
CHAPTER 7

Wess{Zumino{Witten Model

In this hapter, we give a onstrution of what is probably the best known

example of a modular funtor. This modular funtor is based on the ategory

of integrable representations of an aÆne Lie algebra and appears naturally in the

Wess{Zumino{Witten model of onformal �eld theory; abusing the language, we

will all it the WZW modular funtor. The literature devoted to this measures in

hundreds of papers; the most prominent among them are [KZ℄, [MS1℄, [TUY℄,

[BFM℄. For more detailed exposition of onformal �eld theory in general and

WZW model in partiular, we refer the reader to [FMS℄ and referenes therein.

The main goal of this hapter is to prove the following result. Fix a simple

omplex Lie algebra g, and let O

int

k

be the ategory of integrable modules of level

k 2 Z

+

over the orresponding aÆne Lie algebra

b

g.

Theorem 7.0.1. The ategory O

int

k

has a struture of a modular tensor ate-

gory.

Of ourse, in this form the theorem is not very preise sine we have not de�ned

the tensor produt (whih is usually alled the fusion produt, and denoted

:


, to

distinguish it from the usual tensor produt of vetor spaes). We will give a preise

de�nition later (see Corollary 7.9.11).

Another important result, whih, unfortunately, we will not prove, is the follow-

ing. Reall that in Setion 3.3 we de�ned a struture of a modular tensor ategory

on a ertain subquotient C

int

(g;{) of the ategory of representations of the quantum

group U

q

g, q = e

�i=m{

.

Theorem 7.0.2 ([F℄). The ategory O

int

k

is equivalent to the ategory C

int

(g;{)

as a modular tensor ategory for { = k+h

_

, where h

_

is the dual Coxeter number

for g.

Beause of the importane of these two theorems, we will omment here on

their history. They have appeared in somewhat vague form in physis literature in

the 1980s. The aurate onstrution of the tensor struture on O

int

k

�rst appeared

in [MS1℄; however, Moore and Seiberg did not give a omplete proof.

To the best of our knowledge, there are three known proofs of Theorem 7.0.1.

The �rst one, whih we present in this hapter, is based on the use of the notion

of modular funtor. The orresponding modular funtor (whih, as we mentioned

above, naturally appears in the Wess{Zumino{Witten model of onformal �eld

theory) is de�ned in terms of the spaes of oinvariants. The ruial step in proving

that these spaes satisfy the axioms of a modular funtor is heking the gluing

axiom, whih was done by Tsuhiya, Ueno, and Yamada [TUY℄. Another proof of

the gluing axiom an be obtained by suitably modifying the proof for the minimal

models given in [BFM℄.
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168 7. WESS{ZUMINO{WITTEN MODEL

The seond proof of Theorem 7.0.1 was given by Finkelberg [F℄, who based

his approah on the series of papers of Kazhdan and Lusztig [KL℄. They proved

that for negative integer level k, the ategory O

k

is a ribbon ategory, whih is

equivalent to the ategory C(g;{) of representations of the quantum group U

q

g.

Therefore, this ategory ontains a subquotient ategory whih is equivalent to the

MTC C

int

(g;{). Combining this result with a ertain duality between the ategories

O

k

and O

�2h

_

�k

, Finkelberg showed that this subquotient is dual to the ategory

O

int

k

, thus establishing simultaneously Theorems 7.0.1 and 7.0.2.

Finally, the third proof of Theorem 7.0.1, based on the theory of vertex operator

algebras, was reently given by Huang and Lepowsky [HL℄.

Unfortunately, none of these proofs is easy. Finkelberg's proof is based on a 250

pages long series of papers [KL℄, whih is very tersely written; few people (if any

at all) have expertise and patiene to follow all the details of this proof. Similarly,

the proof of Huang and Lepowsky is heavily based on a number of their previous

papers on vertex operator algebras, whih an sometimes get rather tehnial. The

modular funtor approah seems to be the easiest of all three, but it still requires all

the formalism of modular funtors and their relation with tensor ategories (whih

took the previous 140 pages of this book) and some non-trivial algebrai geometry

used in [TUY℄, also not an easy reading.

The proof given in this hapter is based on the modular funtor approah; how-

ever, our proof of the gluing axiom follows the ideas of [BFM℄ rather than [TUY℄.

This proof was never published before; however, for the most part it losely follows

the arguments in [BFM℄, so all the redit belongs to Beilinson, Feigin, and Mazur.

Modifying their arguments for WZW model was rather straightforward; aording

to private ommuniations from Beilinson and Feigin, they intended to inlude the

proof for WZW model in the �nal version of the manusript. Unfortunately, it is

not lear when (and if) suh a �nal version appears, so we inlude this proof here.

7.1. Preliminaries on aÆne Lie algebras

The aim of this subsetion is just to �x the notation, we refer to the book of

Ka [K1℄ for a omprehensive treatment.

Let g be a �nite dimensional simple Lie algebra over C . We �x a Cartan

subalgebra h � g and let h�; �i be an invariant bilinear form on g normalized so that

h�; �i = 2 for long roots of g. We will use the same notations (and notions) as in

Setion 1.3.

Let g((t)) � g 


C

C ((t)) be the loop algebra of g. Then the aÆne Lie algebra

of g is

b

g = g((t))� CK(7.1.1)

with ommutation relations

[a
 f; b
 g℄ = [a; b℄
 fg + ha; biRes

0

(df g)K; [K;

b

g℄ = 0:

For brevity, we often use the notation x[n℄ = x
 t

n

; x 2 g.

We let

b

g

+

= tg[[t℄℄,

b

g

�

= t

�1

g[t

�1

℄. We have a deomposition of

b

g into subal-

gebras

b

g =

b

g

+

� g� CK �

b

g

�

:

We will be interested in

b

g-modules of level k 2 C , i.e., modules V suh that

Kj

V

= k id

V

; this is equivalent to onsidering modules over U(

b

g)

k

= U

b

g=U

b

g(K�k).



7.2. REMINDERS FROM ALGEBRAIC GEOMETRY 169

We will denote by O

k

the ategory of

b

g-modules of level k whih have weight

deomposition with �nite-dimensional weight subspaes, suh that the ation of

b

g

+

is loally nilpotent and the ation of g is integrable.

Of speial interest for us are two lasses of modules from O

k

: Weyl modules

and integrable modules. Weyl module V

k

�

; � 2 P

+

, is de�ned by

V

k

�

= Ind

b

g

g�

b

g

+

�CK

V

�

;(7.1.2)

where V

�

is the irreduible �nite-dimensional g-module with highest weight �, whih

we onsider as a module over g�

b

g

+

� CK by letting

b

g

+

at as 0 and K at as k id.

The Weyl module is free over

b

g

�

.

If k =2 Q, then Weyl modules are irreduible and the ategory O

k

is semisimple.

We will be mostly interested in the other extreme ase k 2 Z

+

. In this ase, we an

also onsider integrable highest-weight modules. We will denote by O

int

k

� O

k

the

subategory of integrable modules, i.e., suh modules that for every root �, n 2 Z,

the ation of e

�

[n℄ is loally nilpotent. It is known that O

int

k

is semisimple with

simple objets L

k

�

; � 2 P

k

+

, where P

k

+

is the positive Weyl alove

P

k

+

= f� 2 P

+

j (�; �

_

) � kg;(7.1.3)

see [K1℄. (Note that P

k

+

is the same set whih we denoted by C in Setion 3.3.)

The modules L

k

�

are irreduible and an be desribed as the quotient L

k

�

= V

k

�

=Z

�

,

where Z

�

is the unique maximal proper submodule of V

k

�

. It is known that Z

�

is

generated by one vetor: Z

�

= U

b

g(e

�

[�1℄)

a+1

v

�;k

, where a = k � (�; �

_

).

It is useful to note that both V

k

�

and L

k

�

have a natural Z

�

-grading (sometimes

alled the homogeneous grading), de�ned by deg v

�;k

= 0; deg a[n℄ = n; a 2 g; n 2 Z.

It is easy to see that homogeneous omponents of V

k

�

(and, in fat, any module in

the ategory O

k

) are �nite-dimensional.

Finally, we will de�ne the duality in the ategory O

k

by DV = (V

�

)

\

, where V

�

is the restrited dual to V , i.e. the diret sum of the dual spaes to homogeneous

omponents of V , and \ is de�ned as follows: for a

b

g module W , the module

W

\

oinides with W as a vetor spae, and the ation of

b

g is twisted by the

automorphism

\ : x[n℄ 7! (�1)

n

x[�n℄; K 7! �K:(7.1.4)

It is easy to see that D is an anti-automorphism of the ategory O

k

whih preserves

O

int

k

. In partiular, for an integrable module L

k

�

, DL

k

�

is also an irreduible inte-

grable module, whose top homogeneous omponent is V

�

�

. It is (non-anonially)

isomorphi to L

k

�w

0

(�)

.

7.2. Reminders from algebrai geometry

In this setion we briey list some fats from algebrai geometry whih will

be used below. All of them are quite standard, so a reader who has even basi

knowledge of algebrai geometry over C an safely skip this setion.

All varieties onsidered in this setion are onsidered with analyti topology;

as before, we use the words \manifold" and \non-singular variety" as synonyms.

For a variety S, we denote by O

S

the struture sheaf of S (i.e., the sheaf of analyti

funtions on S). We assume that the reader is familiar with the notion of a O-

module and a oherent O-module. As usual, for a point s 2 S we de�ne by O

S;s

the loal ring at s, i.e. the ring of germs of analyti funtions at s, and by m

s

the maximal ideal of this ring, whih onsists of funtions vanishing at s. We also
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denote by

b

O

S;s

the ompletion of the loal ring with respet to topology given by

the powers of the maximal ideal. In partiular, if dimS = 1, s 2 S is a regular

point, and t is a loal parameter at s, i.e., an analyti funtion in a neighborhood

of s suh that t(s) = 0; (dt)

s

6= 0, then

b

O

S;s

' C [[t℄℄.

For an O

S

-module F we de�ne its �ber at point s 2 S to be F

s

=m

s

F

s

. In

partiular, if F is the sheaf of setions of a vetor bundle F , then in this way

one reovers the �bers of F . We will say that an O-module F is lisse if it is the

sheaf of setions of a �nite-dimensional vetor bundle. Note that every lisse sheaf

is oherent, but onverse is not true.

In general, for an open subset U � S and a sheaf F on S, we denote by F(U)

the vetor spae of setions of F over U . However, in the ase when U = C nD,

where C is ompat and D is a divisor, and F|an O-module over C, we will

denote by F(C � D) the spae of meromorphi setions of F over C whih are

regular outside of D. We hope it won't ause onfusion.

We will use the following well known fats about omplex urves. As before, all

the urves are assumed to be ompat and non-singular (unless spei�ed otherwise),

but not neesarily onneted.

Theorem 7.2.1 (Riemann-Roh). Let C be a onneted omplex urve, and

p

1

; : : : ; p

n

; q|distint points of C (n � 0). Let us �x the prinipal parts of Laurent

expansions (f)

i

2 C ((t

i

))=C [[t℄℄ near p

i

. Then there exists a funtion f 2 O(C �

fp

1

; : : : ; p

n

; qg) whih has given prinipal parts of Laurent expansion at p

i

and has

a pole at q. Moreover, the order of pole at q an be bounded by a onstant whih

only depends on the order of poles at p

i

and the genus of the urve C.

This theorem an be generalized to urve whih may have ordinary double

point singularities and may be disonneted. In this ase, we have to allow poles

at a olletion of points q

1

; : : : ; q

m

suh that on every omponent of C there is at

least one of the points q

i

.

