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introducing a new \modal" operator of course (denoted ! ) to indicate when a formula may beused in a resource-insensitive manner|i.e. when a resource is renewable. Without the ! operator,the essence of linear logic is carried by the multiplicative connectives; at its most basic level, linearlogic is a logic of monoidal-closed categories (in much the same way that intuitionistic logic is alogic of cartesian-closed categories). In modelling linear logic, one begins with a monoidal-closedcategory, and then adds appropriate structure to model linear logic's additional features. To modellinear negation, one passes to the �-autonomous categories of Barr [B79]. To model the additiveconnectives, one then adds products and coproducts. Finally, to model the exponentials, andso regain the expressive strength of traditional logic, one adds a triple and cotriple, satisfyingproperties to be outlined below. This program was �rst outlined by Seely in [Se89].Linear logic bears strong resemblance to linear algebra (from which it derives its name), butone signi�cant di�erence is the di�culty in modelling ! . The category of vector spaces over anarbitrary �eld is a symmetric monoidal closed category, indeed in some sense the prototypicalmonoidal category, and as such provides a model of the intuitionistic variant of multiplicativelinear logic. Furthermore, this category has �nite products and coproducts with which to modelthe additive connectives. It thus makes sense to look for models of various fragments of linearlogic in categories of vector spaces. However, modelling the exponentials is more problematic. It isthe primary purpose of this paper to present methods of modelling exponential types in categoriesarising from linear algebra. We study models of the exponential connectives in categories of linearspaces which have monoidal (but generally not monoidal-closed) structure. (We shall also includea model in �nite-dimensional vector spaces which is closed.)The construction which will be used to model the exponential formulas, although standard inalgebra, arose independently in quantum �eld theory, and is known as Fock space. It was designedas a framework in which to consider many-particle states. The key point of departure for quantum�eld theory was the realization that elementary particles are created and destoyed in physicalprocesses and that the mathematical formalism of ordinary quantum mechanics needs to be revisedto take this into account. The physical intuitions behind the Fock construction will also be familiarto mathematicians in that it corresponds to the free symmetric algebra on a space. As such, itinduces a pair of adjoint functors, and hence a cotriple in the algebra category. It is this cotriplewhich will be used to model ! . It should be noted that this category of algebras inherits themonoidal structure from the underlying category of spaces, but there is no hope that this categorycould have a monoidal-closed structure.While Fock space has an abstract representation in terms of an in�nite direct sum, physicistssuch as Ashtekar, Bargmann, Segal and others, see [AM-A80, Ba61, S62] have analyzed concreterepresentations of Fock space as certain classes of holomorphic functions on the base space. Thus,these models further the intuition that the exponentials correspond to the analytic properties ofthe space. In fact, there is a clear sense in which morphisms in the Kleisli category for the cotriplecan be viewed as generalized holomorphic functions. Thus, there should be an analogy to coherencespaces where the Kleisli category corresponds to the stable maps.Fock space also has two additional features which correspond to additional structure, not ex-pressible in the syntax of linear logic. These are the annihilation and creation operators, whichare used to model the annihilation and creation of particles in a �eld. These may give a tightercontrol of resources not expressible in the pure linear logic. Thus, these models may be closer tothe bounded linear logic of Girard, Scedrov and Scott [GSS91].A possible application of this work is that the re�ned connectives of linear logic may lendinsight into certain aspects of quantum �eld theory. For example, there are two distinct methods ofcombining particle states. One can superimpose two states onto a single particle, or one can havetwo particles coexisting. The former seems to correspond to additive conjunction and the latter2



to the multiplicative. This physical imagery is missing in quantum mechanics, which was speciallydesigned to handle a single particle; it only shows up in quantum �eld theory.In this paper, we begin by reviewing the categorical structure necessary to model linear logic,and speci�cally exponential types. We then describe the Fock construction on vector spaces andexplain the properties of the resulting model. We next consider Fock space on normed vectorspaces. While the model so obtained has weaker properties, this case is closer to that considered byphysicists. In fact, in this case the Fock construction gives a model of a weakening cotriple in thesense of Jacobs [J93]. We next describe the interpretation of Fock space as a space of Holomorphicfunctions. Finally, the physical meaning of the Fock construction is discussed.We wish to point out that this paper corrects an error in an earlier draft [BPS]. This is discussedin section 6.2 Linear Logic and Monoidal CategoriesWe shall begin with a few preliminaries concerning linear logic. We shall not reproduce the formalsyntax of linear logic, nor the usual discussion of its intuitive interpretation or utility|for this thereader is referred to the standard references, such as [G87]. We do recall [Se89] that a categoricalsemantics for linear logic may be based on Barr's notion of �-autonomous categories [B79]. If onlyto establish notation, here is the de�nition.De�nition 1 A category C is �-autonomous if it satis�es the following:1. C is symmetric monoidal closed; that is, C has a tensor product A 
 B and an internal homA �� B which is adjoint to the tensor in the second variableHom(A
B;C) �= Hom(B;A �� C)2. C has a dualizing object ?; that is, the functor ( )?: Cop �! C de�ned by A? = A �� ? is aninvolution (viz. the canonical morphism A �! ((A �� ?) �� ?) is an isomorphism).In addition various coherence conditions must hold|a good account of these may be found in[M-OM89]. Coherence theorems may be found in [BCST, Bl92]. An equivalent characterization of�-autonomous categories is given in [CS91], based on the notion of weakly distributive categories.That characterization is useful in contexts where it is easier to see how to model the tensor 
,the \par" ............................................................................................. and linear negation, and the coherence conditions may be expressed in terms of thoseoperations.The structure of a �-autonomous category models the evident eponymous structure of linearlogic: the categorical tensor 
 is the linear multiplicative 
 and the internal hom �� is linearimplication. The dualizing object ? is the unit for linear \par" ............................................................................................. , or equivalently, is the dual ofthe unit I for the tensor1.There are a number of variants of linear logic whose categorical semantics is based on this.First is full \classical" linear logic, which includes the additive operations. These correspond torequiring that the category C have products and coproducts. (If C is �-autonomous, one of thesewill imply the other by de Morgan duality.) There is also Girard's notion of \intuitionistic" linear1In other papers we have used the notation > for the unit for 
, and � instead of ............................................................................................. . Here we shall try toavoid controversy by using notation traditional in the context of Banach spaces, and by generally ignoring the \par".So in this paper, � means direct sum, which coincides with Girard's notation. We use � for cartesian product,corresponding to Girard's &. And we shall use the usual notation for the appropriate spaces when referring to theunits. 3



