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ABSTRACT. We study conditions on a topological space that guarantee that its product
with every Lindel6f space is Lindel6f. The main tool is a condition discovered by K.
Alster and we call spaces satisfying his condition Alster spaces. We also study some
variations on scattered spaces that are relevant for this question.

1 Introduction It is well known that a product of two Lindelof spaces need not be
Lindel6f. On the other hand, many spaces are known whose product with every Lindelof
space is Lindelof. Let us call such a space productively Lindel6f.

K. Alster, [Alster (1988)], discovered (and we rediscovered, [Barr, Kennison, & Raphael
(2006), Section 4] and called amply Lindeldf ) a property which we will here call Alster’s
condition that is sufficient—and possibly necessary—for a space to be productively Lin-
del6f . Our formulation of Alster’s condition follows. It looks rather different from Alster’s
but the two are readily shown to be equivalent.

Definition 1. A space satisfies Alster’s condition if every cover by G sets that covers each
compact set finitely contains a countable subcover. A space that satisfies this condition will
be called an Alster space.

The point about covering each compact set finitely is crucial. In the space of real
numbers, every point is a G5 but the cover by points has no proper subcover. But the reals
are o-compact and it is obvious that every o-compact space is an Alster space. It is a trivial
observation that if a space has the property that every compact set is a G5 (this is the case
in any metric space), then it is Alster if and only if it is o-compact.

Alster proves, assuming CH, that a space of weight of at most X; is productively Lindelof
if and only if it is Alster. However, it is quite evident in his paper that the “if” direction
uses neither CH nor the weight condition; it is fair to say that he showed that his condition
implies productively Lindelof . Neither he nor any of us is aware of any productively Lindelof
space that is not Alster, no matter the weight or set theory.

1991 Mathematics Subject Classification. 54D20, 54B10, 54G12.
Key words and phrases. productively Lindel6f, Alster space.
*The first and third authors would like to thank NSERC of Canada for their support of this research.
We would all like to thank McGill and Concordia Universities for partial support of the middle author’s
visits to Montreal.



A somewhat different proof that Alster implies productively Lindelof is found in [Barr,
Kennison, & Raphael (2006), Theorem 4.5] where it is also shown that the product of two
Alster spaces is Alster.

Oddly, despite interest in the question of productively Lindeldf, Alster’s paper does not
seem to be widely known. We have found only two citations, one by Alster himself and one
in a paper that is widely unavailable (and we have not seen it).

The paper [Telgarsky, 1971] studies C-scattered spaces in some detail (see Section 5 for
the definition). One result we will be showing is that Lindel6f C-scattered spaces (and some
more general ones) satisfy Alster’s condition and therefore are productively Lindel6f.

2 Definitions and basic properties All spaces considered here are completely regular
and Hausdorff. We denote by C(X) the ring of continuous real-valued functions on the
space X.

We will be dealing with covers by Gs sets. Since a finite union of G sets is again a G
set, we can, and often will, suppose that the covers are closed under finite unions.

We recall that a continuous map 6 : X — Y is called perfect if it closed and if 6~ (y)
is compact for all y € Y. It can be shown that whenever B C Y is compact, §~1(B) is also
compact. It is not always assumed that a perfect map is continuous, but we will suppose
that it is. The inclusion map of a subspace is perfect if and only if the subspace is closed.

We also recall from [Barr, Kennison, & Raphael (2006), 2.2] that any 6 : X — Y induces
three maps on subsets, the direct image also denoted 6 : P(X) — P(Y), the inverse image
=1 : P(Y) — P(X) and the universal image 64 : P(X) — P(Y). These are characterized
by the fact that if A C X and B C Y, then §(A) C B if and only if A C 6~(B) and
0~1(B) C Aif and only if B C 64(A). Since 64(A) =Y —0(X — A), we see that when 0 is
closed, 64 takes open sets to open sets.

We also recall that if X is a space, a point p € X is called a P-point if for any f € C(X),
the set {g € X | f(q) = f(p)} is a neighbourhood of p. A P-space is a space in which every
point is a P-point. It is immediate that P-spaces are characterized by the fact that G sets
are open.

