clearly, V(a, 0)= F{a). '

Theorem 9.1. The complex V{(a, p) is exact.

Proof, Our proof will be similar to the proof of exactness of the standard

complex V{a), given in [10].
We define a filtration in V{a, p) by writing 4 €DV if A €D, can be written in

the form _

_ A='Zc;(X“’@X{”/\.../\Xé’J),
where _
eeC, XPeU(e), XfPcafp and degX = I—k.

It is clear that d,(DP)c D@ . Therefore, to prove the theorem, it is enough to
show that for every I the complex

0 1 +—DP0§- A= pipypg A5

is exact. Here M®=C and M®? =0 if />=0. It follows from the Poincaré—Birk-
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hoffi—Witt theorem that DYDY =5,  (a/p)® A*(a/p), where S;_,(a/p) de-
notes the set of all homogeneous elements of degree /- k in the symmetric algebra
of the space ofp. The operator

4. DP(DE9 - DYDY
is given by the formnla

dPXRX A ... AX) = z“ (=1 XX,@ X A AL A . A X,
i=1

Therefore, the complex Gr I(a, p):
0« C«~PDPID Y « DDPIDE Y - ...
I i _

coincides with the Koszul complex (see [10], Chapter VIII, §4) of the space
a/p. This means that the complex Gr ¥(afp) and also the complex V(afp) are
exact Theorem 9.1 is proved.

Proposition 9.2. Let p and g be subalgebras of a such that a=pdPHq (as a
linear space). Then ¥(a, p)~V(q) as complexes of U(g)-modules.

Proof. We define a mapping of complexes ¢ :V(q)—r V{a, p) by the formula
qok(X@:XlA A X,,) = XQXA... AL,
-wherc X €U(q), X;€q and X, is the image of X; in afp. The theorem of Poincaré—
Birkhoff-—Witt implies that ¢ i3 an isomorphism.

 Remark 1. Proposition 9.2 owes its sngmﬁca.nce to the following fact. Assume that

q is a subalgebra of a and that there exists in a a subalgebra p which is comple-

mentary to «. Then the action of the algebra g on V{(q) can be extended to the

action of the whole algebra a. We remark that this extension depends essentmlly
~ on the choice of p. -

Remark 2. Let A be a complex Lic group, P a Lie subgroup of 4, a and p
__the Lie algebras of 4 and P respectively. Let us consider the de Rham complex
- ©=2{Q% of formal analytic differential forms at the point e on the space AlP.
More precisely, let zq, ..., z, be a system of coordinates on the complex mani-
old A[P in a neighbourhood of the point ¢. Then Q° consists of the forms

W = 2 Uiy (D Az A A dzy,

"':ho_ale & 4,...1, (2) are formal power ¥ries of the variables z, ..., 2,.

The groupA acts on the space 4/P. Of course, it cannot act on the complex €.
wever, the Lie algebra a acts on Q. It is easy to verify that the complex @ is
al to the complex V(a, p) constructed above. Therefore the exactness of V{a, p)
also a consequence of the exactness of de Rham’s complex £2.

n what follows we shall be interested in the case when a=g is a complex
Jii:ﬁsimple Lie algebra, p=b=heun, is a Borel subalgebra of g. We shall study
tructure of the members D, of the complex ¥ (g, b).
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Lemma 9.3. Let V be a b-module and let Vo=U(g) r% V. The mapping V V8
: (s

generates an exact functor from the category of b-modules to the category of g-mod-
ules. If in addition V is a one-dimensional module, Ho=y(H)v, E,0=0 for Hch,
Y€y, 0CV then VS=M,,,.

The proof follows easily from the fact that U(g) is a free U/(b)-module. The
second statement follows from the definition of A, ,.,.

Lemma 9.3 enables us to present an easy description of the modules Dy occuring
in the complex V(g b).

Definition 9.4, Let ¥ be a finite collection of weights (we allow that some of
them coincide), We shall say that the module A is of type ¥ if there exists a filtra-
tion 0=MPcMPc...cMP=M such that MP/pm U-D=p, and the collec-
tion of weights {i/;} coincides with V. ‘

Lemma 9.5. Let N be a finite-dimensional Y-diagonalizable b-module, P(N)=

={p+0}, where ¢ runs through all weights of N (with multiplicities), Then the
module U(g) @ N is of type W(N).
U (6}

‘The proof is an immediate consequence of Lemma 9.3,

Corollary. The module D, in the complex ¥(g, b) is of type ¥ (A4*(g/b)).

Since the Lie algebra g acis on the complex F(g, b), we can distinguish in it
a subcomplex corresponding to the “zerc” eigenvalues of the elements of Z (g).
More precisely, let $=9,¢®. We consider the subcomplex Va(g, B) of ¥(g, b)
consisting of the submodules (DD, and the module C;=C. It follows from

Proposition 8.6, §5 that the complex V3(g, ) is exact.

Proposition 9.6. Let Wi ={welw e W®}. Then (D,), is of type ¥,.
Fitst we prove the following lemma.

Lemma 9.7. Let M be a module of type ' and 9¢@. Then the module M,
is of type Wy, where ¥y is the collection of all weights €'V such that =3

Proof. Let 0=MPcMPc...cMP=M be a fitration of M for which
MO/ V=M, ; Y, €¥. From the exactness of the functor M-»M, it follows
that the modules M form a fltration of M, and MPIME V= (M), Tt follows
from Proposition 8.5 that (My )= M, if 9y, =8 and (M, D=0 if 99, . This
implies Lemma 9.7. : '

It follows from Lemma 9.7 that (D), is of type [¥(4*(a/5))]s. Now we shall
study this set. '

Let & be a subset of 4. Put |$|= % ¥. Since the set of weights of g/b coincides

¥€ :
with 4_, the collection of weights of A*(g,b) (with multiplicities) coincides:
with the collection of weights of the form —|®| for all $< A4 + such that card &=£k.
Therefore, S

[¥(4*@/6)]s = {o—9|® < 4., card® =k, (o—|B)~g}.
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. For any element weW we put &,={ycd.[wtycAd_}. Then card &,=k,
"for we W® (Lemma 11.1). Thus Proposition 9.6 is a consequence of the following
lemma.
Lemma 9.8. Let weW, ®C A, . Then g—weo=|®| if and only if &=a,,.
A proof of this lemma is presented in § 11, see also [6].
Now we can formulate the main theorem of this section.

