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Introduction 

Galois theory was classically described as an order inverting correspondence 
between subgroups of the galois group and intermediate fields in a galois extension. 
Later the correspondence was extended to one between open subgroups of the group 
of automorphisms of the separable closure, equipped with the pointwise con- 
vergence topology, and finite separable extensions. (Also between closed subgroups 
and locally separable extensions.) 

In 1961 Grothendieck observed that the essential content of the galois theory was 
contained in the statement that the category of separable extensions of field was the 
opposite of a galois caregory: the category of continuous actions of a profinite 
group on a finite discrete space. This duality gives much more comprehensive 
information than the lattice isomorphism, yet is not appreciably harder to prove. 
See [lo], especially Expose V. 

Meanwhile several people were generalizing the galois theory to more-or-less 
arbitrary commutative rings, although the generalization was really satisfactory 
only for connected ones (i.e. those with no idempotents except 0 and 1). See 
[1,4,5,11,12,13,9]. Recently, I found a convenient setting in which to include the 
above results for the connected case. See [2]. Meantime, jointly with Diaconescu, I 

was describing the fundamental group of a topos satisfying suitable local connected- 
ness properties. This was done by finding a suitable definition of covering; the 
fundamental group is just the group of deck transformations. In this paper, we 
show that if you stick to finite coverings in a connected topos, the local 
connectedness is unnecesary. Moreover, the galois theory over a connected ring can 
be most conveniently described in terms of finite coverings, thus describing the 
galois group as a finitization (or profinitization) of the fundamental group - a point 
first made by Grothendieck. In particular, we show that the Chase-Harrison- 
Rosenberg theory is applicable to a connected commutative ring object in any topos. 

* This work has been supported by the National Science and Engineering Research Council as well as 

by the Ministixe de I’Education du Quebec. 
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1. The functor A 

For any topos cc, let A denote the functor from the category of finite sets to 8 
whose value at n is the sum of n copies of 1. 

Proposition 1.1. The functor A preserves finite limits and finite colimits. 

Proof. Al = 1 by assumption while the fact that pullbacks in a topos commute with 
sums implies that A preserves pullbacks. As for the colimits, it is clear that A 
preserves sums, images and coequalizers of equivalence relations. Any relation 
generates an equivalence relation. Begin by making it reflexive and symmetric with a 
three term sum and image and then apply a finite number of operations of pulling 
back and forming an image. 

Proposition 1.2. In any topos A, if An= Am then either nz m or 0 = 1 in 8. If 
9, t3 : m+n are distinct, so are A9, AtI. 

Proof. According to Freyd [6,7] every topos in which 0# 1 has a .Yer-valued functor 
@ which is left exact and preserves finite sums. Evidently @An = n and @Am = m. 
Similarly, @A9= 9 and @JAB= 8. 

Henceforth, we will suppose without explicit mention that 0 # 1 in every topos we 
consider. 

Corollary 1.3. In any topos, if U+O is such that An x L/z Am x U over U, then 
n=m. If 9,0:n-+msuch thatA9xU=A8xU, then9=0. 

Proof. Consider 6/U. 

Lemma 1.4. Suppose A0 and A, are objects of G such that A0 + A I 3 An. Then there 
is a finite decomposition 1 = C U,. CY E I, into non-empty subobjects and unique 
integers nOa, n la such that for each (Y E I, 

Aox U,zAnoax U@ over Ua, 

A, x U,zAn,,x Ua over U,, 

and noa+n,,zn. 

Proof. For i=O, . . . . n - 1, let (i) : 1 -+n denote the map taking the element of 1 to i. 
This gives a map 

A(i): l-+An=Ao+A1. 

The map of 1 into the sum breaks it up into a sum 1 = r/i+ U;, defined by having 
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I I A(i) 

Aj_A” 

be a pullback. For each function (Y : n 42 (that is, subset of n), let Q=n:=, II&,= 

fly=, U& since these are subobjects of 1. Then 

Foranyi=O,...,n-1, wehave 

CJ[nU,= u[n U&,n...~ U&,fl...n U#;!,, 

U, if a(i)=l, = 

I 1 if a(i) = 0. 

Thus if #cr denotes the number of indices i for which a(i) = 1, 

A,xU,~(U;+~~~+U,“-‘)XU~ 

zu~xu,+...+u;-‘xu, 

zA((#a)x U@, 

the isomorphism being over U,. Similarly, A,X U,,zA(n - #a) x U,. The unique- 
ness follows as soon as we sum only those CI for which C&O. 