A not-necessarily-open cover of a space is called ample if it covers every compact set
finitely. One of the main results of this paper is that Lindel6f ORC-scattered spaces (defined
in Section 5) are Alster (see 26).

We will say that a point p € X satisfies the open refinement condition (ORC) if
every ample G cover that is closed under finite union contains a neighbourhood of p. If p
is a P-point, it satisfies the ORC because one element of the cover contains p and a Gy that
contains p is a neighbourhood of p. If p has a compact neighbourhood A then some member
of the cover contains A and hence is a neighbourhood. Thus this condition is a common
generalization of being a P-point and having a compact neighbourhood. We will say that
a space satisfies the ORC or that it is an ORC space if every point satisfies the ORC.
This is a common generalization of P-space and locally compact space. We will see that the
class of ORC spaces is closed under finite products and closed subspaces and hence gives a
much broader class than simply the union of the P-spaces and the locally compact spaces.

Theorem 2. Of the following properties on a space:
1. discrete
2. P-space;
3. locally compact;

4. ORC;



5. Alster;
6. productively Lindeldf.
1 implies 2 and 3, each of which implies 4. For Lindeldf spaces, 4 implies 5 implies 6.

Proof. We have already discussed the facts that 2 and 3 imply 4. It is clear that, for Lindelof
spaces, 4 implies 5 and Alster showed that 5 implies 6 (see also [Barr, Kennison, & Raphael
(2006), Theorem 4.5]).

The space of rational numbers gives an example that is Alster but not ORC, since every
compact set is a G5 and no compact set has a non-empty interior.

3 Permanence properties In studying the properties of G5 covers, we can usually
suppose, without loss of generality, that the cover is closed under finite union and the
formation of G subsets. If it is, we call it a Gy ideal cover. We make the same definition,
substituting open subsets for Gs subsets, for open ideal covers.

Theorem 3. The product of two ORC spaces is a ORC space.
We use several lemmas.

Lemma 4. Let X andY be spaces and W be an ample Gs ideal cover of X xY. Then for
any compact sets AC X and BCY and any W € W such that A x B C W there are G
setsUC X andV CY with Ax BCUxV CW.

Proof. Let W =, cy Wy with each W,, open. According to [Kelley (1955), Theorem 5.12]
there are, for each n € N opensets U, C X and V,, € Y with Ax BC U, xV,, CW,. If
we let U =(U, and V=V, then U and V are Gs setsand Ax BCUxV CW. O

Lemma 5. Let X and Y be spaces with X being ORC. Let ‘W be an ample Gg ideal cover
of X x Y. Then for any compact set B CY, there is an open ideal cover U(B) of X with
the property that whenever U € U(B) thereis a Gs set V CY with BCV and U xV € W.

Proof. Let U'(B) denote the set of all Gs sets U € X for which there is a V' O B with
UxV e W. IfUy, Us € U'(B) there are G sets Vy, V5 containing B such that U; x V; € W
for ¢ =1, 2. But then B C V; NV, and

(U1UU2)><(V10V2)Q(U1><V1)U(U2><V2)€‘W

It is trivial to see that €'(B) is closed under G subsets and hence is a G4 ideal. Finally,
if A C X is compact, the ampleness of W implies that there is some W € W that contains
A x B and the preceding lemma gives Gy sets U and V with A x B C U x V C W. Thus
U € U (B). This shows that U'(B) is an ample Gy ideal cover of X. The set U(B) of open
sets in U/(B) is the required open ideal cover. O

Lemma 6. If in addition to the hypotheses of the preceding lemma, Y is also a ORC space,
then for each compact A € X, there is an open cover V(A) of Y such that for each’ V €Y
there is an open set U C X such that ACU and U xV € W.