Theorem 9.9. Let V be an irreducible finite-dimensional g-module with highest
weight A. Then there exists an exact sequence of U(g)-modules

| 0« V< BY «BY «...«BY «0 |
where s=dimn_ and B, is a module of type P, (A)={w(@A+o)|w¢€ W(ﬂ}.

Proof. In Proposition 9.6 the required exact sequence of the g-modules BY
_ was consiructed for the case V=C (i.e. 1=0). In the general case we consider the
exact sequence BE® ¥ and put
a

‘ny = (‘BE®V)0,1_+Q"
Now we prove that the sequence
| O« V<BY «BY ...

satisfies the conditions of the theorem. Its exactness follows from the fact that
M-~(M® V), is an exact functor. Now we show that BY is of type Pi(D).

Lemma 9.10. Let x€b*, V be a finite-dimensional g-module. Let us denote by
¥ the set {A-+y} where A runs through all weights of V with the corresponding
multiplicities. Then M,QV is of type V. .

~ Proof. Let ey, ..., e;be a basisin V consisting of weight vectors and A;, 45, ..., 4
be the corresponding weights, We choose an enumeration of the vectors ¢
such that A,<1, implies i>]. Let a,=f,@ €M, @V and M@ =U(g)(a, ..., %)
- Then 0=MPcMPc..cM®,
- To prove Lemma 9.10 it will suffice to show that

MOMED =My, amd MO =MQV.

- Let &, denote the image of g, in M@ /M %=1, It is obvious that @ is a generator
of M®PIM®D of weight,x+4,—e and E,a,=0 for y€4, . Therefore M ®) =
=T )ay, ..., o). We shall show that M® is a free U(n_)-module with gen-
erators a,, ..., a,. Let X;€U(n.), 1=i=k and let p be the largest among the
degrees of X; (with respect to the natural filtration in U(n.)). Then

k k I .

since the degrees of the elements ¥; are less than p and M, is a free U(n_)-module.
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This means that M®/M%=D is a free U(n_)-module with the single generator
By, e MOIM® D 1, . - |

Similar considerations will show that A4 “’me@: V. This completes the proof
of Lemma 9.10. '

It follows from this lemma that BE®V is of type W, where ¥={1;,+weg|i,
are the weights of ¥ (with multiplicities), w¢ W®Y Therefore, Theorem 9.9
follows from Lemma 9.7 and the following lemma,

Lemma 9.11. Let V be a finite-dimensional irreducible g-module with highest
weight A, Then for every we W there exists exactly one weight p € P(V) such that
p+wo~A+g. Moreover the weight i has multiplicity. one in V.

Proof. Lot ucP(V), w;, w, € W be such that wi(p+wo)=2A+¢; since wyu is
a weight of ¥, we have wyu=1. '

In addition, wywo=g. Therefore wyu=1 and wiwg=g. This implies wy==w™*
and thus #=wA. The last statement of the lemma follows from the fact that the
multiplicity of the weight p in ¥ is equal to the multiplicity of the highest weight A.

Corollary (Boti’s theorem [5], [6]). Let V be a Jinite-dimensional irreducible
a-module. Then :

dim Hi(n_, V) = card W,
Proof. We know that
Hi(n_, V) = Bxt},_(C,V) = Tor}-(F’*, C)* = Torf~(C, ()",
Let us construct the resolution {B}} for the module ¥, = (V" Then Tor- (C, ;)
will be the homologies of the complex :

9

0~—B;* B +—0,
The algebra ) acts on this complex in a natural way. In view of Theorem 9.9
we have here that BY1=BY/n_B": is a finite-dimensional space whose weights
with respect to b are equal to w(l+g), w € W, and each of these weights occurs
with multiplicity one. Therefore dim BY*==card W', and every d, is the null-
mapping. The corollary is proved. :

§ 10. Construction of the resolution of a finite-dimensional g-module
~ 'The present section is devoted to the proof of Theorem 10.1, which yields a
sharpening of Theorem 9.9.

- Theorem 10.1. Let V be an irveducible finite-dimensional g-module with highest
weight . Then there exists an exact sequence of a-modules

d.
0P}« ) v A= OV =) ,
where :

s=dimn_, Gz © Mygp.
wE i)
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First we shall present an explicit construction of the mappings d; and e. Let
us put y=A+o0. Then y €D and by Theorem 8.8’ every submodule of the module
M,,, weW can be considered as a submodule of M,. By Theorem 8.7, any
mapping M, ,~M, , is a multiple of the canonical imbedding for w,<w,,
hence it can be determined by a complex number €y, w,+ Therefore, any mapping
CY ~CJ_, can be represented by a complex matrix (Cuw,w) Wi €W P and wy e -1,
Thus in order to construct the mappings d; it will suffice to define the corre-
sponding matrices (4,,).

Definition 10.2. Let us call a quadruple (Wi, we, Wy, w,) of elements of W a
square if
Wy~ Wy > W, and wy - wy; > w,
(see Definition 8.9). -
It will be convenient to consider the finite directed gtaph corresponding to

" W, whose vertices are the members of W and in which an arc leads from w, to

Wg if wl_“"Wg.

Lemma 10.3.% Let wy, wo €W and Hw))—~2=I{w,). Then the number of ele-
ments W €W such that wy—~w —+wy is equal to either zero or two.

Lemma 10.4. To each arrow w,—+w, we can assign a number s(wy, wy) =+ 1
in such a way that for every square (Wy, Wy, We, W,) the product of the numbers
assigned to the four arrows occurring in it is equal to —1.

