
CHAPTER 3

Modular Tensor Categories

In this hapter, we introdue one more re�nement of the notion of a tensor ate-

gory | that of a modular tensor ategory. By de�nition, this is a semisimple ribbon

ategory with a �nite number of simple objets satisfying a ertain non-degeneray

ondition. It turns out that these ategories have a number of remarkable prop-

erties; in partiular, we prove that in suh a ategory one an de�ne a projetive

ation of the group SL

2

(Z) on an appropriate objet, and that one an express the

tensor produt multipliities (fusion oeÆients) via the entries of the S-matrix

(this is known as Verlinde formula).

We also give two examples of modular tensor ategories. The �rst one, the

ategory C(g;{);{ 2 Z

+

, is a suitable semisimple subquotient of the ategory of

representation of the quantum group U

q

(g) for q being root of unity: q = e

�i=m{

.

The seond one is the ategory of representations of a quantum double of a �nite

group G, or equivalently, the ategory of G-equivariant vetor bundles on G. (We

do not explain here what is the proper de�nition of Drinfeld's ategory D(g;{) for

{ 2 Z

+

, whih would be a modular ategory | this will be done in Chapter 7.)

3.1. Modular tensor ategories

In this setion we will study ribbon ategories with some additional proper-

ties. Let C be a semisimple ribbon ategory. We will use the same notation as in

Setion 2.4. De�ne the numbers ~s

ij

2 k = End1 (i; j 2 I) by the following piture:

~s

ij

=

i j

:(3.1.1)

Here and below, we will often label strands of tangles by the indies i 2 I meaning

by this V

i

. Note that (2.3.17) implies

~s

ij

=

θ

i j

-1
θ θ

-1

= �

�1

i

�

�1

j

tr �

V

�

i


V

j

= �

�1

i

�

�1

j

X

k2I

N

k

i

�

j

�

k

d

k

:

(3.1.2)
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Also, it is easy to see that

~s

ij

= ~s

ji

= ~s

i

�

j

�

= ~s

j

�

i

�

; ~s

i0

= d

i

= dimV

i

:(3.1.3)

Definition 3.1.1. A modular (tensor) ategory (MTC for short) is a semisim-

ple ribbon ategory C satisfying the following properties:

(i) C has only a �nite number of isomorphism lasses of simple objets: jI j <1.

(ii) The matrix ~s = (~s

ij

)

i;j2I

, where ~s

ij

is de�ned by (3.1.1), is invertible.

Remark 3.1.2. If C is symmetri, one an hange overrossing and underross-

ing, hene ~s

ij

= d

i

d

j

. Unless jI j = 1, this matrix ~s is singular, therefore C is not

modular.

Remarks 3.1.3. (i) Many authors (for example, Turaev [T℄) impose weaker

onditions, not neessarily requiring semisimpliity in our sense. We are only inter-

ested in the simplest ase; thus the above de�nition is absolutely suÆient for our

purposes. We refer the reader to [Ke℄, [Lyu2℄ for a disussion of the non-semisimple

ase.

(ii) The name \modular" is justi�ed by the fat that in this ase we an de�ne

a projetive ation of the modular group SL

2

(Z) on ertain objets in our ategory,

as we will show below. To the best of our knowledge, this onstrution �rst ap-

peared (in rather vague terms) in a paper of Moore and Seiberg [MS2℄; later it was

formalized by Lyubashenko [Lyu1℄ and others. Our exposition follows the book of

Turaev [T℄.

(iii) The appearane of the modular group in tensor ategories may seem mys-

terious; however, there is a simple geometrial explanation, based on the fat that

to eah modular tensor ategory one an assoiate a 2+1-dimensional Topologial

Quantum Field Theory. This also shows that in fat we have an ation of the map-

ping lass group of any losed oriented 2-dimensional surfae on the appropriate

objets in MTC. This is the key idea of the book [T℄, and will be disussed in detail

in Chapter 4.

From now on, let us adopt the following onvention:

If some (losed) strand in a piture is left unlabeled then we assume

summation over all labels i 2 I eah taken with the weight d

i

= dimV

i

.

(3.1.4)

Sine d

i

�

= d

i

, we an drop the arrow of suh a strand. Reall also that we omit the

upward arrow when there is no ambiguity. Then we have the following propositions.

(Their statements and proofs an be written expliitly in terms of �; i; e; Æ, et., but

we will prefer to use the pitorial presentation.)

Lemma 3.1.4. In any semisimple ribbon ategory we have

i

j

=

~s

ij

d

i

i(3.1.5)

Reall that by Lemma 2.4.1, d

i

6= 0.
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Proof. The left hand side is an element of End(V

i

) = k, i.e., it is equal to

a

ij

id

V

i

for some a

ij

2 k. Taking a trae (i.e., losing the diagram), we obtain

=

j

i a ij i

The left hand side is equal to ~s

ij

, while the right hand side to a

ij

d

i

.

Lemma 3.1.5. We have the following identities :

θθ θ
-1

θ
-1+= p

i i

-p= i i,
(3.1.6)

where

p

�

:=

X

i2I

�

�1

i

d

2

i

:(3.1.7)

Proof. We will onsider only the ase of plus sign, the ase of minus sign is

similar. Again the left hand side is an element of End(V

i

) = k, we take the trae

of this element and multiply it with �

i

. Then, using (2.3.17), we get

θ θ θ= 

i i

Now deompose the tensor produt V

j


 V

i

as in (2.4.1) to get

�

i

tr(lhs) =

X

j

d

j

tr

V

j


V

i

� =

X

j;k

N

k

ji

d

j

d

k

�

k

:

Using (2.4.3) and (2.4.6), we obtain

�

i

tr(lhs) =

X

k

�

X

j

N

j

�

ik

�

d

j

�

d

k

�

k

=

X

k

d

i

d

k

�

d

k

�

k

=

�

X

k

�

k

d

2

k

�

d

i

= p

+

d

i

;

as desired.
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Corollary 3.1.6.

-1
θ θ

-1
θ

k

+= pi k

i

Proof. Sine any objet is a diret sum of simple ones, (3.1.6) holds if we

replae V

i

by any objet V . Apply this identity for V = V

i


V

k

and use (2.3.17).