Theorem 7.2.2. Let C be a omplex urve (possibly disonneted and singu-

lar). Let q 2 C be a regular point, and t|a loal parameter at q. Then the vetor

spae

C ((t))=C [[t℄℄ +O(C � q);

is �nite dimensional. Moreover, there exists N 2 Z

+

whih only depends on the

topology of C suh that

O(C � q) + C [[t℄℄ � t

�N

C [t

�1

℄ + C [[t℄℄:

7.3. Conformal bloks: de�nition

In this setion, we will de�ne the vetor spaes of oinvariants; later we will

show that these vetor spaes satisfy the axioms of a modular funtor. The basi

referenes for this setion are [TUY℄, [Be℄ (with minor hanges).

Fix a ompat nonsingular omplex urve C (not neessarily onneted), a

�nite dimensional simple Lie algebra g, and a positive integer k.

Let p

1

; : : : ; p

n

be distint points on C with loal oordinates t

1

; : : : ; t

n

(reall

that a loal oordinate at a point p is a holomorphi funtion t in a neighborhood

of p suh that t(p) = 0; (dt)

p

6= 0). We will always assume that on every onneted

omponent of C there is at least one point. Let V

1

; : : : ; V

n

2 O

k

be some

b

g-modules

assoiated to these points.
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We will use the notations

~p = (p

1

; : : : ; p

n

);

V = V

1


 : : :
 V

n

:

In partiular, if V

i

= L

k

�

i

are integrable modules, we will use the notation

~

� = (�

1

; : : : ; �

n

); L

k

~

�

= L

k

�

1


 � � � 
 L

k

�

n

:

Consider the Lie algebra

g(C � ~p) = g


C

O(C � ~p)(7.3.1)

of g-valued funtions on C whih are regular outside the points p

1

; : : : ; p

n

and

meromorphi at these points. We have Lie algebra homomorphisms



i

: g(C � ~p)! g((t))

given by Laurent expansion around the point p

i

in the loal oordinate t

i

. This

does not give a Lie algebra homomorphism g(C � ~p) !

b

g beause of the entral

term in de�nition of

b

g. However, by the Residue Theorem,

~ = 

1

� � � � � 

n

: g(C � ~p)! g((t)) � � � � � g((t))

an be lifted to a homomorphism

~ : g(C � ~p)! U(

b

g)

k


 � � � 
 U(

b

g)

k

; ~(x) =

n

X

i=1

1
 � � � 
 

i

(x) 
 � � � 
 1:

In partiular, g(C � ~p) ats on V .

Definition 7.3.1. The spae of onformal bloks is the vetor spae of oin-

variants

�(C; ~p; V ) := V

g(C�~p)

= V=g(C � ~p)V:

We will write �(C; ~p;

~

t; V ) when we need to show the dependene on the hoie

of loal parameters

~

t = (t

1

; : : : ; t

n

).

It is easy to see that the onstrution above also makes perfet sense if we allow

t

i

be formal loal parameters at p

i

, i.e., t

i

2

b

O

p

i

; (dt

i

)

p

i

6= 0. Note that one t

i

is

hosen, one has

b

O

p

i

= C [[t

i

℄℄.

Lemma 7.3.2 (Beauville [Be℄). Let ~p, V be as above, and let q 2 C�~p, � 2 P

k

+

.

As before, let V

�

be the orresponding �nite-dimensional g-module, and let V

k

�

be

the Weyl module over

b

g. Then the inlusion V

�

,! V

k

�

indues an isomorphism

(V 
 V

�

)

g(C�~p)

�

�! (V 
 V

k

�

)

g(C�~p�q)

= �(C; ~p [ q; V 
 V

k

�

);(7.3.2)

where g(C�~p) ats on V

�

via the evaluation map a
f 7! f(q)a, a 2 g, f 2 O(C�~p).

Proof. Sine the natural embedding V 
 V

�

,! V 
 V

k

�

is learly g(C � ~p)

equivariant, it indues a map from the left hand side of (7.3.2) to the right hand

side.

By the Riemann{Roh formula, there exists a funtion z on C regular outside

~p [ q and having a simple pole at the point q. Then

O(C � ~p� q) = O(C � ~p)�

1

M

i=1

C z

�i

;
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therefore g(C � ~p� q) ' g(C � ~p)�

b

g

�

.

By de�nition, V

k

�

is a free U(

b

g

�

)-module isomorphi to U(

b

g

�

)V

�

; hene, V

�

'

(V

k

�

)

b

g

� . Then (7.3.2) follows by tensoring with V and taking oinvariants with

respet to g(C � ~p).

Lemma 7.3.3. Let C be onneted, and let V

i

be quotients of Weyl modules:

V

i

= V

k

�

i

=I

i

(the ideals I

i

may be zero, maximal, or anything in between). As-

sume also that at least one of V

i

is integrable, i.e., equal to L

k

�

i

. Then the natural

surjetion V = V

1


 � � � 
V

n

� L

k

�

1


 � � � 
L

k

�

n

= L

k

~

�

gives rise to an isomorphism

�(C; ~p; V )

�

�! �(C; ~p; L

k

~

�

):(7.3.3)

Proof. It suÆes to prove that

(L

k

�

1


 V

2


 � � � 
 V

n�1


 V

k

�

n

)

g(C�~p)

= (L

k

�

1


 V

2


 � � � 
 V

n�1


 L

k

�

n

)

g(C�~p)

:

Let Z = fv 2 V

k

�

n

j L

�

1


 � � � 
 V

n�1


 v � Im g(C � ~p)g. Obviously, this is a

submodule in V

k

�

n

; our goal is to prove that V

k

�

n

=Z is integrable. This is equivalent

to the following statement: for every root � and v 2 V

k

�

n

, one has (e

�

[�1℄)

N

v 2 Z

for N � 0 (in fat, it suÆes to hek this for � = �). We leave it to the reader

to hek that if we hoose f 2 C ((t)) suh that f has �rst order pole at 0, then

the above ondition is equivalent to (e

�

f)

N

v 2 Z for N � 0 (in other words, the

notion of an integrable module does not depend on the hoie of loal parameter).

Now let f 2 O(C�p

1

�p

n

) be a funtion whih has a �rst order pole at p

n

. By

the Riemann{Roh theorem, suh a funtion exists if we allow it to have a pole of

suÆiently high order at p

1

. Sine L

k

�

1

is integrable, and f is regular at p

2

; : : : ; p

n�1

,

we easily see that ation of e

�

f on L

k

�

1


� � � 
V

n�1

is loally nilpotent. Therefore,

for any v

1

2 L

k

�

1

; : : : ; v

n

2 V

k

�

n

, one has v

1


 � � � 
 v

n�1


 (e

�

f)

N

v

n

2 Im g(C � ~p).

But this exatly means that (e

�

f)

N

v

n

2 Z for N � 0.

This theorem an be rewritten in more invariant terms. For a module V 2 O

k

,

denote by V

int

its maximal integrable quotient (it is easy to see that it is well-

de�ned). Then the previous lemma immediately implies the following orollary.

Corollary 7.3.4. Let V

i

2 O

I

k

NT , and at least one of V

i

is integrable. Then

�(C; ~p; V

1


 � � � 
 V

n

) = �(C; ~p; V

int

1


 � � � 
 V

int

n

):

Corollary 7.3.5. Let V = V

1

� � � 
 V

n

; V

i

2 O

int

k

. Then the embedding C =

V

0

,! L

k

0

indues an isomorphism

�(C; ~p; V ) ' �(C; ~p [ q; V 
 L

k

0

):(7.3.4)

Proof. This follows from Lemmas 7.3.2 and 7.3.3:

(V 
 L

k

0

)

g(C�~p�q)

' (V 
 V

k

0

)

g(C�~p�q)

' (V 
 C )

g(C�~p)

:

Having proved these results, we an prove now the following proposition.

Proposition 7.3.6. If V = V

1

� � �
V

n

; V

i

2 O

int

k

, then the spaes of oinvariants

�(C; ~p; V ) are �nite dimensional.
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Proof. We may assume that C is onneted. Combining Lemma 7.3.2 and

7.3.3, we see that it suÆes to prove the statement for n = 1; V

1

= L

k

�

. It follows

from Theorem 7.2.2 that

b

g

+

+ g(C � p) �

b

g

+

+ t

�N

b

g

�

for N � 0. Therefore, it

suÆes to prove that the vetor spae

W

N

= L

k

�

=t

�N

b

g

�

V

�

is �nite-dimensional.

To prove this, note that one has a well-de�ned ation of

b

g

�0

= g[t

�1

℄ on W

N

,

whih fators through the �nite-dimensional quotient a =

b

g

�0

=t

�N

b

g

�0

. Obviously,

W

N

= (Ua)v

�;k

. On the other hand, a is generated by e

�

; f

�

, e

�

t

�1

, and all of

these generators at nilpotently on W

N

. Thus, all we need is to prove the following

lemma.

Lemma 7.3.7. If a is a �nite-dimensional Lie algebra with generators x

1

; : : : ; x

n

,

and W is a yli a-module suh that the ation of x

i

in W is loally nilpotent, then

W is �nite-dimensional.

To prove this lemma, we pass from the module W over Ua to the orre-

sponding graded module GrW over Gr(Ua) = S(a). Consider the variety S =

Supp(GrW ) � a

�

. Then it follows from the nilpoteny ondition that x

i

, on-

sidered as a funtion on a

�

, vanishes on S. By Gabber's integrability theorem

[Gab℄, if x; y vanish on S, then [x; y℄ also vanishes. Therefore, S = f0g. But every

�nitely generated module over the polynomial ring, whih has a �nite support, is

�nite-dimensional. This proves the lemma, and thus, the proposition.

As an illustration, onsider the simplest ase C = P

1

.

Proposition 7.3.8. Let C = P

1

, p

1

; : : : ; p

n

|distint points on C.

(i) Let V

k

~

�

= V

k

�

1


: : :
V

k

�

n

, and V

~

�

= V

�

1


: : :
V

�

n

. Then the homomorphism

(V

~

�

)

g

! �(C; ~p; V

k

~

�

)

obtained by restriting the natural map V

k

~

�

! V

k

~

�

=g(C � ~p)V

k

~

�

, is an isomorphism.

(ii) Let z be a global oordinate on P

1

; assume that z(p

i

) is �nite. De�ne the

endomorphism T : V

~

�

! V

~

�

by

T (v

1


 � � � 
 v

n

) =

n

X

i=1

v

1


 � � � 
 z(p

i

) e

�

v

i


 � � � 
 v

n

Then one has an isomorphism

(V

�

1


 : : :
 V

�

n

)

g�CT

k+1 ' �(P

1

; ~p; L

k

~

�

):

Proof. Part (i) is proved in the same way as Lemma 7.3.2, if we also note

that for one point, g(P

1

� p) = g�

b

g

�

. As for part (ii), it an be dedued from the

fat that L

k

�

= V

k

�

=U

b

g(e

�

[�1℄)

a+1

v

�;k

.

Let us relate this desription with the one usually given in the physis literature.

As before, let C = P

1

with global oordinate z, and let the marked points be

0; z

1

; : : : ; z

n

;1 with the loal parameters z; z� z

i

;�1=z respetively. Let us assign

to the points 0 and1 someO

k

-modules V

0

; V

1

respetively and assign to the points

z

1

; : : : ; z

n

Weyl modules V

k

�

1

; : : : ; V

k

�

n

. Then, by Lemma 7.3.2, we an replae in
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the de�nition of oinvariants V

k

�

i

by V

�

i

and the algebra g(P

1

� f0; z

i

;1g) by

g(P

1

� f0;1g) = g[z; z

�1

℄. Thus

(7.3.5) �(P

1

; 0; z

1

; : : : ; z

n

;1; V

0

; : : : ; V

1

)

= (V

0


 V

�

1


 : : :
 V

�

n


 V

1

)=

�

(x[n℄)

0

+

X

z

n

i

x

i

+ (�1)

n

(x[�n℄)

1

�

where n 2 Z; x 2 g, and notation x

i

means x ating on V

�

i

, et. We an pass to

the dual spae �

�

whih will be a subspae in

Hom

C

(V

0


 V

�

1


 : : :
 V

�

n


 V

1

; C ) = Hom

C

(V

0


 V

�

1


 : : :
 V

�

n

;

[

DV

1

)

where



W is the ompletion of a W 2 O

k

with respet to the homogeneous grading.