Lemma 1.5. Let f: Am+An in A. Then there is a finite decomposition 1 = C Ua, 

a E I, into non-empty subobjects of 1 and for each a a unique function IJI, : m+n 
such that for each a, f x U, = Av, x U,. 

Proof. First consider the case that m = 1. Then f is a monomorphism (any map 
with domain 1 is) and a map l-, 1 + ... + 1 induces, by pulling back, a decomposition 
l=UO+...+U,,_tsuchthatfxI/,=A(i)xL$. 

For the general case, we have for each j= 0, . . . , m - 1 a decomposition of 
l=Ui+...+Ui_, such that f.A(j)xq!=A(i)x#. Now let p:m-+n be any 

function. Then CJJ is uniquely determined by the formula p( j>=<u?j>. We have 
f~A(j)xU~j=A(~j)xU;(i=A~-AjxU~~ from which we see that fxU$= 
do, x Uij. Then if U, =flyli U$ we have also that f x U, = A p X U,. Since 

m-l n-l 

the conclusion follows by restricting the sum to those p for which U,#O. 

Corollary 1.6. The image of any map An-+Am has a complement. 
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Corollary 1.7. If f, g : An-Am are two morphisms then both their equalizer can be 
embedded as a complemented subobject of an object of the form AP. 

Proof. By applying 1.5 to (f,g): A(n +n)+Am we find a finite decomposition 
1=x& such that fxU,=A9,xU, and gxU,=Atl,xU for maps 9Pa,8,:n+m. 
Since A preserves finite limits and colimits, we can form the equalizer (resp. 
coequalizer) 

% 
Pa-n Xm-q, 

4 
and then 

fxU, 
APa x Ua -AnxUar 

g x t-J, 
AmxU,-Aq,xU, 

is an equalizer (resp. coequalizer) as well. If p is largest of the pa and q the largest of 
the qa, it is clear that the equalizer (resp. coequalizer) is a complemented subobject 
of Ap (resp. Aq). 

We note that a functor analogous to A with the above properties can be defined in 
any category with finite limits and finite sums that are disjoint and universal. 

2. Finite coverings 

Let 6 be a non-trivial topos. An object A of R is called a finite covering if there is 
a cover CJ- 1 and a finite set n such that A x CJz An x U over U. If that happens we 
say that A is an n-fold covering split by U. A morphism f : B+A is called a finite 
covering if it is so as an object of C/A. 

Remark. We should note the definition of finite covering given here is really the 
right one only in the case that R is connected (see Section 3). There are at least three 
other possibilities otherwise. 

(1) A is a finite covering if there is a cover U such that A x U is a complemented 
subobject of An x U over U. Equivalently, there is a finite epimorphic family 
{Vu+ 1) such that for all a, A x U,zAn,x U,. 

(2) There is an epimorphic family {Vu-l} such that A x Van An, X U, over Ua 
for each a. 

(3) There is a cover U such that A x U is a finite cardinal in 8//L/ in the sense of 
Johnstone [14, p. 1731. 

If the coproduct of countably many copies of 1 exists in 6, the last two definitions 
coincide. 

Proposition 2.1. Let A and B be finite coverings. Then, 
(i) if U - 1 - V are covers such that there is a map U-t V, then any finite 

covering split by V is also split by U; 



A bsrracr galois theory II 231 

(ii) if A is an n-fold covering and an m-fold covering, then n = m or 0 = 1 in 6; 
(iii) there is a cover U---H 1 that splits both A and B; 
(iv) A + B is a finite covering; 0 is a finite covering; 
(v) A x B is a finite covering; 1 is a finite covering; 

(vi) the image any B+A is a complemented subobject of A; 
(vii) the equalizer and coequalizer of any pair of maps B 2 A are complemented 

subobjects of finite coverings. 

Proof. (i) If A x VnAn x V, then 

(ii) If A x UzAn x U and A x Vadm x V, then CJx V is a cover mapping to 
both U and I’, whence A x Ux V is isomorphic over Ux V to both dn x Ux V and 
AmxUxV. 

(iii) If U splits A and V splits B, Ux V splits both. 
(iv) If U splits A and B, it splits A + B. 
(v) As well as A x B. 

(vi) From 1.6 it follows that the image of U x B -, U x A is complemented. It can 
be proved directly in any regular category with stable sums that a subobject has a 
complement if it does so locally, but R. Pare showed me the following elegant proof 
in a topos. A subobject is complemented iff its characteristic map factors through 2. 

We have 

AxU-A 

I I 
and the diagonal fill-in gives the desired arrow. 