Theorem 3.1.7. De�ne the matries ~s = (~s

ij

), t = (t

ij

) and  = (

ij

) (\harge

onjugation matrix") by (3.1.1) and

t

ij

= Æ

ij

�

i

;(3.1.8)



ij

= Æ

ij

�

:(3.1.9)

Then we have:

(~st)

3

= p

+

~s

2

;(3.1.10)

(~st

�1

)

3

= p

�

~s

2

;(3.1.11)

t = t; ~s = ~s; 

2

= 1;(3.1.12)

where p

�

are de�ned by (3.1.7). Moreover, when ~s is invertible, we have

~s

2

= p

+

p

�

:(3.1.13)

Proof. The fat that  ommutes with ~s and t follows from (3.1.3) and (2.4.5);

and 

2

= 1 beause i

��

= i. To prove the non-trivial relations (3.1.10, 3.1.11),

onsider �rst the identity

θ θ
-1

θ
-1+= pi k

i

k

(3.1.14)

obtained from Corollary 3.1.6. The right hand side is equal to

p

+

�

�1

i

�

�1

k

i

k

= p

+

�

�1

i

�

�1

k

~s

ik

d

i

i
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where we used Lemma 3.1.4. We an rewrite the left hand side of (3.1.14) as

X

j

d

j

�

j

k

j

i

Applying Lemma 3.1.4 twie we obtain

X

j

d

j

�

j

~s

jk

d

j

i

j

=

X

j

�

j

~s

jk

~s

ij

d

i

i

This gives the identity

X

j

~s

ij

�

j

~s

jk

= p

+

�

�1

i

~s

ik

�

�1

k

whih is equivalent to

~st~s = p

+

t

�1

~st

�1

;

proving (3.1.10). Similarly, using the analogue of Corollary 3.1.6 with minus sign,

one an prove

~st

�1

~s = p

�

t~st;

whih implies (3.1.11).

When the matrix ~s is non-singular, it is a matter of pure algebra to dedue

Eq. (3.1.13) from (3.1.10){(3.1.12).

Corollary 3.1.8. In an MTC, p

+

and p

�

are non-zero.

Now assume that the ategory C is modular, and introdue the notation

D :=

p

p

+

p

�

; � := (p

+

=p

�

)

1=6

(3.1.15)

(assuming that they exist in k, otherwise we an always pass to a ertain algebrai

extension). De�ne the renormalized matrix

s := ~s=D:(3.1.16)

Then we an rewrite the relations from Theorem 3.1.7 as follows:

(st)

3

=

s

p

+

p

�

s

2

= �

3

s

2

; s

2

= ; t = t; 

2

= 1:(3.1.17)

Realling the well-known desription of SL

2

(Z) as the group generated by the ele-

ments

s =

�

0 �1

1 0

�

; t =

�

1 1

0 1

�

(3.1.18)
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with relations (st)

3

= s

2

; s

4

= 1, we see that the matries s; t give a projetive

representation of SL

2

(Z). (The fat that s

2

t = ts

2

follows from (st)

3

= s

2

.)

Remark 3.1.9. Of ourse, one easily sees that we an replae the matrix t by

t=� and get a true representation of SL

2

(Z) rather than a projetive one. In fat,

sine H

2

(SL

2

(Z);Q) = 0, every projetive representation of SL

2

(Z) over a �eld k

of harateristi 0 an be trivialized in some algebrai extension of k. However,

we prefer not to do it: later we will show that any MTC gives rise to projetive

representations of more general groups (mapping lass groups), of whih SL

2

(Z) is

the simplest example, and these representations an not be trivialized. Moreover,

if we renormalize t now, it will make things only worse later.

Corollary 3.1.10. In an MTC, we have:

i = p

+

p

�

Æ

i;0 i(3.1.19)

p

+

p

�

=

X

d

2

i

= :(3.1.20)

i j = Æ

ij

p

+

p

�

d

i

i

i

(3.1.21)

Proof. Let us prove the �rst identity. As before, it suÆes to prove that the

traes of both sides are equal. By Lemma 3.1.4 the left hand side of (3.1.19) is

equal to

P

j

d

j

~s

ij

=d

i

id

V

i

. Taking a trae, we obtain

X

j

d

j

~s

ij

=

X

j

~s

0j

~s

ij

= (~s)

2

0i

= p

+

p

�



0i

= p

+

p

�

Æ

i;0

:

The seond identity (3.1.20) easily follows from (3.1.19). The proof of (3.1.21) is

similar to the above, using twie Lemma 3.1.4.

We note that equation (3.1.20), along with the de�nition of s, give the following

formulas for the number D =

p

p

+

p

�

:

D =

q

X

dim

2

V

i

= s

�1

00

:(3.1.22)

We an easily desribe the Grothendiek ring of a modular tensor ategory. As

before, let C be an MTC and let K(C) be the Grothendiek ring of C (see De�ni-

tion 2.1.9). Then the algebra K = K(C)


Z

k is a �nite dimensional ommutative
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assoiative algebra with a basis x

i

= hV

i

i, i 2 I , and a unit 1 = x

0

. This algebra is

frequently alled the fusion algebra, or Verlinde algebra.

Theorem 3.1.11. Let C be an MTC, K = K(C) 


Z

k, and let F (I) be the

algebra of k-valued funtions on the set I. De�ne a map � : K ! F (I) by the

piture:

V

i
=

�

�(V )

�

(i) i

Then � is an algebra isomorphism.

Proof. It is immediate from the results of Setion 2.3 that � is an algebra

homomorphism. Indeed,

VU

i
:

=

U

V

i

i

:

Choose a basis in F (I) onsisting of renormalized delta-funtions: �

i

(j) =

Æ

ij

=s

0i

. Then it follows from Lemma 3.1.4 and the obvious identity ~s

ij

=d

i

= s

ij

=s

0i

that the map � is given by

�(x

j

) =

X

i

s

ij

�

i

:(3.1.23)

Sine the matrix s

ij

is invertible, this ompletes the proof.

The importane of this result is that it gives a new basis �

�1

(�

i

) in K in whih

the multipliation beomes diagonal. For brevity, let us write �

i

2 K instead of

�

�1

(�

i

). Then (3.1.23) and �

i

�

j

= Æ

ij

�

i

=s

0i

imply that

x

i

�

j

= �

j

s

ij

=s

0j

:(3.1.24)

Comparing this with the usual formula for the multipliation in the basis x

i

:

x

i

x

j

=

X

k

N

k

ij

x

k

;(3.1.25)

we get the following proposition.
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Proposition 3.1.12. For a �xed i let N

i

be the matrix of multipliation by x

i

in the basis fx

j

g, i.e., (N

i

)

ab

= N

a

ib

, and let D

i

be the following diagonal matrix:

(D

i

)

ab

:= Æ

ab

s

ia

=s

0a

. Then

sN

i

s

�1

= D

i

:(3.1.26)

This proposition is usually formulated by saying that \the s-matrix diagonalizes

the fusion rules". Another reformulation is the following. De�ne in K another

operation, � (onvolution), by the formula

x

i

� x

j

= Æ

ij

x

i

=s

0i

:(3.1.27)

Then:

s(xy) = s(x) � s(y);(3.1.28)

s(x � y) = s(x)s(y):(3.1.29)

Therefore, the matrix s an be onsidered as some kind of a Fourier transform.