Proof. Let V'(A) denote the set of all G5 sets V C Y for which there is an open set U C X
that contains A and for which U x V € W. To show that 9’(A) is ample, let B € Y
be compact. According to the preceding lemma, there is an open ideal cover U(B) of X
with the property that for all U € U(B) there is a G5 set V € Y such that B C V and
UxV e W. Since U(B) is an open ideal cover, there is a U € U(B) with A C U and
this shows that V' € 7”(A). The fact that 7”(A) is an ideal cover follows exactly as in the
preceding lemma. The set V(A) of open sets in 7”’(A) is the required cover. O



Proof of 3. Now given any point (z,y) € X x Y, let V € V({z}) that contains y. By
definition, there is an open set U C X with « € U such that (z,y) € U x V € W. Thus the
open sets in W cover X x Y. 0

Theorem 7. The following table expresses the permanence of these properties. In this
table, D means discrete, P means P-space, LC means locally compact, A means Alster, and
PL means productively Lindeldf. The + signs indicate the property is preserved, while a
blank may express our ignorance or else that the property is not preserved.

D| P|LC|ORC| A| PL

Finite products | + | + | + + | +
Perfect preimage | = | * | + + > £
Closed subspaces | + | + | + + | =+
Continuous image | +
Quotient | + | + |+

Open image | + | + | + -+ | +
Perfect image | + | + | + + + | +

* Preserved, provided the inverse image of each point is finite.

Proof. Certain properties follow from others and will not be mentioned explicitly: a closed
subspace is a perfect preimage and both open images and closed images are quotients while
quotients are continuous images. We will take each class of spaces in turn.

Discrete: Obvious.

P-space: See [Gillman & Jerison (1960), 4K] for products. Closure under subspaces
and quotient mappings is obvious. It is known that a perfect preimage of a P-space
need not be a P-space. We will prove it here under the additional hypothesis that the
inverse image of each point is a singleton or doubleton. Any finite-to-one map will
work, but the notation gets ugly. So let 8 : Y — X be such a map with X a P-space.
Let y € Y and f: Y — [0, 1] be continuous with f(y) = 0. Suppose that 6(y’) = 6(y)
and f(y') = 1. The case that there is no such gy’ or that f(y') = 0 is easier and we
omit it. For each pair of positive integers m and n, the set

Unn ={p| f(p) <1/m}U{q|1- f(q) <1/n}

is an open neighbourhood of {y, 3’} and hence 64 (Up,y,) is an open neighbourhood of
04(y,y") = 0(y). Since X is a P-space, ()04 (Umn) = 04 () Umn) is a neighbourhood
of 6(y) and hence 071 (04 (N Umn)) € NUmn is a neighbourhood of {y,y'}. But
NUmn = f71(0) U f~1(1) and the only way it can be a neighbourhood of {y,y'} is
for the first component to be a neighbourhood of y and the second a neighbourhood
of y.

Locally compact: It is well-known that a finite product of locally compact spaces is
locally compact. It is shown in [Engelking, (1989), p. 189] that local compactness
is closed under perfect image and preimage. It is obvious that the open image of a
locally compact space is locally compact.

ORC: The closure under products is Theorem 3.

If6:Y — X is perfect and X is ORC, let ¥ be an ample G5 cover of Y. Assume it is
closed under finite unions. For any y € Y, #71(0(y)) is compact and hence contained
in some V € V. Tt follows that 6(y) € 04(071(0(y))) C 04(V) so that 04 (V) is a Gs



cover of X. A similar argument shows it is ample. The finite sum closure has an open
cover refinement and the inverse image of that refinement refines V.

Let 6 : X — Y be perfect and assume that X is ORC. If ¥ is an ample G cover of
Y, closed under finite unions, then #=1(%/) is an ample G5 cover of X closed under
finite unions. It therefore has an open cover refinement U, which may be assumed to
be closed under finite unions. then each compact set in X, in particular every set of
the form 671(y), is contained in a single set of U € . This implies that y € 64 (U).
Thus 64 (U) is an open cover refinement of V.

If6: X — Y is open and X is ORC, let ¥ be an ample G cover of Y, which we will
suppose closed under finite union. Then 6~!(%) = {#=1(V) | V € ¥} is an ample G,
cover of X and also closed under finite union. Thus there is an open cover U such
that for all U € U there is a V € 9 with U C §~1(V), which implies that 0(U) C V.
Moreover 6(U) is open by hypothesis and hence 6(U) = {#(U) | U € U} is an open
refinement of V.