logic [GL87], which omits linear negation and \par"|this corresponds to merely requiring that C beautonomous, that is to say, symmetric monoidal closed (with or without products and coproducts,depending on whether or not the additives are wanted). There is an intermediate notion, \fullintuitionistic linear logic" due to de Paiva [dP89], in which the morphism A �! A?? need notbe an isomorphism. And as mentioned above, there is the notion of weakly distributive category[CS91, BCST], where negation and internal hom are not required.One important class of �-autonomous categories are the compact categories [KL80] where thetensor is self-dual: (A
B)? �= A?
B?. These categories form the basis for Abramsky's interactioncategories [Abr].In this paper we shall model various fragments of linear logic; we shall describe the fragmentsin terms of the categorical structure present, without explicitly identifying the fragments.Finally, in order to be able to recapture the full strength of classical (or intuitionistic) logic,one must add the \exponential" ! (and its de Morgan dual ? ). (All our structures will model ! .)We saw in [Se89] that this amounts to the following.De�nition 2 A monoidal category C with �nite products admits (Girard) storage if there is acotriple ! : C �! C (with the usual structure maps A �A � !A �A��! !!A), satisfying the following:1. for each object A 2 C, !A carries (naturally) the structure of a (cocommutative) 
-comonoid> eA �� !A dA��! !A 
 !A (and the coalgebra maps are comonoid maps), and2. there are natural comonoidal isomorphismsI ��! ! 1 and !A
 !B ��! ! (A�B) .Some remarks: First, it is not hard to see that the �rst condition above is redundant, thecomonoidal structure on !A being induced by the isomorphisms of the second condition. However,the �rst condition is really the key point here, as may be seen from several generalizations ofthis de�nition, to the intuitionistic case without �nite products in [BBPH], and to the weaklydistributive case, again without �nite products, [BCS93]. The main point here is that withoutproducts one replaces the second condition with the requirement that the cotriple ! (and thenatural transformations �; �) be comonoidal. And second, one ought not drown in the categoricalterminology|terms like \comonoidal" in essence refer to various coherence (or commutativity)conditions which may be looked up when needed. Readers not interested in coherence questionscan follow the discussion by just noting the existence of appropriate maps, and believe that all the\right" diagrams will commute. They can regard it as somebody else's business to ensure that thisis indeed the case.(In this vein we ought to cite [Bi94], where the de�nition above is improved by requiring thatthe induced adjunction between C and C ! is monoidal, in order to guarantee the soundness of termequalities.)In the mid-1980's, Girard studied coherence spaces as a model of system F, and realized thefollowing fact, which led directly to the creation of linear logic. Of course Girard did not put thematter in these categorical terms at the time, but the essential content remains the same|ordinaryimplication factors through linear implication via the cotriple ! . (Another way of expressing thisis to say that a model of full classical linear logic induces an interpretation of the typed �-calculus.)Theorem 1 If C is a �-autonomous category with �nite products admitting Girard storage ! , thenthe Kleisli category C ! is cartesian closed. 4



This result is virtually folklore, but a proof may be found in [Se89].One of the problems with �nding models of linear logic comes from the di�culty of �nding well-behaved (in the above sense) cotriples on �-autonomous categories. For example, one of the mainproblems with vector spaces as a model of linear logic is the lack of any natural interpretation of! . (We shall soon return to this point, and indeed, in a sense this is the main point of this paper.)This question seems closely bound up with questions of completeness. Barr [B91] has shown howin certain cases one can get appropriate cotriples (via cofree coalgebras) from a subcategory of theChu construction [B79]. One case where this route works out fairly naturally is if the �-autonomouscategory is compact. The following is proved in [B91].Theorem 2 Given a complete compact closed category, one can construct cofree coalgebras by theformula !A = > �A� (A
s A)� (A
s A 
s A)� � � �(where the tensors 
s are the symmetric tensor powers discussed below).We observe that a compact category which is complete is also cocomplete, by self-duality. Thistheorem is the basis for Abramsky's modeling of the exponentials in interaction categories [Abr].3 Fock SpaceIn this section, we describe the basic construction of Fock space; the exposition follows [Ge85]closely. Fock space is one of the crucial constructions of quantum �eld theory, and is designedto treat quantum systems of many identical, noninteracting particles. One of the crucial notionsof quantum �eld theory is that particles may be created or annihilated, and Fock space will beequipped with canonical operators to model this phenomenon. We should observe that generallyphysicists consider Fock space on Hilbert spaces, but for the purposes of this discussion, vectorspaces are su�cient.The states of a quantum system form a complex vector space. Given two such systems, theymay be combined via the operator 
. So if the �rst system is in state v1 and the second in statev2, then the combined system would be in state v1 
 v2. Note that when we say we are combiningthe systems, we are only viewing them as a single system. We are not allowing interaction. So, if Vrepresents a one-particle system, then V 
 V represents a two-particle system. To model quantum�eld theory, one wishes to consider a system of many particles. A natural candidate would be:C� V � (V 
 V )� (V 
 V 
 V ) : : :However, this is not quite correct. We wish the particles of the system to be indistinguishable.This leads us to replace the abve tensor with either the symmetrized or antisymmetrized tensor.3.1 Symmetric and Antisymmetric TensorsFirst, we introduce the symmetric tensor product of a vector space with itself.De�nition 3 Let A be a vector space. The vector space A 
s A is de�ned to be the followingcoequalizer: A
A id��!��!� A
 A �! A
s ANote that � is the twist map, a 
 b 7! b
 a. 5



This is the general de�nition of symmetrized tensor. It turns out that in categories of vectorspaces, this quotient is canonically isomorphic to the equalizer of these two maps, and that thisequalizer is split by the map: a
 b 7! 12(a
 b+ b
 a)We will frequently use this representation in the sequel.The nth symmetric power is de�ned analogously. The vector space NnA has n! canonicalendomorphisms, and the vector spaceNns A is the coequalizer of all of these. Again, it is isomorphicto the equalizer, and there is a splitting, as above. A good way to view the symmetrized tensor isto observe that the symmetric group acts on the space NnA, and that the symmetrized tensor isthe invariant subspace. As such, an appropriate notation for the symmetrized tensor is:Nn An!We will also freely use this representation, as well.The antisymmetric tensor will be de�ned in a similar fashion. Again, we �rst de�ne the anti-symmetric tensor of a vector space B with itself. It will be denoted B 
A B. It is the coequalizerof the following diagram: B 
B id���!���!�� B 
B �! B 
A BHere, �� is the map a
 b 7! �b
 a.Members of this space can canonically be viewed as elements of the ordinary tensor product, ofthe form: x = 12(a
 b� b
 a)The nth antisymmetric power is de�ned analogously, and is denoted NnA.3.2 Bosonic and Fermionic Fock SpaceDe�nition 4 Let B be a complex vector space. The symmetric Fock space of B is the in-�nite direct sum of the spaces Nns B, where, when n is zero we use the complex numbers. Theantisymmetric Fock space of B is the in�nite direct sum of the spaces NnAB.F(B) = C� B � � � � �NnsB � � � �FA(B) = C�B � � � � �NnAB � � � �The particles of symmetric Fock space are called bosons. Examples of such are photons. Particlesof antisymmetric Fock space are called fermions. Examples of such are electrons and neutrinos.An interesting property of fermions is revealed in the above construction. Suppose one had asystem of two fermions, each in the same state v. This system would be represented in fermionicFock space by the following expression:(0; 0; 12(v 
 v � v 
 v); 0; 0; : : :)This expression is clearly 0. This leads to the observation that one may not have two fermionsexisting in the same state. This is known as the Pauli exclusion principle.6



