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Figure 1. Multiple edges, a loop, and \turning the handle".

3. The Graph Cohomology Zoo

Let us start by �xing what we mean by the words \graph" and \graph isomorphism":

De�nition 3.1. A graph G is a set F = F

G

of \ags" (to be thought of as verties with

half-edges emenating from them), together with a partition V = V

G

of F (the \verties")

and a partition E = E

G

of F into pairs (the \edges").

De�nition 3.2. A isomorphism of graphs is a bijetive map of the set of ags of one graph

to the set of ags of another, that arries (in the natural sense) the set of verties and the

set of edges of the �rst graph to the set of verties and the set of edges of the seond graph.

Similarly one may speak of \an automorphism" of a given graph.

Thus a graph may have loops and multiple edges (Figure 1). It is fully labeled (its ag

set is labeled), but it is not direted. And while loops are not direted, the \turning the

handle" automorphism (Figure 1) of a loop is ragarded as non-tirivial.

We will not stop to de�ne other lassial graph theoretial notions suh as vartex and

edges olorings, direted graphs, paths, yles, onnetivity, et. There is no diÆulty in

transporing these standard notions to our ontext.

3.1. The Basi Example.

De�nition 3.3. A \graph with an anti-symmetri set of edges", or an \ASE-graph", is a

triple (s;G;O

E

), where s 2 f�1g is a sign, G is a graph, and O

E

is an ordering of the set

E

G

of edges of G (a bijetion between E

G

and an initial segment of the natural numbers),

regarded up to the following relation:

(s;G;O

E

) � ((�1)

�

s;G; �O

E

);

where � is any reordering of the edges of G, and (�1)

�

denotes the signature of the permu-

tation �. We will denote a triple (1; G;O

E

) simply by (G;O

E

), and sometimes abuse the

notation and denote it simply by G.

Note that an isomorphism of graphs allows one to identify an ordering of the edge set of

one of the graphs with an ordering of the edge set of the other graph, and so there is a well

de�ned notion of \an isomorphism between ASE-graphs".

De�nition 3.4. Let

b

~

C be the spae of formal R-linear ombinations of isomorphism lasses

of ASE-graphs G satisfying:

� G has no multiple edges and no loops.

� All verties of G have valenies 3 or more.

Let

b

C be the quotient of

b

~

C by the relation (�1; G;O

E

) = �(G;O

E

).

The elements of

b

C an be thought of as \unlabeled graphs with an anti-symmetri set of

edges". Notie that de�nitions 3.3 and 3.4 imply that graphs that have an automorphism

that indues an odd permutation on their set of edges vanish in

b

C.
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Example 3.5. . The �rst graph shown below vanishes in

b

C, beause the obvious 180

Æ

-degree

rotation swithes �ve pairs of edges, and hene ats as an odd permutation on the set of

edges. The other two graphs, a pentagonal wheel with spokes and a triangular prizm with

one diagonal inserted (shown with an expliit edge-ordering and a small sale ion), do

not vanish in

b

C, beause all their automorphisms at on their edges by even permutation

(exerise!).

= 0;

5

2

7

4

1

9

8

10

3

6

= ;

6

2

10

8

5

4

3

7

1

9

= :

De�nition 3.6. Unless otherwise noted, we set the \degree" of a graph G to be n(G) =

jE

G

j � jV

G

j, and the \exess" to be k(G) = 2jE

G

j � 3jV

G

j. In some of the ases below these

de�nitions will be slightly modi�ed.

The degree and the exess indue a deomposition

b

C =

L

k;n�0

b

C

k

n

, where

b

C

k

n

is the

homogenuous exess k and degree n part of

b

C.

Example 3.7. The spae

b

C

2

4

is spanned by the graphs and

of Example 3.5, while the spae

b

C

1

4

is spanned by the graph shown on

the right.

2

8 7

4

3

10

1

5

6

9 11

=

De�nition 3.8. Let d :

b

C !

b

C be the linear operator de�ned on generators (G;O

E

) by

d(G;O

E

) =

X

e2E

G

�(Gne;O

E

ne);(1)

where:

� Gne is the ontration at e of the graph G.

