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Abstract. This paper will survey the various definitions of homology
theories from the first Eilenberg-Mac Lane theories for group cohomol-
ogy through the Cartan-Eilenberg attempt at a uniform (co-)homology
theory in algebra, cotriple cohomology theories and the various acyclic
models theorems that tied them all together (as much as was possible).

1 Introduction

This paper is a mostly historical introduction to the topic of cohomology the-
ories in algebra between 1940 and 1970 when my interests turned elsewhere. This
is not to suggest that progress stopped that year, but that I did not keep up with
things like crystalline cohomology, cyclic cohomology, etc., and therefore will have
nothing to say about them. Much of what I report, I was directly involved in,
but anything earlier than about 1962 is based either on the written record or on
hearing such people as Samuel Eilenberg and Saunders Mac Lane reminisce about
it. Therefore I report it as true to the best of my belief and knowledge.

I have also omitted any mention of sheaf cohomology. I had nothing to do with
it and did not know the people most associated with it—Grothendieck, Godement
and others. This was much more highly associated with developments in category
theory which I knew little about until after the time frame I am dealing with here.
The first development here was Mac Lane’s paper [1950] which was the first paper
to discover universal mapping properties and also attempt to define what we now
call abelian categories, later given their full definition in [Buchsbaum, 1956] and
[Grothendieck, 1957].

1.1 Acknowledgment. I would like to thank the referee who took an inex-
cusably careless draft and read it with care and many—far too many than should
have been necessary—valuable suggestions for improvements. Any remaining errors
and obscurities are, of course, mine.
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2 Eilenberg-Mac Lane cohomology of groups

2.1 The background. Eilenberg escaped from Poland in 1939 and spent the
academic year 1939-40 at the University of Michigan. Mac Lane, then a junior fellow
at Harvard, was invited to speak at Michigan. He was attempting to compute what
I will call the Baer group of a group π with coefficients in a π-module A. This
group, which I will denote B(π,A), can be described as follows. Consider an exact
sequence

0 // A // Π // π // 1

(Of course, that terminology did not exist in those days; Mac Lane—and Baer—
would have said that A was a commutative normal subgroup of Π and π = Π/A.)
Since A is normal subgroup of Π, it is a Π-module by conjugation. Since A is
abelian, the action of A on itself is trivial, so that the Π-action induces a π-action
on A, which may, but need not be the action we began with. Then B(π,A) is the
class of all such exact sequences that induce the π-action we started with. Say that
the sequence above is equivalent to

0 // A // Π′ // π // 1

if there is a homomorphism (necessarily an isomorphism) f : Π // Π′ such that

0 A// A Π′// Π′ π// π 0//

0 A// A Π//A

A

id

��

Π π//Π

Π′

f

��

π

π

id

��

π 0//

commutes. Then the equivalence classes of such sequences are a set. Moreover
there is a way of adding two such equivalence classes that makes B(π,A) into an
abelian group. If 0 // A // Π // π // 0 and 0 // A // Π′ // π

// 0 are two such sequences, we first form the pullback P = Π ×π Π′, let S be
the subgroup of all elements of P of the form (a,−a) for a ∈ A. It is immediate
that S is a normal subgroup of P and then we can let Π′′ = P/S. It is easy to see
that the two maps A // Π // P and A // Π′ // P are rendered equal by
the projection P // P/S so there is a canonical map A // Π′′. Also the map P

// π vanishes on S and hence induces Π′′ // π. A simple computation shows
that 0 // A // Π′′ // π // 0 is exact. That defines the sum of the two
sequences. The negative of the sequence 0 // A // Π // π // 0 is simply
the sequence in which the inclusion of A // Π is negated. Since not every element
has order 2 this also provides an example showing that equivalence of sequences is
not simply isomorphism of the middle term.

Note that in a sequence the kernel A is not merely an abelian group, but also
a π-module. This is because Π acts on the normal subgroup A by conjugation and
A, being abelian, acts trivially on itself so that action extends to an action of π.
The Baer group is the set of equivalence classes of extensions that induce the given
module structure on A as a π-module.