Rewriting the oinvariane ondition, we get

�

�

= f� : V

0


 V

�

1


 : : :
 V

�

n

!

[

DV

1

j �(x[n℄ +

X

z

n

i

x

i

) = x[n℄�g

= Hom

g[t;t

�1

℄

(V

0


 V

�

1

(z

1

)
 : : : V

�

n

(z

n

);

[

DV

1

);

(7.3.6)

where, as before, V (z) is the evaluation representation.

For the ase g = sl

2

; n = 1 the dimensions of these spaes (whih, as we will

show below, play the role of multipliity oeÆients N

k

ij

for the modular ategory

O

int

k

) were alulated in [TK℄; their answer agrees with the formula for U

q

(sl

2

); q =

e

�i=(k+2)

given in (3.3.24)|as expeted from Theorem 7.0.2.

Remark 7.3.9. It is a natural question to generalize the de�nition of oinvari-

ants, whih an be viewed as Lie algebra homology in degree zero H

0

(g(C � ~p); V )

and onsider all homology spaesH

�

(g(C�~p); V ). To the best of out knowledge, this

approah was �rst suggested by B. Feigin. One of the �rst results in this diretion,

proved in [Tel℄, is the vanishing theorem: if V

i

are Weyl modules, then all higher

homology vanish. In partiular, this theorem allows one to alulate dimensions of

the vetor spaes of oinvariants �(C; ~p; L

k

~

�

), by writing for eah of L

k

�

i

a resolution

onsisting of Weyl modules, and then using the fat that for the Weyl modules,

dimension of the spae of oinvariants is known (see Lemma 7.3.8). This answer

oinides with the dimension of the spaes of homomorphisms in the ategory of

representations of quantum group at root of unity (see Proposition 3.3.23).

The meaning of the higher homology spaes (\higher onformal bloks")H

i

(g(C�

~p); V ) when V

i

are integrable and the role they play in onformal �eld theory is still

unlear.

7.4. Flat onnetion

In the previous setion, we have de�ned and studied some properties of the

vetor spaes of oinvariants for a given urve C with marked points and hosen

loal parameters at these points. Now, let us study what happens with these

spaes when we hange the loal parameters, or move the points. Let us assume

that we have a smooth family of pointed urves C

s

; s 2 S over a smooth base S.

As mentioned above, it means that we have a smooth manifold C

S

with a proper

at smooth morphism � : C

S

! S suh that eah �ber C

s

= �

�1

(s) is a omplex

urve; we also have n non-interseting setions p

i

: S ! C

S

, and loal parameters

t

i

, whih are funtions in a neighborhood of p

i

(S) � C

S

suh that p

i

(S) is the zero

lous of t

i

, and dt

i

6= 0 on p

i

(S). Suh a data de�nes on eah �ber a struture of a
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pointed omplex urve, with a loal parameter at eah punture; as before, we will

assume taht on eah onneted omponent of C

s

there is at least one marked point.

Similarly to the onstrution of the previous setion, it is onvenient to allow t

i

to be

formal parameter, i.e. an element of the ompleted loal ring

b

O

C

S

;p

i

(S)

' O

S

[[t

i

℄℄.

We will denote by �

S

the sheaf of vetor �elds on S. We will also denote

by O(C

S

� ~p(S)) the sheaf on S whose setions over U � S are by de�nition

meromorphi funtions over �

�1

(U) � C

S

whih are regular outside of p

i

(S); when

S = fpointg, this oinides with the de�nition in the previous setion. In a similar

way, we de�ne g(C

S

� ~p(S));�(C

S

� ~p(S))|all of them are sheaves on S.

Throughout this setion, let us �x a family C

S

as above, hoose integrable

b

g-

modules V

1

; : : : ; V

n

2 O

int

k

, and let V = V

1


 V

n

. Then for every point s 2 S we

an de�ne the vetor spae of oinvariants

�

s

= �(C

s

; ~p(s); V ) = V=g(C

s

� ~p(s))V:(7.4.1)

The main goal of this setion is to prove the following theorem.

Theorem 7.4.1. Under the above assumptions, the vetor spaes �

s

form a

vetor bundle �

S

over S whih arries a natural projetively at onnetion. The

assignment S 7! �

S

is funtorial in S: for every map  : S

0

! S and a family C

S

over S as before, there is a anonial isomorphism �

S

0

=  

�

(�

S

), where C

S

0

:=

 

�

(C

S

).

We remind that a onnetion is alled projetively at if [r

X

;r

Y

℄ � r

[X;Y ℄

is an operator of multipliation by a funtion for any two vetor �elds X;Y on S.

The failure of the onnetion to be at is, of ourse, related with the entral term

in the de�nition of

b

g: for k = 0, the onnetion is at (but of little interest, sine

the only integrable module of level 0 is L

k

0

= C ). We will disuss this later.

The remaining part of this setion is devoted to the onstrution of the at

onnetion and the proof of the theorem. For simpliity, we will assume that n = 1;

the general ase an be treated similarly. Our exposition follows [BFM℄ (somewhat

simpli�ed).

Lemma 7.4.2. The vetor spaes �

s

form a O

S

-oherent sheaf over S, i.e., there

exists a oherent sheaf �

S

suh that �

s

= �

S

=I

s

�

S

, I

s

being the ideal of funtions

vanishing at s.

Proof. Let V

S

= O

S


V (usual algebrai vetor produt, no ompletions); this

is an O

S

-module, whih arries an O

S

-linear ation of the O

S

-module g(C

S

�p(S)).

De�ne the sheaf

�

S

= V

S

=g(C

S

� p(S))V

S

:(7.4.2)

It is obvious that loalizing �

S

at s 2 S, we get the vetor spae of oinvariants

�

s

. The ohereny of �

S

an be proved in a way similar to the proof of �nite-

dimensionality of the spaes �(C) in the previous setion, using the following lemma.

Lemma 7.4.3. Let A be a �nite-dimensional vetor bundle of Lie algebras over

S whih is generated (as a Lie algebra) by setions x

1

; : : : ; x

n

. Denote by A the

sheaf of setions of A. Let W be an O

S

-module with an O

S

-linear ation of A.

Assume that W is loally yli (i.e., loally there exists a setion w

0

2 W suh

that W = Aw

0

) and ation of x

i

is loally nilpotent: for every setion w, one has

x

N

i

w = 0 for N � 0. Then W is O

S

-oherent.
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To prove this lemma, it suÆes to note that by Gabber's theorem, Supp(W)

is the zero setion of the bundle A

�

, and that every module over O

S

[x

1

; : : : ; x

m

℄

whose support is given by x

i

= 0, is O

S

-oherent.

We will show that the sheaf �

S

has a natural struture of a twisted D

S

-module,

i.e., a projetive ation of the sheaf �

S

of vetor �elds on S whih is ompatible

with the O

S

-module struture: �(��) = (��)� + �(��); � 2 �

S

; � 2 O

S

. Sine it is

well known that every O-oherent twisted D-module is in fat a sheaf of setions of

a vetor bundle with a projetively at onnetion, this will establish the theorem.

To onstrut an ation of �

S

on the sheaf of oinvariants, let us �rst onsider

the ase when we have a �xed urve C with a marked point p, and S is the set of all

possible hoies of a formal loal parameter t at p. This set has a natural struture

of a projetive limit of the smooth manifolds S

(N)

= fN -jets of loal parameters

at pg. We have a tautologial family of urves C

S

= C � S over S, with the same

marked point p and with the formal loal parameter determined by s 2 S.

This S is a torsor over the pro-Lie group (i.e., a projetive limit of Lie groups)

K

0

= Aut C [[t℄℄ of hanges of loal parameter. This group an be expliitly de-

sribed as the group of power series of the form a

1

t + a

2

t

2

+ : : : ; a

1

6= 0, with

the group operation being omposition; it ats on the set of formal loal param-

eters in an obvious way. The orresponding Lie algebra T

0

= LieK

0

is given by

T

0

= tC [[t℄℄�

t

(see [TUY, Setion 1.4℄ for preise statements). Therefore, the tan-

gent spae to S at every point an be identi�ed with T

0

. or, equivalently, T

0

is the

spae of all K

0

left-invariant vetor �elds on S. Thus, to de�ne an ation of �

S

on

the bundle of oinvariants, one needs to de�ne an ation of T

0

.

Therefore, we see that the key step in this ase would be to de�ne an ation of

T

0

= tC [[t℄℄�

t

on V . In the general ase, we will in fat need an ation of a larger

Lie algebra T = C ((t))�

t

, whih is usually alled the Witt algebra. It has a natural

(topologial) basis L

n

= �t

n+1

�

t

, n 2 Z, with the ommutation relations

[L

m

; L

n

℄ = (m� n)L

m+n

:(7.4.3)

The subalgebra T

0

is generated by L

n

with n � 0. Similarly, we will also use the

subalgebras T

1

= t

2

C [[t℄℄�

t

, T

�1

= C [[t℄℄�

t

generated (as topologial Lie algebras)

by L

n

with n � 1 (respetively, n � �1).

It is indeed possible to de�ne a projetive ation of T on

b

g-modules. This is

known as the Sugawara onstrution. We formulate this result as a proposition,

referring the reader to [K1℄ for details and the proof.

Proposition 7.4.4. One an de�ne elements L

n

; n 2 Z, in a ertain omple-

tion of U(

b

g)

k

whih have the following properties:

(i) In every module V from the ategory O

k

, the ation of L

n

is well-de�ned,

and

[L

m

; L

n

℄ = (m� n)L

m+n

+ Æ

m+n;0

m

3

�m

12

;(7.4.4)

where

 =

k dim g

k + h

_

:(7.4.5)

(ii) The operator L

n

has degree n with respet to the homogeneous grading, and

[L

n

; a[m℄℄ = �ma[m+ n℄; a 2 g:(7.4.6)
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(iii) In the Weyl module V

k

�

(and thus, in L

k

�

), the operator L

0

ats by

L

0

v = (�

�

� deg v)v; �

�

=

h�; �+ 2�i

2(k + h

_

)

:(7.4.7)

Part (i) of this proposition an be reformulated as follows. Let

V ir = C ((t))�

t

� C (7.4.8)

as before, this vetor spae has topologial basis ; L

n

= �t

n+1

�

t

; n 2 Z. We

de�ne the struture of Lie algebra on V ir by (7.4.4) (it an also be de�ned in a

oordinate-free way, with the entral term given as a residue of the f

000

g). This

algebra is alled the Virasoro algebra and plays a entral role in onformal �eld

theory; by de�nition, it is a entral extension of the Witt algebra C ((t))�

t

. Thus,

part (i) laims that every module V 2 O

k

is naturally a module over V ir with the

entral harge equal to k dim g=(k + h

_

).

Note that when restrited to T

�1

= C [[t℄℄�

t

, the entral term in (7.4.4) van-

ishes; thus, T

�1

is a subalgebra in V ir and therefore ats on V . Hene, the same

onstrution also de�nes an ation T

0

on V . Considering T

0

as the Lie algebra of

left-invariant vetor �elds on the set S of all hoies of loal parameter at p, one

easily sees that this ation an be uniquely extended to the ation of the sheaf �

S

of all vetor �elds on S on the sheaf V

S

= O

S


 V .

Let us now onsider the general ase, when not only the loal parameter but

also the the urve itself is allowed to vary.