� By onvention, elements are removed from an anti-symmetri set only at the �rst posi-

tion. This means that when, say, the jth element is removed from some anti-symmetri

set O

E

, one has to �rst move the jth element over the j � 1 proeeding elements, at

the ost of a sign, (�1)

j�1

. Spei�ally, the sign left unspei�ed in (1) is (�1)

O

E

(e)�1

,

where O

E

(e) is the serial number of e in O

E

.

Stritly speaking, the image of d may lie outside of its target spae

b

C, when an edge

ontration leads to a graph that has a double edge. We simply drop suh ontrations from

the de�nition of d, whenever they our. Alternatively, we ould have allowed graphs with

multiple edges in the de�nition of

b

C, but then note that suh graphs always have a sign-

reversing automorphism (ipping two \parallel" edges), and so they vanish anyway modulo

the de�ning relations of

b

C, and their inlusion does not hange a thing.

There is no diÆulty in showing that d is well de�ned, and that it maps

b

C

k

n

to

b

C

k+1

n

.

Example 3.9. In omputing d

� �

only the ontrations of edges 1, 9, and 11 (numbering

as in Example 3.7) ontribute; all other ontrations lead to diagrams with multiple edges.

Contrating edge 1, we learly get . Contrating edge 11, we get , whih is isomor-

phi to by the isomorphism given by the edge numbering used in examples 3.5 and 3.7.

Contrating edge 9 we get same same answer as for edge 11. So we �nd that (with the given



4 DROR BAR-NATAN AND BRENDAN D. MCKAY

edge orderings), d

� �

= + 2 . All edge ontrations of yield graphs with

multiple edges, and so d

� �

= 0. Finally, only one edge ontration of yields a graph

with no multiple edges, the ontration of the `far bak' edge, numbered 9 in Example 3.5.

But the result of that ontration is , whih is 0 in

b

C beause it's ip-over-the-diagonal

automorphism indues an odd permutation of the edges. So d

� �

= 0 too.

Proposition 3.10. d

2

= 0, and hene im d � ker d.

De�nition 3.11. Basi Graph Cohomology is the spae

b

H = ker d= im d:

Basi Graph Cohomology an be deomposed as a diret sum

b

H =

L

k;n�0

b

H

k

n

, where

b

H

k

n

is the degree n and exess k graph ohomology, de�ned by

b

H

k

n

= ker djb

C

k

n

= im dj

b

C

k�1

n

:

Example 3.12. Examples 3.5, 3.7 and 3.9 imply that

b

H

2

4

=

D

;

E.�

+ 2

�

:

I.e., dim

b

H

2

4

= 1, it is generated by , and as ohomology lasses, = �2 .

This is the simplest example of graph ohomology. All other examples arise as various

subomplexes and/or quotient omplexes of twists and/or deorations of this example.

The simplest modi�ation one an make to the above de�nitions is to restrit everywhere

to onneted graphs, alling the resulting omplex

b

C and its ohomology

b

H. Clearly, the

omputation of

b

H is equidiÆult with the omputation of

b

H, as the omputation of

b

H

an proeed in an independent manner on di�erent onneted omponents. Slightly more

formally, one an show that

b

H is the symmetri algebra of

b

H, in the Z

2

-graded sense.

Habitat. While simplest to de�ne, Basi Graph Cohomology does not appear in nature.

Results. At present, very little is known about

b

H

k

n

. The only dimensions we have omputed

are in Table 1. The data in that table is displayed using the folowing format for eah pair

(n; k):

dim

b

H

k

n

dim

b

H

k

n

dim

b

H

k

n

dim

b

C

k

n

dimker djb

C

k

n

/dim im dj

b

C

k�1

n

(2)

Example 3.13.

b

H

0

5

is generated (over Q ) by

2

3

12

3

4

5

67

13

1012

15 14

11

9

8

+

1

2

3

10

11

12

8

5

9 7

64

15

14

13

+

4

3

1

2

5

6

78

9

10 12

11

1315

3

4

14

+ 2

7

8

15

5

14

9

11 10

1

32

13

12

46

+

1

2

3

5

6 7

8 9

10

12

4

11

13

1514

:

Problems.

b

H is simpler than its twist H, de�ned below. Why is it that H is related to so

many things while

b

H is related to none? What is

b

H?
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n = 4 n = 5 n = 6 k = 7 n = 8 n = 9

k = 0 0

1 7

1/0

0 29

0 / 0

0 214

0 / 0

0 2496

0 / 0

1 30307

1 / 0

k = 1

0 1

0/0

0 13

6 / 6

0 109

29/29

0 1261

214/214

? 16134

? / 2496

? 226296

? / 30306

k = 2

1 2

2/1

0 12

7 / 7

0 186

80/80

1 2926

1048/1047

? ?

k = 3

0 6

5/5

0 170

106/106

0 3491

1878/1878

? ?

k = 4

0 1

1/1

1 75

65/64

0 2328

1613/1613

? ?

k = 5

0 10

10/10

0 879

716/715

? 38906

27533/?

?

k = 6

0 179

163/163

1 13867

11374/11373

?

k = 7

0 16

16/16

0 2742

2493/2493

?

k = 8

0 262

249/249

?

k = 9

0 14

13/13

?

k = 10

0 1

1/1

?

Table 1. Dimensions of

b

H

k

n

.

3.2. The Fundamental Example. We don't know of any diret use of the basi graph

ohomology in other parts of mathematis. Let us now disuss the \Fundamental Example";

a ertain twist of the original omplex, that seems to be related to a variety of other subjets.

The Fundamental Example is simply a di�erent hoie of signs in equation (1), for whih

Proposition 3.10 still holds, and thus for whih De�nition 3.11 makes sense. There are

several ways to desribe the new hoie of signs. We show two of them below, and leave

their equivalene as an exerise.

De�nition 3.14. The \oriented loop spae" desription: In addition to asserting that the

set of edges of a graph G is anti-symmetri as in De�nition 3.3, assert also that the (jEj �

jV j + 1)-dimensional vetor spae of losed direted yles in G, ommonly denoted H

1

(G)

by topologists, is oriented. Here is a more omplete desription:

� De�ne an ASEC-graph (Anti-Symmetri Edges and Cyles) to be a quadruple (s;G;O

E

; B),

where s, G, and O

E

are as before and B is a basis of H

1

(G), modulo the relation

(s;G;O

E

; B) � ((�1)

�

(sign detT )s;G; �O

E

; TB):

Here � and (�1)

�

are as in De�nition 3.3, and T is any automorphism of H

1

(G). Notie

that a isomorphism of graph G ! G

0

indues an isomorphism H

1

(G) ! H

1

(G

0

), and

so the notion of \isomorphi ASEC-graphs" makes sense.
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� De�ne C as in De�nition 3.4, only this time using ASEC-graphs and allowing multiple

edges.

� De�ne d : C ! C as in equation (1), noting that H

1

(G) and H

1

(Gne) are annonially

isomorphi and thus the extra baggage B an be loaded on equation (1) at no extra

ost. (Note also that while graphs with multiple edges do not neessary vanish in the

new ontext, their ontrations that have loops neessarily do vanish, and hene an be

ignored).

� Finally de�ne H and H

k

n

as in De�nition 3.11, but using C instead of

b

C.

De�nition 3.15. The \anti-symmetri ag and vertex set" desription:

� De�ne an ASFV-graph to be a quadruple (s;G;O

F

; O

V

) with s a sign, G a graph, and

O

F

and O

V

orderings of the ag set and the vertex set of G respetively, modulo the

relation

(s;G;O

F

; O

V

) � ((�1)

�

(�1)

�

s;G; �O

F

; �O

V

):

Here � and � are reorderings of the ag set and of the vertex set of G respetively.

� Isomorphisms of ASFV-graphs are easily de�ned, and this allows to de�ne C as in

De�nition 3.4, only this time using ASFV-graphs and allowing multiple edges.