Finally, Proposition 3.1.12 immediately implies the following famous formula

for the oeÆients N

k

ij

, whih was onjetured in [Ve℄ and proved in [MS1℄.

Theorem 3.1.13 (Verlinde formula).

N

k

ij

=

X

r

s

ir

s

jr

s

k

�

r

s

0r

:(3.1.30)

Before giving the proof, let us note that as a onsequene the right hand side

of (3.1.30) is a non-negative integer, whih is a non-trivial and unexpeted fat.

Proof. Rewrite formula (3.1.26) as sN

i

= D

i

s, or

X

a

N

a

ij

s

ar

=

s

ir

s

jr

s

0r

:(3.1.31)

Multiplying this identity by s

rk

�

and summing over r, we get (3.1.30).

Remark 3.1.14. If the base �eld k = C , and the ategory C is Hermitian, that

is, if it an be endowed with a omplex onjugation funtor satisfying ertain

ompatibility onditions [T, Set. II.5℄, then it an be shown that the matries s; t

are unitary (see [Ki℄).

Let C be a modular tensor ategory. Reall the objet H =

L

V

i


 V

�

i

2 C

de�ned in (2.4.9). As was mentioned in Setion 2.4, we have anonial isomorphisms

H ' H

�

and H '

L

V

�

i


 V

i

. It also follows from the de�nition that dimH =

D

2

=

P

(dim V

i

)

2

.

Definition 3.1.15. De�ne elements S; T; C 2 EndH as follows. Write

S =

M

i;j2I

S

ij

; S

ij

: V

j


 V

�

j

! V

i


 V

�

i
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and similarly T =

L

T

ij

, C =

L

C

ij

. Then:

S

ij

:=

d

i

D

i

j

;(3.1.32)

T

ij

:= Æ

ij

θ

j j

;(3.1.33)

C

ij

:= Æ

ij

�

j j

-1
θ

:(3.1.34)

We have the following generalization of Theorem 3.1.7.

Theorem 3.1.16. S

2

= C, C

2

= S

4

= �

�1

H

, (ST )

3

=

p

p

+

=p

�

S

2

and the

element C is entral in EndH.

Proof. Let us �rst hek the identity S

2

= C. We have:

(S

2

)

ij

=

X

k

S

ik

S

kj

=

X

k

d

i

D

d

k

D

j

i

k
=

d

i

D

2

j

i
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=

d

i

D

2

i

j

θ
-1

=

d

i

D

2

j

θ
-1

i

= Æ

ij

�

j

θ
-1

j

= Æ

ij

�

j j

-1
θ

= C

ij

using (3.1.21) and p

+

p

�

= D

2

, d

i

= d

i

�

.

Similarly, (STS)

ij

=

P

k;l

S

ik

T

kl

S

lj

=

P

k

S

ik

(�

k


 id)S

kj

is equal to

d

i

D

2

θ

i

j

=

d

i

D

2

j

θ
-1

i

θ
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=

d

i

D

2

p

+

j

θ
-1

-1
θ θ

-1

i

=

s

p

+

p

�

d

i

D

-1
θ

i

θ
-1

j

whih equals

p

p

+

=p

�

(T

�1

ST

�1

)

ij

; now using Corollary 3.1.6 instead of Corol-

lary 3.1.10. This proves that (ST )

3

=

p

p

+

=p

�

S

2

.

Finally, using (2.3.17), it is easy to see that (C

2

)

ij

= Æ

ij

�

�1

V

i


V

�

i

= (�

�1

H

)

ij

.

We annot say that S; T give a projetive representation of the modular group

in H , sine �

H

is not a onstant. However, �

H

beomes a onstant after restrition

to an isotypi omponent of H . Equivalently, let us �x a simple objet U in our

ategory and onsider the spae

Hom(U;H) =

M

i2I

Hom(U; V

i


 V

�

i

):

This is a vetor spae over k, and �

H

j

Hom(U;H)

= �

U

id

Hom(U;H)

, �

U

2 k.

Theorem 3.1.17. De�ne the maps S

U

; T

U

: Hom(U;H)! Hom(U;H) by

S

U

: � 7! S�;

T

U

: � 7! T�:

Then S

U

; T

U

satisfy the following relations

S

4

U

= �

�1

U

;

T

U

S

2

U

= S

2

U

T

U

;

(S

U

T

U

)

3

=

s

p

+

p

�

S

2

U

;

and thus give a projetive representation of the group SL

2

(Z) in Hom(U;H).

Example 3.1.18. Let U = 1 be the unit objet in C. Then we have a anonial

identi�ation Hom(1; V

i


 V

�

i

) ' k, and thus we have a anonial basis f�

i

g of

Hom(1; H). In this ase, the ation of the modular group de�ned in Theorem 3.1.17

in the basis f�

i

g is given by s; t de�ned by (3.1.16) and (3.1.8).

The next theorem was proved by Vafa in the ontext of Conformal Field Theory.

Theorem 3.1.19 (Vafa [V2℄). In any modular tensor ategory the numbers �

i

and � = (p

+

=p

�

)

1=6

are roots of unity (regardless of the base �eld k).

Proof. We will use the following observation: if

Y

j2I

�

M

ij

j

= 1; i 2 I;
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with a non-singular integer matrix M

ij

, then all �

j

are roots of unity. Indeed, we

an diagonalize the matrix M

ij

by rows and olumns operations.

For �xed objets W

1

, W

2

, W

3

in C, de�ne the following endomorphisms of

W

1


W

2


W

3

:

�

1

:= �

W

1


 id
 id; �

2

:= id
�

W

2


 id; �

3

:= id
 id
�

W

3

;

�

12

:= �

W

1


W

2


 id; �

23

:= id
�

W

2


W

3

; �

13

:= θ

W WW
1 2 3

�

123

:= �

W

1


W

2


W

3

:

Then it is easy to hek that

�

12

�

13

�

23

= �

123

�

1

�

2

�

3

(3.1.35)

(this identity is sometimes alled the lantern identity). Consider this identity for

W

1

= V

i

, W

2

= V

�

i

, W

3

= V

i

. It gives rise to an identity of operators in the vetor

spae

U

i

= Hom(V

i

; V

i


 V

�

i


 V

i

)

whih is non-zero sine it ontains i

V

i


 id

V

i

. We take determinant of both sides of

this identity.