If0: X — Y is perfect and X is ORC, let ¥ be an ample G cover of Y, which we
will suppose closed under finite union. As above, there is an open refinement U of
6~1(7), which we may suppose is closed under finite union. If y € Y, the set 071 (y) is
compact and hence thereisa U € W and V € ¥ with 671 (y) CU C 6~}(V). But then
{y} = 0407 (y)) COL(U) COx(071(V)) =V so that 0x(U) ={0(U) | U C U} is
an open refinement of V.

Alster: For finite products, see [Barr, Kennison, & Raphael (2006), Theorem 4.5].
Suppose 6 : Y — X is perfect and X is Alster. Let ¥ be an ample Gs cover of
Y. If p € Y, 07(t(p)) is compact and hence contained in some V € ¥ so that
0(p) = 0 (071(t(p))) € 64(V) and thus 04(7) is a cover of X. Since 64 preserves
open sets and meets, 0.4 () is a G5 cover. If A € X is compact, 6! (A) is compact and
therefore contained in some V € ¥ whence A = 04 (671(A)) C 0x(V). Thus 64 (V) is
an ample G5 cover of X and has a countable subcover U. If U € U thereisa V € V
such that U C 64(V) from which we conclude that §71(U) C 0=1(04(V)) C V.
Suppose 6 : X — Y is a continuous surjection and X is Alster. Let 9 be an ample
Gs cover of Y. Then §~1(%) is a G5 cover of X. Since the image of a compact
space is compact, it is clear that §=(%/) is ample. There is a countable subcover
{6=1(V1),0=1(Va),...,} and the corresponding {Vi,Va,...} is a countable subcover
of V.

Productively Lindelof: Closure under finite products follows from the definition. The
remaining properties all follow from the corresponding properties of Lindeldf spaces.
O

Proposition 8. If every point of a space has a neighbourhood that satisfies the ORC, so
does the space.

Proof. Suppose X is such a space. If U is a neighbourhood of p € X that satisfies the ORC,
then int(U) is the union of the closed neighbourhoods of p contained in int(U). A closed
neighbourhood satsifes the ORC and their union is an open image of their sum. Clearly
the sum of spaces that satisfy the ORC does and hence int(U) does. But the union of
the interiors of all those ORC neighbourhoods is again an open image of a sum and hence
satisfies the ORC. O



4 Derived spaces If S is a property of topological spaces, let us call a space that has
that property an S-space. An S-subspace is a subspace having property S; if it is a
neighbourhood of some point, we will call it an S-neighbourhood of that point. We have in
mind mainly the following four properties:

D: being discrete;
P: being a P-space;
C: being compact;
R: being ORC.
Hypothesis 9. We will suppose that S satisfies the following conditions:
1. A closed subspace of an S-space is an S-space.
2. The union of two closed S-subspace is an S-subspace.
8. The product of two S-spaces is an S-space.
Proposition 10. The four examples D, P, C, and R satisfy these conditions.

Proof. The first and third of these is either evident or follows from Theorem 7. As for the
second, the union of two closed subspaces is a perfect image of their sum and it is obvious
that these conditions are all preserved by sums. O
Define
Ls(X) = {p € X | p has an S-neighbourhood}

and Dg(X) = X —Lg(X). We define Dg(X) for any ordinal « inductively by Dg = DS(Dg)
when o« = 8+ 1 and, if « is a limit ordinal, then D¢ = ﬂﬁ<a Dg. Evidently, Dg(X) is
closed in X for all a.

From now on we will usually suppress the S and write L(X) and D(X).

Proposition 11. If A is an open or closed subset of X, then L(A) 2 AN L(X) and
D(A) C AND(X). When A is open these inclusions are equalities.