Given the nature of in�nite direct sums of vector spaces, it is reasonable to think of elementsof Fock space as polynomials. Symmetrizing the tensor ensures that the variables commute. Inthe fermionic case, we get anticommuting variables. When we consider categories of normed vectorspaces, this analogy becomes even clearer. Polynomials are replaced by convergent power series.We will show that the bosonic Fock space of a Banach space has a canonical representation as aspace of holomorphic functions.3.3 Annihilation and Creation of ParticlesFor ease of exposition, we consider the unsymmetrized Fock space:U = C� V � (V 
 V )� (V 
 V 
 V ) : : :The operators we discuss are easily extended to the bosonic and fermionic cases. Given anarbitrary nonzero v 2 V , we de�ne a map Cv:U ! UCv((v0; v1; v2; : : :)) = (0; v0v;p2v 
 v1;p3v 
 v2; : : :)In the above expression, vn 2 V 
n . This operator is thought of as \creating a particle in statev". Similarly one may annihilate particles. Choose an element � of the dual space V �, and de�ne:A�((v0; v1; v2 
 v3; v4 
 v5 
 v6; : : :)) = (�(v1);p2�(v2)v3;p3�(v4)v5 
 v6; : : :)This operation takes an n particle state to an n�1 particle state and so on. The square roots inthe above two expressions are \normalization" factors, and are added to make the desired equationshold. In this expression, each vi is an element of V . The equations expressing the interaction ofthe annihilation and creation operators are to be found in [Ge85]. A more complete discussion ofthe physical meaning of Fock space is contained in the penultimate section.4 Fock Space as a Model of StorageNow we check that the Fock space actually satis�es all the properties that need to be satis�ed byan exponential type, i.e. satis�es the properties of [Se89], discussed in Section 2. This consistsof two parts, verifying that Fock spaces form a cotriple on the category of symmetric algebrasand verifying the so-called exponential law, viz. ! (A � B) �= !A 
 !B. We check the former bydisplaying a suitable adjunction in the next subsection. Note that in the category of vector spaces,we have � = �.Proposition 3 Let A and B be vector spaces.F(A�B) �= F(A)
F(B)7



Proof {For the purposes of this proof only, we will denote the n-th symmetric tensor by Sn. Let V andW be vector spaces. We construct a morphismSn(V )
 Sm(W )! Sn+m(V �W )(v1 
s v2 : : :)
 (w1 
s w2 : : :) 7! (v1 
s v2 : : :)
s (w1 
s w2 : : :)On the righthand side of the above expression, we are viewing each vi and wi as an element ofV �W .This lifts to an isomorphism:Sn(V �W ) �= nMa=0Sa(V )
 Sn�a(W )The inverse map is de�ned as follows. We now denote vectors in V or W , when considered inV �W , by (vi; 0) and (0; wi) respectively. (Remember that elements of this form generate V �W .)(v1; 0)
s (v2; 0)
s : : :
s (vi; 0)
s (0; wi+1)
s : : :
s (0; wn)7! (v1 
s v2 
s : : :
s vi)
 (wi+1 
s : : :
s wn)The naturality of these maps, and the fact that they are inverse are left to the reader. Wenote at this point that the symmetrization of the tensors is crucial for establishing that this is anisomorphism, as it was necessary to rearrange terms. Finally, it is straightforward to verify thatthis extends to an isomorphism of the desired form. Note that F(A�B) is generated by puretensors, i.e. expressions which are nonzero only on one term of the direct sum. We also note thatthe expression Lna=0 Sa(V )
Sn�a(W ) corresponds to the �nite rank part of F(A)
F(B). By thede�nition of the countable direct sum of vector spaces, all elements of F(A)
F(B) are containedin a �nite rank piece.The above proof follows [FH], Appendix B, closely. In fact, this argument can be carried outat a categorical level, as is clear from the previously mentioned theorem of Barr [B91]. The aboveis also proved in [BSZ92] for Hilbert spaces.In the next section, we will see that Fock space corresponds to the free symmetric algebra. Itis also straightforward to verify that the isomorphism constructed in the above proof is in fact analgebra homomorphism.Now we consider the antisymmetrized Fock space. We will show that one gets a model of theexponential types in the category of �nite-dimensional vector spaces using the antisymmetrizedFock space.Proposition 4 If V is a �nite-dimensional vector space of dimension n, then FA(V ) is also a�nite-dimensional vector space with dimension 2n.Proof { Consider the vector space NpA V with p > n. We claim that this space is the zero vectorspace. Since 
 is adjoint to internal hom in VECfd, the space NpA V is isomorphic to the space ofcompletely antisymmetric p-linear maps from V to the scalars. Let f denote such a map. Since Vis only n-dimensional one cannot have p linearly independent arguments to such maps. Thus oneof the arguments must be a linear combination of the others. Thus on any arguments f becomes8



a combination of terms of the form f(: : : ; u; : : : ; u; : : :) where two arguments must be equal. Butantisymmetry makes such a term zero. Thus f is the zero vector and the vector space NpA V is theone-point space. Thus the in�nite direct sum becomes a �nite direct sum. Now consider p � n. Itis clear that one can only choose Cnp sets of p linearly independent vectors given a basis. Thus thedimensionality of the space NpA V is Cnp and hence, adding the dimensions to get the dimension ofthe direct sum, we conclude that the dimension of FA(V ) is 2n.The exponential law for the antisymmetric case can be argued similarly to the symmetric case.The detailed veri�cation can be found in [BSZ92] in Section 3.2 on exponential laws, or in [FH] inappendix B.4.1 Categories of algebrasIn this section we shall review some basic facts about categories of algebras, and see in particularhow these �t into the current context. (See [M71] for a review of the basic categorical facts, and[L65] for the basic algebra, for instance.) For reference, we do give the following de�nition here.De�nition 5 A triple consists of a functor F :B �! B, together with natural transformations�: id�! F and �:FF �! F , such that � � �F = � � F� = id and � � �F = � � F�.One simple point to recall is that categories of algebras and of coalgebras are closely connected tothe existence of triples and cotriples. Given a triple F :B �! B, (with structure morphisms �; �), anF -algebra is an object B and a morphism h:F (B) �! B (subject to two commutativity conditions,corresponding to the associative and unit laws). (This notion can be generalized to arbitraryfunctors.) There is a canonical category of such algebras, the Eilenberg-Moore category CF , and anadjunction C �! � CF . Any adjunction canonically induces a triple, and this one canonically inducesthe original triple. The category of free F -algebras is the Kleisli category CF of the triple; again,there is a canonical adjunction C �! � CF which induces the original triple. Of course this dualizesfor cotriples, with the corresponding notion of coalgebras. (We shall avoid the unpleasant use ofterms like \coEilenberg-Moore" and \coKleisli".)Usually mathematicians have been more interested in the Eilenberg-Moore category of a triple(or cotriple) than in the Kleisli category; although there has been some interest in Kleisli categoriesrecently (for instance in the context of linear logic, as mentioned earlier in this paper), we shallfollow this tradition and shall work in Eilenberg-Moore categories. Indeed, it is there that we shall�nd some of our models. One reason for this is quite practical: it is often simpler to recognize thecategory of algebras and so derive the triple (similarly, once one has a candidate for a triple, it isoften simpler to construct the category of algebras and verify the adjunction than to directly showthe original functor is a triple). But there is another reason: we want to show that the Fock spacefunctor is a cotriple (so as to model ! ), but on the categories of spaces we consider, this is not thecase|rather it is a triple. By passing to the algebras, we can �x this, because of the following fact:Fact Given an adjunction C F��! ��U D, F a U , the composite UF is a triple on C, and so (dually)the composite FU is a cotriple on D [BW].So we obtain our model of ! on the category of algebras.9