First of all, let C be a omplex urve, and t|a formal parameter at the point

p 2 C. Denote by �(C � p) the spae of meromorphi vetor �elds on C whih are

holomorphi outside of p. Then we have a Lie algebra homomorphism 

p

: �(C �

p)! T obtained by expanding a vetor �eld in a neighborhood of p in power series

in t. Similarly, if we have several marked points p

1

; : : : ; p

n

, we an de�ne a map



~p

=

M



p

i

: �(C � ~p)! T � � � � � T :(7.4.9)

On the other hand, Sugawara onstrution gives a projetive ation of the diret

sum T � � � �� T on V = V

1


 : : :
V

n

; thus, we get a projetive ation of �(C � ~p)

on V , whih we will also denote by 

~p

.

Lemma 7.4.5. (i) The ation of �(C � ~p) on V , given by 

~p

, is a true ation,

not a projetive one.

(ii) The ations of �(C � p) and g(C � p) on V agree as follows:

[

~p

(�); a
 f ℄ = a
 �(f); � 2 �(C � p); a
 f 2 g
O

S

:

(iii) The indued ation of �(C � ~p) on the spae of oinvariants V

g(C�~p)

is

zero.

Proof. Part (i) follows from the fat that the entral term in (7.4.4) an be

written as a residue, and from the fat that the sum of residues of a meromorphi

1-form is equal to zero. The proof of part (ii) is immediate from (7.4.6). As for part

(iii), the simplest way to prove it is to note that �(C � ~p) is a simple Lie algebra

(see [BFM℄), and therefore has no non-trivial �nite-dimensional representations.

Of ourse, this is a very arti�ial proof. A more natural proof an be obtained from

the theory of hiral algebras. For readers familiar with this theory, we point out

that the Sugawara onstrution in fat shows that the generating funtion L(z) =

P

n2Z

L

n

z

�n�2

is a �eld in the vertex operator algebra (=hiral algebra on a formal
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puntured disk) generated by the Ka{Moody urrents a(z) =

P

n2Z

(at

n

)z

�n�1

,

a 2 g (see, e.g., [K2℄); similarly, the Lie algebra �(C�p) is a subalgebra in the hiral

algebra assoiated with the urve C � p. But sine this hiral algebra is generated

(in an appropriate sense) by the Ka{Moody urrents, and these urrents at on

the spae of oinvariants by zero, this whole hiral algebra ats by zero. Details

an be found in [Gai℄.

Part (iii) of the lemma may seem disouraging. Note, however, that what we

are looking for is an ation of �

S

on the bundle of oinvariants, not an ation of

�

C

, so we do not have a problem with the fat that �(C � p) ats by zero. In fat,

it will be useful to us.

In order to de�ne an ation of �

S

, we will �rst lift a vetor �eld on S to a

vetor �eld on C

S

, and then restrit to a formal neighborhood of p.

Let � be a vetor �eld on S. Let us lift it to a vetor �eld

~

� on C

S

�p(S). Suh

a lifting is always possible, whih follows from the fat that � : C

S

� p(S) ! S is

aÆne, and therefore de�nes an exat funtor on O-oherent sheaves (this is where

we need to allow poles at p(S)!).

Let us onsider the vetor �eld

~

� in a neighborhood of one of the setions p

i

(S)

(\marked point"). Then the hoie of loal oordinate t

i

allows us to de�ne the

notion of horizontal vetor �eld: a vetor �eld v in a puntured neighborhood of

p

i

(S) is horizontal if v(t) = 0. Then we an de�ne \vertial" omponent 

p

(

~

�) by

~

� = 

p

i

(

~

�) +

~

�

horiz

;

~

�

horiz

(t) = 0:

Note that while one an easily de�ne the notion of a vertial vetor �led on C

S

(v

is vertial if its projetion to S is zero), the notion of horizontal vetor �eld, nad

thus, of \vertial omponent" 

p

i

(

~

�) depends on the hoie of loal parameter t

i

.

If we hoose loal oordinates x

i

on S, so that � =

P

f

i

(x)�

x

i

, then (x

i

; t) give

a oordinate system in a neighborhood of p

i

(S), and we an write

~

� = g(x; t)�

t

+

P

f

i

(x)�

x

i

. Then 

p

i

(

~

�) = g(x; t)�

t

. The funtion g(x; t) an have poles at t

i

= 0,

so it an be viewed as a loal setion of O

S

((t

i

)), and thus 

p

i

(

~

�) 2 O

S


 T .

Repeating this for all points p

i

, we de�ne



~p

(

~

�) =

X



p

i

(

~

�) 2 O

S


 (T � � � � � T )(7.4.10)

(for S = fptg, this oinides with the de�nition (7.4.9)).

Now, let us de�ne the ation of

~

� on V

S

= V 
O

S

by

~

�(fv) = (�(f))v + f

X

i



p

i

(

~

�)v;

where 

p

i

(

~

�) ats on V

i

by the Sugawara onstrution.

Lemma 7.4.6. The above de�ned ation of

~

� on V

S

has teh following properties:

1. It is ompatible with the struture of O

S

-module: for f 2 O

S

; v 2 V

S

, one

has

~

�(fv) = (�(f))v + f

~

�(v).

2. It is ompatible with the ation of g(C

S

�~p

S

) on V

S

: if f 2 O

C

S

�~p(S)

; x 2 g,

then [

~

�; fx℄ = (

~

�(f))x.

Proof. The �rst part immediately follows from the de�nition; the seond one

follows from Theorem 7.4.5(ii).
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It immediately follows from part (ii) of this lemma that we have a well-de�ned

ation of

~

� on the bundle of oinvariants �

S

= V

S

=g(C

S

� ~p

S

)V

S

.

Proposition 7.4.7. The indued ation of

~

� on the bundle of oinvariants de-

pends only on � and not on the hoie of lifting

~

�. It de�nes a projetive ation of

the Lie algebra �

S

on the bundle of oinvariants, whih agrees with the struture

of O

S

-module.

Proof. The only non-trivial statement is the independene of the hoie of

lifting. It follows from the fat that any two liftings di�er by a vertial vetor �eld.

On the other hand, it follows from Theorem 7.4.5(iii) that vertial �elds at by

zero.

This ompletes the proof of Theorem 7.4.1.

More areful analysis also allows one to alulate expliitly the failure of the

onnetion to be at. Using the language of twisted D-modules developed in Se-

tion 6.6 and the notion of determinant line bundle Q

S

de�ned in Setion 6.7, the

result an be formulated as follows:

Theorem 7.4.8. Under the assumptions of Theorem 7.4.1, the sheaf �

S

arries

a natural struture of a D

Q



-module, where  is the Virasoro entral harge de�ned

by (7.4.5).

We do not give a proof of this theorem, referring the reader to [BS℄. The

proof is based on the fat that the entral extension de�ning the Virasoro algebra

an be de�ned using the ation of the Lie algebra of vetor �elds on the spae

C ((

~

t)) = �

i

C ((t

i

)) and the \universal" oyle de�ned by the the subspae C [[

~

t℄℄ =

�

i

C [[t

i

℄℄ � C ((

~

t)). This oyle was �rst disovered by Tate [Ta℄ and redisovered

under di�erent names by many authors (see [BS℄, [ACK℄). On the other hand, it is

well known that for a onneted smooth urve C one has C ((

~

t))=(C [[

~

t℄℄+O(C�~p)) =

H

1

(C;O). This gives a relation between this oyle and the determinant line

bundle (reall that Q

s

= det(H

1

(C

s

;O))). Details an be found in [BS℄ or [BFM℄.

Example 7.4.9. Let us alulate this at onnetion expliitly in the ase when

the urve C is �xed but the point p is allowed to move. Let u be a loal oordinate

on C, i.e. a biholomorphi map u : C

0

! U , where C

0

is some open subset of C,

and U an open subset of C . We will denote by z a global oordinate on C and thus,

on U . Let us de�ne the following family of puntured urves over U : C

U

= C �U ,

p(z) = u

�1

(z), and the loal parameter at p given by t = u � z (onsidered as a

funtion on C � U). Note that both (z; u) and (z; t) an be onsidered as loal

oordinates on C � U .

In this ase, every vetor �eld f(z)�

z

on U admits a anonial horizontal lifting

to C �U ; in terms of the oordinate system (z; u) this lifting is given by f(z)�

z

7!

f(z)�

z

+ 0 � �

u

. When we rewrite this in terms of (z; t), we get f(z)(�

z

� �

t

).

Therefore, the ation of suh a vetor �eld on the bundle of oinvariants is given

by (f�

z

)(�v) = f(�

z

�)v + f�L

�1

v (reall that L

�1

2 V ir orresponds to ��

t

). In

other words, the orresponding at onnetion on U is indued from the onnetion

on V 
O

S

given by

r = d+ L

�1

dz:
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It is easy to see that for several points, we get

r = d+

X

i

(L

�1

)

i

dz

i

;(7.4.11)

where (L

�1

)

i

stands for L

�1

ating in V

i

.

Note that in this ase every vetor �eld on S an be lifted to a regular vetor

�eld on C

S

. Therefore, we only need to use the Sugawara onstrution for the �elds

from C [[t℄℄�

t

= T

�1

. Sine the entral term in (7.4.4) vanishes when restrited to

T

�1

, we get a true ation, not a projetive one.

Let us onsider even more speial ase than in the previous example, namely

when C = P

1

, with marked points z

1

; : : : ; z

n

6= 1 and loal parameters given by

t

i

= z�z

i

. This de�nes a family of urves overX

n

= C

n

ndiagonals. Assign to these

points Weyl modules V

k

�

1

; : : : ; V

k

�

n

. Then, by Proposition 7.3.8, the vetor bundle of

oinvariants �(P

1

; z

1

; : : : ; z

n

; V

k

�

1

; : : : ; V

k

�

n

) is a quotient of the trivial vetor bundle

with the �ber (V

�

1


 : : :
V

�

n

)

g

over X

n

. Therefore, the onstrution above de�nes

a at onnetion in this quotient bundle. Passing to the dual vetor bundle, we see

get a at onnetion in the vetor subbundle

�

�(P

1

; z

1

; : : : ; z

n

;V

k

�

1

; : : : ; V

k

�

n

)

�

�

�

�

V

�

1


 : : :
 V

�

n

�

�

g

= (V

�

�

1


 : : :
 V

�

�

n

)

g

Theorem 7.4.10 ([KZ℄). The at onnetion desribed above oinides with

the restrition of the KZ onnetion in V

�

�

1


 : : :
 V

�

�

n

, de�ned by (KZ

n

).

A proof of this theorem an be found in the original paper [KZ℄ (only reom-

mended for those familiar with the basis of onformal �eld theory). This proof is

also repeated in a number of soures, for example, in [EFK℄, in a language more

familiar to mathematiians. This theorem and omparison of the gluing isomor-

phisms, whih we will do later, will be used to show that for k =2 Q the funtor of

oinvariants de�ned above for genus zero urves oinides with the modular fun-

tor de�ning Drinfeld's ategory|see Theorem 7.9.12. In partiular, this modular

funtor an be de�ned in a way whih doesn't refer to the aÆne Lie algebras at all.

Note, however, that for k =2 Q this modular funtor an not be extended to positive

genus.

Example 7.4.11. Let C; ~p;

~

t be as before. Choose one of the points p

j

and

onsider the family of urves C�C

�

over C

�

, with the the marked points p

i

(z) = p

i

and loal parameters t

i

(x; z) = t

i

(x); x 2 C; z 2 C , exept for i = j when we set

t

i

(x; z) = t

i

(x)=z. By the onstrution of this setion, the orresponding vetor

bundle of oinvariants � has a anonial at onnetion. An easy alulation,

similar to the one in Example 7.4.9, shows that this onnetion is indued from the

onnetion

r = d+ (L

0

)

j

dz

z

in the trivial vetor bundle with �ber V

1


 : : :
 V

n

. In partiular, the monodromy

of this onnetion around z = 0 is given by e

2�iL

0

, so if V

j

is an irreduible module

with highest weight �, the monodromy operator is onstant and equals e

2�i�

�

.