(vii) Let f, g : B-+A have equalizer C (resp. coequalizer D). After crossing with 
aU that splits both A and B, we have 

fxU 
CxU-BxU :AxU-DxU 

i?XU 

both an equalizer and a coequalizer. By 1.7 there are sets p and q so that C x U and 
D x U are complemented subobjects of Ap x U and Aq x U respectively. Moreover, 
by examining the proof of 1.7 we see that what really happens is that there is a finite 
decomposition U = C Ua such that 

Cx U,zAp,x U,, Dx U,zAq,x U,. 

Then if we let C’= A(p -p,), D’= A(q - qa), we see that 

(C+C’)x&~dpxU,, (D+D’)xU,nU,xU, 
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for all a so that 

(C+ C’) x LIZ Ap x U, (D+D’)xUzAqxU. 

Proposition 2.2. Let An x A be a finite covering. Then A is a finite covering as well. 

Proof. Let U be a cover for which 

Then by 1.4 applied to AnxAxUzAxU+A(n-l)xAxU, there is a finite 
decomposition U= C U, such that for each (r there is a pu with A x i&n Ap,x Uu 

and A(n - 1) x A x U,z A(m -p,) x U,. The uniqueness implies that (n - l)p,= 
m -pa or m = np,. But then pa = m/n is independent of a and A x Un A(m/n) x U. 

Theorem 2.3. Let Of B+A in 6. Then of the following conditions, any two imply 
the third. 

(i) A is a finite covering; 
(ii) B is a finite covering of A; 

(iii) B is a finite covering. 
Moreover, if A is an n-fold covering and B-A is an m-fold covering, then B is an 
nm-fold covering. 

Proof. Suppose (i) and (ii) hold. Then there is a cover U such that A x L/z An X U 
and V++A such that. 

AmxV-B 

I I 
is a pullback. Crossing with U gives the inner square of the diagram 

AmxK _---__- --------------_--2Bi 

\ AmxVxU - BxU 

III I 

,I’ 
A 

VxU PAnxU 

II 

v 

The objects Bi and F$ are defined so that the squares labelled I and II are pullbacks. 
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Since both vertical maps in the square labelled III are projections, it is clear that 
square is a pullback as well. The dotted arrow exists from the mapping properties of 
pullbacks and a diagram chase shows that the outer square is a pullback. Summariz- 
ing, we conclude that B, x,. KzArn x V;. Next observe that V-A whence 
VxU-AxU or VxU--AnxU so that by pulling back, v+U. An easy 
induction gives that W= V, x, V, x, e.1 x, V,_, - U and that W is a cover. It is 
immediate that Bjx, W~Arnx W for i=O,..., n - 1 and adding this up over all i 
gives C (B; x, W) z Amn x W. Now 

C(B;x,W)dBJ x,WG(BXU)X,W. 

The map B x U + U is computed from 

B; l BxU 

to be just the projection on U so that (Bx U) x, WzBx W. Thus B is split by W. 

Moreover, B is locally isomorphic to Amn. 

Suppose (i) and (iii) hold. Then we have 

AxUGAnxU, Bx VaApx V. 

Thus, 

zA(np)xUx VsApx(AxUx V) 

so that An x B -rA is a covering, whence by 2.2, B +A is as well. 
Suppose (ii) and (iii) hold. Let B x, Ua A m x U and B x Vz Ap x V. Then if B x B 

is considered an object over A via the second projection, we have 

(BxB)x,(UxV)sBxAmxUxVzA(pm)xUxV 

so that B x B+A is a covering. Since B x, B-A is a covering (being a product, in 
6/A, of coverings) it follows from 1.6 that B x, B is complemented subobject - in 
G/A, a fortiori in G - of B x B. It follows from 1.4, applied in F/V, that there is a 
decomposition V= C V, such that 

Bx,Bx V,zq,x V. 

Moreover, we can suppose the decomposition refined to the point that both projec- 
tions 

Bx,Bx V,=iBx V, 
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are induced by set maps. It follows that the coequalizer is isomorphic to dn,x I’,. 
But B # 0 implies m f 0 so that B x, U-A is epi whence B-A is epi as well. Thus 
the coequalizer above is A x V,. Then in E/V,, 

while 
(Bx V,dAx V,)z(Amx V,dAx V,) 

whence by the first part, p=nam. Thus n,=p/m does not depend on a and we 
conclude that A x VzA(p/m) x V. 

3. Connected coverings 

We say that an object of 6 is connected if it is non-zero and not possible to write it 
as a sum of two non empty subobjects. We say that A is connected if 1 is. 
Throughout this section we suppose that ,! is connected. 

Proposition 3.1. Let A and B be objects of 6 such that A + B is a covering. Then so 
are A and B. 