To ompute det �

12

j

U

i

, we use the deompositions of V

i


 V

�

i

and V

j


 V

i

as

diret sums of simple objets:

V

i


 V

�

i

=

X

j

N

j

ii

�

V

j

; V

j


 V

i

=

X

k

N

k

ji

V

k

;

and (2.4.4, 1.1.2). We obtain

det �

12

j

U

i

=

Y

j

�

N

j

ii

�

N

i

ji

j

:

Similarly, we ompute the determinants of other �'s and get the identity

Y

j

�

A

ij

j

= �

4 dimU

i

i

;

where A

ij

= 2N

j

ii

�

N

i

ij

+N

j

ii

N

i

ji

�

. Using that dimU

i

= (1=3)

P

j

A

ij

> 0, it is easy

to see that the matrix A

ij

� 4Æ

ij

dimU

i

is nonsingular. It follows that all �

i

are

roots of unity.

Sine det t =

Q

i

�

i

, det t is a root of unity. On the other hand, s

4

= 1 implies

that det s is a 4th root of unity. Therefore, it follows from (st)

3

= �

3

s

2

that � is a

root of unity.

Remark 3.1.20. In MTCs oming from Conformal Field Theory (CFT), when

the base �eld is C , one usually writes

�

i

= e

2�i�

i

; � = e

2�i=24

:(3.1.36)
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The numbers �

i

are alled the onformal dimensions and  is alled the (Virasoro)

entral harge of the theory. In this language Vafa's theorem asserts that the

onformal dimensions and the entral harge of the theory are rational numbers;

this is one of the reasons why suh CFTs are alled rational.

One an also easily prove the following result.

Theorem 3.1.21. All the numbers s

ij

=s

0j

= ~s

ij

=d

j

are algebrai integers.

Proof. By Verlinde formula (3.1.26), these numbers are the eigenvalues of the

matrix N

i

with integer entries.

3.2. Example: Quantum double of a �nite group

We will give the simplest example of a modular tensor ategory|the ategory

of �nite dimensional representations of the Hopf algebra D(G), whih is the quan-

tum double of the group algebra k[G℄ of a �nite group G. It is interesting that

this example appeared in two seemingly unrelated areas|the theory of haraters

of redutive groups over �nite �elds [L5, L6℄ and the orbifold onstrutions in

Conformal Field Theory [DVVV, KT℄.

Let us �rst �x the notation. Let G be a �nite group. Reall that its group

algebra k[G℄ over a �eld k is a Hopf algebra with a k-basis fxg

x2G

and

multipliation x
 y 7! xy; x; y 2 G;

unit e (the unit element of G);

omultipliation �(x) = x
 x; x 2 G;

ounit "(x) = 1;

antipode (x) = x

�1

:

This Hopf algebra is oommutative. A representation of k[G℄ is the same as

a representation of G. By Mashke's theorem, the ategory Rep

f

k[G℄ of �nite

dimensional representations is semisimple.

The Hopf algebra dual to k[G℄ is isomorphi to the funtion algebra F (G) of

the group G. It has a k-basis fÆ

g

g

g2G

onsisting of delta funtions:

Æ

g

(x) = Æ

g;x

=

(

1 for g = x;

0 for g 6= x:

It has

multipliation Æ

g

Æ

h

= Æ

g;h

Æ

g

; g; h 2 G;

unit 1 =

P

g2G

Æ

g

;

omultipliation �(Æ

g

) =

P

g

1

g

2

=g

Æ

g

1


 Æ

g

2

; g 2 G;

ounit "(Æ

g

) = Æ

g;e

;

antipode (Æ

g

) = Æ

g

�1
:

A representation of F (G) is the same as a G-graded vetor spae (sine fÆ

g

g

g2G

are projetors).

Applying Drinfeld's quantum double onstrution [Dr3℄ it is easy to desribe

expliitly the quantum double D(G) of k[G℄. As a vetor spae, D(G) = F (G) 


k
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k[G℄. It is a Hopf algebra with

multipliation (Æ

g


 x)(Æ

h


 y) = Æ

gx;xh

(Æ

g


 xy); x; y; g; h 2 G;

unit 1 =

P

g2G

Æ

g


 e;

omultipliation �(Æ

g


 x) =

P

g

1

g

2

=g

(Æ

g

1


 x)
 (Æ

g

2


 x); g; x 2 G;

ounit "(Æ

g


 x) = Æ

g;e

;

antipode (Æ

g


 x) = Æ

x

�1

g

�1

x


 x

�1

:

The Hopf algebra D(G) is quasitriangular with

R-matrix R =

P

g2G

(Æ

g


 e)
 (1
 g):

(Of ourse, one we know the above formulas, they an be easily heked diretly.)

Note that F (G) and k[G℄ embed in D(G) as k-algebras and D(G) is their

semidiret produt:

D(G) = F (G)o k[G℄;(3.2.1)

with

xÆ

g

x

�1

= Æ

xgx

�1 for g; x 2 G:(3.2.2)

Let Rep

f

D(G) be the ategory of �nite dimensional representations of D(G)

as a k-algebra. By the above remarks, a representation V of D(G) is the same as

a G-module with a G-grading V =

L

g2G

V

g

satisfying xV

g

� V

xgx

�1
, x; g 2 G.

In other words, objets of Rep

f

D(G) are �nite dimensional G-equivariant vetor

bundles over G. We will show that the ategory Rep

f

D(G) is semisimple and will

desribe its simple objets.