� De�ne d : C ! C as in equation (1). This time the spei�ation of the signs and

orderings is a bit more ompliated, though. The idea remains the same: when elements

are added or removed from an anti-symmetri set, the operations are performed \at the

start" of the set. Preisely, ontrating the edge e of a graph G involves removing two

ags f

1;2

and the two orresponding verties v

1;2

(with v

i

lying on f

i

), and adding a

new vertex v, the result of ombining v

1

and v

2

. In the ase when f

1;2

are the �rst

two elements of O

F

and v

1;2

are the �rst two elements of O

V

, namely when O

F

=

(f

1

; f

2

; f

3

; : : : ) and O

V

= (v

1

; v

2

; v

3

; : : : ), we will set O

F

ne = (f

3

; : : : ) and O

V

ne =

(v; v

3

; : : : ), and take the sign in equation (1) to be +1. By a preliminary reordering of

O

F

and O

V

and at the ost of some signs, we an always get to the ase just desribed.

If the original plaement of f

1;2

in O

F

is j

1;2

and the original plaement of v

1;2

in O

V

is

k

1;2

, that sign ost is (�1)

j

1

+j

2

+k

1

+k

2

sign(j

1

� j

2

) sign(k

1

� k

2

).

� Finally de�ne H and H

k

n

as in De�nition 3.11, but using C instead of

b

C.

Exerise 3.16. Show that De�nition 3.14 and De�nition 3.15 are equivalent.

One may de�ne



C and



H by restriting everything to onneted graphs. As before, H is

the symmetri algebra over



H is the Z

2

-graded sense.

Habitat. H

0

, also known as (A(;))

?

, enumerates �nite-type invariants of integral homology

spheres [Oh, LMO, Le, BGRT1℄. (H

0

)

?

, also known asA(;), enumerates numerial invariants

of metrized Lie algebras [B-N1, BGRT2℄. It is reasonable to guess that H

1

is related to the

integrability question for �nite-type invariants of integral homology spheres [Hu, B-N5℄.

Aording to [Ko℄, H

k

enumerates invariants of k-parameter families of integral homology

spheres.

Results. The dimensions of H

0

n

were omputed up to n = 8 in [B-N1℄, and then up to n = 11

in [Kn℄, using the relationship of H

0

n

with A. The results are shown in Table 2. In addition,

we have omputed some dimensions of



H

k

n

for k � 0. The results are shown in Table 3.
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n 0 1 2 3 4 5 6 7 8 9 10 11

dim



H

0

n

0 1 1 1 2 2 3 4 5 6 8 9

dimH

0

n

1 1 2 3 6 9 16 25 42 50 90 146

Table 2. Some dimensions from [B-N1℄ and from [Kn℄.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

k = 0

1 1

1/0

1 2

1/0

1 4

1/0

2 14

2 / 0

2 54

2 / 0

3 298

3 / 0

4 2130

4 / 0

k = 1

0 1

1/1

0 3

3/3

0 19

12/12

0 131

52/52

0 1162

295/295

0 12138

2126/2126

k = 2

0 0

0/0

0 15

7 / 7

0 205

79/79

0 2688

867/867

? 36170

?/10012

k = 3

0 1

0/0

0 19

8 / 8

1 288

127/126

1 4316

1822/1821

?

k = 4

0 1

1/1

0 15

11/11

0 250

161/161

0 4365

2494/2494

?

k = 5

0 4

4/4

0 107

89/89

0 2646

1871/1871

?

k = 6

0 20

18/18

0 989

775/775

? 35324

24836/?

k = 7

0 3

2/2

0 267

214/214

0 13703

10488/10488

k = 8

0 1

1/1

0 61

53/53

0 3877

3215/3215

k = 9

0 8

8/8

0 735

662/662

k = 10

0 78

73/73

k = 11

0 6

5/5

k = 12

0 1

1/1

Table 3. Dimensions of



H

k

n

, using the same format as in (2).