4.1.1 Algebras for the symmetric (bosonic) Fock space constructionWe begin with a more traditional notion of algebra; the connection between these comes via thetriple induced by the adjunction given by the free algebra construction, as outlined above. In otherwords, the category of (traditional) algebras is equivalent to the category of UF algebras.De�nition 6 An algebra A is a space A equipped with morphismsm:A
A �! A and i:C �! Asatisfying A
 A
A m
 id - A 
Aid
m? ?mA
 A m - AC
 A i
 id - A
 A id
 i� A
 CHHHHHHHHHHj�= m? ����������� �=AHere we are supposing the base �eld to be C; otherwise replace C with the base �eld k. If in additionthe following diagram commutes, then the algebra A is said to be symmetric or commutative. (�is the canonical \twist" morphism.) A
A �-A
A@@@@@Rm ?mAAn example of such an algebra comes from the Fock space, the multiplication m is de�ned by\multiplication of polynomials" in an evident manner. The use of the symmetrized tensor in thede�nition of Fock space guarantees that this will indeed be a symmetric algebra, and it is standardthat this description gives the free such algebra. In other words, we have the following proposition.Proposition 5 Given a vector space B, the Fock space F(B) canonically carries an algebra struc-ture, and indeed is the free symmetric algebra generated by B.It follows from this that we have a cotriple on the category SALG of symmetric algebras, givenby taking the Fock algebra on the underlying space of an algebra. As the details of this are bothstandard and similar to the case of the antisymmetric Fock space construction, which we shalldiscuss in more detail next, we shall leave the details here to the reader.10



4.2 Algebras for the antisymmetric (fermionic) Fock space constructionRecall that we work in the context of �nite dimensional vector spaces VECfd when considering theantisymmetric Fock construction. This category is self-dual, and is compact with biproducts: theproduct and coproduct coincide. This duality also implies that a triple is also a cotriple, so we canmodel ! in the category of spaces. However, to show that the Fock space construction de�nes atriple (or cotriple), it is again simpler to consider the category of algebras. Although we are notfamiliar with any previous consideration of this category of algebras as such, the context is familiar:the antisymmetric Fock space construction is usually called (when thought of as an algebra) theGrassman algebra, or the \alternating" or \exterior" algebra; the multiplication de�ned on it iscalled the \wedge product" (a term derived from the usual notation for this product).De�nition 7 An alternating algebra A is a graded algebra A (with unit) whose multiplication mapsatis�es the property that, if x; y are of degree m;n respectively, then xy = (�1)nmyx (which by thegrading must be of degree n+m).Note that the unit must be of degree 0. Morphisms of alternating algebras are just homomorphismsas algebras.Proposition 6 There is a canonical alternating algebra structure on FA(V ), for any �nite dimen-sional vector space V . The antisymmetric Fock construction is left adjoint to the forgetful functorU :VECfd FA���! ���U AALG, where AALG is the category of alternating algebras. As a consequence, FAde�nes a triple (and so cotriple) on VECfd.Proof { (Sketch) The multiplication on FA(V ) is the standard \wedge" product [L65], which toelements x1
A : : :
A xn; y1
A : : :
A ym gives the product x1
A : : :
A xn
A y1
A : : :
A ym. Herex
A y means the equivalence class of x
 y in A
AA. (Essentially this is the same \multiplicationof power series" we had in the symmetric case, with the alternating product used in place ofthe usual tensor.) For a vector space V , de�ne �:V �! UFA(V ) as the canonical injection.Given an alternating algebra A, de�ne �:FA(UA) �! A by \adding the terms of the series":hx0; x1; x12 
A x22; : : :i 7! i(x0) + x1 +m(x12; x22) + � � � , where i;m are the algebra maps.To verify that we have an adjunction we must show the following commute:FA(V ) FA(�)- FA(UFA(V ))@@@@@@R1 ?�FAFA(V )UA �U - UFA(UA)@@@@@@R1 ?U�UA11



The second diagram is obvious; to verify the �rst, notice that FA(�(x)) mapshx0; x1; x12 
A x22; : : :i 7! hx0;h0; x1; 0; : : :i;h0; 0; x12; 0; : : :i 
A h0; 0; x22; 0; : : :i;...iand it is clear that \adding up this series" just returns the original term.It now follows that we can model ! in VECfd with FA, via the formula !V = (FA(V ?))?. Insummary, we have the following theorem:Theorem 7 In the category of symmetric algebras, we have a model of the fragment ! ;
;&. Inthe category VECfd, we have a model of full propositional classical linear logic.We mention that while VECfd models the full propositional calculus, it is somewhat degeneratebeing a compact category. We now consider Fock space on normed vector spaces. While welose some of the expressive power in such models, (in particular, we are no longer able to modelcontraction) Fock space is particularly interesting in such categories. We will see that it has acanonical representation as a space of holomorphic functions.5 Normed Vector SpacesVector spaces are, in some sense, intrinsically �nitary structures. Every vector is a �nite sum ofmultiples of basis vectors, and one is only allowed to take �nite sums of arbitrary vectors. It seemsreasonable that to model ! and ? , one should be able to take in�nite sums of vectors, therebycapturing the idea of in�nitely renewable resource. However, to do this, one needs a notion ofconvergence. And to de�ne convergence, one needs a notion of norm. Once a space is normed, thenit is possible to de�ne limits and Cauchy sequences, and so on. Normed vector spaces, which arethe principal objects of study in functional analysis, should be considered as the meeting groundof concepts from linear algebra and analysis. They are also an ideal place to model linear logic.We will now briey review the basic concepts of the subject. In this paper, we will focus onBanach spaces. Much of the discussion easily lifts to Hilbert spaces. We will introduce Banachspaces in detail, and refer the reader to [KR83] for a discussion of Hilbert spaces.Henceforth all vector spaces are assumed to be over the complex numbers and are allowed to bein�nite-dimensional. We will use Greek letters for complex numbers and lower-case Latin lettersfrom the end of the alphabet for vectors.De�nition 8 A norm on a vector space V is a function, usually written k k, from V to R, thereal numbers, which satis�es1. k v k � 0 for all v 2 V ,2. k v k = 0 if and only if v = 0,3. k �v k = j � jk v k,4. k v + w k � k v k+ k w k. 12



For �nite dimensional vector spaces the norm usually used is the familiar Euclidean norm. Assoon as one has a norm one obtains a metric by the equation d(u; v) = k u� v k. It turns out thatthe spaces that are complete with respect to this metric play a central role in functional analysis.De�nition 9 A Banach space is a complete, normed vector space.Example 1 Consider the space of sequences of complex numbers. We write a for such a sequence,a = fang1n=1 and we write k a k1 for the supremum of the j ai j.l1 = fa : k a k1 <1gThis is a Banach space with k a k1 as the norm.Another norm is obtained on sequences as follows. De�ne:k a k1 = �1n=1j ai jThen let: l1 = fa : k a k1 <1gMore generally, if p � 0, we may de�ne:lp = fa : k a kp � (�1n=1j a jp)1=p <1gAll of these will be examples of Banach spaces. Furthermore, these can be de�ned not only forsequences of complex numbers, but for sequences obtained from any Banach space.The following theorem shows one common way in which Banach spaces arise. First we need ade�nition.De�nition 10 Suppose that B1; B2 are Banach spaces and that T is a linear map from B1 to B2.We say that T is bounded if supx6=0 k Tx kk x k exists. We de�ne the norm of T , written k T k, tobe this number.If T is indeed bounded, then a standard argument [KR83], establishesLemma 8 supjjxjj=1k Tx k = k T k:Thus one can use vectors of unit norm to calculate the norm of a linear function rather thanhaving to look for the sup over all nonzero vectors. Linear maps from a Banach space to itself aretraditionally called operators, and the norm of such maps is called the operator norm.Since a Banach space is also a metric space under the induced metric described above, onewishes to characterize which linear maps are also continuous. In this regard, we have the followingresult.Lemma 9 A linear map from f : A! B is continuous if and only if it is bounded.The following theorem shows that the category of Banach spaces and bounded linear maps isenriched over itself.Theorem 10 If A is a normed vector space and B is a Banach space then the space of boundedlinear maps with the norm above is a Banach space.13