For V 2 ObRep

f

D(G) and v 2 V the submodule generated by v is

D(G)v =

X

g2G

k[G℄Æ

g

v =

X

g2G

M

xgx

�1

2g

xZ(g)Æ

g

v;

where g denotes the onjugasy lass and Z(g) the entralizer of g in G. Note that

k[Z(g)℄Æ

g

v is an irreduible representation � of Z(g). Hene

V

g;�

:= k[G℄Æ

g

v =

M

xgx

�1

2g

x�;(3.2.3)

is an irreduible D(G)-module whih depends only on the onjugay lass g and

the isomorphism lass of the irreduible representation � of Z(g). The ation of

D(G) on V

g
;�

is given expliitly by:

(Æ

f


 h)(xv) = Æ

f;hxgh

�1

x

�1
hxv for f; h; x 2 G; v 2 �:(3.2.4)

This shows that the ategory Rep

f

D(G) is semisimple with simple objets

V

g
;�

labeled by pairs (g; �), where g 2 G is a onjugay lass in G and � 2

[

Z(g) is

an isomorphism lass of irreduible representation of the entralizer Z(g) of some

element g 2 g (� is independent of the hoie of g).
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In what follows we will use the orthogonality relations of irreduible haraters

of a �nite group G:

1

jGj

X

h2G

tr

�

�

(h) tr

�

0

(hg) =

tr

�

(g)

tr

�

(e)

Æ

�;�

0

; �; �

0

2

b

G; g 2 G;(3.2.5)

1

jZ(g)j

X

�2

b

G

tr

�

�

(g) tr

�

(h) = Æ

g;h

; h; g 2 G:(3.2.6)

Also reall that jgjjZ(g)j = jGj.

Theorem 3.2.1. Rep

f

D(G) is a modular tensor ategory with simple objets

V

g
;�

labeled by (g; �), g 2 G, � 2

[

Z(g) (g 2 g). We have:

V

�

g;�

' V

g

�1

;�

�

;(3.2.7)

t

(g;�);(g

0

;�

0

)

= Æ

(g;�);(g

0

;�

0

)

tr

�

(g)

tr

�

(e)

;(3.2.8)

s

(g;�);(g

0

;�

0

)

=

1

jZ(g)jjZ(g

0

)j

X

h2G

hg

0

h

�1

2Z(g)

tr

�

(hg

0

�1

h

�1

) tr

�

0

(h

�1

g

�1

h):(3.2.9)

The numbers p

�

from (3.1.7) are equal to the order of G.

The s-matrix (3.2.9) was �rst introdued by Lusztig [L5℄ (see also [L6, L7℄)

under the names \non-abelian Fourier transform" and \exoti Fourier transform".

Then it appeared in [DVVV℄ and [KT℄ in onnetion with \orbifolds". Dijkgraaf,

Pasquier and Rohe [DPR℄ onsidered a generalization of the above onstrution

whih is also related to orbifolds. They introdued a quasi-Hopf algebra D



(G),

depending on a ohomology lass  2 H

3

(G;U(1)), whih redues to D(G) when

 = 1.

Proof of Theorem 3.2.1. Eq. (3.2.7) follows easily from the de�nitions (note

that Z(g

�1

) = Z(g) and tr

�

�

(h) = tr

�

(h

�1

)).

To prove (3.2.8), we ompute the twists � using the results of Proposition 2.2.4

and Lemma 2.2.5. Sine 

2

= id, it follows that Æ

V

= id, f. (2.2.11). Hene,

� = u

�1

=

X

h2G

Æ

h


 h:(3.2.10)

As g is entral in Z(g), it ats as a onstant = tr

�

(g)= tr

�

(e) on the representation

�; hene by (3.2.4), �

g;�

= tr

�

(g)= tr

�

(e).

To prove (3.2.9), we will use (3.1.2). We ompute for x; x

0

2 G, v 2 �

�

, v

0

2 �

0

:

�

V

�

g;�


V

g

0

;�

0

(xv 
 x

0

v

0

) = �(u

�1

)(xv 
 x

0

v

0

)

=

X

h2G

h

1

h

2

=h

(Æ

h

1


 h)(xv) 
 (Æ

h

2


 h)(x

0

v

0

)

=

X

h2G

h

1

h

2

=h

Æ

h

1

;hxg

�1

x

�1

h

�1
hxv 
 Æ

h

2

;hx

0

g

0

x

0

�1

h

�1

hx

0

v

0

= (fxv 
 fx

0

v

0

); where f = xg

�1

x

�1

x

0

g

0

x

0

�1

:
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Hene,

tr �

V

�

g;�


V

g

0

;�

0

=

X

xg

�1

x

�1

2g

�1

x

0

g

0

x

0

�1

2g

0

x

�1

x

0

g

0

x

0

�1

x2Z(g

�1

)

tr

�

�

(g

�1

x

�1

x

0

g

0

x

0

�1

x) tr

�

0

(x

0

�1

xg

�1

x

�1

x

0

g

0

)

=

tr

�

�

(g

�1

)

tr

�

�

(e)

tr

�

0

(g

0

)

tr

�

0

(e)

1

jZ(g)jjZ(g

0

)j

X

h2G

hg

0

h

�1

2Z(g)

tr

�

�

(hg

0

h

�1

) tr

�

0

(h

�1

g

�1

h);

whih proves (3.2.9).

The omputation of p

�

is straightforward (using (3.2.5, 3.2.6)), and is left to

the reader.

3.3. Quantum groups at roots of unity

We will show that the ategory of representations of a quantum group at root

of unity is a modular tensor ategory.

We will use the notation and de�nitions from Setion 1.3. Reall that the

quantum group U

q

(g) was de�ned over the �eld C

q

where q is a formal variable

(De�nition 1.3.1). We also de�ned a version of the quantum group (\the quantum

group with divided powers") whih makes sense for q 2 C (see (1.3.18)).

In this setion we will onsider the ase q = e

�i=m{

({ 2 Z

+

and m is

from (1.3.17)), and we will abbreviate U

q

(g)j

q=e

�i=m{

to U

q

(g). As usual, we let

q

a

= e

a�i=m{

for any a 2 Q. Let C(g;{) be the ategory of �nite dimensional

representations of U

q

(g) over C with weight deomposition:

V =

M

�2P

V

�

; q

h

j

V

�
= q

(h;�)

id

V

�
;

e

(n)

i

(V

�

) � V

�+n�

i

; f

(n)

i

(V

�

) � V

��n�

i

:

Note that our de�nition of weight deomposition is stronger than just requiring

that all q

h

be diagonalizable: the ation of q

h

does not allow one to distinguish

between V

�

and V

�+2m{�

; � 2 P .

Theorem 3.3.1. C(g;{) is a ribbon ategory over C .

Proof. The assoiatity, unit, et., follow from the fat that U

q

(g) is a Hopf

algebra (f. Examples 1.2.8(iii), 2.1.4). For the ommutativity we need that the

R-matrix an be de�ned over U

q

(g)

Z

, whih was proved by Lusztig, see [L2℄.