Proof. Suppose U is a cover such that (A +B) x UzAn x V. By applying the 
functor II* : 6 +A/U given by U*(A) = A x U --* U, we have 

U*(A) + U*(B) z An. 

From 1.4 we get a finite decomposition U = 1 U, and integers m, such that 

A x U,zAm,x U,, BxU,=A(n-m,)xU,. 

By putting together all the terms belonging to any m,, we can suppose that a#/3 
implies m,fmp. But A x U,x UpzAm,x UQx UpzAmpx &lx UP so that m,fmp 
implies U, x U,= 0 (see 1.3). If V, is the support of U, then U,- V,, Ub-++ VP implies 

o= U,X up+ V,X v,= v,n v,. 

Thus 1 = C V, is a disjoint sum which contradicts the connectedness of 1 unless there 
is only one index. But that means U,= U, m = m, and 

AxUnAmxU, Bx UzA(n-m)x U. 

Corollary 3.2. Every covering is a sum of a finite number of connected ones. 

Proof. If A is an n-fold covering and 

AnA,+...+A, 

with each AifO, then each Ai is an ni-fold covering with C,“=, ni = n so that mtn. 
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Thus A cannot be written as the sum of an indefinitely large number of subobjects, 
from which the conclusion is easily derived. 

Proposition 3.3. Every morphism of connected coverings is an epi. 

Proof. Every morphism has a complemented image. 

Proposition 3.4. Let f : A + B be a map of coverings and I/ split both A and B. If A 
is an n-fold covering and B an m-fold covering, then there is a map 9 : n Am such 
that f x UzA9x Ui 

Proof. Let U= C U, so that f x C&a ACD~X U,. Joining together U, and Up 
whenever 9,= 9fl, we can suppose that when a#/3, lpc, # ‘pp. Now consider the 
diagram all of whose squares (including the outer) are pullbacks, 

AxU,xUp +A x U, 

a P 
/ 

“;jx,-Bfx~ 

+ /FC”;xuD ‘B\* 

A x U, *A 

This is equivalent to 

Anx iJox Up #Anx U, 

\ 
Am x U,x U, -AmxU (I 

c 

AnxUp +A 

from which it follows that A9a~ CJux U,= Aylpx U, x U, so that C&x Cl’= 0 (see 
1.3). The argument then finishes exactly as that of 3.1. 

Proposition 3.5. Let A be an n-fold covering and B be a connected covering. Then 
the number of components of A x B is In. 

Proof. Let B be an m-fold cover and 

AxB=C,+...+C, 
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where C, is a p,-fold covering. It follows that mn = C y=, pi. Each 

Ci+A XB*B 

is epi because B is connected (see 3.3) whence pi? m. It follows that qln. 

4. The galois category 

A category which is equivalent to a category of finite G-sets (discrete but with 
continuous action) for a profinite group G is called a galois category. These 
categories are characterized in Barr (21 using a characterization from V.4 of 
Grothendieck [lo]. 

Theorem 4.1. Let 6 be a connected topos. Then the full subcategory of finite 
coverings of A is a galois category. 

Proof. Let .?/ be the full subcategory of connected finite coverings and .a the full 
subcategory of finite coverings. We will verify duals of the conditions of Barr [2] 
according to the numbering used there. 

(1) Every map in .d is a regular epimorphism (see 3.3). 
(2) Every pair of maps 

f g 
B-A-C 

can be completed to a commutative square 

D-B 

C-A 

It follows from 2.1(v), (vii) that the pullback B x, C is a complemented subobject 
of a finite covering and from 3.1 that it is a finite covering. Take D to be any 
component of it. 

(3) For each object A, there is a number r(A) such that for all B, there are objects 

Cl, **-, C, and pairs of morphisms A+C,-B such that r~f(A) and whenever 
A +C *B there is a unique i and unique C-C; such that 
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commutes. To prove this, take C,, . . . . C, to be the connected components of A x B. 

Any map C-A x B, C connected, must factor through a unique C;. The conclusion 
follows from 3.5. 