We will denote this space A �� B.There are several possible categories of interest with Banach spaces as the objects. The mostobvious one is the category with bounded linear maps as the morphisms. However, it turns outthat the category with contractive maps2 is of greater interest and has nicer categorical properties.De�nition 11 A contractive map, T , from A to B is a bounded linear map satisfying the con-dition, k Tx k � k x k. Equivalently, the contractive maps are those of norm less than or equal to1.We will write BANCON for the category of Banach spaces and contractive maps.5.1 Monoidal Structure of BANCONWe �rst point out that BANCON has a canonical symmetric monoidal closed structure. We beginby constructing a tensor product. Let A and B be objects in BANCON : form the tensor of A andB, A
CB, as complex vector spaces. We �rst de�ne a partial norm for elements of the form a
 bby the equation: k a
 b k = k a kk b kWe would like to extend this partial norm to a norm on all of A
C B. Such a norm is called across norm. It turns out that there are many such cross norms, a number of which were discoveredby Grothendieck. The one we will use in this paper is called the projective cross norm. It is in somesense the least such. A detailed discussion of these issues is contained in [T79]. The projectivecross norm is de�ned for an arbitrary element, x, of A
C B by the following formula:k x k = inffk a kk b k such that x = �a
 bgOne can verify that this is in fact a cross norm on A 
C B. Now, the resulting normed spacewill not be complete in general, so one obtains a Banach space by completing it. This will act asthe tensor product in the category BANCON . It will be denoted simply by A
B. Furthermore,we have the following adjunction.Lemma 11 The functor B 
 ( ) is left adjoint to B �� ( ).Corollary 12 BANCON is a symmetric monoidal closed category.As such, BANCON is a model of (at least) the multiplicative fragment of intuitionistic linearlogic.5.2 Completeness Properties of BANCONWe begin by constructing coproducts.De�nition 12 Let A and B be Banach spaces. The direct sum, A � B, is the Cartesian productequipped with the norm k a� b k = k a k+ k b k.Then we have the distributivity property of 
 over �.2Strictly speaking, they should be called \non-expansive" maps.14



Proposition 13 A
 (B �B0) �= (A
B) � (A
 B0).We now discuss �nite products.De�nition 13 The product of two Banach spaces, A �B, has as its underlying space A �B, butnow with norm given by: k a� b k = maxfk a k; k b kgAs a category of vector spaces, BANCON is fairly unique in this respect. While most suchcategories model the additive fragment of linear logic, they invariably equate the two connectives,since �nite products and coproducts coincide. In other words, BANCON does not share thefamiliar property of being an additive category.We now present countably in�nite products and coproducts.De�nition 14 Let fAig1i=1 be a sequence of Banach spaces. De�ne �(Ai) to be those sequenceswhich converge in the l1 norm, i.e. bounded sequences equipped with the obvious norm.De�ne �(Ai) to be all sequences which converge in the l1 norm.This gives countable products and coproducts in BANCON . Similar constructions can be appliedfor uncountable products and coproducts.Equalizers in BANCON correspond to equalizers in the underlying category of vector spaces.The fact that bounded maps are continuous implies that the subspace will be complete. Coequal-izers are obtained as a quotient, with the induced norm being the in�mum of the norms of theelements of the equivalence class. See [C90] for a discussion of quotients of Banach spaces.Theorem 14 BANCON is complete and cocomplete.6 BANCON as a Model of WeakeningIn the next section, we will show that the Fock space of a Banach space has a canonical interpretationas a space of holomorphic functions. In this section, we explore the nature of BANCON as a modelof linear logic. We obtain a somewhat weaker model for the following reason. In this category, aswe have previously observed, products and coproducts do not coincide. Thus, the isomorphism:!A
 !B �= ! (A� B)is not useful for modelling the additive fragment. We obtain instead a weakening cotriple in thesense of Jacobs [J93].Jacobs denotes a weakening cotriple by !w. Such a cotriple satis�es all of the axioms of modelling! , except that the coalgebras will not have the comonoid structure necessary to model contraction.Thus, we have syntax of the following form:�;` A�; !wB ` A We �; B ` A�; !wB ` A Der !w� ` A!w� ` !wA StoOne models these proof rules as in linear logic, following [Se89].We point out that the map: 15



!A
 !B �! ! (A
 B)necessary to model storage is indeed a contraction. This map is obtained as!A
 !B �= ! (A�B)! !! (A� B) �= ! ( !A
 !B)! ! (A
 B)It is shown in an appendix that this map is contractive.Theorem 15 In the category BANCON , we obtain a model of the fragment !w;
;&.Remark 16 We wish to point out an error in an earlier draft of this paper [BPS]. In that paper,it is stated that the Fock construction is functorial on the larger category of Banach spaces andbounded linear maps. In fact, when one applies the Fock construction to a map of norm greaterthan 1, one might obtain a divergent expression. Thus, we are forced to work in the smaller categoryof contractions.7 The Holomorphic-Function Representationof Fock SpaceIt has been observed by a number of people that the free symmetric algebra provides a model ofthe exponential type. But the observation that this construction corresponds to bosonic Fock spaceallows us to relate results in quantum physics to the model theory of linear logic. In this section,we present one such relationship. The symmetrized Fock space on a Banach space B, turns outto be a space of holomorphic functions (analytic functions) on B, properly de�ned. This hints atpossible deeper connections between analyticity and computability which need to be explored.The ideas here stem from early work by Bargmann [Ba61] on Hilbert spaces of analytic functionsin quantum mechanics. This was extended by Segal [S62, BSZ92] to quantum �eld theory andSegal's extension was used by Ashtekar and Magnon [AM-A80] to develop quantum �eld theoryin curved spacetimes. (A brief summary of the ideas is contained in an appendix to [P80] andin [P79].) The latter work involved making sense of the familiar Cauchy-Riemann conditions onin�nite-dimensional spaces.We quickly recapitulate the basic notion of analytic function in terms of one complex variablebefore presenting the in�nite-dimensional case. A very good elementary reference is Complex Anal-ysis by Ahlfors [Ah66]. Given the complex plane, C, one can de�ne functions from C to C. Letz be a complex variable; we can think of it as x + iy and thus one can think of functions from Cto C as functions from R2 to R2. An analytic or holomorphic function is one that is everywheredi�erentiable. In the notion of di�erentiation, the limit being computed, viz.limh!0 f(x+ h)� f(x)hallows h to be an arbitrary complex number and hence this limit is required to exist no matter inwhat direction h approaches 0. This much more stringent requirement makes complex di�erentia-bility much stronger than the usual notion of di�erentiability. If a complex function is di�erentiableat a point it can be represented by a convergent power series in a suitable open region about the16