3.3. Graph Cohomology for graphs with a �xed skeleton. A skeleton is not-neessarily-

onneted graph S, with or without some extra information: vertex or edge oloring, and

orientations on some or all of the edges. A graph with skeleton S is a graph G with an

embedded piture of S in it | an injetion of the verties of S into the verties of G and a

hoie of a path in G between the images in G of any two verties in S that are onneted

by an edge, so that the resulting paths are disjoint exept at their endpoints. For later

onveniene, we also require that the univalent verties of S remain univalent in G. Some

examples are in Figure 2. The degree of a graph with skeleton G is its degree as a plain

graph minus the degree of S, and similarly, the exess of G is the exess exess it has beyond
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Figure 2. A graph with skeleton ) and whose degree is 4 and exess is 1, a graph with

skeleton 	��	 whose degree and exess are 7 and 3, and a graph with skeleton �!, degree

4, and exess 0. In all ases the skeleton is emphasized with thiker lines.

the exess of its skeleton. (In other words, we simply shift the previous de�nitions of degree

and exess so that the degree and exess of S itself both vanish).

We repeat the de�nition of ASEC-graphs in the urrent ontext and extend the notion

of graph isomorphism to ASEC-graphs with skeleton S in the natural manner: we say that

two suh graphs are isomorphi if there is an ASEC-graph isomorphism between them that

arries the skeleton of one onto the skeleton of the other, preserving the skeleton olorings

and orientations if any are present. Given that, we make the analogs of De�nitions 3.4

and 3.8 in this ontext:

De�nition 3.17. Let S be some �xed skeleton, and let

~

C(S) be the spae of formal linear

ombinations of isomorphism lasses of ASEC-graphs with skeleton S that have no non-

skeletal loops (loops that are not a part of the skeleton), and no verties with valeny

less than 3 unless they are already in the skeleton. (The Examples in Figure 2 all satisfy

these onditions). As in De�nition 3.4, let C(S) be the quotient of

~

C(S) by the relation

(�1; G;O

E

) = �(G;O

E

).

De�nition 3.18. De�ne dG, as before, to be a sum over edge ontrations signed just as

in De�nition 3.8, only skipping all ontrations that produe a graph outside of

~

C(S) (for

example, if a ertain edge ontration hange onnets teo parts of the skeleton that were

not onneted before, it is not performed).

The newly de�ned map d is still a di�erential (d

2

= 0), and hene we an de�ne H(S) and

H

k

n

(S) as before.

As the skeleton is always present, the appropriate notion of onnetedness here is S-

onnetedness: A graph with skeleton S is S-onneted if it is onneted in the usual sense

when S is ollapsed to a single point. (Thus S itself is always S-onneted). Using S-

onnetedness we an de�ne



C(S) and



H(S). It is not diÆult to hek that H(S) is the

free H module generated by



H(S) in the Z

2

-graded sense.

Habitat.



H

0

n

(S) enumerates �nite-type invariants of embeddings of S in a ball in R

3

, so

that the univalent verties of S are at �xed positions on the boundary of the ball [St, KT℄.

(H

0

n

(S))

?

enumerates numerial invariants of Lie algebras with a representation for eah

edge of the skeleton and an invariant tensor in the tensor produt of the representation

spaes inident to eah vertex of the skeleton.



H

1

n

(S) is likely to be related to integrability

questions [Hu, B-N5℄ for �nite-type invariants of S, and



H

k

n

(S) for general k is likely to be

related to invariants of k-parameter families of embeddings of S.

3.3.1. Paths. One of the most interesting speial ases of the above disussion of skeletons

is when the skeleton S is "

X

, the disjoint union of jXj direted edges olored bijetively by

some �nite set of olors X.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12

dim



H

0

n

(") 1 1 2 3 6 10 19 33 60 104 184 316 548

Table 4. Some dimensions from [B-N1℄ and from [Kn℄

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

 = 1 1 2 3 6 10 19 33

 = 2 3 9 23 60 148 366 884

 = 3 6 28 111 413 1; 461 5; 027 16; 924

 = 4 10 69 394 2; 035 9; 849 45; 680 205; 612

 = 5 15 145 1; 130 7; 781 49; 455 297; 622 1; 722; 724

 = 6 21 272 2; 778 24; 632 198; 981 1; 506; 218 10; 875; 542

Table 5. Some dimensions from [B-N3℄. For n = 7 these dimensions were only omputed

over a large �nite �eld.

Habitat.