Mac Lane’s talk included the computations he was carrying out to compute the
Baer group. It would have been along these lines: an extension determines and is
determined by a function π× π // A satisfying a certain condition and two such
functions determined equivalent extensions if there was a function π // A that
generated the difference of the two original functions. Details will be given later.
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Apparently during Mac Lane’s talk, Eilenberg noted that some of the calcu-
lations that Mac Lane was carrying out were the same as those he was doing in
connection with certain cohomology groups. As they remarked in one of their first
papers [Eilenberg and Mac Lane, 1942b], “This paper originated from an accidental
observation that the groups obtained by Steenrod [1940] were identical with some
groups that occur in the purely algebraic theory of extension of groups.” The com-
putations by Steenrod refer to some first cohomology classes (they are described
as homology classes of infinite cycles, but I assume that they were really based
on duals of chain groups since the dual of an infinite sum is an infinite product,
whose elements can look like infinite sums of chains, especially if you do not have a
clear idea of contravariant functors) of the complements of solenoids embedded in
a 3-sphere. This is likely the second cohomology group of the solenoid itself. See
[Eilenberg and Mac Lane, 1941] for more on infinite cycles.

Later in the same paper, in a footnote, they remark, “Group extensions are
discussed by Baer [1934], Hall [1938], Turing [1938], Zassenhaus [1937] and else-
where. Much of the discussion in the literature treats the case in which G but not
H is assumed to be abelian and in which G is not necessarily in the centre of H.”
What the latter sentence means is that they were looking at extensions of the form

0 // G // H // H/G // 0

in which G and H are abelian, while the literature was mainly discussing the case
that G was an abelian normal subgroup of H and the conjugation action of H (and
therefore H/G) on G was non-trivial.

When I gave my talk, I said (and believed, relying on what I thought Eilenberg
had said to me 30 years ago, from what he remembered from 30 years before that)
that what Eilenberg was working on was calculating the cohomology groups of
K(π, 1), a space that had fundamental group π and no other homotopy. This was
described as the main motivation in the later joint work [1947a, b]. But this goes
back only to a paper of Hopf’s from 1942 in which he showed that if X is a suitable
space, then the fundamental group π1(X) determines the cokernel of the map from
π2(X) // H2(X). Thus in the particular case of a K(π, 1), whose π2 is 0, Hopf’s
result says that π1(X) determines H2(X) (as well, of course, as H1(X), which is
the commutator quotient of π1). It is not clear quite when it was realized that
π determines all the homology and cohomology groups of a K(π, 1), but it must
have been before 1947. That paper came after Hochschild’s cohomology theory for
commutative algebras, which had, it would appear, no connection with topology.
I am indebted to Johannes Hübschmann for pointing out some of the pre-history
that I was previously unaware of.

2.2 The Eilenberg-Mac Lane groups. Here is a brief description of the
Eilenberg-Mac Lane theory. For a non-negative integer n, an n-cochain on π with
coefficients in A is a function f : πn // A. When n = 0, this is simply an element
of A. Denote the set of such functions by Cn(π,A). Define a function δn : Cn(π,A)

// Cn+1(π,A) by

(δnf)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)

+
n∑

i=1

(−1)if(x1, . . . , xixi+1, . . . , xn+1) + (−1)n+1f(x1, . . . , xn)
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The first term uses the action (which could be the trivial, or identity, action) of π
on A. It is a simple exercise to show that δn ◦ δn−1 = 0 so that im(δn−1) ⊆ ker(δn)
so that we can define

Hn(π,A) = ker(δn)/im(δn−1)

When n = 0, the cohomology is simply the kernel of δ0. The elements of ker(δn)
are called n-cocycles and those of im(δn−1) are called n-coboundaries. Cochains
that differ by a coboundary are said to be cohomologous.