Note that if we pass from 1-jet of loal parameter to tangent vetor, we see

that the tangent vetor is given by z�

t

j

, and thus, as z goes around the origin

ounterlowise, so does the tangent vetor. Realling the relation between modular
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funtor and tensor ategories, we see that in the tensor ategory orresponding to

the WZW modular funtor, the universal twist is given by

�

L

k

�

= e

2�i�

�

id

L

k

�

(7.4.12)

(ompare with Remark 3.1.20), whih agrees with the formulas for universal twist

in Drinfeld's ategory (Theorem 2.2.7) and in the ategory of representations of a

quantum group Exerise 2.2.6|whih is another argument on�rming equivalene

of these ategories.

In fat, this vetor bundle on C

�

admits a anonial extension to a vetor

bundle on P

1

, and the onnetion has logarithmi singularities at 0;1. Indeed, we

an assume that V

j

= L

k

�

. Denote V = 


i6=j

V

i

. The �ber of � at point z 2 C

�

is

given by �

z

= W

z

=g(C � ~p)W

z

, where W

z

= V 
 L

k

�

does not depend on z. Note

that the subspae g(C � ~p)W

z

depends on z, sine the hoie of loal oordinate

at p

j

depends on z. Let us hoose a di�erent trivialization of the vetor bundle

V 
 L

k

�

, namely, let us identify

V 
 L

k

�

! (V 
 L

k

�

)

z

;

v 
 v

j

7! z

deg v

j

v 
 v

j

:

In other words, in this trivialization onstant setions are given by z

deg v

j

v 
 v

j

.

Then one easily sees that in this trivialization, the subspae g(C � ~p)W

z

does not

depend on z; thus, it also gives a trivialization of the vetor bundle of oinvariants

on C

�

, and in this trivialization the at onnetion is given by r = d +�

�

dz=z.

Therefore, this gives an extension of our vetor bundle with a at onnetion to P

1

,

and the onnetion has logarithmi singularities at 0;1.

Note that for this de�nition of extension to z = 0, a funtion of the form

f(z)(v

1


 : : :
 v

j


 : : :
 v

n

) de�nes a setion holomorphi at 0 i� z

�deg v

j

f(z) is

regular at z = 0 (we assume that v

j

is homogeneous).

7.5. From loal parameters to tangent vetors

In the previous setion, we have studied properties of the vetor spaes of

oinvariants for a urve C with marked points and hosen loal parameters at these

points, or a family of suh urves. In this setion we will show that the vetor spae

of oinvariants only depends on the 1-jet of loal parameter: if t

i

; t

0

i

are di�erent

hoies of loal parameter at p

i

suh that d

p

i

t

i

= d

p

i

t

0

i

, then the vetor spaes

�(C; ~p;

~

t;L) and �(C; ~p;

~

t

0

;L) are anonially isomorphi, and similarly for families

of urves.

Let us start with the ase when we only have one urve C; as before, for

simpliity we assume that it has only one marked point p. Let us �x a non-zero

tangent vetor v 2 T

p

C and onsider only suh formal loal parameters t at p that

�

v

t = 1; the set of formal loal parameter form a pro-varietyM . We want to show

that for suh loal parameters t, the vetor spaes �(C; p; t;L) an be anonially

identi�ed. In order to do that, onsider the family of urves C

M

= C �M over

M , with a marked point p (whih does not depend on m) and the loal parameter

at p 2 C

m

de�ned by m 2 M . As disussed in the previous setion, this de�nes a

anonial at onnetion on the bundle of oinvariants �(C; p; t;L). We will show

that this vetor bundle with a at onnetion is trivial. Indeed, it is easy to see
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that M is a torsor over the group

K

1

= fk 2 Aut C [[t℄℄ j (k(t))

0

(0) = 1g:

This group an be expliitly desribed as the group of all formal power series of the

form 1 +

P

1

2

a

i

t

i

, with the group operation being substitution of one series into

another. The orresponding Lie algebra is LieK = T

1

= t

2

C [[t℄℄�

t

.

Now the triviality of the at onnetion follows from the following two easy

lemmas whose proofs are omitted.

Lemma 7.5.1. Let a manifold M be a torsor over a Lie group K, and E be a

vetor bundle with a at onnetion over M . Then this at onnetion is trivial i�

the ation of LieK by vetor �elds on E an be lifted to an ation of K on E.

Lemma 7.5.2. The ation of LieK

1

= T

1

on an integrable module L, de�ned

by the Sugawara onstrution, an be integrated to an ation of K

1

on L.

Combining these two lemmas, we get that in our ase, the at onnetion

on the bundle of onformal bloks is trivial, and thus all the spaes �(C; p; t;L)

are anonially isomorphi. Therefore, we an de�ne the spae of oinvariants

�(C; p; v;L) as the spae of global at setions of the bundle �(C; p; t;L) on M .

Remark 7.5.3. Note that the ation of T

0

usually an not be integrated to the

ation of Aut C [[t℄℄. Indeed, in Aut C [[t℄℄ one has e

2�iL

0

= 1, but in a highest weight

b

g module with highest weight �, one has

e

2�iL

0

=: �

�

= e

2�i�

�

whih is not equal to 1 unless �

�

2 Z. Therefore, we do need to speify a 1-jet of

loal parameter.

Now let us onsider families of urves. Let C

S

; p(S) be a family of urves with

a �xed 1-jet of loal parameter t at p(S). If we �x a formal loal parameter t at

p(S) with given 1-jet, then, by the onstrution of the previous setion, we get a

vetor bundle of oinvariants with a at onnetion over S. Let us show that these

vetor bundles for di�erent hoies of t an be anonially identi�ed.

Using the same idea as in the ase S = fpointg, onsider the pro-variety M =

f(s; t) j s 2 Sg; obviously, M is a prinipal K

1

-bundle over S. The family C

S

over

S de�nes a family C

M

over M and therefore de�nes a bundle of oinvariants �

M

with a at onnetion over M . Our goal is to show that this at onnetion is

trivial along the �bers of the projetion M ! S. A onvenient framework for suh

proofs is provided by the formalism of Harish{Chandra pairs.

Definition 7.5.4. A Harish{Chandra pair is a pair (g;K), where g is a Lie

algebra, and K is a Lie group with the Lie algebra LieK = k � g. We also assume

that we are given an ation Ad of K on g whih agrees with both the standard Ad

ation of K on k and ad ation of k on g.

As usual, we de�ne a module V over a Harish{Chandra pair (g;K) to be a

vetor spae whih has an ation of both g and K, and these ations agree on k.

These de�nitions an be suitably reformulated if we want to replae a Lie

algebra g by the sheaf of vetor �elds on a manifoldM (or, more generally, by a Lie

algebroid over M|see [BFM℄). Let us assume that we have a manifold M with a

free ation of a Lie group K suh that M is a prinipal K-bundle over a manifold

S. We denote by p : M ! S the projetion. Denote by �

M

the sheaf of vetor
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�elds on M . Then for every U � M , we have a natural embedding k � �

M

(U),

whih is a Lie algebra homomorphism. We also have an adjoint ation of K on �

X

.

Therefore, the pair (�

M

;K) is a natural sheaf analogue of a Harish-Chandra pair.

Definition 7.5.5. Let M;K;�

M

be as above. A �nite-dimensional (�

M

;K)-

module is a �nite-dimensional vetor bundle V with a at onnetion over M with

an ation of K on V , whih agrees an obvious sense with both the ation of K on

M and with the ation of k � �

M

by vetor �elds on V .

(A not neessarily �nite-dimensional (�

M

;K)-module an be de�ned in a sim-

ilar way, replaing \vetor bundle with a at onnetion" by \D-module.)

Our main reason in developing this tehnique is the following lemma.

Lemma 7.5.6. Any �nite-dimensional (�

M

;K)-module V de�nes a vetor bun-

dle with a at onnetion V

K

on S =M=K.

Proof. For every s 2 S, de�ne the vetor spae V

K

s

= (�(M

s

; V ))

K

, where

M

s

= p

�1

(s) is the �ber of the projetion p : M ! S. It is easy to see that these

vetor spaes form a vetor bundle over S of the same dimension as the original

bundle V (it suÆes to hoose loally a setion of the projetion to show this).

Note that any setion � of this bundle is killed by the vertial vetor �elds; thus,

the quotient �

M

=�

v

M

= �

S

ats on V

K

.

Now we have all the prerequisites to prove the following theorem.

Theorem 7.5.7. Let C

S

be a family of pointed urves over a smooth base S,

and let L

k

1

; : : : ; L

k

n

be some integrable modules assigned to these points. Then we

have a bundle of oinvariants �

S

over S whih arries a natural projetively at

onnetion, and this bundle is funtorial in S in the same sense as in Theorem 7.4.1.

Proof. Take M = f(s; t)g; s 2 S; t{a loal parameter at p 2 C

s

with given

di�erential. Obviously, M is a K

n

{torsor over S, where K = Aut

1

C [[t℄℄ and we

have a tautologial family C

M

of urves over M with marked points and a loal

parameters at these points. By the onstrution of the previous setion, this de�nes

a vetor bundle with a projetively at onnetion over M . By Lemma 7.5.2, this

onnetion is integrates to an ation of K. Therefore, by Lemma 7.5.6, we have a

at onnetion on S =M=K.

Corollary 7.5.8. For a �xed �nite set A and a olletion of modules L

k

a

2

O

int

k

, we have a vetor bundle of oinvariants �(fL

k

a

g) over the moduli stak M

�;A

,

whih arries a natural projetively at onnetion.

As in Theorem 7.4.8, we an also expliitly desribe the failure of the onnetion

to be at by saying that the sheaf of setions of the vetor bundle �(fL

k

a

g) is a D

Q



-

module.

7.6. Families of urves over formal base

This setion introdues some tehnial notions whih will be used later for

proving the gluing axiom for the WZW modular funtor. Namely, we will generalize

most of the results regarding the bundle of oinvariants to the ase where the base

is an in�nitesimal neighborhood of a divisor D.

Throughout this setion, we �x a non-singular variety S and a smooth divisor

D � S. We also hoose (loally) a funtion q on S suh that the equation of D is

q = 0, and dq 6= 0 on D. All our de�ntions and theorems will be loal in S.
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The main subjet of this setion is the study of the n-th in�nitesimal neighbor-

hood D

(n)

of D in S, where n is a �xed non-negative integer. As before, we will not

really de�ne D

(n)

; instead, we will de�ne the struture sheaf of D

(n)

, O-modules

on D

(n)

, family of urves over D

(n)

, et.

Definition 7.6.1. The struture sheaf of D

(n)

is the sheaf of algebras O

(n)

D

on

D de�ned by O

(n)

D

= O

S

=q

n+1

O

S

.

One also de�nes in an obvious way a notion of O

(n)

D

-module; it is alled lisse

if it is loally free module of �nite rank. Every sheaf F over S de�nes a sheaf

F

(n)

over D

(n)

in an obvious way: F

(n)

= F

D

=q

n+1

F

D

. It is easy to see that if

F is O

S

-oherent, then F

(n)

is �nitely generated, and if F is lisse then so is F

(n)

.

Unfortunately, the funtor F 7! F

(n)

is not exat on O

S

-modules. However, we

have the following result.

Lemma 7.6.2. (i)Let F be an O

S

-oherent sheaf suh that its restrition to

S nD is lisse and for every n � 0, F

(n)

is lisse. Then F is lisse.

(ii) For every short exat sequene of quasioherent O

S

-modules 0! E ! F !

G ! 0 suh that G is O

S

-oherent, the sequene 0 ! E

(n)

! F

(n)

! G

(n)

! 0 is

also exat.

The proof of this lemma is left as an exerise to the reader.