‘The proofs of Lemmas 10.3 and 10.4 will be given in §11.
Now we can improve on Theorem 10.1 in the following way.

Theorem 10.1'. With the notation of Theorem 10.1. we define the mapping
d;: Cy—~Cy_, by means of the matrix (@2, 0, wy e WD, wy ¢ WD ppope d?, =
=8(01, W) I Wy —wy and AP, =0 otherwise. Let us denote by ¢: Co—+V the natural
surjection. Then the sequence

e

0~ p~cf

dy

Y. <l vy (10.1)
s exact,

Proof. It follows immediately from Lemmas 10.3 and 10.4 that diodi =0
for i=1, ..., s—1. _ . _

We remark that W= {o,, o ¢ £}. Therefore, Harish-Chandra’s theorem ‘on
ideals [4] implies-the exactness of the sequence (10.1) at its members ¥ and C,.

Assume now that we have already shown the exactness of the sequence at the
members Co, ..., C;_;. We shall prove that it is also exact at the member C,,
i.e. that Ker d,=Im d;,,. Let us put K=XKer dy. The desired equality d, ,(C;,) =K
is obviously a consequence of the following three lemmas.

* Lemma 10.3 follows easily from certain unpublished results of D.-N. Verma concerning
the Mébius function on the Weyl group, .
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(We recall that C.,= & M,, is a free U(n_)-module.) ,

wewi+l)

Lemma 10.5. Let C be a free Un_)-module with generators fi, ..., f, and
§:C~K be a homomorphism of Um_Ymodules such that ¢ (/) is a weight
vector In K (with respect to B). Then { is a surjection if and only if the induced
mapping {:Cin_C~Kin_K is surjective.

Lemma 10.6. The mapping

. a;+1:Ci+1/tl_.Cz+1->K/tt_K
s an injection.
Lemma 10.7.
: dime Cypefn. Ciypy = dime Kin_ K < eo,
Progf of Lemmig 10.5, Clearly if { is s_urjectivé then so is {. Conversely, assume
that { is surjective but ¢ is not. Consider the weight vector f in X of weight y
having the following properties: -

a) f¢lIn{,

b) any vector £ of weight ¥’ > belongs to Im L.

There always exists such a vector f since X €0, and therefore for any weight
¥ €Y there are finitely many weights >y such that K9 [0},

Let 7 be the image of £in K/n_ X, Then J=Ze;L(f). Since n_K is invariant
under B, b acts on K/n. K, Therefore we can assume that ¢;#0 only for those
indices # for which the weight of {(£) is equal to ¥. Moreover, g= S—=Zel(f)

is a weight vector lying in 1n_K, and thus g= 2 E_,g. ., where the weight of
v€d,

g is ¥+y=>y. According to the comstruction of S g €lm{, and therefore
SE€Im{. Lemma 10.5 is proved. _

Proof of Lemma 10.6. The quotient space Ci41/m. Cyyy is a linear space over
C for which {7, [weW D} forms a basis.* Since the homomorphism 4.,
commutes with the action of b and all of the vectors Ju, have different weights
it will suffice to prove that d,y(f,,)=0 for any we WU+,

The proof of this proposition is divided in a natural way into two steps,

Lemma 10.6a. The irreducible modules occurring in the Jordan—Hélder de-
composition of the module K are of the form Ly, I(W)=i,

Proof. For the proof of Lemma 10.6a we shall make use of the exact sequence
_ O« ¥V<BY Bl « ...« B0 (10.2)
constructed in §9. It is clear that for all ;
JHBN = U )JH (M,,,) = JH(CY).

wewl

* Let us recall, that £, is the generator of M, (see Def, 8.2).
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“Since both of the sequences (10.1) and (10.2) are exact at th_cir members with

numbers less than i, we have JE (K)=JH(K}), where Ky denotes the kernel of -
the mapping B/ -~ BY .. As the sequence (10.2) is exact at its member BY, Ky is
equal to the image of B, . Therefore

WEWi+L)

LS

and thus Lemma 10.63 ig implied by the Corollary of Theorem 8.12,

Lemma 10.6b. Let wy€ W and the module M €0 be given. We assume thar
IwW=l(wy) for any Ly, occurring in JH(M). Let T M, =M be a homomorphism
such that T(fo, ) #0. Then the image of 1( Sz B Min_M is not 0,

Progf. We shell use induction on the number of elements in JH(M), Let
J €M be an element of maxima weight v and N M be the submodule generated
by /. Thep the module ¥ is isomorphic to a factor module of the module M,.

-We shall distinguish two cases.

Case 1. 1( S, ) EN. In this case
BN Ly, © JH(NY C JH(M,).

' Therefore (as it follows from Theorem 8.12) ¥=w,y, where WiZwy. On the
‘other hand '

- Ly € JH(N) © JH(M).

Thus, according to the condition of the lemma wy=w,, i.c. W =1wex. Since ¥ is
the maximal weight of M, '

(S ) 1t M.

Case 2, T(fu, ) ¢ N In this case the statement of the lemma for A/ can be
reduced to the similar statement for the module M/N. Since JH (M) & JH(M),
We can apply the induction hypothesis. Lemma 10.6b is proved, .

To complete the proof of Lemma 10.6 it suffices to apply Lemma 10.6b to the
module M=K, o

Proof of Lemma 10.7. The module X has only a finite number of generators
(as a U(n_)-module). Therefore K=Kfm_K is a finite-dimensiogal space over C.
Let us choose weight vectors Jis o Ju €K whose images in K form a basis in X,
Let us consider the free U(t_)-module C with » generators gy, ..., g, and define

+ @ homomorphism™o# U(n_)-modules §: C—K by the formula 8(g;)=f,. By virtue

of Lemma 10.5 § is surjective,
Let us consider the exact sequence

O—VerCf L. gV 2

of U(n_)-modules.
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Since C} and C are fiee U (n_)-modules, this sequence can be augménted to a

free resolution

OeeVere O eV et p

of the U(n_)-module ¥,
Now, consider the sequence

ﬁii Cﬁ C;Va' ayml

where, for any U(n_)-module M, M denotes | ® M=Mmn_M. By definition,
)

Uln_
Torf- (C, V) = Ker §/Im .