Proof. Suppose first that A is closed. If p € A and U C X is an S-neighbourhood of p, then
ANU is closed in U and is therefore an S-neighbourhood of p in A and so p € L(A). We
have

DA)=A-LA)CA-(ANLX)) CAN(X - L(X))=ANnD(X)

When A is open, suppose p € ANL(X). Let U be an S-neighbourhood of p in X and let V
be a closed neighbourhood of p inside A. Then U NV is an S-neighbourhood of p so that
p € L(A). Conversely, if p € L(A) then p has an S-neighbourhood inside A, but, A being
open in X, this is also an S-neighbourhood in X. O

Proposition 12. If A is a closed or open subset of X, then D*(A) C AN D*(X) for all
a; when A is open, the inclusion is an equality.

Proof. First suppose that A is closed. If we suppose that D?(A) C D?(X) then DA(A) is
closed in A, which is closed in X and therefore D”(A) is closed in D?(X) so that

D*H(A) = D(DP(A)) € D(DP(X)) = DP*(X)

from which the conclusion is obvious. The same conclusion holds at limit ordinals by taking
intersections.



Now let A be open. If we suppose that D?(A) = AN D?(X), then since A is open,
AN DA(X) is open in D?(X) so that

DPHY(A) = D(DP(A)) = D(ANDP(X)) = An D?(X) N DPTH(X) = An DPH(X)

Again, the same conclusion holds at limit ordinals by taking intersections. O

Proposition 13. If A and B are both open or both closed subsets of X, then D(AU B) =
D(A)U D(B).

Proof. For open sets, we have from Proposition 12 that D(A) = AN D(X) and D(B) =
BN D(X) so that D(A) UD(B) = (AU B)N D(X) = D(AU B). For closed sets, we
have from Proposition 12 that D(A) € AN D(AU B) and D(B) C BN D(AU B) so that
D(A)uD(B) C (AUB)ND(AUB) = D(AU B). For the reverse inequality we must show
that

AUB—-L(AUB) C(A—-L(A)U(B—-L(B))

In other words, that if p € AU B and p ¢ L(A U B), then either p € A and p ¢ L(A) or
p € B and p ¢ L(B).

If pe A— B and p € L(A), then p has an S-neighbourhood and, since B is closed,
p has a closed neighbourhood disjoint from B. Their intersection is an S-neighbourhood
disjoint from B, which is then an S-neighbourhood of p in AU B so that p € L(AU B).
If p € B— A, we have the same argument. Finally we consider the case that p € AN B
and p € L(A) N L(B). Then p has a closed S-neighbourhood U C A and a closed S-
neighbourhood V' C B. Let U’ and V' be AU B-neighbourhoods of p such that UN A =U
and V'NB =V. Then U' NV’ is an (AU B)-neighbourhood of p and

Unv' =W0'nVYN(AUB)=U'NV'NnAUU'NV'NB)=UnNVYUU'NV)CUUV
so that U UV is an S-neighbourhood of p in (AU B). O

Corollary 14. If A and B are both open or both closed subsets of X, then for any ordinal
a, D*(AU B) = D“(A) UD*(B). O
Proposition 15 (Leibniz formula). For any spaces X and Y, D(X xY) C (X x D(Y)) U
(D(X) xY).

Proof. Since L(X) and L(Y") satisfy S, so does L(X) x L(Y) C X x Y so that L(X xY) D
L(X) x L(Y) from which the conclusion is clear. O
O

Corollary 16. For alln e N, D"(X xY)C|J (DY(X) x DI(Y)).

i+j=n

Proposition 17. For alln >0 in N, D>~ }(X xY) C (X x D*(Y))U (D"(X) x Y).

Proof.
n—1 2n—1
DN x xY)C |JD'(X)x D Y)u | (D'(X) x DY)
=0 i=n

C (X x D"(Y))U(D"(X) x Y)

Corollary 18. D¥(X x Y) C (X x D*(Y)) U (D(X) x ).



Proof.
DX xY) = (X x D"(Y))U(D™(X) xY)) =X x D"(V)) U ([ | D"(X) x Y)
= (X x D*(Y)) U (D¥(X) x Y)

where the commutation of the meet and join is justified by the fact that the sequences of
D"(X) and D™(Y) are descending. O

Theorem 19. Assume the Hypothesis 9. Then for any limit ordinal o, we have D*(X x
Y)C (X xD*(Y))U(D¥X) xY).