H

0

n

("

X

) enumerates �nite-type invariants ofX-marked pure tangles [B-N2, BGRT1℄.

In partiular, the ase where X is a singleton is the �rst and most studied type of �nite type

invariants | the ase of Vassiliev invariants of long knots [B-N4℄. (In this ase X is ususally

suppresed from the notation and "

X

is simply denoted ". (



H

0

n

("

X

))

?

, also alled A("

X

), is

a ombinatorial model of the ad-invariant elements of tensor powers of universal enveloping

algebras of metrized Lie algebras. In partiular, A(") is a ombinatorial model of the enter

of universal enveloping algebras of metrized Lie algebras, and as suh it has quite a lot of

sturture. See e.g. [B-N1℄.

Results. The dimensions of



H

0

n

(") were omputed up to n = 9 in [B-N1℄, and then up to

n = 12 in [Kn℄, using the relationship of



H

0

n

(") with A("). The results are reprodued

in Table 4. For  = jXj > 1, some dimensions were omputed in [B-N3℄. The results are

reprodued in Table 5. It turns out that these numbers depend polynomially on . These

polynomials are determined by the numbers in Table 5, and are printed (to the extent that

they are known) in [B-N3℄.

3.3.2. Cyles. Stritly speaking, an oriented irle with no base point is not a graph (it is

a \losed edge" with no verties), and hene not a skeleton falling under the de�nitions of

Setion 3.3. But there is no diÆulty in extending the de�nitions there to this speial ase,

and thus in de�ning H

k

n

(	

X

), the graph ohomology spaes for graphs with \skeleton" a

disjoint union of irles olored bijetively by the olors in some �nite set X.

Habitat.



H

0

n

(	

X

) enumerates �nite-type invariants of X-marked links. The ase where X is

a singleton is equivalent to the ase of



H

0

n

("), as long knots are equivalent to 1-omponent

links, that is, to knots. (



H

0

n

(	

X

))

?

, also alled A(	

X

), is a ombinatorial model of the

ad-invariant elements of tensor powers of the oinvariant quotients of universal enveloping

algebras of metrized Lie algebras. As in the equivalent ase of A("), muh is known about

A(	).

Results. For X a singleton and k = 0, the results are the same as in Table 4. Other than

that, very little is known.
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Problems. For X a singleton and k > 0, what is the relationship between



H

k

n

(	

X

) and



H

k

n

("

X

)? We feel that they must di�er by something easily omputable.

3.4. Univalent verties. A rather simple modi�ation to the de�nition of C, or, equally

well, to the de�nition of C(S), is to onsider graphs G that in addition to the previous

features also have some �xed number u of univalent verties, or some �xed numbers u

1

; u

2

; : : :

of olored univalent verties, olored by distint olors 

1

; 

2

; : : : (u

1

of olor 

1

, u

2

of 

2

, : : :

). The new univalent verties are never allowed to lie on the skeleton, if a skeleton is present.

The di�erential d is modi�ed only so as to preserve the number of univalent verties; it is

de�ned by the same summation as in (1), only that the edges that onnet a univalent vertex

to the rest of the graph do not partiipate in the summation. We denote the resulting graph

omplex by C(S; �

u

1



1

�

u

2



2

: : : ). If there's no skeleton, we omit it from the notation. If there's

only one olor, we omit it from the notation and simply write C(S; �

u

). When we omit some

or all of the u

i

's from the notation, it means that we are not onstraining the number of

univalent verties of some or all of the olors. In other words, C(�) = �

1

u=0

C(�

u

). We an

now de�ne H

k

n

(S; �

u

1



1

�

u

2



2

: : : ) in the usual way.

One an ome up with several reasonable notions of onnetivity for graphs with univalent

verties. Let us the dissuss the two notions that arise in appliations:

� We an use the usual notion of onnetivity for graphs with skeleton, as in Setion 3.3,

and all the resulting Graph Cohomology



H(S; �

u

1



1

�

u

2



2

: : : ). We �nd thatH(S; �



1

�



2

: : : )

is the free H(�



1

�



2

: : : ) module generated by



H(S; �



1

�



2

: : : ) in the Z

2

-graded sense,

and that H(�



1

�



2

: : : ) is the free Z

2

-graded generated by



H(�



1

�



2

: : : ).