Example 7.6.3. Assume that dimS = 1. ThenD = point, O

(n)

D

= C [q℄=(q

n+1

),

and O

(n)

D

is just a module over this algebra.

We an also de�ne vetor �elds and D-modules for D

(n)

. Note, however, that

the only vetor �elds on S that an be restrited to D

(n)

are those tangent to D:

the vetor �eld �

q

an not be restrited to D

(n)

as it does not preserve the relation

q

n+1

= 0. Thus, we an de�ne an analogue of D

0

S

-module, but not of a D

S

-module

(reall that D

0

S

is generated by O

S

and vetor �elds tangent to D, see (6.3.5)).

Thus, we give the following de�nition:

D

0

D

(n)

= D

0

S

=q

n+1

D

0

S

(7.6.1)

For example, for dimS = 1, D

0

D

(n)

is generated by O

(n)

D

= C [q℄=(q

n+1

) and q�

q

.

Sine a at onnetion on S with logarithmi singularities at D is the same as

a lisse sheaf on S with an ation of D

0

S

, it is natural to give the following de�nition.

Definition 7.6.4. A at onnetion on D

(n)

with logarithmi singularities at

D (log D-onnnetion for short) is a lisse sheaf on D

(n)

with a struture of D

0

D

(n)

-

module.

We have the following obvious lemma.

Lemma 7.6.5. (i) Every log D at onnetion on S de�nes a log D at onne-

tion D

(n)

by F 7! F

(n)

(ii) If the onnetion F is regular|i.e., has no poles at all|then q�

q

ats by

zero in F

(0)

= F=qF .

Now let us de�ne families of urves over D

(n)

and the bundles of oinvariants.

Definition 7.6.6. A family of urves over D

(n)

is the following olletion of

data:
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{ a family C

D

of stable omplex urves over D

{ a sheaf of algebras O

(n)

C

D

on C

D

with a struture of a at O

(n)

D

-module suh

that O

(n)

C

D

=qO

(n)

C

D

= O

C

D

.

The family is alled non-singular if the family C

D

is non-singular.

In a similar way, one an de�ne a notion of families with marked points and

loal parameters at these points by adding to the data above a olletion of points

p

i

2 C

0

and loal parameters t

i

2 O

(n)

p

i

suh that t

i

(p

i

) = 0 mod q; (dt

i

)

p

i

6= 0

mod q. We an also de�ne an analogue of the O

S

-sheaf O(C

S

� ~p(S)). Namely,

we de�ne O

(n)

D

-module O

(n)

(C � ~p) to be the spae of global setions on C

D

of the

sheaf O

(n)

C

[t

�1

i

℄.

Obviously, every family of urves over S de�nes a family of urves over D

(n)

:

it suÆes to take O

(n)

C

= O

C

S

=q

n+1

O

C

S

; we will all this restrition of the family

C

S

to D

(n)

). It turns out that if C

D

is non-singular, then this statement an be

reversed.

Lemma 7.6.7. Loally in S, every non-singular family of urves over D

(n)

an

be obtained as a restrition of an analyti family of urves over a neighborhood of

D in S.

?!

Let us give an example of a singular family over D

(n)

.

Example 7.6.8. Let dimS = 1, and let C

S

be a family of urves over S suh

that C

s

is smooth for s 6= D, and C

D

is the urve with one double point a, so that

in a neighbohood of a, C

S

has loal oordinates t

1

; t

2

and the projetion is given

by q = t

1

t

2

; thus, C

0

is given by equation t

1

t

2

= 0.

Let us desribe the orresponding family of urves over D

(n)

. In this ase, the

urve C

D

is singular|it has double point a. To desribe the sheaf O

(n)

C

, note that

its stalk at a point b 6= a is given by O

(n)

C;b

' O

C;b


O

(n)

D

(note: this doesn't de�ne

the sheaf yet, as we haven't de�ned the gluing maps|they depend on the map

� : C

S

! S). However, the stalk at the double point is di�erent:

O

(n)

C;a

= O(t

1

; t

2

)=(t

1

t

2

)

n+1

;(7.6.2)

where O(t

1

; t

2

) is the ring of germs of analyti funtions in t

1

; t

2

near the origin

t

1

= t

2

= 0.

To relate the stalk at the double point with the stalks at nearby points, let

us desribe O

(n)

(U), where U is a puntured neighborhood of a in C

D

. Sine in

a neighborhood of a, the urve C

D

onsists of two omponents given by equations

t

2

= 0 and t

1

= 0, every small enough U an be presented as U = U

1

t U

2

, where

U

1

= U \ ft

2

= 0g; U

2

= U \ ft

1

= 0g. Thus, t

1

is a oordinate on U

1

and t

2

is a

oordinate on U

2

. From this it is easy to show that

O

(n)

(U

1

) = O(U

1

)
O

(n)

D

' O(U

1

)
 (C [t

2

℄=(t

2

)

n+1

)

where the isomorphism is given by f(t

1

)q

k

7! f(t

1

)t

k

1

t

k

2

, and similarly for U

2

. Thus:

O

(n)

(U) =

�

O(U

1

)
 (C [t

2

℄=(t

2

)

n+1

)

�

�

�

O(U

2

)
 (C [t

1

℄=(t

1

)

n+1

)

�
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Now it is easy to see that for f(t

1

; t

2

) 2 O

(n)

C;a

, its restrition to the puntured

neighborhood of a is given by

t

k

1

t

l

2

7! (t

k

1

t

l

2

)� (t

k

1

t

l

2

) = (t

1

)

k�l

q

l

� (t

2

)

l�k

q

k

(7.6.3)

In partiular, if l > n, then restrition of t

k

1

t

l

2

to U

1

is zero, and if k > n, then

restrition of t

k

1

t

l

2

to U

2

is zero.

For every family C

S

over S with marked points and modules V

i

2 O

int

k

assigned

to these points we have a sheaf of oinvariants �(C

S

) over S whih gives rise to the

sheaf �

(n)

over D

(n)

; if C

S

is a smooth family, then �

(n)

is lisse. It follows from

Lemma 7.6.2(ii) that this module an be de�ned in terms of the n-th in�nitesimal

neighborhood of D, namely

�

(n)

= V

(n)

=g

(n)

(C � ~p)V

(n)

;(7.6.4)

where g

(n)

(C � ~p) = g
O

(n)

(C � ~p), and V

(n)

= V 
O

(n)

D

.

Therefore, it is natural to take this formula as the de�nition of the sheaf of

oinvariants for families over D

(n)

.

Proposition 7.6.9. Let C

D

(n)

be a family of urves with marked points over

D

(n)

, with loal parameters at these points, and integrable

b

g-modules assigned to

these points. Let �

(n)

be the O

(n)

D

-module de�ned by (7.6.4). Assume that C

D

is

nonsingular. Then �

(n)

is lisse and has a natural struture of a projetive D

0

D

(n)

-

module suh that the ation of q�

q

on �

(0)

= �

(n)

=q�

(n)

is zero.

Proof. By Lemma 7.6.7, suh a family an be obtained as a restrition of

some analyti family. Now existene of the at onnetion and the fat that �

(n)

is

lisse immediately follow from Theorem 7.4.1 and Lemma 7.6.7. To prove that q�

q

ats by zero on �

(0)

, just note that for the analyti family, we have a well-de�ned

ation of �

q

, and thus q�

q

= 0 mod q.

It is also important to note that the struture of D

0

D

(n)

-module an be de�ned

ompletely in terms of D

(n)

, without extending this to a family on S. Let �

(n)

(C�

~p) be the spae of global setions (on C

D

) of the sheaf of derivations of O

(n)

(C�~p)|

this is the in�nitesimal analogue of the algebra of vetor �elds. Then we an lift any

vetor �eld � on S whih is tangent to D|in partiular, the vetor �eld q�

q

|to a

\vetor �eld"

~

� 2 �

(n)

(C�~p). The easiest way to prove this is to use Lemma 7.6.7.

As in the analyti ase (see proof of Theorem 7.4.1), de�ne the ation of � on

the bundle of oinvariants by

�(fv) = (�(f))v + f

X

i



p

i

(

~

�)(v):

The same arguments as in Theorem 7.4.1 show that this is indeed de�nes the

struture of a projetive D

0

D

(n)

-module on the sheaf of oinvariants.

7.7. Coinvariants for singular urves

In this setion, we give a desription of the vetor spae �(C; ~p; V ) for a singular

urve C. This desription will be used in the next setion to prove that the bundle of

onformal bloks satis�es the gluing axiom and in partiular has regular singularities

on the boundary of the moduli spae.
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Let C; ~p;

~

t be stable singular urve with marked points and loal parameters at

these points. Choose modules V

1

; : : : ; V

n

2 O

int

k

assigned to these points. We de�ne

the spae of oinvariants �(C; ~p; V ) (or, for brevity, �(C; V )) by the same formula

as for non-singular urves (see De�nition 7.3.1). For simpliity, let us only onsider

the ase when C has only one double point; general ase is ompletely parallel.

Denote by C

_

the normalization of C, i.e. the non-singular urve suh that C

is obtained by identifying points a

0

; a

00

2 C. Let us hoose the loal oordinates

t

0

; t

00

near a

0

; a

00

.

Theorem 7.7.1. The map

V !

M

�

V 
 (L

k

�


DL

k

�

)

v

1


 : : :
 v

n

7!

M

v

1


 : : :
 v

n


 1

�

;

where DL

k

�

is de�ned as in Setion 7.1, and 1

�

2 V

�


 V

�

�

� L

k

�


 DL

k

�

is the

anonial g-invariant vetor, indues an isomorphism of the spaes of oinvariants

�(C; V ) '

M

�2P

k

+

�(C

_

; V 
 L

k

�


DL

k

�

)

with the modules L

k

�

; DL

k

�

assigned to the points a

0

; a

00

respetively.

Proof. The basi observation is that O(C � ~p) = ff 2 O(C

_

� ~p) j f(a

0

) =

f(a

00

)g. Therefore,

g(C � ~p) = ff 2

~

� j (

a

0

� 

a

00

)f 2

�

b

g

+

�

b

g

+

��(g)

�

�

b

g�

b

gg(7.7.1)

where �(g) = fx� xg; x 2 g,

~

� = g(C

_

� ~p� a

0

� a

00

).

Next, let us de�ne the U

b

g

k


 U

b

g

k

-module U as follows:

U = Ind

U

b

g

k


U

b

g

k

~

U

C 1

where

~

U � U

k

b

g
U

k

b

g is the subalgebra generated by

b

g

+


1; 1


b

g

+

; x
1+1
x; x 2 g,

whih ats trivially on C :

(

b

g

+


 1)1 = (1


b

g

+

)1 = (a
 1 + 1
 a)1 = 0:(7.7.2)

(By Poinare-Birkho�-Witt theorem, U is isomorphi to Ug 
 (U

b

g

�

)


2

as a

graded vetor spae.)

Sine U is a (U(

b

g)

k

)


2

-module, we an de�ne the spae of oinvariants �(C

_

; ~p[

a

0

[ a

00

; V 
 U).

Lemma 7.7.2. The map v 7! v
1 is an isomorphism �(C; V )

�

�! �(C

_

; V 
U).

The proof of this lemma is more or less standard: one has to hek that this

map is well-de�ned, whih follows from (7.7.2); injetivity follows from the fat that

U is free over U

b

g

�


 U

b

g

�

. Proof of surjetivity is is only slightly more diÆult:

it suÆes to prove that for every v 2 V; u 2 u one an �nd v

0

2 V suh that

v
u � v

0


1 mod Im

~

�. It follows from the fat that for every a� b 2

b

g�

b

g; u 2

u there exists a funtion f 2 � suh that (

q

0

� 

q

00

)(f)u = au, and therefore

v 
 (a� b)u � �(

~p

f)v 
 u.