We shall show that § and 7 are equal to 0.
From the exact sequence
 DA.CciLg_o
we obtain the exact sequence
DAsC-E0R—so,
‘But 7 is an isomorphism, hence #=0.
Furthermore, we have the exact sequence
L A

and thus the sequence _
R R ]

where K;_, =Ker d,_,=Im dy. Applying Lemma 10.6 to the mapping d;: C,~ K, _,

we see that d; is an isomorphism, hence =0,
Thus we have

dim Tor}~ (C, ¥) = dim C = dim (Kjn_ X),
On the other hand, the Corollary to Theorem 9.9 shows that
dim Tor;'™ (C, ¥) = card WO =. dim (Cin..C).

Lemma 10.7 is proved, ‘
This also completes the proof of Theorem 10.1" and Theorem 10.1.

§ 11. Proof of the lemmas

First we shall present severa] results clarifying the properties of the function

{(w) in more detail (see {11D.
Lot us put &,=A4, Nw(4 ~)
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- Lemma 11.1.

1) I(w} = card P, _

2) I 31, 7€ 9y, anid py+y, = ny for n€Z,, then yeo,.

Progf. Statement 1) is proved in [11]. To verify statement 2) it is enough to
prove it separately for A, and wd_, and it is obvious in both cases.

Proof of Lemma 8.10, Plainly,

) 2 Wi, .
wx—o*,,wx =—“'<<"J—’~7§-}-’>—?2-'}-'.

Since y ¢} and the element X is regular,

._._.2<wa?> AN
TS,y SN

We assume that n>0 and prove then that loyw)>i(w). By 1} of Lemma II.I,
it suffices to prove that card &, <card (D,?w. :

a) y¢P,. Indeed, (x, w19y = (wy, ¥ > 0, and therefore w-ipg4_.

b) y_e@,vw. Indeed, ' ' _
_' C @WTy s el y) ~wlyed. .

) Let 6¢ &, and a,6¢4, ., Then 0,0€P, ,,. In fact,

| @,W)"10,8) = wioyle,s = wised .

d) Letdeo,, 0,0 €4_ . We shall show that 5 Edi,y,,,. Assume, on the contrary

that w='a,8¢ 4. Then w™(—0,8)€4_, and thus —0,0€9,,. But 6+ (—0,8)=

=219 L 27, 8 e
6,60 ¥, while ) =>0. By 2) of Lemma 111 this implies y¢ &, and

that contradicts a).

Propositions a)—d) imply that if n=0 then I(w)</ (o, w).
By interchanging w and 9yW We obtain that if #-<0 then J(w)=] (o,w). Lemma
8.10 is proved. - '

Lemma 11.2, - .

1) Let we W, « €5, Then o €D, implies w-2s0,w, and «§ @, implies o, w_%, w,
2) If e.w-2>w for all o€k, then w=1, _ ' '

3) There exists q unique element s € W such that $—>0G.5 for all weX,

‘This lemma follows immediately from the theorems proved in [11).

Lemma 11.3, Let w,, W €W, ved, and ue}, o=y,

We put . ]
_ G Wy~ w, and Ty Wy ~Ls iy, - ' aLn
Then :

Wy s T We  and Wy Te¥, CGuWa. (1 1-2)
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Conversely, (11.2) tmplies (11.1)

Wy Wy’
Diagram 1 Diagram 2
Progf. We have to prove that Diagram 1 is equivalent to Diagram 2. Let
y'=a,y. Then y €4, and o,wy=0,w,. Since I(w,)=I(w,), formula (11.2) is
equivalent to /(o,w)=I(w;)—1. Let x €D. Then, by Lemma 8.10,-

W) — O WiX = Ay, n>0.
Applying o, to this equality we obtain
O Wak — Wy X = ny’.

Using Lemuna 8,10 again we obtain that I(o,wy)<I(wy). Therefore, (11.1) im-
plies (11.2). '
‘We can prove similarly that (11.2) implies (11.1).

Proof of Lemma 8.11. The proof will be performed by inducton on J(w).
If I(o,w) =I(w) —1, then by definition o,w=w, Since I(w) and /(o,w) are of
different parities, it remains to consider the case in which I(o,w) =/(w) ~3.

Let «€X be a root such that w-ao,w. Obviously, ay and ¢,6,w=0y,0,w,
where y'=a,7¢€4,. :

Here we have

oy o,w) = Ho,o,w) = 'I(O'?w)—i—l =1l(w)—2 < l(o,w).
By the induction hypothesis there exists a chain
G«W““wl_*lva—P :..—*Wg"*a'aa'?w
and thus also a chain

+ .
Wy 2o Wy -2 Wy e Wy, 2 G W (11 3)

{where w_,=w, wy=0,w and p, =¢), There are two possibilities.
Case 1. o,0,w ~0c,w. Then thers exists a chain

hence w< o, W.
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gmgfqz O W G 0y W, Let i be the largest number such that in the chain (11.3)
=0 Applymg Lemma 11.3 several times we obtain that

#
aw Oy V41 ﬂ'yw,

Vi Yigl
O Wi 1;—:-0‘ Wiy ocus O wi-——‘f‘ﬁﬁtr Wipt-

But o,w; =w;—;. Hence we obtain a chain

Y n [ % o, ¥
W = Wy Wy =i Wy — 0 0, Wy g — it g,

Therefore, w<o,w, and Lemma 8.11 is proved.

Proof of Lemma 9.8. We want to prove that if weW, ®#cAd, and o—wo=
=|@|, then ¢ =D, =4, Nwd_. If w=e, this is obvious, We shall perform the
proof by induction on I(w). Let /(w)=i>0. We choose an «€ZX such that
Ho,wy=i—1, ie. ¢ €P,,. Then

0. @] = 6,0—0,Wg = g— o, We—o0.
dcd, implies «¢c,P. Therefore, putting o,w =w’, we have
e—We = g—o,wg = lo. @ U {o}].