point. If one uses the fact that h can approach zero along either axis one can derive the Cauchy-Riemann equations for a complex valued function f = u(x; y) + iv(x; y) of the complex variablez = x+ iy, @u@x = @v@y ; @u@y = �@v@x:What is remarkable about complex functions is that this de�nition of analyticity yields theresult that a complex-analytic function can be expressed by a convergent power-series in a regionof the complex plane. This is remarkable because only one derivative is involved in the Cauchy-Riemann equations whereas the statement that a power-series representation exists is stronger, forreal-valued functions, even than requiring in�nite di�erentiability. In real analysis one has examplesof functions that are in�nitely di�erentiable at a point, but do not have a power series representationin any neighbourhood of that point. A function may have a power series representation that isvalid everywhere, a so-called entire holomorphic function; the complex exponential function is anexample.There is a formal perspective, due to Wierstrass, that is rather more illuminating. Think of acomplex variable z = x+ iy and its conjugate z = x� iy as being, formally, independent variables.A function could depend on z and on its complex conjugate, z, for example, the function that mapseach z to zz+ izz. An analytic or holomorphic function is one which has no dependance on z. Thisis expressed formally by df=dz = 0. When expressed in terms of the real and imaginary parts off and z, this equation becomes the familiar Cauchy-Riemann equations. Thus this reinforces theview that a holomorphic function is properly thought of as a single complex-valued function of asingle variable rather than as two real-valued functions of two real variables.The theory of functions of �nitely many complex variables is a nontrivial extension of the theoryof functions of a single complex variable. Entirely new phenomena occur, which have no analoguesin the theory of a single complex variable. An excellent recent text is the three volume treatiseby Gunning [Gu90]. For our purposes we need only the barest beginnings of the theory. GivenCn, we can have functions from Cn to C. One can introduce complex coordinates on Cn, z1; : : : ; zn.One can de�ne a holomorphic function here as one having a convergent power-series expansion inz1; : : : ; zn. The key lemma that allows one to mimic some of the results of the one-dimensional caseis Osgood's lemma3.Lemma 17 If a complex-valued function is continuous in an open subset D of Cn and is holomor-phic in each variable seperately, then it is holomorphic in D.From this one can conclude that a holomorphic function in n variables satis�es the Cauchy-Riemannequations @f@zi = 0. One is free to take either one of (a) satisfying Cauchy-Riemann equations or(b) having convergent power-series representations as the de�nition of holomorphicity.Now we describe how to de�ne holomorphic functions on in�nite-dimensional, complex, Banachspaces. The basic intuition may be summarized thus. One starts with subspaces of �nite codi-mension. Thus the quotient spaces are isomorphic to some Cn. One can de�ne what is meant bya holomorphic function on these quotient spaces as in the preceding paragraph. By composing aholomorphic function with the canonical surjection from the original Banach space to the quotientspace we get a function on the original Banach space. These functions can all be taken to beholomorphic.3There is a considerably harder theorem, called Hartog's theorem, which drops the requirement of continuity.17



B??p p p p p p p p p p p p pRB=� = Cn - CIntuitively these are the functions that are constant along all but �nitely many directions, andholomorphic in the directions along which they do vary. These functions are called cylindric holo-morphic functions. Because the sequence of coe�cients of a power-series is absolutely convergent,we can de�ne an l1 norm on these functions in terms of the power-series. Finally the collection ofall holomorphic funcitons is de�ned by taking the l1-norm completion of the cylindric holomorphicfunctions.Given a Banach space B, let U be a subspace with �nite codimension n, i.e. the quotientspace B=U is an n complex-dimensional vector space. The space B=U is isomorphic to Cn. Let� : B=U ! Cn be an isomorphism; such a map de�nes a choice of complex coordinates on B=U .Let �U be the canonical surjection from B to B=U .De�nition 1 A cylindric holomorphic function on B is a function of the form f ����U , whereU; �U and � are as above and f is a holomorphic function from Cn to C.We need to argue that the choice of coordinates does not make a real di�erence. Of course whichfunctions get called holomorphic does depend on the choice of coordinates, but the space of holo-morphic functions has the same structure4. Suppose that U and V are both subspaces of B andthat U is included in V . Suppose that both these spaces are spaces of �nite codimension, say nand m respectively. Clearly n � m. Now we have a linear map �UV : B=U ! B=V given byx + U 7! x + V ; clearly this is a surjection. Now given coordinate functions � : B=U ! Cn and : B=V ! Cm we can de�ne a function � : Cn ! Cm, given by  � �UV � ��1, which makesthe diagram commute. Thus we do not have to impose \coherence" conditions on the choice ofcoordinates, we can always translate back and forth between di�erent coordinate systems.We will suppress these translation functions in what follows and assume that the coordinateshave been serendipitously chosen to make the form of the functions simple. In other words, wecan �x a family of subspaces fWnjn 2 Ng with Wn having codimension n and Wn+1 � Wn. Thecoordinates can be chosen so that the space B=Wn has coordinates z1; : : : ; zn.Suppose that f is a cylindric holomorphic function on B. This means that there is a �nite-codimensional subspace W , and a holomorphic function fW , from W to C, such that f = fW ��W .The function fW regarded as a function of n complex variables has a power-series representationfW (z1; : : : ; zn) = �ai1:::ikzi11 : : : zikkand furthermore we have the following convergence condition�jai1:::ik j <1:Thus with each such cylindric holomorphic function we can de�ne the sum of the absolute valuesof the coe�cients in the power-series expansion as the norm of the function. Viewing the sequencesof coe�cients as the elements of a complex vector space, we have an l1 norm. We write k f k forthis norm of a cylindric holomorphic function.4This happens even in the one dimensional case. The function z is considered anti-holomorphic traditionally, butone could have called it holomorphic by interchanging the role of z and z.18



De�nition 2 An l1-holomorphic function on B is the limit of a sequence of cylindric holomorphicfunction in the above norm.The l1 emphasizes that the holomorphic functions are obtained by a particular norm completion.In the corresponding theory of holomorphic functions on Hilbert spaces, one uses the inner-productto de�ne polynomials and then perform a completion in the L2 norm. A key di�erence is that ournorm is de�ned on the sequence of coe�cients whereas in the Hilbert space case, one uses the L2norm which is de�ned in terms of integration.In the resulting Banach space there are several formal entities that were adjoined as part ofthe norm-completion process. We need to discuss in what sense these formally-de�ned entities canbe regarded as bona-�de functions. Let W1; : : : ;Wr; : : : be an in�nite sequence of subspaces of B,each embedded in the previous. Assume, in addition, that all these spaces have �nite codimension.Now assume that there is a sequence of cylindric holomorphic functions, fn, on B obtained from aholomorphic function, f (n) on each of the quotient spaces B=Wi. Finally, assume that the sequencek fn k of (real) numbers is convergent. Such a sequence of cylindric holomorphic functions de�nesa holomorphic function on B. We call this function f . We need to exhibit f as a map from B to C.Accordingly, let x be a point of B. For each of the functions fn we have jfn(x)j � k fn k. Since thesequence of norms converges we have the sequence fn(x) converges absolutely and hence converges.Thus the function f qua function is given at each x of B by limn!1 fn(x). However, in orderto use the word \function" we need to show that the power-series has a domain of convergence.Unfortunately, it may not have a non-trivial domain of convergence but, in a sense to be madeprecise, it comes close to having a non-trivial domain of convergence.The power-series representation of the function f is given as follows. It depends, in general,on in�nitely many variables but each term in the power series will be a monomial in �nitely manyvariables. Consider the coe�cient of zj1i1 : : :zjkik in the expansion of f . In all but �nitely many of thefn all the indicated variables will appear in their power-series expansions. Consider the coe�cientsof this term in each power series; this forms a sequence of complex numbers �n where �n is 0 if thereis no such term in the expansion of fn. Since j�nj � k fn k the sequence �n converges absolutelyand hence converges to, say, �. This is the coe�cient of zj1i1 : : : zjkik in the power-series expansion off . Consider the coordinates z1; : : : ; zn. This de�nes an n-dimensional subspace of the Banachspace, which we call Un. Now consider the power-series for f . It de�nes a family of holomorphicfunctions fn where fn is de�ned on the subspace Un and is obtained by retaining only those termsin the power-series expansion of f which involve variables among z1; : : : ; zn. These are analyticfunctions on the Un and, as such, have non-trivial domains of convergence. However, as n increasesthe radii of convergence could tend to 0. So we have the slightly weaker statement than the usual�nite-dimensional notion; instead of having a non-zero radius of convergence in the Banach spacewe have a non-zero radius of convergence on every �nite-dimensional subspace. If one uses entirefunctions, rather than analytic functions, at the starting point of the construction, then one canshow that the resulting functions are entire; see page 67, theorem 1.13, of the book by Baez, Segaland Zhou [BSZ92]. Unfortunately when using the representation of elements of Fock space onemay carry out simple operations that do not produce entire functions so we cannot just choose towork with entire functions. Nevertheless, many common functions, most notably the exponential,are entire.Given a bona �de holomorphic function one can express it as a power series. The coe�cientsare calculated in the usual way, viz. by using Taylor's theoremf = �n�i1+:::+ik=n 1i1! : : : ik! � @n@i1z1 : : :@ikzk� zi11 : : :zikk19