Definition 3.3.2. Let � 2 P

+

be a dominant integer weight of g. The Weyl

module V

�

of U

q

(g) is de�ned by

V

�

= (V

�

)

Z




A

C ;

where A = Z[q

�1=jP=Qj

℄ and (V

�

)

Z

= U

q

(g)

Z

v

�

� (V

�

)

C

q

is the U

q

(g)

Z

-submodule

of (V

�

)

C

q

generated by the highest weight vetor.

This means that we hoose a basis of (V

�

)

C

q

suh that the ation of U

q

(g)

Z

has oeÆients from Z[q

�1=jP=Qj

℄ and then we an put q a omplex number. This

desription shows that the weight subspaes of V

�

are the same as those of (V

�

)

C

q

.
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For example, let us onsider �rst the ase when g = sl

2

. The weight lattie of

sl

2

an be identi�ed with Z, so the Weyl modules are

V

n

=

n

X

i=0

C v

i

; n 2 Z

+

:

Here v

0

is the highest weight vetor and v

i

= f

(i)

v

0

. The ation of U

q

(sl

2

) is given

by (reall that [k℄ := (q

k

� q

�k

)=(q � q

�1

)):

q

h

v

i

= q

n�2i

v

i

; ev

i

= [n� i+ 1℄v

i�1

; fv

i

= [i+ 1℄v

i+1

;

see the �gure (f is represented by solid lines and e by dashed ones).

[1]

-1 ][ [

[ [2]

[1]

n

n n

]

]

v v v v vn 2n 1 0 - 1

The oeÆients of the above ation are in Z[q

�1

℄, so it makes sense for q 2 C

�

. We

will assume that q 6= �1.

Exerise 3.3.3. Write the ation of e

(k)

and f

(k)

in this basis.

Let q = e

�i={

, { 2 Z

+

. Then the module V

n

may be reduible sine [k℄ = 0

when { divides k. For example, for n = 3, { = 3, the basis elements v

1

and v

2

span a submodule V

0

3

. This laim does not follow simply from the fat that V

0

3

is

invariant under the operators e and f , beause for example e

(3)

is a new operator

di�erent from e

3

=[3℄! (sine [3℄ = 0). We leave the proof as an exerise (not too

diÆult). The submodule V

0

3

is not a diret summand, hene V

3

is not semisimple.

Theorem 3.3.4. (i) The module V

n

is irreduible for n < {.

(ii) dim

q

V

n

= [n+ 1℄ = 0 if and only if { divides n+ 1.

The proof of this theorem is straightforward. In partiular, this theorem implies

that

For 0 � n � { � 2, V

n

is irreduible and dim

q

V

n

6= 0,(3.3.1)

whih is obvious beause in this ase all q-fatorials are non-zero. (In fat, one has

a stronger statement: V

n

is irreduible i� n < { or n = l{ � 1, l 2 Z

+

, see [AP℄.)

We will need a similar result for an arbitrary semisimple �nite dimensional Lie

algebra g. Reall the number m from (1.3.17). We let q = e

�i=m{

, { 2 Z, and

assume that { � h

_

, where h

_

= h�; �i + 1 is the dual Coxeter number, � is the

half sum of positive roots, and � is the highest root of g.

Theorem 3.3.5. dim

q

V

�

= 0 if and only if � + � 2 H

�;l

for some � 2 �

+

,

l 2 Z, where H

�;l

is the hyperplane

H

�;l

:= fx 2 h

�

j hx; �i = l{g:

Proof. By (2.3.13) we have an expliit formula for dim

q

:

dim

q

V

�

= tr

V

�

q

2�

= �

�

(q

2�

);(3.3.2)

where �

�

is the harater of the representation V

�

. Here and below we use the

notation e

�

(q

�

) = q

hh�;�ii

and extend it to f(q

�

) for f 2 C [P ℄, where P is the

weight lattie of g.
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We have the Weyl formula for �

�

:

�

�

(q

2�

) =

1

Æ(q

2�

)

X

w2W

(�1)

l(w)

q

hhw(�+�);2�ii

;(3.3.3)

where l(w) is the length of w, and Æ is the Weyl denominator

Æ =

Y

�2�

+

(e

�=2

� e

��=2

) =

X

w2W

(�1)

l(w)

e

w(�)

:(3.3.4)

(This equality is the Weyl denominator formula.)

We an rewrite (3.3.3) as

�

�

(q

2�

) =

1

Æ(q

2�

)

X

w2W

(�1)

l(w)

q

2hh�+�;w(�)ii

=

Æ(q

2(�+�)

)

Æ(q

2�

)

=

Y

�2�

+

[hh�; � + �ii℄

[hh�; �ii℄

;

(3.3.5)

where, as usual, [n℄ denotes the q-number.

Note that hh�; �ii � hh�; �ii = m(h

_

� 1) < m{, thus the denominator is non-

zero. The numerator is 0 exatly when �+ � belongs to some H

�;l

.

Let us de�ne the aÆne Weyl group W

a

to be the group generated by reetions

with respet to the hyperplanes H

�;l

. It ontains the Weyl group W of g whih is

generated by reetions with respet to the hyperplanes H

�;0

. Reall the following

standard fats (see e.g. [K1℄).

Theorem 3.3.6. (i) W

a

is a Coxeter group generated by the simple reetions

s

i

(i = 1; : : : ; rankg) and the reetion s

0

with respet to the hyperplane H

�;1

.

(ii) W

a

= W n {Q

_

where Q

_

is the oroot lattie embedded in h

�

using the

form h; i; {Q

_

ats on h

�

by translations.

(iii) A fundamental domain for the shifted ation w:� := w(�+ �)� � of W on

h

�

is the Weyl hamber

C = f� 2 h

�

j (� + �; �

_

i

) � 0; (�+ �; �

_

) � {g:(3.3.6)

For example, for g = sl

2

, h

�

is a line and C is the losed interval [�1;{ � 1℄.

We will need a simple tehnial lemma.

Lemma 3.3.7. (i) Let f 2 C [P ℄

�W

beW invariant (respetively anti-invariant).

Then f(q

2�

) is (anti)symmetri with respet to the ation of W

a

on �.

(ii) Conversely, if f(q

2�

) = f(q

2�

0

) for all f 2 C [P ℄

W

then �

0

= w(�) for some

w 2 W

a

.

Proof. (i) The (anti)symmetry with respet to W is obvious. It suÆes to

hek that f(q

2�

) is symmetri with respet to translations from {Q

_

, i.e.,

f(q

2(�+{�

_

)

) = f(q

2�

); �

_

2 Q

_

:

This follows from the equation

e

�

(q

2(�+{�

_

)

) = q

2hh�;�ii

q

2{hh�;�

_

ii

and the fat that 2{hh�; �

_

ii = 2{mh�; �

_

i 2 2{mZ.