(4) There is a terminal object 1. 
(5) Every parallel pair A Z B has a coequalizer; products in .d preserve them. 
Actually, the cited reference does not refer to .a but to a category 1-Y 

(remember, we are dualizing) of formal sums of objects of .d. However it is an easy 
exercise (based on the fact that when A is connected a map A * 1 Bi factors through 
one summand) to show that C .Y z .d. Now if 

f 
A :B-C 

&? 

is a coequalizer in A, A and B are in .:/ and Y splits both A and B, we have 

A9xU 
AnxU: AmxU 

AyxU 

and if 
9 

is a coequalizer in Ykt, then Cx CJG Ap x CJ. Now let D be another object of .d. To 
see that 

AxDZBxD*CxD 

is a coequalizer (in .A) we assume that U splits D as well, say D x L/z Aq x U. Then 
crossing with U gives 

or 
A(nq)xUZA(mq)xU-+A(pq)xU 

which is coequalizer (in Y/U) because 

nq=fflq-+pq 

is. That follows because .Y@t is a topos. 
Finally, from the fact that in the diagram 

BxDxUxU----- CxDxUxU 

AxDxU-: BxDxU l CxDxU 

AxD_: BxD *CxD 
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the uppermost arrow is epi and the second row and two right columns are 
coequalizers, it follows that the bottom row is too. 

This completes the proof. 

We let Gal(R) denote the group, unique up to isomorphism, such that the 
category of finite coverings - A is equivalent to the category of G-sets. The reason 
Gal(&) is unique is that G may be recovered from Yerc. Here is how that is done. 
First cut down to the full subcategory of connected G-sets. Among these, define an 
object A to be normal if every component of A XA is isomorphic (via either 
projection) to A. Then G is the group of automorphisms of the identity functor of 
the full subcategory of normal connected objects. The subgroup of these auto- 
morphisms which restrict to the identity on a given object is taken as open. 

5. Galois subcategories 

In this section we show: 

Theorem 5.1. Let .+9 be a galois category and ‘6’ a full subcategory closed under 
finite limits, finite sums and quotients by finite group actions. Then V is a galois 
category. 

Proof. We will show that G is a profinite group such that .B is the category of 
G-sets, then there is a closed normal subgroup NC G such that 8 is the category of 
G/N-sets. We may assume without loss of generality that V is replete - that is, any 
object isomorphic to an object of C belongs to ‘6’. Let JU be the set of all open 
subgroups U of G such that G/U is in %. 

Lemma 5.2. If A + B belongs to %’ so do A and B. 

Proof. There is an equalizer 

do 
A-A+B :A+B+A+B 

d, 

in which d,, is inclusion of the first and second and dl the inclusion of the first and 
fourth summands. 

This shows that X is completely determined by I#//. 

Lemma 5.3. Let UE $1, Then any conjugate of U also belongs to @. 

Proof. If U and Vare conjugate, G/Uz G/V as a G-set. 



Abstract galois theory I! 239 

Lemma 5.4. If U and V belong to ‘//, so does Un V. 

Proof. Map G -+ G/U x G/V by sending cr to (oU, o V). Then o and r have the same 
image iff oCJ=rU and oV=rV. Equivalently, T-‘OEU and ~-IDE V so 
r-lo E Un V. Thus the image is G/Ufl V. Of course the image is a sub-G-set which 
is complemented so G/Ufl V is in ‘6 by 5.2. 

Lemma 5.5. If LIE $1, so does n oeG &a-‘. 

Proof. This follows immediately as soon as we know there are only finitely many 
conjugates. But an open subgroup in a compact hausdorff group has finite index, 
whence so does its normalizer. 

Lemma 5.6. Let VII/E ‘1/. Then VE ti. 

Proof. Let W= n a&-I. Then W is open and normal. Since G/k’s 
(G/ W)/( VI W), there is a coequalizer 

G/W%,, G/WZG/W+G/V. 

But G/Wx c;,y G/ Wz VI W x G/W and so G/V is a quotient modulo the action of 
V/W on G/W. 

Lemma 5.7. Let N = n { U 1 U E D } . Then any open V IN belongs to 4. 

Pioof. For any U,, . . . , U,,E ‘u, U, fl ...fl U,- V is a closed subset of the compact 
group G.and the set of all possible sets of that form is closed under finite intersec- 
tion. If none .of them were empty, H- V would be non-empty by compactness. Thus 
V contains some finite intersection whence VE ~4. 

This completes the proof of 5.1. 

6. Finitely additive sites 

Let V be a standard left exact site. We say that ‘6’ is an additive site if 
(i) V has finite sums which are disjoint and universal; 

(ii) 1 + 1 --, 1 is a cover; 
(iii) the two coproduct injections l-, 1 + 1 + 1 are a cover; 
(iv) the empty sieve covers the initial object. 
We let .Y( U) denote the category of sheaves on a site ‘6’. 

Proposition 6.1. Let % be an additive site. Then, 
(i) If{A;+A} and {Bi-+B} are covers, so is {A ;, Bj -+ A + B } ; 

(ii) IfA=A,+...+A,, then {A;-A} isacover; 
(iii) The Yoneda embedding V + 3( ‘e) preserves sums. 
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Proof. (i) Since 

A-A+B-B 

I I I 
I- l+l-1 

are pullbacks, it follows that (A, B-A + B} is a cover, from which the conclusion 
follows. 