Since the mixed partial derivatives commute (the functions are holomorphic and hence certainlydi�erentiable enough) the partial derivatives are, concretely speaking, symmetric arrays. Abstractlyspeaking this just means that they are elements of the symmetrized tensor product.We can write this as follows.Theorem 18 A holomorphic function can be represented by its power-series expansion where thenth term in the power-series expansion is a symmetrized nth derivative:f = �(1=k!)D(k)fwhere the notation D(k)f means symmetrized kth derivative of f .The symmetrized derivatives live in the symmetrized tensor products of B with itself. Onethus has a correspondence with the standard Fock representation and the notion of holomorphicfunction since in each case one has a string of symmetrized vectors.8 The Physical Origin of Fock SpaceThe Fock space constructions described in the previous sections were independently invented byphysicists and mathematicians. The symmetric Fock space (called the bosonic Fock space by physi-cists) is well known to mathematicians as the symmetric tensor algebra whereas the antisymmetricFock space (fermionic Fock space) was invented by Grassman, at least in the �nite-dimensionalcase, under the name of exterior algebra or alternating algebra. In this section we describe therole of Fock space in quantum �eld theory. In order to prevent intolerable regress in de�nitions weassume that the reader has an at least intuitive grasp of di�erential equations, the de�nition of asmooth manifold and associated concepts like that of a smooth vector �eld.We begin with a brief discussion of quantum mechanics and classical mechanics. In classicalmechanics one has systems which vary in time. The role of theory is to describe the temporalevolution of systems. Such temporal evolution is governed by a di�erential equation. The fact thatone uses di�erential equations says something fundamental about the local nature of the dynamics ofphysical systems, at least according to conventional classical mechanics. In dealing with di�erentialequations one has to distinguish between quantities that are determined and quantities that may befreely speci�ed: the so called \initial conditions". Experiment tells one that systems are describedby second-order di�erential equations and hence that the functions being described and their �rstderivatives, at a given point of time, are part of the initial conditions. The space of all possibleinitial conditions is called the space of possible states or \phase" space, and is the kinematical arenaon which dynamical evolution occurs. The points of phase space are called states. If the systemis a collection of, say 7, particles, the states will correspond to the 42 numbers required to specifythe positions and the velocities of each of the particles in three-dimensional space.Through each point in phase space is a vector giving rise to a smooth vector �eld called theHamiltonian vector �eld. One can draw a family of curves such that at every point there is exactlyone curve passing through that point and the Hamiltonian is tangent to the curve at that point.Roughly speaking, the vector �eld de�nes a di�erential equation and the curves represent thefamily of solutions where each point represents a possible speci�cation of initial conditions. Anobservable is a physical quantity that is determined by the state. As such it corresponds to areal-valued function on phase space. A typical example is the total energy of a system. Most ofexperimental mechanics is aimed at determining the Hamiltonian. In the formal development ofanalytical mechanics there is a special antisymmetric 2-form called the symplectic form which playsa fundamental mathematical role but is hard to describe in an intuitive or purely physical way.20



In quantum mechanics, the above picture changes in the following fundamental ways. Theobservables become the fundamental physical entities. These are de�ned to form a particularsubalgebra of an algebraic structure called a C�-algebra. The key point is that this algebra is notcommutative, unlike the algebra of smooth functions on a manifold. Furthermore, the failure ofcommutativity is directly linked to the symplectic form; this was Dirac's contribution to the theoryof quantum mechanics. Thus, structures available at the classical level provide guidance as to whatthe \correct" C�-algebra should be.There is a representation of this algebra as the algebra of operators on a Hilbert space. Thespace of states acquires the structure of a Hilbert space and becomes the carrier of the repre-sentation of the C�-algebra. One presentation of this abstract Hilbert space is as the space ofsquare-integrable complex-valued functions on a suitable underlying space; for example the spaceof possible con�gurations of a system. The space of states has acquired linear structure; this meansthat one can add states reecting the intuition that in quantum mechanics a system can be in thesuperposition of two (or more) states. The inner product measures the extent to which two statesresemble each other. Finally the fact that one has complex functions is strongly suggested by theobservation of interference phenomena in nature.An observable is a self-adjoint operator. The link between the mathematics and experiment isthe following. If one attempts to measure the observable O for a system in state  one will obtainan eigenvalue of O. Self-adjoint operators have real eigenvalues so we will get a real-valued result.If  is an eigenvector with eigenvalue �, then, with no indeterminacy or uncertainty, one will obtainthe value �. If  is not an eigenvector, one can express  as a linear combination of eigenvectors inthe form  = �ai i where the  i are assumed to be eigenvectors with eigenvalues �i. The resultof measuring O will be �i with probability jaij2. It is important to keep in mind that the absolutesquares of the ai correspond to probabilities but it is the ai themselves that enter into the linearcombinations of states. This interplay between the complex coe�cients and the interpretation oftheir squares as probabilities is what distinguishes the probabilistic aspects of quantum mechanicsfrom statistical mechanics which also has a probabilistic aspect but where one directly manipulatesprobabilities.The dynamics of systems is described by a �rst-order di�erential equation called Schroedinger'sequation. Thus, the evolution of states in quantum mechanics is determinate, just as in classicalmechanics. The indeterminacy usually associated with quantum mechanics appears in the fact thatthe state of a system may not be an eigenstate of the observable being measured so the outcomeof the measurement may be indeterminate.Quantum mechanics is designed to handle systems in which the number of interacting entities(usually called \particles") is �xed. On the other hand, experiment tells us that at su�ciently highenergies particles may be created or destroyed. Quantum �eld theory was invented to account forsuch processes. The original formulations of this theory due to Dirac, Heisenberg, Fock, Jordan,Pauli, Wigner and many others was quite heuristic. Now a reasonably rigourous theory is available;see the book by Baez, Segal and Zhou [BSZ92] for a recent exposition of quantum �eld theory.The �rst need in a many-particle theory is a space of states which can describe variable numbersof particles; this is what Fock space is [Ge85]. The second ingredient is the availability of operatorsthat can describe the creation and annihilation of particles. Of course, there is much more thatneeds to be said in order to see how all this formalism translates into calculations of realisticphysical processes but that would require a very thick book which, in any case, has been writtenmany times over.Given a Hilbert space H in quantum mechanics representing the states of a single particle onecan construct a many-particle Hilbert space as F(H). Suppose that  ; � 2 H; one interprets theelement  
s � of H 
s H as a two-particle state with one particle in the state  and the other21