(ii) The proof of the onverse statement is left to the reader as an exerise;

the ruial step is proving that ertain matries are non-singular. We will give an

example of a alulation of this sort later (see the proof of Theorem 3.3.20).



3.3. QUANTUM GROUPS AT ROOTS OF UNITY 65

Corollary 3.3.8. If we de�ne \dim

q

V

�

" for all � 2 P as Æ(q

2(�+�)

)=Æ(q

2�

),

then it is W

a

-antisymmetri with respet to the shifted ation on �.

Proof. Follows from Lemma 3.3.7 and the fat that Æ is a W -antisymmetri

element in C [P ℄ (see (3.3.4)).

Theorem 3.3.9. Let C = f� 2 P

+

j (�+ �; �

_

) < {g. Then for � 2 C we

have dim

q

V

�

> 0 and V

�

is irreduible.

(In fat, one an desribe exatly when V

�

is irreduible (see [APW℄) but we will

not need it.)

Proof. The fat that dim

q

V

�

> 0 follows from Eq. (3.3.5). The irreduibility

of V

�

follows from the so-alled \linkage priniple" (in a weak form):

V

�

an have a subquotient with highest weight �

0

only if �

0

= w(�)

for some w 2W

a

.

To prove it, introdue operators K

�

: V ! V (where � 2 P

+

, V is any module) by

the piture

VVν

Sine K

�

is a morphism in the ategory C(g;{), it ommutes with the ation of

U

q

(g) on V . If v

�

is a highest weight vetor in V , it is easy to see that K

�

(v

�

) =

�

�

(q

2(�+�)

)v

�

. Indeed, let fv

i

g and fv

i

g be dual bases in V

�

and V

�

�

. Using

1.2.8(iii), 2.3.4 and 2.2.4, we ompute:

K

�

: v

�

i

7!

X

i

v

�


 v

i


 v

i

�

7!

X

i

q

hh�;wt v

i

ii

(v

i

+ � � � )
 v

�


 v

i

�

7!

X

i

q

2hh�;wt v

i

ii

v

�


 (v

i

+ � � � )
 v

i

Æ

7!

X

i

q

2hh�+�;wt v

i

ii

v

�


 (v

i

+ � � � )
 v

i

e

7!

�

X

i

q

2hh�+�;wt v

i

ii

�

v

�

= �

�

(q

2(�+�)

)v

�

;

where \+ � � �" denotes terms with lower weight than v

i

.

The operators K

�

are entral and at by onstant on v

�

, therefore for subquo-

tients we have

�

�

(q

2(�+�)

) = �

�

(q

2(�

0

+�)

):

Beause all �

�

, � 2 P

+

, span C [P ℄

W

, it follows from Lemma 3.3.7(ii) that �

0

= w(�)

for some w 2 W

a

.

This ompletes the proof of the theorem.
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Note that C(g;{) is a very ompliated ategory; in partiular, it is not semisim-

ple. We want to extrat a semisimple part with simple objets V

�

, � 2 C. As an

indiation that this is possible, we give without proof the following fat (see [AP℄

and referenes therein).

Proposition 3.3.10. For �; � 2 C we have

V

�


 V

�

'

�

M

�2C

N

�

��

V

�

�

� Z

for some module Z with dim

q

Z = 0.

However, it is not possible to delare all modules of dim

q

= 0 to be 0. For

example, for g = sl

2

we have dim

q

(V

{�2

� V

{

) = 0, while both V

{�2

and V

{

are

modules with non-zero q-dimension and V

{�2

is simple.

The orret onstrution was found by Andersen and Paradowski [AP℄ and is

based on the use of an auxiliary ategory of tilting modules, whih is interesting in

its own right.

Definition 3.3.11. A module T over U

q

(g) is alled tilting if both T and T

�

have omposition series with fators V

�

, � 2 P

+

. Let T be the full subategory of

C(g;{) onsisting of all tilting modules.

Example 3.3.12. (i) If � 2 C then V

�

' V

�

�

for �

�

= �w

0

(�), where w

0

is the

longest element in W . Therefore the module V

�

is tilting. However, for a general

� 2 P

+

, V

�

may not be tilting.

(ii) Let g = sl

2

, q = e

�i=3

, so [3℄ = 0. Consider the Weyl module V

3

over U

q

sl

2

.

We add two more vetors to it and extend the ation of sl

2

as shown in the �gure

for the elements e and f (f is represented by solid lines and e by dashed ones).

[1]

[1]

[1]

[1]

[2]

[2]

[2]

[2]

0

0

0

0

0

12

3

4 5

v

v v

v

vv

(The reader an de�ne as an exerise the ation of e

(k)

; f

(k)

for k > 0.) We obtain

a module T =

P

5

i=0

C v

i

. It is easy to see that the vetors v

0

, v

1

, v

2

, v

3

generate

a submodule isomorphi to V

3

and the fator by it is isomorphi to V

1

. It an be

easily shown that T

�

' T , hene the module T is tilting. Note that T is not a

diret sum of V

3

and V

1

.

The following important theorem was proved by Andersen and Paradowski (see

[AP℄ and referenes therein).

Theorem 3.3.13 ([AP℄). (i) The ategory of tilting modules T is losed under

�, �, 
 and diret summands.

(ii) For every � 2 P

+

there exists a unique indeomposable tilting module T

�

suh that its weight subspae (T

�

)

�

is 0 unless � � � and (T

�

)

�

= C .
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(iii) For � 2 C we have T

�

= V

�

, while for � 62 C we have dim

q

T

�

= 0. Hene

dim

q

T � 0 for all T 2 Ob T .

We will not give a proof of the theorem. We only note that, for example, it is

rather diÆult to show that T is losed under 
.

Corollary 3.3.14. T is a ribbon ategory.

Note that T is not an abelian ategory sine it is not losed under quotients.

Definition 3.3.15. A tilting module T is alled negligible if tr

q

f = 0 for any

f 2 EndT . (In partiular, dim

q

T = 0.)

Lemma 3.3.16. T is negligible i� T =

L

�62C

n

�

T

�

for some n

�

2 Z

+

.