2.3 Interpretation of H2(π,A). We will see how the group H2(π,A) is the
same as B(π,A). Given an extension

0 // A
j // Π

p // π // 1

let s be a set-theoretic section of p. This means that s is a function, not necessarily
a homomorphism, π // Π such that p ◦ s = id. We can and will suppose that
s(1) = 1. If we write j(a) = (a, 1) for a ∈ A, s(x) = (0, x) for x ∈ π, and (a, x) for
(a, 1)(0, x) then the fact that every element of Π can be written in the form j(a)s(x)
for a ∈ A and x ∈ Π means that we can identify the underlying set of Π with A×π.
Since j is a homomorphism, we see that (a, 0)(b, 0) = (a+ b, 0). Although s is not
a homomorphism, p is and that forces the second coordinate of (0, x)(0, y) to be
xy so that we can write (0, x)(0, y) = (f(x, y), xy) with f ∈ C2(π,A). Note that
(0, x)(a, 1) = (xa, 1)(0, x) since the action of π on A is just conjugation. It follows
that

(a, x)(b, y) = (a, 1)(0, x)(b, 1)(0, y) = (a, 1)(xb, 1)(0, x)(0, y)

= (a+ xb, 1)(f(x, y), xy) = (a+ xb, 1)(f(x, y), 1)(0, xy)

= (a+ xb+ f(x, y), 1)(0, xy) = (a+ xb+ f(x, y), xy)

Next I claim that the associative law of group multiplication forces f to be a 2-
cocyle. In fact, we have for a, b, c ∈ A and x, y, z ∈ π,

((a, x)(b, y))(c, z) = (a+ xb+ f(x, y), xy)(c, z)

= (a+ xb+ f(x, y) + xyc+ f(xy, z), xyz)

while
(a, x)((b, y)(c, z)) = (a, x)(b+ yc+ f(y, z), yz)

= (a+ xb+ xyc+ xf(y, z) + f(x, yz), xyz)

and comparing them we see that

f(x, y) + f(xy, z) = xf(y, z) + f(x, yz)

which is equivalent to δ2f = 0.
The same computation shows that if we begin with a 2-cocycle f and define

multiplication on A× π by the formula

(a, x)(b, y) = (a+ xb+ f(x, y), xy)

we have an associative multiplication. To see it is a group first suppose that
f(x, 1) = 0 for all x ∈ π. It is then an easy computation to show that (0, 1) is
a right identity and then that (−x−1a − x−1f(x, x−1), x−1) is a right inverse for
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(a, x). We will show below that the group extensions constructed using cohomolo-
gous cocycles are equivalent. We use that fact here by showing that any cocycle is
cohomologous to one for which f(x, 1) = 0. From

δf(x, 1, 1) = xf(1, 1)− f(x, 1)− f(x, 1) + f(x, 1) = 0

we see that f(x, 1) = xf(1, 1). Then for g(x) = f(x, 1),

(f − δg)(x, 1) = f(x, 1)− xg(1) + g(x)− g(x) = f(x, 1)− xf(1, 1) = 0

Finally, we claim that equivalent extensions correspond to cohomologous co-
cycles. For suppose that f and f ′ are 2-cocycles and g is a 1-cochain such that
f − f ′ = δg. Suppose we denote the two possible multiplications by ∗ and ∗′ so
that

(a, x) ∗ (b, y) = (a+ xb+ f(x, y), xy)

(a, x) ∗′ (b, y) = (a+ xb+ f ′(x, y), xy)

Define α : A× π // A× π by α(a, x) = (a+ g(x), x). Then

α((a, x) ∗ (b, y)) = α(a+ xb+ f(x, y), xy)

= (a+ xb+ f(x, y) + g(xy), xy)

= (a+ xb+ f ′(x, y) + xg(y) + g(x), xy)

= (a+ g(x), x) ∗′ (b+ g(y), y)

= α(a, x) ∗′ α(b, y)

which shows that α is a homomorphism, while it is obviously invertible. Clearly
the isomorphism commutes with the inclusion of A and the projection on π.