in the state �. Similarly for the other summands of F(H). The reason for the symmetrizationis that one is dealing with indistinguishable particles so that the n-particle states have to carryrepresentations of the permutation group. Thus one could have particle states that were symmetricor antisymmetric under interchange leading to the bosonic or fermionic Fock spaces respectively.It is a remarkable fact that both types of particles are observed in nature. Notice that  ^  isidentically zero hence one cannot have many-particle states in the antisymmetric Fock space inwhich both particles are in the same one-particle state. This is observed in nature as the exclusionprinciple. Fock space is the space of states for quantum �eld theory and is constructed from thespace of states for quantum mechanics.The presentation of Fock space above emphasized the concept of many-particle states. Math-ematically, however, F(H) is just a Hilbert space and can be presented di�erently. As we haveshown in the last section, it can be presented as the space of holomorphic functions of a Hilbertspace (the details are somewhat di�erent from the Banach space case but the ideas are essentiallythe same). The space of holomorphic functions has as its inner producthg; fi= 12�i Z f(z)g(z)e�zzdz dz:(See [IZ80] page 435, for example.) What do the creation and annihilation operators look likefrom this perspective? For simplicity, let us look at power series in a single variable z. Thisamounts to only looking at the many-particle states of the form � tensored with itself. The creationoperator is just z � (:) while the annihilation operator is just d(:)=dz. One can easily check that(AC � CA)f = d(z � f)=dz � z � df=dz = f ; in other words the basic algebraic relation holds.Furthermore one can ask what the eigenstates of A and C look like. Clearly the eigenstate of C isjust the zero vector. The eigenstate of A is the state represented by the holomorphic function ez .These states actually exist in nature and are called \coherent" states; they occur, for example, inlasers. The key point about coherent states is that they \look classical"; one can remove a particlewithout changing the state. As such they bear a resemblance to the role of ! formulas in linearlogic.AcknowledgementsWe wish to thank several collegues for helpful conversations: Samson Abramsky, John Baez, MikeBarr, Radha Jagadeesan, Steve Vickers, and especially Abhay Ashtekar.References[Abr] Abramsky, S., Interaction categories, preprint, (1993)[Ab91] Abrusci, V.M. \Phase semantics and sequent calculus for pure noncommutative clas-sical linear propositional logic", Journal of Symbolic Logic 56 (1991) 1403{1451.[Ah66] Ahlfors, L.V. Complex Analysis. McGraw-Hill, New York, 1966, second edition. (Firstedition 1953).[AM-A80] Ashtekar, A. and A. Magnon-Ashtekar \A geometrical approach to external potentialproblems in quantum �eld theory", Journal of General Relativity and Gravitation 12(1980) 205-223. 22
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Appendix-Contractibility of the Exponential IsomorphismIt is straightforward to verify that the isomorphism:! (A�B) �= !A
 !Bconstructed on vector spaces lifts to an isomorphism on Banach spaces. The only issue is whetherthe maps so constructed are contractive.We now show that the two maps in this isomorphism are contractive. We need some preliminaryfacts about norms on tensor products of Banach spaces. Suppose that A and B are two Banachspaces. Let a be in A and b in B. The norm of a
 b is k a k:k b k; the so-called \cross-norm". Notall elements of A
B are of the form a
 b for some a in A and some b in B; in general an elementof A 
 B will be a sum of such terms. Furthermore there is no unique representation as such asum. The norm is then de�ned as followsk u kA
B = inff�ik ai k:k bi k : �ai 
 bi = u; 8i:ai 2 A; bi 2 Bg:Note also that the norm is a continuous, but not linear function. Thus one cannot argue in termsof basis elements.We consider � : F(A)� F(B) �! F(A�B) �rst. Suppose that u and v are pure tensors inF(A) and F(B) respectively then clearly k �(u
 v) k = k u k:k v k since � just takes the tensorof u and v and we have the above remark about the norm of such elements in the tensor productspace. Now let y 2 F(A) and z 2 F(B) be arbitrary. We consider the action of � on y 
 z; thisis still not the most general situation. As usual, we write yi for the ith component of y in thestandard basis of Fock space; thus yi is a pure tensor. Similarly for zj .k �(y 
 z) k = k �i;j�(yi 
 zj) k� �i;jk �(yi 
 zj) k = �i;jk (yi 
 zj) k = �i;jk yi k:k zj k = k y k:k z k = k y 
 z k:The equalities are obvious, the inequality is the triangle inequality.Now suppose that we have an element u 2 F(A) 
 F(B) and that u has the decomposition�iy(i) 
 z(i), as well, of course, as other such decompositions. Now we have, using the linearity of�, the triangle inequality and the argument just above,k �(u) k � �ik y(i) 
 z(i) k:However, we do not know that the right hand side is less than k u k; in fact using the triangleinequality we would get the opposite inequality. But since the norm of u is de�ned as the in�mumof the above sum of norms across all such decompositions. Now if the in�mum is actually realizedby such a decomposition then we still have the above inequality but now we know that the righthand side is indeed k u k. If the in�mum is not realized, there is a sequence of decompositionswith the right hand sides as above converging to the in�mum and since k �(u) k is less than allsuch sums it must be less than the in�mum. Thus in all cases k �(u) k � k u k and hence � iscontractive.To show that � is contractive we need a fact about how symmetrization a�ects norms. Supposethat we have u; v 2 B, where B is any banach space. Now u
s v = (1=2)(u
 v+ v
 u). We claimthat k u
s v k = k u
 v k:Clearly one decomposition of u 
s v is (1=2)(u 
 v + v 
 u); if this were the one realizing thein�mum in the de�nition of the norm we would be done. Now suppose that there were another25



decomposition, �ipi 
 qi, for u
s v such that k u
s v k = �ik pi 
 qi k < k u
 v k. Consider theexpression (2�ipi
 qi)� v
 u = u
 v. Computing norms and using the triangle inequality we getk u 
 v k = k 2�ipi 
 qi � v 
 u k � 2�ik pi 
 qi k+ k u kk v k:In other words we have, by simple arithmetic,k u
 v k = k u kk v k � �ik pi 
 qi k:This contradicts the assumption above. Thus symmetrization preserves norms. It is clear that theabove argument could have been carried out for symmetrization over more than two elements.The map � just undoes symmetrization thus, on pure tensors, � is norm preserving. Nowconsider an arbitrary element, x, of F(A
s B). We havek �(x) k = k �n�h0; 0; : : : ; 0; xn; 0; 0; : : :i k� �nk �(h0; 0; : : : ; 0; xn; 0; 0; : : :i) k= �nk h0; 0; : : : ; 0; xn; 0; 0; : : :i k= �nk xn k = k x k:Thus � is contractive as well. It immediately follows that the morphism!A
 !B ! ! (A
B)is a morphism in BANCON and satis�es the necessary properties.
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