(ii) Follows by induction from (i). 
(iii) Obvious. 

Since ‘6 has disjoint universal sums, there is a functor A from finite sets to Z’, just 
as in the case of a topos. We will say that an object A is a finite covering if there is a 
cover {r/i- 1) and a finite set n such that A x Qadn x Q for each i. 

Proposition 6.2. Suppose that the covers (L$.- l} have the property that LJ x - 
preserve coequalizers. Let the finite group G act on the finite covering A and 

suppose 

AGxA=EA 

has a coequalizer. Then the coequalizer is preserved by the Yoneda embedding. 

Proof. Let 
AGxAZA-A/G 

be a coequalizer. Let { Ui~ l} be a cover such that Ui x - preserves coequalizers. 
Then for each i, the rows of 

AGxAxQxU :Axq.xL$ -A/Gx~~xQ~ 

II II 
AGxAxQ : A X U~-AAGX v, 

AGxA :A 

are coequalizers, the middle row has the form 

AGxAnxC/iZAnxQ+A/GxQ 

,A/G 

and the top row is similar. Using the same considerations as in the proof of 1.5 
applied in K//vi, we can break (/I: into a finite number of pieces Uu so that on each 
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piece the maps zl G x d n x CJi; Z dn x Uti are induced by maps d G x d n 3I n where 
coequalizer is Am. Then A/G x Uuz Am x r/i,. Applying the associated sheaf 
function, it is still a coequalizer. Now writing A- for the sheaf associated to A, we 

have in .F( ‘6 ), 

CAGXA-xU,XU,,-_; ~A-x~,x~~,--+~(A/G)-x~~xU~, 

II II II 
CAGXA-XU~ : CA-Xl/, ___* C(A/G)- x Qj 

I I I 
AGxA- : A- ’ (A/G)- 

in which all columns and the top two rows are reflexive coequalizers and hence so is 
the third. 

We say that the site ‘6 is connected if there is no cover {Q+ 1) which can be 
decomposed into two sets { Uj + 1) and { Uk + 1) in such a way that Uj x U, = 0 for 
all j and k. 

Let U be a cover of 1. Say that an object A is a finite covering, split by U, if 
A x Uz An x U for some finite cardinal n. 

Theorem 6.3. Let ‘6 be a connected additive site. If the covers of 1. {U, - 1) have 
the property that every - x Ui preserve coequalizers, then the full subcategory of % 
consisting of the finite coverings is a galois category. 

Proof. This follows from the results of this section applied in 5.1. 

6.4. There is a slight generalization of the conditions of this theorem which lead to 
the same conclusion. Begin as before with a connected additive site. Replace the 
condition on covers by supposing that whenever a finite group acts on an object A, 

there is a quotient A/G; that the canonical A-A/G is a cover; and that the 
canonical 

AGxA+A x/,,~A 

is a cover. 

7. Galois theory of commutative algebras in a topos 

Let 6 be a topos with an object of natural numbers. Let R be a commutative 
algebra object in G, Mod R the category of R-modules in d and Fop the category of 
commutative R-algebras in 6. The following facts about Mod R are found in 
Howe [8]. 



7.1. If M,,Mz,N are R-modules, a bilinear map f :M, xM2-N can be defined in 
such a way that three pairs of maps 

are simultaneously coequalized. This defines a three-place functor Bilin(,M,,&; N). 
With the existence of free R-modules assured by the natural number object, it is easy 
to see that this functor is representable by an object denoted M, OR I& or simply 
M,@&. It is also easy to see that -@JR- satisfies the usual associativity and 
commutativity isomorphisms and that R is a 2-sided unit. 

7.2 The category of R-modules is a closed category with internal horn [iv, N] c N” 
and [MI @A&, N] P [M,, [A&, N]]. It follows that MO (Nr x N+ (MO NJ x (MO N,) 
where Nr x Nz is both the sum and the product of Nr and N2. 

7.3. If M;+M,~M;~O is an exact sequence of R-modules, then for each 
R-module N, 

O~Hom(M~,N)~Hom(M,,N)~Hom(M~,N) 

is an exact sequence of abelian groups. Replacing N by [A&N] and using adjoint- 
ness, we see that 

is exact from which so is 

M;@M~-M,QM~‘M;@4~‘0. 

Similarly @ is right exact in the second variable. 