Proof. Either a = 8+ w with § a limit ordinal, or « = |Jf, the latter union over all the
limit ordinals below «. In the first case, we can suppose by induction that the result is
valid for 8 and then we see that D?+2"~1(X x Y) C D?(X) x DA+™(Y)u DX x (Y).
Forming the meet over all n, we conclude the result for a. In the second case, we assume
inductively that the conclusion is true for all § < a and form the meet over all such 5. O

5 Scattered spaces If S is a property of topological spaces, we will say that a space X is
S-scattered if for some ordinal o, D*(X) = (). The following is an immediate consequence
of the preceding section.

Theorem 20. An open or closed subspace of an S-scattered space, a union of two open or
two closed S-scattered subspaces and a product of two S-scattered spaces, is S-scattered. [

The following is an immediate consequence of Proposition 12:

Proposition 21. A space X is S-scattered if and only if every non-empty closed subset
A C X contains an S-space whose A-interior is non-empty.

Corollary 22. A space that is S-scattered for S = D, P, or C is also R-scattered.

Proposition 23. Suppose X =Y UZ and both' Y and Z are S-scattered. If one of Y or Z
is either open or closed in X, then X is also S-scattered.

Proof. Suppose Y is open. From Proposition 12, we have that for all ordinals o, D*(Y') =
Y N D*(X). If « is chosen so that D*(Y) = 0, we conclude that D*(X) C Z and then the
result follows since Z is scattered.

Now suppose that Y is closed. Then X — Y is an open subset of X and therefore
scattered, so the result follows from the first part applied to (X —Y)UY. O

Corollary 24. The union of finitely many S-scattered subspaces, each of which is either
open or closed, is S-scattered. ]

One can show that if a Lindelof space X contains an open subspace U for which U and
X — U are P-spaces, then X is Alster. This is a special case of the following (a space is
0-Lindelof if the d-topology, in which every Gy set is open, is Lindeldf.)

Theorem 25 ([Henriksen et. al., (to appear)]). A Lindelof P-scattered space is §-Lindeldf.
Using a similar transfinite induction argument, we will prove:
Theorem 26. A Lindeldf R-scattered space is Alster.

It follows from Corollary 22 that this theorem will show that any Lindelof D, P, C, or
R-scattered space is Alster.



Proof. We will make the inductive hypothesis that for any Lindelof space Y and for any
B < a,if DP(Y) =0, then Y is Alster. We first consider the case that « is a limit ordinal.
In that case, (s, DP(X) = § which implies that {X — DA(X)} is an open cover of X.
Since

DP(X — DP(X))= (X - D(X))NnD*(X) =10

and 8 < a, the inductive hypothesis implies that each X — D?(X) is Alster. Since X is
Lindeldf, countably many of them cover X and so X is a union of countably many Alster
spaces, hence is Alster.

Now suppose that o = 3 + 1 is a successor. In that case, every element of Y = DP(X)
has an open ORC neighbourhood. It follows from Proposition 8 that Y is ORC. Let U be
an ample Gy cover of X. From [Barr, Kennison, & Raphael (2006), 4.8] we may suppose,
without loss of generality, that U consists of zerosets. Since a finite union of zerosets is a
zeroset, we can suppose that U is closed under finite unions. Then {Y NU | U € U} has an
open refinement, which has a countable refinement by cozerosets, say {Y NV, }. For each
n, there is a U,, € U such that Y NV,, CU,. Now X — JV,, is closed in X and thus

Dﬁ(X—Uvn)g(X—UV,L)ng(X—Y)mY:(ZJ

and the inductive hypothesis implies that X — [V}, is countably covered by U. Each set
V,, — U, is the difference of a cozeroset and a zeroset, which is a cozeroset and hence an F,.
IfV, —U, =, Anm with each A,,, closed, we have

DP(Apm) C Ay NY C(V,, —U)NY C (V,NY) U, =0

so that the inductive hypothesis implies that A,., is countably covered by U and then so
is U, (Ve —Un) = Un,m Apy,. Finally, |, U, is countably covered by the U,, and so

X = (X—UVn) u (U(Vn—Un)) uJu.

is countably covered. Thus X is Alster. O

Theorem 27. When S is one of the classes D, P, C, or R, being S-scattered is invariant
under perfect surjections and perfect preimages, provided in the latter case that when S = D
or P, the the preimage of each point is finite.