~ We shall show that o € &. ndeed, assume that this is not true. Then o, ®U {o}<
<4, and by the induction hypothesis @,.=0,dU{a}, ie. acd,. Accord-
ing to Lemma 11.2, 1 a,w~w, which contradicts the choice of .

Thus o ¢®. Let us put &= —{a}. Then g—o,wo==|0,d'| and g, &' 4.
By the induction hypothesis Py=0, %, ie. P=0,0,Ula} It is easy to
verify that o, ®,,U{a}=>&,. Lemma 9.8 is proved.

. Proof of Lemma 10.3. We shall prove this by induction ot /(w,). Since I(w;) =2,
- we can choose an « €X such that w; ~g,w,. There are two possibilities..

Case 1. wy—~0o,w,. Let us assign to every chain

Wy Ty P - (11.4)
a chain
ToWytr W' L G, (11.5)

in the following way. _ :
a} If y,5e, then put §,=0,7y,, =0, 7;, w' =0, w. It follows from Lemma 11.3
. that ' : :

vy d a1 '“"""* w """""‘ T Wo.
b) If p;==q, then put 8,=7,, dy=a, W =w,. Using Lemma 11.3 again, it is
casy fo see that we have constructed a one-to-one correspondence between the

chains of form (11.4) and the chains of form (11.5). As /{o,w)<I(w,), we can
apply the induction hypothesis, '
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S Case 2. 6wy Wy, If wy-ta i, then by Lemma 11.3, we have either Y=a
or ya=c. The same lemma shows us that Wy >0, W, i equivalent to LA
Therefore, either there is no chain of fo

tm (11.5) or there exist exactly two chaing
Wi+, Wy —+w, and W18, Wa->w,, Lemma 10.3 js proved.

Proof of Lemma 10.4. For any element we W we

We shall prove by induction on I(w) that s(wy, w,) can

in such & way that the condition of the lerama be.

" (Wi Wy, wy, wy) with wy €I(w). This will imply the staiement of Lemma 10.4
since J(s)=W (the element SEW is defined in Lemma 11.2, 3).

Thus assume w € W. We choose an o €X' such that w—g, w. By the induction

hypothesis, the function $(wy, wy) has been defined for Wy, Wy €1(0,W).
1) Let

put 7(w)= {w eww =w},
be defined for Wi, Wy €1(w)
satisfied for any square

W= Wy~ wl."_""'---"jf‘*.wka
where y;5¢ for all 7, Then by Lemma 11.3 FuWo>GeWy~... +0,w, and Wy G, W,
for all 7. In paiticular, o, w,¢ I(g, w) for all ;.
2) Let w' e I(w)\I(o, w) and let

| w=w0—’fl-+w1-'——~»...——’-"-‘+w,-,==_ w
be an arbitrary chain leading from w to w’.
wise W €1(o,w) would hold in view of 7).
o, W € (o, w).

3) Let us now define the function s(wy, w,) for ali arrows wl%w'g, wy €1(w).

Here we assume that $(wy, wy) has already been defined if wy € X{g, w).

Let w e I(wN\I (o, w). If Wy==0,W;, then we put s(wy, wp)=1. Let Was2 @, Wy, |
Then Lem_ma 11.3.2 implies

Then y;=« for al I, because other-
In particular, we have W —+o,w and

g,

wl-/ WWI\ TaWy
S~ _.

where o,w,, O Wy €1(a,w). In this case we put

.S'(WI-, wﬂ) = "“S(W]_, 0‘¢Wg)6'(1'1-’g, au-ws)s(o'awls

TuWs). (11.6)
4) Now we prove that the fu

nction s defined in this manner satisfies the con-

ditions of Lemma 10.4. For every square 4
_ W,
TN
Wy _ W,
Wy
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b) wi¢ I(o,w) and y,=5=¢, Then P(A)=—1 in view of formula (1L.6).

¢) wy ¢ I{s,w) and M=o, Jy=2a, Since We Wy, We have 9,45, and therefors
one of the elements y,, Jy must be different from o. Then by Lermma 11.3 Wy—>0, Wy,
and thus y,=a and 5, ¢4, According to Lemma 11.3 we have five squares

’ B . -’41 = (w:b Ws, aoswl s‘a'a: wﬂ)s
Ay = (w.‘l.s Way Gy, o'ast)#
AS = (Waa Wy, CyuWy, o'awd.)s
Ay = (WSs Wa, O, Wy, o, wd)s
A& = (Gawls Oy Wy, Oy Wy, auwci)-
Here p(d) =1, i=1,...,5, in view of a) and b). It is easy to verify that
5 : ,
p{d)- ,gl -p(A_:) =1, hence p(d)=—1, too.
d) '?1=O£,.52;zéoz. .
By Lemma 11.3, Wa =0, Wy, Wy—a,w, and we have three squares
AI = (wls Wy, Ws, O'awa)_:
A-B'z (chs Wy, Gy Wy, aawd): .
_ Ay = (W, Wy, oWy, T, W),
In view of a) and b} we have p(4,) = —1,i=1,2,3. Sincep(A)p(Aa)xp(AI)p(Aa),
we also have p(4) =~ ],
Thus we have considered all the possibilities for the 10018 1, yp, 64, 3, (up

to interchanging p, with d; and w, with wy). The proof of Lemma 10.4 is com-
plete, '

- APPENDIX

Let x, Y €b*, py, ..., "€4.. We shall say that the sequence 7y, ..., ¥, sat-
isfies condition (4) for the pair (e ¥) if '

1) X=0y, .00 ¥, _

2) Let yo=y and Xi=6Gy ...op . Then for all i we have Xi-1—Xe=n;9;, where

ni — 2<Xi--1: ?l)
D)

In the Appendix we are 8oing to prove the following theorem.