7.4. From these facts it follows easily that a commutative R-algebra A is an 

R-module equipped with a map R-+A and a map A@A+A satisfying the evident 
identities. If A and B are R-algebras, their sum and product are AOB and A x B 

equipped with the obvious structures. Thus products in % (which recall, is the 
opposite of the category of R-algebras) distribute over finite sums. By replacing R 

by an R-algebra S, we see that pullbacks distribute as well. Moreover, it is easily 
checked that A x BdA is epi, that 

AxB-A 

B-O 
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is a pushout and that 0 is a strict terminal object in ‘6 OP. Hence ‘6 has finite sums 
that are disjoint and universal. 

7.5. It is necessary to describe a topology. There may be other choices but one 
which works well is to take (as cocovers, since we are in the dual category) all finite 
families {S-Si} such that if S’= n Si, then each of S and S’ is isomorphic, as 
S-modules, to a retract of a finite direct sum of copies of the other. We call such an 
S’an S-progenerator. This is not to suggest it is projective, although it is internally so. 

We must show that this is a topology. Given a cover {R+Si} we must show that 

is an equalizer. Given the couniversal products, it is equivalent to take S = n Si and 
show that R + S 2 S@ S is an equalizer. To begin with, R -S must be mono because 
its kernel is annihilated by any R-linear R+S” which would contradict R being a 
retract. Next I claim that for any R-module M,M+S@M is mono. In fact if K is the 
kernel, 

is exact. Since S is an R-progenerator S@- is exact and the reciprocal condition 
implies it is faithful. Then 

is exact. But S@M+S@S@Mis a split mono, split by the multiplication map on S, 
whence S@K =0, so that K = 0. Now from the exactness of 

0-R-S ’ S/R *O 

o-s- S@S - S@S/R -0 

O-S/R- S/R@S- S/R @ S/R -0 
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it follows that the upper left corner is a pullback. If {R -S;) satisfies the condition, 
so does {T-S;@ T} for any R-algebra T, whence the universality. 

Then if we define a galois extension of R to be an R-algebra A such that 
$@A = ST for a cover {R *S;}, the full subcategory of galois extensions of R 
forms a galois category. Of course, the {S,} may as well be replaced by n S;. 

How does the galois theory described here compare when r: =.7ef with that of 
Chase, Harrison and Rosenberg [4], see also Magid [9]? It is shown in Barr [2] that 
an R-algebra A is strongly separable iff S@ A c S” for a faithfully flat R-algebra S. 
It is easily seen that the topology described above considers S which are finitely 
generated projective generators. Clearly, then, any A which is split by such an S is 
strongly separable. Conversely, any strongly separable A is split by a strongly 
separable B which is a finitely generated projective generator. Hence the two 
notions coincide. In fact, using the results of DeMeyer and Ingraham [5], 111.1.2, 
part 4), in conjunction with 6.4, it is even possible to show that the topology can be 
taken to be the canonical one: universally regular monomorphic families. 

8. Example: Regular rings 

By a commutative VNR (von Neumann regular) ring object in a category we mean 
a commutative ring object R equipped with an endomorphism ( )‘: R + R such that 
x2x’=x and XX’~ =x’. One of the many characterizations of a field in .I/er is that it is 
a connected commutative VNR ring. This characterization has not been used as a 
possible definition of field in a topos, presumably because connectedness is not an 
internal notion. Nonetheless, it seems to be an appropriate notion for galois theory, 
as we will see. 

First, here are two examples of connected commutative VNR rings in the category 
of set-valued functors on the category 

.u. 
3 

I 

with two non-identity maps such that t? = id and tu = U. The first is 

with complex conjugation as the involution. The second is 

with the involution which exchanges the two factors. There is an obvious inclusion 
of the first into the second (using (id, 0) on the second value) and from the point of 
view of this paper the second is the separable closure of the first. Yet the first is and 
the second isn’t a geometric field. 

A similarly suggestive examples comes in the category of sheaves on the unit 
interval. Here are four ring objects RI,R2,R3,R4, indicated by showing what the 
stalks are. 
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R a c 
I , r , 

. . . . 

RI RI 

Then it is not hard to see that although RI c Rz c R3 c R.,, Rj is a separable extension 
of RI and R4 is a separable extension of Rz but none of the other inclusions is 
separable; that R2 and R4 are separably closed; that RI,R2 and R3 are geometric 
fields but R4 is not and that all four are connected commutative VNR ring objects. 