� We say that a graphG is weakly onneted if it beomes onneted when all the univalent

verties in it, as well as the skeleton if a skeleton is present, are ollapsed to a single

newly-reated vertex 1. Equivalently, if every onneted omponent of G (in the

ususal sense) ontains at least one univalent vertex or at least one omponent of the

skeleton. We denote the resulting Graph Cohomology by

w

H(S; �

u

1



1

�

u

2



2

: : : ). Clearly,

H(S; �

u

1



1

�

u

2



2

: : : ) is the free H module generated by

w

H(S; �

u

1



1

�

u

2



2

: : : ) in the Z

2

-graded

sense.

Habitat. As is often the ase, only the exess 0 ase has a natural habitat in mathematis,

at least in as muh as we know now. (

w

H

0

(�



1

�



2

: : : ))

?

is the spae B of uni-trivalent

graphs with olored legs that appears in [B-N1, B-N2℄. Given a metrized Lie algebra g,

(



H

0

(�



1

�



2

: : : ))

?

is related to the spae of invariant elements of (sym g)
 (sym g)
 : : : and

to the spae of funtions on g� g� : : : [BGRT1, BGRT2℄.

Results. The eletroni publiation [B-N3℄ ontains the dimensions of many spaes



H(�

u

1



1

�

u

2



2

: : : ), and in the ase of a single olor , a few more dimensions are in [Kn℄. In Table 6 we

reprodue some of the single olor results.

3.5. Trees.

Habitat.

Results.



GRAPH COHOMOLOGY | AN OVERVIEW AND SOME COMPUTATIONS 11

n 1 2 3 4 5 6 7 8 9 10 11 12

dim



H

0

n

(�

2

) 1 1 1 1 2 2 3 4 5 6 8 9

dim



H

0

n

(�

4

) 1 1 2 3 4 6 8 10 13

dim



H

0

n

(�

6

) 1 2 3 5 8 11 15

dim



H

0

n

(�

8

) 1 2 4 8 12

dim



H

0

n

(�

10

) 1 2 5

dim



H

0

n

(�

12

) 1

Table 6. Some dimensions from [B-N3℄ and from [Kn℄

r g

Figure 3. A (~

3

r

~

2

g

)-graph with skeleton �!, degree 8 and exeess 4. We mark the

distinguished verties by surrounding them with small irles, and the speial edges emenating

from them by rossing them with short tags.

3.6. Link Relations. The following variation is somewhat arti�ial. The only justi�a-

tion for its inlusion here is that its exess 0 ase appears in nature as the \link relation"

of [BGRT2, Me℄. The idea is that we want to allow univalent verties, like in Setion 3.4,

but this time they partiipate in the game in a more ative way | we allow to ontrat

an edge that leads to a univalent vertex, but some provisions apply. It is easier to desribe

everything in a preise way by introduing a distintuished vertex with speial properties,

and by attahing all the univalent verties to it. If there's more than one olor of univalent

verties, we will similarly introdue several olored distintuished verties, one for eah olor

of the univalent verties.

De�nition 3.19. A (~

u

1



1

~

u

2



2

: : : )-graph is a graph with distinguished verties olored 

1

, 

2

,

: : : , together with a marking of preisely u

i

of the edges emenating from the 

i

-distinguished

vertex as \speial", for eah i. (In partiular, the valeny of the 

i

-distinguished vertex must

be � u

i

). When additional struture is present (a skeleton, Setion 3.4-style univalent ver-

ties), we require that it is disjoint from the urrently distinguished verties. We delare the

loal degree at a distinguished vertex to be its valeny, and the loal exess at a distinguished

vertex to be the number of unmarked edges emenating from it. An example is in Figure 3.

Habitat.

Results.

3.7. Direted Edges.

Habitat.

Results.
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3.8. Terminus Free Graphs.

Habitat.

Results.

3.9. Arobats.

3.9.1. Arobat Towers.

Habitat.

Results.

3.9.2. Arobat Jungles.

Habitat.

Results. Aknowledgement:
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