Lemma 7.7.3. Maximal integrable quotient of U is equal to

L

�2P

k

+

L

k

�


DL

k

�

.
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Indeed, let us de�ne the homomorphism of (U(

b

g)

k

)


2

modules � : U !

L

L

k

�




DL

k

�

by 1 7!

L

1

�

(sine U is the indued module, this uniquely de�nes �). It is an

easy exerise to show that

L

1

�

is a yli vetor in

L

L

k

�


DL

k

�

(with respet to

the ation of

b

g�

b

g), and therefore, the above map is surjetive; thus,

L

L

k

�


DL

k

�

is

indeed an integrable quotient of U . On the other hand, every integrable (U(

b

g)

k

)


2

-

module is of the form

L

�;�2P

k

+

N

��

L

k

�

� L

k

�

. Sine U is generated by a vetor 1

whih is �(g) invariant, it easily follows that any integrable quotient of U must

have N

�;�

� Æ

�;�

�

. Details are left to the reader.

These two lemmas, ombined with Lemma 7.3.3, give the proof of the theorem.

7.8. Bundle of oinvariants for a singular family

In this setion, we ontinue the study of oinvariants for singular urves. This

time, we will onsider a family of pointed urves C

S

over a smooth base S suh

that C

s

is stable and non-singular for S nD, and C

s

is a stable singular urve with

one double point for s 2 D, where D is a smooth divisor in S (without loss of

generality we may assume that D is onneted). As before, we assume that we

have some integrable modules V

1

; : : : ; V

n

assigned to the marked points p

1

; : : : ; p

n

.

Then, by the onstrution of the previous setions, this data de�nes a vetor bundle

of oinvariants � = �(C

S

; ~p; V ) over S nD.

Let us extend � to the whole of S as an O-module. De�ne the sheaf � on S in

the obvious way, as in Lemma 7.4.2. The restrition of this sheaf to S nD is lisse,

and its �ber at a point s 2 D is the vetor spae �(C

s

; ~p; V ) whih was disussed in

the previous setion. The same arguments as before show that �

S

is O

S

-oherent

sheaf. The goal of this setion is to prove the following theorem, whih is the key

step in proving the gluing axiom.

Theorem 7.8.1. Under the assumptions above, the sheaf �

S

is lisse.

The remaining part of this setion is devoted to the proof of this theorem. Note

that by Theorem 7.4.1, the restrition of � to S nD is lisse, so the only problem is

analyzing the behavior of � at D.

Proof. The proof onsists of several steps. The main idea is to use the results

of the previous setion, relating oinvariants for the singular �bers C

s

; s 2 D with

the oinvariants for nonsingular urve C

_

s

obtained by normalization of C

s

, and

extend it to an isomorphism of sheaves of oinvariants in some neighborhood of

D. Unfortunately, it is impossible to do this diretly: we an not extend C

_

to a

family of nonsingular urves C

_

S

over S with a natural map C

_

S

! C

S

. However,

this beomes possible if instead of onstruting a family over S we restrit ourselves

to an in�nitesimal neighborhood of D, as de�ned in Setion 7.6, whih is suÆient

for our purposes. For simpliity, we will assume that S is a disk in the omplex

plane with oordinate q and D = f0g. The general ase an be treated quite

similarly; however, it is not even neessary to do that due to Lemma 6.3.13. We

will hoose oordinates t

1

; t

2

in the neighborhood of the double point a 2 C

S

suh

that t

1

t

2

= q (this is always possible).

By Lemma 7.6.2, it suÆes to prove that for every n � 0, the module �

(n)

over

O

(n)

D

de�ned by (7.6.4) for our family of urves is free of �nite rank.

In order to prove that �

(n)

is free over O

(n)

D

, let us onstrut another family

C

_

of urves over D

(n)

. Namely, take C

_

0

to be the normalization of C

0

; this is
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a nonsingular urve with the same marked points as C

0

, plus two more marked

points whih we denote a

0

; a

00

. The hoie of loal oordinates t

1

; t

2

on C

S

de�nes

loal oordinates t

1

; t

2

in the neighborhood of a

0

2 C

_

(respetively, a

00

).

Now, let us de�ne the sheafO

(n)

C

_

as follows. Let U = C

_

0

nfa

0

; a

00

g = C

0

nfag. By

de�nition, let O

(n)

C

_

j

U

= O

(n)

C

j

U

. To extend it to the points a

0

; a

00

, de�ne the stalks

O

(n)

a

0

= O(t

1

)
O

(n)

D

, where O(t

1

) is the ring of germs of analyti funtions in t

1

in a

neighborhood of t

1

= 0, and similarly for a

00

. Obviously, eah f 2 O

(n)

a

0

also de�nes

a setion of O

(n)

C

_

j

U

on some puntured neighborhood of a

0

by t

1

7! t

1

; q 7! t

1

t

2

, and

thus we an glue the sheaf O

(n)

C

_

from its restrition to U and stalks at a

0

; a

00

. This

de�nes on C

_

a struture of a family of urves overD

(n)

; this family is non-singular.

Now let us assign the modules L

k

�

; DL

k

�

to the points a

0

; a

00

and take diret sum

over all � 2 P

k

+

. By Proposition 7.6.9, this de�nes a lisse module �

_(n)

over O

(n)

D

.

Proposition 7.8.2. The map

� : V

(n)

! V

(n)

v 7!

X

�;i

q

�deg e

�;i

v 
 e

�;i


 e

�

�;i

;

(7.8.1)

where e

�;i

is a homogeneous basis in L

k

�

, and e

�

�;i

is the dual basis in DL

k

�

, indues

an isomorphism of O

(n)

D

-modules �

(n)

! �

_(n)

.

Proof. First of all, we have to hek that this map desends to the bundle of

oinvariants. To do this, note that it is immediate from the de�nition that we have

an embedding A : O

(n)

(C � p) ,! O

(n)

(C

_

� p� a

0

� a

00

). Near the double point

this map is given by

O

(n)

(C � p)!

�

C ((t

1

))[[q℄℄� C ((t

2

))[[q℄℄

�

=(q

n+1

)

t

k

1

t

l

2

7! t

k�l

1

q

l

� t

l�k

2

q

k

(ompare with (7.6.3)). We leave it to the reader to hek that in fat the image

of this embedding is analyti funtions.

It is also easy to show by expliit alulation that the vetor

w

�

=

X

i

q

� deg e

�;i

e

�;i


 e

�

�;i

2 (L

k

�


DL

k

�

)

(n)

(7.8.2)

is invariant under the image of the embedding

g[[t

1

; t

2

℄℄=(t

1

t

2

)

n+1

!

�

g((t

1

))[q℄� g((t

2

))[q℄

�

=q

n+1

:



190 7. WESS{ZUMINO{WITTEN MODEL

Indeed, it suÆes to show this for xt

n

1

t

m

2

; x 2 g. In this ase, it follows from the

following sequene of identities:

(x[n�m℄q

m


 1+1
 x[m� n℄q

n

)w

�

= (x[n�m℄q

m


 1 + 1
 x[m� n℄q

n

)(q

�d


 1)

X

i

e

�;i


 e

�

�;i

= (q

�d


 1)(x[n�m℄q

n


 1 + 1
 x[m� n℄q

n

)

X

i

e

�;i


 e

�

�;i

= (q

�d+n


 1)(x[n�m℄
 1 + 1
 x[n�m℄)1

= 0;

where 1 =

P

i

e

�;i


 e

�

�;i

is onsidered as a vetor in a ertain ompletion of L

k

�




(L

k

�

)

�

. Note that in the last line we replaed DL

k

�

by (L

k

�

)

�

, whih resulted in

replaing x[m�n℄ by x[n�m℄|see (7.1.4). We leave it to the reader to hek that?!

the fat that 1 does not lie in L

k

�


 (L

k

�

)

�

but only in some ompletion does not

ause any problems.

Therefore, if f 2 g

(n)

(C

S

� ~p); v 2 V , then �(f(v)) = A(f)�(v) and thus the

map � desends to the spae of oinvariants; we will denote the orresponding map

also by �.

Now the proof of proposition is easy. Indeed, we have a morphism of O

(n)

D

-

modules � : �

(n)

! �

_(n)

. By Theorem 7.7.1, � indues an isomorphism on the

�bers at zero �

(n)

=q�

(n)

�

�! �

_(n)

=q�

_(n)

. Sine �

_(n)

is free over O

(n)

D

, this im-

mediately implies that � is surjetive. To prove that � is injetive, hoose a basis

v

1

; : : : ; v

k

in �

(n)

=q�

(n)

. Sine �

_(n)

is free, this implies that v

1

; : : : ; v

k

are linearly

independent over O

(n)

D

. On the other hand, it follows from the de�nition that the

module K = �

(n)

=hv

1

; : : : ; v

k

i satis�es qK = K; sine q

n+1

= 0, this implies K = 0.

Thus, �

(n)

is freely generated by v

1

; : : : ; v

k

. Therefore, � is an isomorphism, whih

ompletes the proof of the proposition.

Sine by Proposition 7.6.9 the sheaf �

_(n)

is lisse, this proposition implies that

the same holds for �

(n)

and thus ompletes the proof of Theorem 7.8.1.

7.9. Proof of the gluing axiom

In this setion we give a proof of the gluing axiom for the WZW modular

funtor. Reall that this axiom desribes the behaviour of the bundle of oinvariants

in a neighborhood of the boundary of the moduli spae; in partiular, it laims

that the onnetion has �rst regular singularities at the boundary, and desribes

the speialization of this onnetion.

Reall that the boundary of the moduli spae onsists of the stable urves with

ordinary double points (see Setion 6.2) and that it suÆes to hek the regularity

ondition for an open part of the boundary. Thus, we need to prove regularity and

alulate speialization of the onnetion in �

S

, where S;C

S

; D; : : : are same as in

the beginning of the previous setion. By the onstrution of the previous setions,

�

S

arries a natural projetively at onnetion over S nD. Also, we have shown

in the previous setion that �

S

is lisse, i.e., is a sheaf of setions of a vetor bundle

on S.

Theorem 7.9.1. Under the assumptions above, the onnetion in �

S

has loga-

rithmi singularities at D.
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Proof. As before, hoose a loal oordinate q in a neighborhood of D suh

that q = 0 is the equation of D. Reall (see (6.3.5)) that D

0

S

� D

S

be the subsheaf

generated (as sheaf of algebras) by O

S

and vetor �elds whih are tangent to D.

Proposition 7.9.2. The sheaf � has a natural struture of a D

0

S

-module.

This proposition is a generalization of Theorem 7.4.1, and is proved in the same

way. The only hange is that instead of laiming that any vetor �eld on S an be

lifted to a vetor �eld on C

S

� ~p(S), we use the following lemma.

Lemma 7.9.3. Let � be vetor �eld on S whih is tangent to D. Then loally

in S, suh a �eld an be lifted to a vetor �eld on C

S

whih has poles at the marked

points.

Example 7.9.4. Let S be a neighborhood of zero in C , with oordinate q,

D = f0g. As before, introdue oordinates t

1

; t

2

near the double point in C

S

suh

that q = t

1

t

2

. Then in the neighborhood of the double point, the lifting of the vetor

�eld q�

q

must be of the form �t

1

�

t

1

+ �t

2

�

t

2

for some �; � satisfying �+ � = 1.

This proposition, along with the fat that �

S

is lisse, immediately implies the

statement of the theorem.

Example 7.9.5. Let S be a neighborhood of zero in C , with oordinate q.