€Z,.
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Theorem Al. Let L, eJH (My). Then there exists g sequence Yy, ..., Y, which
satisfies condition (A) for the pair (x, ¥). '

In the proof of Theorem Al we shall use the following lemma.,

Lemma A2, Let y¢b*. Then
JHM) = U ¢,L,, c,cZ,,

pre¥
pEY

where ¢, =1.

This lemma follows easily from Propositions 8.5 and 8.6.

Proof of Theorem Al. Let A¢BE. Let us denote by F, an irreducible finite-
dimensional g-module for which 2 is an extremal weight. We recall that if ;. ¢ P(F)),
then flull= Al and fluf=}jA] implies w~ 2. |

Definition A3, Let ych*, A¢ bz. The pair (x, ) is called admissible if there
are mo w & W and p € P(F,) such that ' '

a) wy <,

b) wx+m = x+1,

©) Wl+m~ g+ |

The meaning of Definition A3 is illuminated by the following proposition,
whose proof we postpone until later.

Proposition A4, Suppose y, W eh*, Ac by and the pair (y, ) is admissible.
Furthermore, let L, ¢ JH{M). Then there exists a weight 1€ P(F,) such that
-Lx-l-l EJH(MI&hu)' _ .

Proposition A4 includes all the information about the modules M, and L,
that we need to prove Theorem Al. The subsequent arguments will only concern
‘the geometric structure of the space h*,

Lemma AS. 1) There exists a constant e1>0 with the following p'roperry: if
P>, 9+ 81<r+-84(0, ¥, 94, 8, €H*), then (I8l + 181 = o~ 1.

2) There exists o consiant ¢y with the following property: let ¢ €hz; then one
can find a sequence of weights O=g,, D1s oo Op=0, @, €DE, such that
- loi—@i_all < €z and 400, [0, 9]) < ¢,
where [0, @] is the segment in h* connecting O with @, and d( , ) denotes the distance
in bi. _ :
3) Let o, €C*, we W, Then (we, ¥y ={o, ¥). If in addition @, W E€C*, then
the equality is satisfied for w=e oniy. :

4) If Cis an arbitrary Weyl chamber, ¢,y cC and @, then =1,

S) Let Fwmy,=cy, where Yoo V€4, €L, Then ¢€Z as well.
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~Proof. 1) It is well-known that (g, @)=0 for all & €. Therefore there exisis
a ¢>0 such that {g, &)=>cll] for all x€Z. This implies that for any €K we

B ‘have {g, x) =cllx]. Moreover, @—Y=0 and &—9y=>p . Consegnently,

Il 9l + 19al) = (o, 84— 9} = (o, 9 — ) = el —~ ).

Therefore we can put ¢ =lgllé=*.

2} It suffices to put ¢, =24, where d is the diameter of an arbitrary fundamental
domain of the group b in by,
~ 3) Letus write w in the form w=0, ...0, withk=1I(w)and put g,=¢, @ =w; @,
where Wy=0,...0, . Then ¢;—e,,,=c,0, where

o = 2P0t _ Ao, witey
" CORER A
It follows from Lemma 11.2.1 that ¢,=0. I is also clear that ¢,=0 if pcC,
. Therefore (o, ) — (we, ¥) =S¢, (&, ¥>. This completes the proof, _
4) It can be shown that C=C*. Now let y=wep. According to 3, (o, ¥)=
=, V). But [lol=[yl, hence @=1. ‘
5) We can assume that ycX. In this case the lemma follows from the fact
that the elements of Z form a basis in which every root has integer coordinates,
- The proof of Lemma AS is complete. _ '
Let  €h*. We shall denote by Y(y) the following proposition:
Y(x). For every reb* such that L, €JH(My) there exists a sequence
Vas -os Y €A which satisfies condition (A) for the pair (x, ).
Theorem Al says that ¥(x) is valid for ail X €b*. We shall prove it in several
steps. For any y €4, we shall denote &, the hyperplane in b orthogonal to .

Definition A6. Let cy=3c,cy. The elemeni . 9* is called sirongly regular it
d(Re ¢, B.)=>c; for all y€4,, :

Step 1. Let X © €b* be strongly regular while y—g € bz and Re x, Re ¢ belong
to the same Weyl chamber. ‘Then propositions Y(x) and Y (@) are equivalent,

Step 2. Let ¢, x €b* be strongly regular elements with X—¢ €bs. In addition
to this, let Re x€C, Re ¢ ca,C, where C and o,C (y€4,) are neighbouring
* Weyl chambers and (Re y, v»=<0. Then ¥(p) implies ¥(x). _ .
It is casy to see that Steps 1 and 2 enable us to teduce the proof of ¥(y) for a
strongly regular y €b* to the case Re X €C*, Now we are going to prove Y(¥)in
this case. Lot  €b* and Ly €JH(M)). Tt follows from Lemma A2 that y~y and

x=4. This means that y =y -+, where % ¢ X. Then (@ W) = (. x) =+ (3¢, %) +2(x, ).

Now

| V.9 =62, Re(yx) = (Rey, x) = 0,
and {x, %) =0. Consequently {x, ) =0, hence y=y. :

Therefore Steps 1 and 2 prove ¥ (x) for all the strongly regular weights x € h*,
The general case is reduced to this one by means of the following Step 3,
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Step 3. Let y€b*. Then there exists a strongly regular element ¢ €b* such that
Y () implies ¥ (). :

Thus the proof of Theorem Al reduces to the proofs of Steps 1, 2, 3 and Proposi-
tion A4.

In the proof of Steps 1, 2, 3 it will be convenient for us to make use of the follow-
ing lernma,

Lemma A7. Let Cy and Cy be two Weyl chambers, s W €H* such that Re y ¢,
Rey €Cy, x~y and 1 €Y, p€bE be chosen so that Re X+AEC, Rey+pueC,.
Stuppose that the sequence of roots yy, ..., Yo €4 satisfies condition (A) for the
pair (x+2A, Y+p). Then it satisfies condition (A) for the pair (3, V) as well.