Let .F be any IN-standard topos. This means that .f not only has a natural 
numbers object but that the standard morphisms l& it4 as runs through the 
ordinary integers form an epimorphic family. Freyd shows that any such topos, if 
countable (meaning there are countably many morphism together), has a faithful 
family of set-valued functors that preserve all finite limits and finite colimits as well 
as N. Since constructions like free R-modules and tensor products are constructed 
using finite limits and colimits and N, these are all preserved by such functors. Of 
course, the internal horn is not, since it is built out of the exponential, but that was 
only used in passing, to derive the exactness properties of the tensor. 

We take for topology the same as before; a cover {S -+S;} is a finite sieve such 
that fl S; is an S-progenerator. Now the R-algebra is a finite covering - and is 
strongly separable - iff there is a cover {R +R;} such that Ri@A zR,! for each i. 

Since the covers are finite we can replace this sieve by S= flR; and say that A is a 
finite covering iff there is an R-algebra A which is an R-progenerator such that 
SO.4 z S” (as an S-algebra). 

Theorem 8.1. Let R be a commutative ring object in a topos and A a finite 
covering. If R is a VNR ring, so is A. 

Proof. The idea is to prove it in Ykt and use the representation theorem of Freyd to 
do it in general. 

Lemma 8.2. Let A be a commutative ring (in .Yet) such that AhI is a field for every 
maximal ideal M. Then A is a VNR ring. 

Proof. (For which, many thanks to J. Lambek). If A,w is field, the only field it can 
be is A/M. Thus every element in Mmust have a zero divisor outside of M. Thus for 
each a EM, arm(a) C M. On the other hand for each ae M, there is a b E R such that 
ab - 1 EM which means ab - 1 has an annihilator outside of M. Thus for each a E R, 

arm(a) + c ann(ab - 1) CZ M. 
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Fixing u and letting A4 vary, the above expression defines an ideal not contained in 
any maximal ideal, whence it is all of R. Thus there is a finite set 6,, . . . . b, such that 
1 =x + 1 y; where ~a = 0 and y;(ab; - 1) = 0. This gives a = C ayi while ay;(abi - 1) = 0 
gives 02y,bi = OY; SO CJ= 1 a’yib;=a’(C yib;). Thus C y;b; is a candidate for a’. 
(Replace a’ by ur2a to get one for which also a’2a = a’.) 

Now if R is a VNR ring and A a strongly separable extension, then for any 
maximal ideal MC A, N= M n R is a prime ideal of R. In a VNR ring every prime is 
maximal, so N is maximal. Then by [5], Chapter II, Corollary 1.7 on p. 44, RN@A 

is a separable extension of RN, hence is a product of a finite number of field 
extensions. Now 

R,&Aa(R-N)-‘A=(R-M)-‘Ac(A-M)-‘A=A,+, 

so that AM is a localization of a finite product of separable field extensions and is 
local so it must be one of them. Thus AM is a field for every M and A is VNR. 

For a general topos first observe that a commutative ring object R is VNR iff for 
every @ :.3+.~et which is left exact, r9R is. This is because these rings can be 
characterized by saying that if 

W= {@,a’) 1 a2a’=a&aa’2=a’) 

then the composite 

PI 
W-RxR-R 

is an isomorphism. Of course, instead of considering all @ it is sufficient to take a 
faithful family. A standard argument shows that if @f is an isomorphism for a 
faithful family of @, then f is. 

Suppose S is an extension of R which is an R-progenerator and A is an R-algebra 
split by S. Let .X0 be a countable exact subcategory of .F (not full) which is a topos 
and contains h\l, Q, R, S, A, R@R, R@R@R, R@S ,..., S@A ,... as well as all 
maps necessary to state the universal mapping properties of these objects. This 
exists by standard methods. Begin with the above objects and add 0 and 1 and the 
terminal and initial maps along with countably many global sections of tN and 
global sections true and false of R. You also need two global section (for the unit 
and zero) in R, S, A, S@A. Then add to .& all sums of pairs of objects, along with 
injections and maps out of the sum where coordinates already belong to 30. Do 
similar things for products, coequalizers and equalizers. Iterate countably often, 
taking care that along the way the maps required to describe R, S, A as rings, Sand A 

as R-algebras and each of R and S as R-linear retracts of a finite power of the other, 
are included. In particular, the construction of the relevant tensor products from 
finite limits, colimits and N will be able to be carried out in the resultant .&. Now if 
@ : .Yod Y&V is exact and preserves N, then S@ A z S” implies that @S@ @A 5 (@Qn 

so @A is a separable extension of @R and hence a VNR ring. The desired result 
follows from the existence of enough such @ (Freyd (6,5.65]). 
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Corollary 8.3. Let R be a connected commutative VNR ring in a topos .E Then the 
category of separable VNR extensions of R is a galois category. 

This gives, then, a galois theory for connected, commutative VNR rings. 
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