De�ne the family C

S

� CP

2

� S by the equation

uv = qw

2

; (u : v : w) 2 CP

2

; q 2 S

with the marked points p

1

(q) = (1 : 0 : 0); p

2

(q) = (0 : 1 : 0), and loal parameters

at these points t

1

= w=u; t

2

= w=v. The same argument as in Example 6.2.4

shows that for q 6= 0, the urve C

q

is isomorphi to a sphere P

1

, with marked

points p

1

= 0; p

2

= 1 and loal parameters z; 1=z respetively. For q = 0, the

�ber C

0

onsists of two omponents, eah of them isomorphi to a sphere P

1

, with

oordinates z

0

= u=w; z

00

= v=w respetively, whih have one ommon point z

0

=

z

00

= 0. The marked points p

1

and p

2

are the points1

0

;1

00

|in�nite points of the

�rst and the seond spheres respetively, with loal oordinates t

1

= 1=z

0

; t

2

= 1=z

00

respetively.

It is easy to see that any vetor �eld of the form

~v = �u�

u

+ �v�

v

+ q�

q

; �+ � = 1

de�nes a vetor �eld on C

S

whih is a lifting of the vetor �eld q�

q

on S. Rewriting

~v in terms of oordinates t

1

; q, we get ~v = ��t

1

�

t

1

+ q�

q

, and thus 

p

1

(~v) = �L

0

.

Similarly, expansion near p

2

gives 

p

2

(~v) = �L

0

. Therefore, the ation of q�

q

on

oinvariants is given by �(L

0

)

p

1

+ �(L

0

)

p

2

.

This statement also has an in�nitesimal analogue. Reall the notation �

(n)

=

�

S

=q

n+1

�

S

(see the previous setion). This is a lisse O

(n)

D

-module. It immediately

follows from Proposition 7.9.2 that �

(n)

has a natural ation of the sheaf of algebras

D

0

D

(n)

= D

0

S

=q

n+1

D

0

S

.

Similar result also holds for the sheaf �

_(n)

desribed in the previous setion:

it follows from Proposition 7.6.9 that �

_(n)

has a natural struture of a projetive

D

0

D

(n)

-module. Let us twist this ation, de�ning a new ation of q�

q

by adding to

the old ation the onstant �

�

, de�ned by (7.4.7) (f. Example 7.4.11). We will

denote this new ation by r

_

.
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Note that a lifting of the vetor �eld q�

q

to C

_

D

(n)

an be expliilty desribed as

follows: lift q�

q

to a derivation ~v of O

(n)

(C�~p); as was disussed in Example 7.9.4,

this lifting in a neighborhood of the double point has the form �t

1

�

t

1

+�t

2

�

t

2

; �+

� = 1. De�ne v

_

by v

_

= ~v on C

_

n fa

0

; a

00

g = C

0

n fag, and v

_

= �t

1

�

t

1

+ q�

q

at a

0

; similarly, let ~v = �t

2

�

t

2

+ q�

q

at a

00

. It is easy to hek that this de�nes an

element of �

(n)

(C

_

� ~p).

Example 7.9.6. Under the assumptions of Example 7.9.5, the lifting of the

vetor �eld q�

q

is given by v

_

= �z

0

�

z

0

+ q�

q

on the �rst omponent, and by

v

_

= �z

00

�

z

00

+ q�

q

on the seond one. Therefore, its ation on the bundle of

oinvariants is given by

r

_

q�

q

= q�

q

+ �

�

(L

0

)

p

1

� (L

0

)

a

0

�

+ �

�

(L

0

)

p

2

� (L

0

)

a

00

�

+�

�

:(7.9.1)

Proposition 7.9.7. The isomorphism � : �

(n)

! �

_(n)

, de�ned by (7.8.1), is

an isomorphism of D

0

D

(n)

-modules.

Proof. It suÆes to hek that � ommutes with the ation of the vetor �eld

q�

q

. To prove this, it suÆes to hek that

r

_

q�

q

(v 
 w

�

) = (r

q�

q

v)
 w

�

where w

�

was de�ned in (7.8.2). But this is immediate from the de�nition of r

_

:

r

_

q�

q

(v 
 w

�

)� (r

q�

q

v)
 w

�

= v 
 (q�

q

� �(L

0

)

a

0

� �(L

0

)

a

00

+�

�

)w

�

= v 
 (�d+�

�

� �(L

0

)

a

0

� �(L

0

)

a

00

)w

�

= 0:

Now let us alulate the speialization of the onnetion in �

S

. Let us reall

the de�nition of the speialization funtor, slightly modifying it for our needs. As

in Chapter 6, assume that (F;r) is at onnetion with �rst order poles at D. As

before, we denote by F the sheaf of setions of F , and F

(0)

= F=qF . F

(0)

is a

sheaf on D whih has a natural ation of the sheaf of algebras D

(0)

D

= D

0

S

=qD

0

S

. It

turns out that the speialization Sp

D

F an be de�ned using only F

(0)

as follows.

Lemma 7.9.8. Let (G;

~

r) be a vetor bundle on the normal bundle ND with

a monodromi log D at onnetion, and let i be a homeomorphism identifying a

neighborhood of D in S with a neighborhood of D in ND, as in (6.2.8). Then

an isomorphism of vetor bundles with onnetions Sp

D

F ! G is the same as an

isomorphism of D

(0)

S

-modules

F

(0)

! i

�

G

(0)

:(7.9.2)

As before, we leave the proof of this lemma to the reader.

Now we need to alulate the speialization of the vetor bundle of oinvariants

�

S

. To do so, reall �rst that by Lemma 6.2.5, the normal bundle to D is ND =

f(d; v)g; d 2 D; v 2 T

(1)

a

C

d


 T

(2)

a

C

d

, where C

d

is the urve with one double point

a, and T

(1)

; T

(2)

are the tangent spaes to the two omponents of C

d

at a. Choie

of oordinate q on S and oordinates t

1

; t

2

on C

S

suh that t

1

t

2

= q gives an

identi�ation of a neighborhood of D in S with a neighborhood of D in ND by

i : (d; q) 7! (d; q�

t

1


 �

t

2

);
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or, passing from vetors to ovetors,

i : (d; q) 7! (d;

dt

1


 dt

2

q

):(7.9.3)

Now, let us de�ne a family of pointed urves over ND by C

d;q

= C

_

d

with the

parameters at a

0

; a

00

given by t

1

=q; t

2

. This de�nes a bundle of oinvariants ~� on a

neighborhood of D in S.

Theorem 7.9.9. The map

O

S


 V ! O

ND




X

�

V 
 L

k

�


DL

k

�

f(s)v 7!

X

�

f(i(s))v 
 w

�

(7.9.4)

where 1

�

2 V

�


 V

�

�

� L

k

�


DL

k

�

is the anonial g-invariant vetor, gives rise to

an isomorphism of D

(0)

S

-modules �

(0)

S

! ~�

(0)

.

Proof. We will use as an intermediate step the sheaf �

_(0)

introdued in the

previous setion. By Proposition 7.9.7, the isomorphism � : �

(0)

! �

_(0)

, de�ned

by (7.8.1) is an isomorphism of D

(0)

D

-modules. On the other hand, let us show that

the map V 
 L

k

�


DL

k

�

! V 
 L

k

�


DL

k

�

, given by

v 
 v

0


 v

00

7! q

deg v

0

v 
 v

0


 v

00

gives rise to an isomorphism of �

_(0)

and ~�

(0)

as D

0

D

-modules. Indeed, let us

ompare the ation of the vetor �eld q�

q

on both spaes. For ~�

(0)

it is given by

�(L

0

)

a

0

, and for �

_(0)

, it is given by



a

0

(v

_

) + 

a

0

(v

_

) +

X



p

i

(v

_

) + �

�

:

It follows from Proposition 7.6.9 that the only non-zero term in this sum is �

�

,

and therefore, (7.9.4) is indeed an isomorphism of modules.

Combining the isomorphisms �

(0)

! �

_(0)

! ~�

(0)

, we get the statement of the

theorem.

Now we an prove the main result of this hapter.

Theorem 7.9.10. The sheaves of oinvariants �(C; ~p; V

i

), V

i

2 O

int

k

, form a

modular funtor with additive entral harge .

Proof. Aording to De�nition 6.4.1, we need to de�ne the gluing isomor-

phism and the vauum propagation isomorphism for the spaes of oinvariants.

Vauum propagation isomorphism is given by Corollary 7.3.5; the gluing isomor-

phism is obtained by ombining Lemma 7.9.8 and Theorem 7.9.9. Cheking all the

ompatibility onditions for these isomorphisms is trivial.

For tehnial reasons, it is more onvenient to pass to the dual sheaf

�

�

(C; ~p; V

i

) =

�

�(C; ~p;DV

i

)

�

�

:

Obviously, the previous theorem immediately implies that the sheaves �

�

(C; ~p; V

i

)

also form a modular funtor with the additive entral harge . This funtor will

be alled Wess-Zumino-Witten modular funtor.

As a orollary, we have proved the theorem formulated in the introdution to

this hapter.
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Corollary 7.9.11. The ategory O

int

k

has a struture of a modular tensor

ategory, with 1 = L

k

0

; �

V

= e

2�iL

0

, and the tensor produt

:


 de�ned by

Hom

O

int

k

(1; V

1

:


 : : :

:


 V

n

) =

�

�(C;DV

1


 : : :
DV

n

)

�

�

where C is the \standard" n-puntured sphere, as in (6.4.3).

As a matter of fat, we have not yet proved the rigidity (reall that modular

funtor only de�nes weak rigidity); however, it an be shown that this ategory is

indeed rigid.?!

A weaker version of this result is the following:

Theorem 7.9.12. Let k =2 Q. Then the vetor spaes of oinvariants �(C; ~p; V

k

~

�

)

de�ne a genus zero modular funtor. The orresponding ribbon ategory is the Drin-

feld's ategory.

Proof. The proof is obtained by notiing that we have used integrability of

L

k

�

only in two plaes: when heking �nite-dimensionality of the spaes of oinvari-

ants, and in the proof of Theorem 7.7.1, identifying the oinvariants for a singular

urve C and its normalization C

_

. On the other hand, if we restrit ourselves to

genus zero urves, then the vetor spaes of oinvariants are �nite-dimensional by

Proposition 7.3.8. It is also easy to show that the proof of Theorem 7.7.1 remains

valid for k =2 Q if we replae

L

L

k

�


DL

k

�

by (in�nite) sum

L

�2P

+

V

k

�


DV

k

�

.

The fat that the orresponding ategory is exatly the Drinfeld's ategory

follows from omparison of this modular funtor with the modular funtor de�ning

Drinfeld ategory (see Proposition 6.5.4). Indeed, Proposition 7.3.8 shows that the

orresponding vetor spaes of onformal bloks an be identi�ed, Theorem 7.4.10

shows that this identi�ation preserves the at onnetions, and Theorem 7.9.9

shows that the gluing map for these two modular funtors also oinides.

Remark 7.9.13. One an note that we have most of the arguments above were

quite general and didn't use muh information about the oinvarints. Most of the

time we were only using the ation of the Virasoro algebra on integrable modules,

given by the Sugawara onstrution. The only plaes were we atually used the

de�nition of oinvariants and properties of integrable modules were the proof of

�nite-dimensionality of the vetor spaes of oinvariants and the proof of Theo-

rem 7.7.1, identifying the oinvariants for a singular urve C and its normalization

C

_

. Thus, if we ould repeat these two steps in other setups|for example, re-

plaing the ategory O

int

k

by a suitable ategory of Virasoro modules|we would

again get a modular funtor. Indeed, it is rather easy to modify these arguments

to de�ne the modular funtor related to the so-alled minimal models of Conformal

Field Theory, in whih the modules L

k

�

are replaed by irreduible unitary modules

over V ir with a suitable entral harge. If we try to pursue this idea as far as we

an and see what is the most general situation in whih we an apply the same

proof, we will arrive at the notion of Rational Conformal Field Theory (or, to be

more preise, the holomorphi (hiral) half of RCFT). The number of referenes on

this subjet is tremendous; some of the more suitable for mathematial audiene

are [Hua℄, inuential but unpublished manusript [BFM℄, and [Gai℄. For more

physial exposition and extra referenes, see [FMS℄.