Progf. Ttem 2) of condition (A) follows immediately from the fact that the
sign of (y, ¥) is constant in a Weyl chamber. In order fo verify item 1) we put
Ax=0y ...00 . Then y~¥~y, and Re y, Re X €C;. By Lemma AS. 4, Re y=
=Re x,. Moreover, y—y, €h5 and consequently Im y=1Im y,, i.e. x=y,.

Proof of Step 1. Lemma A5. 2 enables us to reduce the proof of Step 1 to
the proof. of the following proposition. Let y €h*, 2€bZ be such that d(Re y, B)>
>20,¢y, where E= (] £, and |Al<e,. Then Y(x+2) implies ¥(x).

?(Eld-i» .

First we show that such a pair (x, 4) is admissible. Indeed, assume that there
exist we W and u¢ P(F,) for which wy<y and w(x—+u)=x+Ai. Then by Lemma
AS. 1, '

25 = 2448 = AN+ |ul > oYy —wyl.

 On the other hand

I%—wxll = d(Re g, B) > 2¢;¢,.

Therefore, the pair (y, A) is indeed admissible.

Now let L,€JH(M,). Then according to Proposition A4, L, , CTH(My,.,)
for a certain g € P(F,). It follows from Y{(x-+A) that there exists a sequence of
OOL8 7y, ..., y €4, which satisfies condition (A) for the pair (x4, ¥ +p).
Since lull<ez, ¥ and Y +p lie in the same Weyl chamber. Lemma A7 implies
then that the same sequence p,, ..., % satisfies condition (A) for the pair (x, )
as well.

Proof of Step 2. Applying Step 1, we can redﬁce the proof to the cas;a when
- Salle—xl < dRe g, &) (A.D)

_ éecA + \7-
We put A=¢—y and prove that the pair (x, 4) is admissible. Indeed, suppose

for alt

“we have w € W and ;€ P(F,) such that

Wy < wit+p) > x+A
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th: x implies wg,. Therefore,

wx—xl > d(Re fp,ﬁigJ Hs) = 2¢4 AL,
¥
But then, by Lemma AS, 1,

2020 = WA+ Heefh = e hwy— 1) > 2[14].
Thus the pair (x, 1) is indeed admissible.

- Now assume L, € JH(M,), ¥ ¢b* Then Lyy2€JH(My ) for some LEP(F,).
Y(x+4) implies the existence of a sequence yy, ..., y,€4.,. satisfying condition
(A) for the pair (y+4, ¥ +-p). To complete the proof of Step 2 we have to con-
struct a sequence of roots which satisfies condition (A) for the pair (. ).

Let w € W be such that Y=wy. Then W +p)=y+w= 4, Since liw=2uli= ),

we have either Re w™ (+4) €C or Re w 'Y +1)€0,C. Let us consider these
two cases separately.

1) Rew (i +pu)€C. We have
w“1(¢+ﬂ)~x+ﬂwa,,(x+/l)

and

: _ Reo,(x+MccC.
" By Lemma AS. 4,

_ X+ D) = W+ p) = g +wlp, )
I . Consequently __
S GX—x = wlp—g,l.
- Since w4 and o, 1 are weights of F;, we have
L O l—x=cy= 2 my,
where 7, € Z. By Lemma A5, § c¢ Z, and in addition

2% v
e e o R {
Py
By Lemma A7, the sequence Y15 o5 ¥y satisfies condition (A) for the pair (o, x, ),

ence the sequence vy, ..., y,, y satisfies condition (A) for the pair (¥, W)
- 2) Rew™ (¢ +p)€a,C. Let us put

Xe = O"y‘... O'?I'p, B
fi = Gy;“'a.n('ib"i"‘u)'

remark that all y, and %, are congruent modulo b . Thus for each ; we have
e Xi<Yi-1 OF yy>x,_,. If Xi=Xi-y for all §, then the sequence Vis -vs Vi
sfies condition (A) for the pair (y, ¥). In the opposite case we denote by
le smallest index such that X:,=%,~1- We shall show that the sequence of

Tt s 7!0—-1: ‘]"io-{-l: vy Prs ¥
s condition (A) for the pair (x, ¥).




First of all Re %, and Re z, _, lie in the same Weyl chamber. Indeed,

Iip—2— Frp il < J Il
' : %z~ Fioll = HA),
and by Lemma A2, 1,
: M2 Zill < 2¢, [IAf.

In addition to this, the real parts of the weights

s ad Fy=o, g,
as well as of the weights

xio—-l = 0?i9—1 e O'”Qb aﬂd fio-—-l — O'WO__I I 0'?1 (‘/’ "'I_p:)

belong to different Weyl chambers. However, on account of condition (A1)
the ball of radius 2¢, Al about the point Re Xi,~1 Intersects exactly iwo Wey

chambers _
Ty, O C  and Oy, »e 0y, 0y C.

Therefore, Re X;, and Re Xi,—1 lie in the same Weyl chamber.
By Lemma A7 the sequence Y15 o5 Py,—q satisfies condition (A) for the pair
(X1, %), and the sequence Yigr1s «++» Vi satisfies condition (A) for the pair
(04X %i,-1)- In exactly the same way as in case 1) we can show that <o)
Consequently the sequence of roots

. 1, Yas °-->?:'o-ls?ig-l-la vy Tis ¥
) - satisfies condition (A) for the pair (y, ).