Proof. Follows easily from Theorem 3.3.13. Indeed, it is enough to show

that T

�

is negligible i� � 62 C. Sine T

�

is indeomposable and dim

C

T

�

<

1, every endomorphism f of T

�

in some homogeneous basis has the form f =

 id+upper triangular. Then tr

q

f =  dim

q

T

�

.

Definition 3.3.17. A morphism f : T

1

! T

2

is alled negligible if tr

q

(fg) = 0

for all g : T

2

! T

1

.

Note that if T

1

or T

2

is negligible then any morphism f : T

1

! T

2

is negligible.

Lemma 3.3.18. (i) If T is negligible, then so are T

�

, T 
 T

0

for any T

0

, and

diret summands of T .

(ii) If f is negligible, then so are f

�

, f 
 g, fg and gf for any g.

The proof being obvious is omitted.

Definition 3.3.19. Let C

int

� C

int

(g;{) ({ 2 Z, { � h

_

) be the ategory with

objets tilting modules and morphisms

Hom

C

int(V;W ) = Hom

T

(V;W )=negligible morphisms:

We list some properties of the ategory C

int

� C

int

(g;{):

1. T 2 ObT is negligible i� it is isomorphi to 0 in C

int

.

2. C

int

is a ribbon ategory.

3. Any objet V in C

int

is isomorphi to

L

�2C

n

�

V

�

.

4. C

int

is a semisimple abelian ategory and dim

C

int V > 0 if V 6' 0.

These properties show that C

int

is the ategory we wanted. It is a semisimple ribbon

ategory with a �nite number of simple objets. A natural question is whether this

ategory is modular. We will show that the answer is positive.

Theorem 3.3.20. C

int

is a modular tensor ategory with simple objets V

�

(� 2

C),

s

��

= jP={Q

_

j

�1=2

i

j�

+

j

X

w2W

(�1)

l(w)

q

2hhw(�+�);�+�ii

;(3.3.7)

t

��

= Æ

��

q

hh�;�+2�ii

;(3.3.8)

and

D =

p

jP={Q

_

j

Y

�2�

+

�

2 sin(�h�; �i={)

�

�1

;(3.3.9)

� = e

2�i=24

;  = ({ � h

_

) dim g={:(3.3.10)
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Proof. The alulations in the proof of Theorem 3.3.9 and Eq. (3.1.5) give

~s

��

= �

�

(q

2(�+�)

) dim

q

V

�

=

1

Æ(q

2�

)

X

w2W

(�1)

l(w)

q

2hhw(�+�);�+�ii

:

To show that det ~s 6= 0, we will alulate the matrix ~s

2

. First note that if we

use the formula above to extend ~s

��

for �; � 2 P , this extended matrix will be

antisymmetri with respet to the shifted ation of the aÆne Weyl group W

a

:

~s

w:�;�

= (�1)

l(w)

~s

�;�

; w 2 W

a

:(3.3.11)

In partiular, ~s

��

= 0 when � or � are on the walls of C.

Sine

P

�2C

~s

��

~s

��

is symmetri with respet to the shifted ation of W

a

on

� and C is the fundamental domain for the ation of W

a

on P , we an replae the

range of summation with P=W

a

. Sine W

a

'W n{Q

_

, this sum equals

1

jW j

X

�2P={Q

_

~s

��

~s

��

=

1

jW j

X

w;w

0

2W

X

�2P={Q

_

Æ(q

2�

)

�2

(�1)

l(w)+l(w

0

)

q

2hh�+�;w(�+�)+w

0

(�+�)ii

:

Now we need an obvious lemma.

Lemma 3.3.21.

X

�2P={Q

_

q

2hh�;aii

=

(

0 for a 62 {Q

_

;

jP={Q

_

j for a 2 {Q

_

:

Note that w(� + �) + w

0

(� + �) = w(� + �)� w

0

w

0

(�

�

+ �) 2 {Q

_

i� �+ � 2

w

�1

w

0

w

0

(�

�

+ �) + {Q

_

where w

0

is the longest elment in W . But sine both �

and �

�

are in C, whih is a fundamental domain of W

a

, this is only possible if

�+ � = �

�

+ �, w

�1

w

0

= w

0

. Therefore

X

�2C

~s

��

~s

��

=

jP={Q

_

j

Æ(q

2�

)

2

(�1)

l(w

0

)

Æ

�;�

�

:

This number is non-zero, hene det ~s 6= 0.

This also gives D sine (~s

2

)

��

= D

2

Æ

�;�

�

. Formula (3.3.8) for the twist follows

diretly from Example 2.2.6. The rest of the proof is straightforward and is left to

the reader.

Example 3.3.22. When g = sl

2

, we have:

s

��

=

r

2

{

sin

�

�

(�+ 1)(�+ 1)

{

�

; 0 � �; � � { � 2:

The arguments of Theorem 3.3.20 an be repeated for q = e

�i=m{

, { 2 Q, but

in this ase the matrix ~s may be degenerate.

Note that the formulas for the matries s; t oinide with the Ka{Peterson

formula [KP℄ for the modular transformations of haraters of the aÆne Lie algebra

^

g when q = e

�i=m{

(their matrix T orresponds to the matrix t=� in our notations).

This fat will be explained later.

Finally, let us disuss the Verlinde algebra for C

int

. Let V = K(Rep

f

(g))
C be

the omplexi�ed Grothendiek ring of Rep

f

(g); similarly, denote V

k

= K(C

int

)
 C

(where, as before, { = k + h

_

).
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Proposition 3.3.23. The Verlinde algebra V

k

is the quotient of V, namely,

V

k

= V=I

k

, where I

k

� V is the linear span of hV

�

i � (�1)

l(w)

hV

w:�

i for � 2

P

+

; w 2W

a

; w:� 2 P

+

.

Proof. The onstrution given in Theorem 3.1.11 de�nes a surjetive map

� : V ! V

k

. It follows from Weyl harater formula that I

k

� ker�. On the other

hand, it follows from Theorem 3.3.6(iii) that dimV=I

k

= jCj = dimV

k

.

Exerise 3.3.24. (i) Show that for g = A

n

, the ideal I

k

is the linear span of

hV

�

i for � 2 P

+

; (�+ �; �

_

) = {.

(ii) Show that for g = E

8

this is not so.

(iii) Show that the fusion rules for U

q

(sl

2

) for q = e

�i=(k+2)

are given by

hV

m

ihV

n

i =

X

l

N

l

mn

hV

l

i;

where

N

l

mn

=

(

1 for jm� nj � l � m+ n; l � 2k � (m+ n); l +m+ n 2 2Z;

0 otherwise

(f. Example 2.1.10).
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