The proof will proceed by a series of lemmas. Note that all four of the classes are
invariant under perfect image (which implies closure under finite unions of closed subobjects)
and, subject to the proviso in the statement, perfect preimage (see Theorem 7).

Lemma 28. Suppose 0 : X — Y is a perfect surjection. Then (D(X)) D D(Y).

Proof. We must show that y ¢ L(Y) implies that there is some z € 6~!(y) such that
x ¢ L(X). Equivalently, we must show that z € L(X) for all z € §=!(y) implies y € L(Y).
Suppose that for each 2 € §71(y) there is an S-neighbourhood U (z) of . We may suppose
that each U(x) is closed. Since #~!(y) is compact, there is finite set z1,..., 2z, € 671(y)
such that the interiors of U(z1),...,U(zy) cover 67 (y). Thus 6~ (y) C U = U}, U(z;)
and so 04 (U) is a neighbourhood of y. By Theorem 7, §(U) is an S-subspace of ¥ and also
a neighbourhood of y since 8(U) D 04 (U).

Lemma 29. Suppose 8 : X — Y is a perfect surjection. Then for all ordinals o, §(D*(X)) 2
De(Y).



Proof. Tf we make the inductive hypothesis that 6(D*(X)) 2 D*(Y), it follows that there
is a perfect surjection X, = 0=1(D%(Y)) N D*(X) — D*(Y). Since X, C D*(X), we
have that D(X,) € D*"1(X) so that §(D*T1(X)) D §(D(X,)) 2 D*(Y). Now suppose
that « is a limit ordinal and 8(D?(X)) D DA(Y) for all 3 < a. We want to show that
0 (ﬂﬁ<a DB(X)) D D¥(Y). For each y € D*(Y) and each 3 < « the set {x € DF(X) |
6~1(y)} is a non-empty closed subset of the compact set §~!(y) and hence their meet over
all 8 < «a is non-empty. O

Corollary 30. If0: X — Y is a perfect surjection and X is S-scattered, then so is Y. [J
In order to simplify the statements of the following results, we will say that a map is
S-perfect if it is perfect and, in case S = D or P, that the inverse image of each point is

finite.

Lemma 31. Suppose 0 : X — Y is S-perfect. Then 6(D(X)) C D(Y).

Proof. We have

0(D(X)) € D(Y) if and only if

(X —L(X))CY —L(Y) if and only if

Y —04(L(X))CY —L(Y) if and only if

L(Y) C04(L(X)) if and only if
O~H(L(Y)) € L(X)

If y € L(Y), then y has an S-neighbourhood U. Then 6§~!(U) is a neighbourhood of each
point of #~1(y) and, from Theorem 7, is an S-subset and hence each point of §~1(y) is in
L(U). O

Lemma 32. Suppose 0 : X — 'Y is S-perfect. Then for all ordinals o, 6(D*(X)) C D(Y).
Proof. Assume by induction that §(D*(X)) C D*(Y). Then
(DT(X)) = 6(D(D*(X))) C 6(D(D*)(X)) € D(D*(Y)) = D*T(Y)

If o is a limit ordinal and §(D? (X)) C DA(Y) for all 8 < a, then

o(D(X) =0 | () D°(X) ] c(e(D (X)) C (DY) = D*(X) m
B<a
Corollary 33. If0: X — Y is S-perfect and Y is S-scattered, so is X. O

This finishes the proof of Theorem 27. As an application, we have:

Corollary 34. Suppose X =
Then X is S-scattered.

i1 Xi is a locally finite union of closed S-scattered spaces.