Proof of Step 3. Let us first consider the cage Re x==0. Then the assumption
; L, €JH(M,) and Lemma A2 imply ¥=y. '
4 Assume now that Re y #0. We can choose a weight A¢ b7, in such a way that
: the following conditions are satisfied. _
a) Rey and A belong to the closute T of the same Weyl chamber C.
i b) The weight -1 is strongly regular.
1' ¢) Let ¢,=min {"%" o EK\{O}}. Then

o
!T JA—nRexl = ne,f2e, (A2
' for some n¢cZ, '

| _
| - Lemma A8. Ler vEP(F) such that Xtv~y+Ad Then and v Re y lie in
!f ,' the same Weyl chamber and : _

! lv—rRex| = ncyf2e. ' (A.3)

|

f ' _ Proof. Let w;, w, € W be chosen in such a way that w, C=C* and wl(x-i—l)_:
=Wy (x+7v). Then wyA is the highest weight of the representation 7, and therefore
wWiA~w,v €K, Thus

<Q’ wl‘;") = (Q» w?. “')y
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where the cquaIity holds only if w,v=w, 1. On the other hand, by Lemma A2, 3,

| - Re{o, wpx) = Re (g, w2,

: Comparing these inequalities with the equality w;(x+A)=w,(x+v), we obtain
- wid=w,v and wix=wyx. Now applying the element W 'w, to the inequality
~ (A2) we obtain the statement of the lemma.

Now we prove that the pair (y, A) is admissible.

Indeed, let w € W and g CP(F)
such that

WE<X WHHB~ g+ wr+m) = x+ 4,
Since wy =<y, we have Ilwxu xl=¢,. This implies

W@+ Do+ Dyl = @t e,

. | w((n+Dy) < (n+1)y.
Applying Lemma A5, 1 we obtain that

R —nxll -+ lp—nxl) = (2 +1)c,,

with contradicts (A2) and (A3). Consequently, the pait (x, A) is admissible,

Now let L, €JH(M,). Then in view of Proposition A4, L, , , ¢JH (My,,) for

some pcP(F,). Applying Lemma A8 again we find that v and ¥4 lie in the

same Weyl chamber, Let Yis o5 Yo €44 be a sequence of roots which satisfies

condition (A) for the pair (x+2, ¥r+-p). Then by Lemma A7 it also satisfies
- condition (A) for the pair G, ¥).

and

Proof of Proposition Ad. Let 41— Hys tay

-» 4 be the weights of the module
- Fy (with the corresponding multiplicities).

Then, as follows from Lemma 9, 10,

i
THM, @ F) = U JH(M,

.‘c‘Hn)‘

- Leiima A9, Let My, M, ¢ O, while JH(M,) < JH (M) and F be a Sinite-dimen-
sional g-module, Then : :

JHM,® F)CTH(M,® F).
The proof follows easily from the fa
functor,

Now let the pair (x, A) be admissible and LyCJH(M,). Then

ct that tensor product by F is an exact

!
TH(L,®F) c JH(M, ® Fy) = JURLLCZ)

Therefore, in order to show Lys,JH (M, + ), for some weight 1€ P(F,) it suffices
to prove that

Ly CIH(L®F).
Let M be a maximal proper submodule in M, such that L =M, /M. Then
L®F, = M,Q FJM®F,.

Since Ly, ; CJH(M,® F,), it suffices to prove that L., ,¢ JH(M ® F,)

*
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By Lemma A2, . JHM)c U JH(M,),
Py
p=x

consequently JHMQF)c U cq,JH(Mq,@le)-
Lodad 4
P=X

Thus it suffices to show that for any ¢ ¢b* with ¢ ~y, ¢=<x and any € P(Fy),

x-‘-;{ ¢ JH( 'rj!l)
Assume, on the contrary, that L, ., € JH(M,,.,). Let @=wy, wc W. Then by

lemma A2,
XtA~o+p=wle+w iy

| X+ A < wipg-tw ).
But w-'p¢ P(F,) which contradicts our assumption on admissibility.

This completes the proof of Proposition A4 and thus of Theorem Al.

Theorem Al10. Let x, ¥ €9 and v,, ..., v, €A, be a sequence of roots satisfying
condition (A) for the pair (% W) Then Hom (M, M,)=C

A proof of Theorem A10 is contained in [8] and {9).

Theorems 8.8 and 8.10 follow immediately from Theorems Al and A0,

and
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Lie groups and their representations

QUASI-ADMISSIBLE REPRESENTATION
OF »-ADIC GROUPS

G. YAN DIJIK

Introduction

The notion of a quasi-admissible representation of a p-adic group is due to
Harish-Chandra. 1t is closely related to the notion of a quasi-sitaple representa-
tion of a real connected semisimple Lie group. Following some fruitfiul ideas
of Harish-Chandra, we recently made some progress in the theory of “asymptotic
oxpansions” as described in [2], Part IV, without assuming Conjecture IT1 (11,4 1).
Quasi-admissible representations occur very naturally there. The ideas are worked
out in this note. The main applications of the theory, which we have in mind,
are concerned with the asymptotic expansions of the matrix coefficients of the
representations Of the discrete series of G. They should belong to the p-adic
analogue of the (Schwartz) space %(G), introduced by Harish-Chandra for
real semisimple Lie groups with finitely many connected components {cf. [1(c)], § 9).
We do not discuss the applications here, In§ 1 we discuss admissible representations
of p-adic groups and derive a few properties, most of which are well kndwn.

§2 is conesrned with quasi-admissible representations. The results should
- Justify the refticaship to quasi-simple representations of real groups, mentioned

above. Li oo fictes with a theorem which was inspired by ideas of Yacquet, The
~result tuzn: to be basic for the theory of the “asymptotic expansions”, which
is described in § 3.

- §0. Some notations and conventions

Throughout this paper, € will be a p-adic field, i.e. a locally conmpact field
with a non-trivial discrete valuation, Let us fix an additive Haar measyre de

n £2. The valvation (or absolute value) on R is assumed to be normalized by
equiring d(@w)=|a| do (xc¢0%). Let O denote the ring of integers of Q.

By G we mean a reductive p-adic group, i.e. the group of Q-rational points of
connected, reductive, linear algebraic group G defined over Q. Then G GL,(Q)
or a suitable 720 GL,(£2), being an open subset of a vector space over £ of
imension »* is a locally compact group. Since G is closed in GL,(£), it is also
ocally compact. Moreover G ig unimodular, We keep mainly to the notations and
rminology of [2]. '

ological space ¥, we shall denote by CI(S) the. closure
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