Proof. The canonical map from the categorical sum to the union is easily seen to be closed
with the inverse images of points being finite. O
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6 An example In this section, we assume CH and give an example of a space that is
Lindel6f and not productively Lindelof but has an uncountable discrete subspace whose
complement is countable. This example contradicts [Abu Osma and Henriksen, 2004, The-
orem 3.8] in which the eleventh line of the claimed proof interchanges a join and a meet.

Let R denote the space of reals with the usual topology and R, the same pointset with
a new topology that we describe below. We denote by Q the space of rationals with the
usual topology.

In R,, every irrational point is open. A basic neighbourhood of a rational point ¢ has
the form (a,b) — D where a < ¢ < b and D is a countable subset of irrational numbers.
Since such a set is determined by the endpoints and a choice of D, the cardinality of such
basic opens is wy. It is clear that since D consists of irrational numbers, Q appears as a
subspace of R, with its usual topology.

Proposition 35. R, is regular.

Proof. We will show that whenever U is open and p € U, then there is an open set V' such
that p € V C cl(V) C U. Since each irrational is clopen this is clear when p ¢ Q. Now
suppose p € Q. Tt is sufficient to consider the case that U is basic, so suppose U = (a,b)— D
as above. If ¢ and d are chosen so that ¢ < ¢ < p < d < b and ¢ and d are irrational, then
(c,d) and (¢, d)— D are closed since each irrational is clopen. Then p € (¢,d)—D C (a,b)—D
is the required sequence. O

Proposition 36. Every dense G5 in R is uncountable.

Proof. A dense Gy is a countable meet of dense open sets. If it were countable, the meet
could be extended by the complements of the points and then we would have an empty
countable meet of dense open sets, which contradicts the Baire category theorem. O

Let us say that a countable set B of basic open sets of R, (as defined above) is a
countable basic open cover of Q if it is a countable cover of Q in R,. Since there are
wi-many basic open sets and such a cover is determined by a sequence of such covers, it is
clear that there are wi-many such countable basic open covers. Let us enumerate them as
317f32,...,$a,..., o< wi.

Proposition 37. If B is a countable basic open cover of R, then |JB is a dense G5 in R.

Proof. Suppose B = {(an,bn) — Dy) | n € N} is a countable basic open cover. Then

U3 =UJ(@anbn) = Du) = J(@n bu) 0 () (R, —{2})
weﬂ D,

which is the meet of an open set and a G§ and hence a G5 in R. It is dense in R because it
contains Q. O

We will now choose an wi-indexed sequence t1,ts,...,ts,... of irrational numbers. We
let ¢4 be any irrational. Suppose we have chosen tg for all 5 < a. Since |J Bg is a dense G
of R for all # < « and there are only countably many 3 < «, it follows that ﬂﬁ<a UBs is
a dense G and therefore uncountable. The set {tg | 8 < a} is countable and hence we can
choose some

to € nUfBg —{t5|ﬁ<a}—Q
B<a

Now we let X = QU {to | @ < w1} with the topology inherited from R, .

Proposition 38. X is Lindeldf and completely regular.
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Proof. Any open cover has a refinement by basic opens. Let O be such a cover of X. Since
O contains a cover of Q, some B, C O. But by construction, ¢, € |J B, for every v > a.
Thus B,, together with sets in O that cover the countably many ¢g for 8 < « is a countable
refinement of O. Complete regularity follows from [Kelley (1955), 113]. O

Proposition 39. X is not Alster and therefore, in the presence of CH not productively
Lindelof.

Proof. We begin by observing that a since the irrationals are open a compact set can contain
only finitely many of them. A compact set in Q must be compact and therefore closed and
a (5 in the usual topology, which makes it a Gs in R,. Thus the cover consisting of all the
compact sets of Q and all the singletons of X — Q is an ample G cover without a countable
refinement. Since X has weight wy, it follows from [Alster (1988), 1.1] that X cannot be
productively Lindelof. O

7 Some open questions
1. Is productively Lindelof weaker than Alster?

2. If a space is S-scattered, must each Dg be nowhere dense in Dg“? (This is known
to be true in the cases D and P.)

3. Is Theorem 26 false if one replaces ORC with Alster, or productively Lindel6f?
4. Is there an example of Section 6 that does not use CH?
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