Conversely, suppose f and f ′ are cocycles that give equivalent extensions.
Again, we will denote the two multiplications by ∗ and ∗′. Since we are trying
to show that f and f ′ are cohomologous, we can replace them by cohomologous
cocycles that satisfy f(x, 1) = f ′(x, 1) = 0 for all x ∈ π. The fact that the exten-
sions are actually equivalent (not merely isomorphic) implies that the isomorphism
α has the property that elements of A are fixed and that the second coordinate of
α(a, x) is x. In particular, we can write α(0, x) = (g(x), x). Then

α(a, x) = α((0, x) ∗ (x−1a, 1)) = α(0, x) ∗′ α(x−1a, 1)

= (g(x), x) ∗′ (x−1a, 1) = (a+ g(x), x)

Then from

(a+ xb+ f(x, y) + g(xy), xy) = α(a+ xb+ f(x, y), xy)

= α((a, x) ∗ (b, y))

= α(a, x) ∗′ α(b, y)

= (a+ g(x), x) ∗′ (b+ g(y), y)

= (a+ g(x) + xb+ xg(y) + f ′(xy), xy)

we conclude that f − f ′ = δg.
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2.4 Interpretations in other low dimensions. The definition of H0(π,A)
as the kernel of δ0 makes it obvious that it is simply

{a ∈ A | xa = a for all x ∈ π}
otherwise known as the group of fixed elements of A and denoted Aπ.

The kernel of δ1 consists of those maps d : π // A such that d(xy) = xd(y) +
d(x). In the case that π acts as the identity on A, this is exactly a homomorphism
of π to the abelian group A. For this reason, such a function is sometimes called
a crossed homomorphism. We prefer to call it a derivation for compatibility with
other examples. The image of δ0 consists of those derivations of the form d(x) =
xa−a for some element a ∈ A. These are called the inner derivations and H1(π,A)
is simply the quotient group of derivations modulo inner derivations.

There is also an interpretation of H3 that gave information (more limited than
H2) for extensions with non-abelian kernels. We give no proofs here, but content
ourselves with a brief description.

Suppose that
1 // G // Π // π // 1 (∗)

is an exact sequence of groups. This means that G is a normal subgroup of Π and
the quotient is π. Since G is normal, Π acts on G by conjugation. This gives a
map Π // Aut(G) the group of automorphisms of G. Unless G is commutative,
this does not vanish on G and hence does not give a natural map π // Aut(G).
However, if In(G) denotes the (normal) subgroup of Aut(G) consisting of the inner
automorphisms, then the composite map Π // Aut(G) // Aut(G)/ In(G) does
vanish on G and hence induces a natural map θ : π // Aut(G)/ In(G). We will
say that θ is induced by (∗).

Now let Z (G) denote the centre of G. One may check that the centre of a
normal subgroup is also a normal subgroup so that Z (G) is also a Π-module, but
one that G acts trivially on, so that Z (G) is a π-module. Now it turns out that
any homomorphism θ : π // Aut(G)/ In(G) induces, after a number of choices, a
cocycle in C3(π,Z (G)) whose cohomology class we denote [θ].

A homomorphism θ : π // Aut(G)/ In(G) induces a π-module structure on
Z (G). Simply choose, for each x ∈ π, an element θ(x) ∈ Aut(G) whose class mod
In(G) is θ(x) and define xz = θ(x)(z) for z ∈ Z (G). This is well-defined since
inner automorphisms are trivial on the centre.

The main result is contained in the following.

Theorem 1 Suppose G is a group whose centre Z (G) is a π-module and that
θ : π // Aut(G)/ In(G) is a homomorphism that induces the given action of π on
Z (G). Then

1. the cohomology class [θ] in H3(π,Z (G)) does not depend on the arbitrary
choices made;

2. the cohomology class [θ] = 0 if and only if θ comes from an extension of
the form (∗);

3. the equivalence class of extensions (∗) that give rise to a given cohomology
class [θ] are in 1-1 correspondence with the elements of H2(π,Z (G)); and

4. given a π-module A, every element of H3(π,A) has the form [θ] for some
group G and some homomorphism θ : π // Aut(G)/ In(G) such that A ∼=
Z (G) as π-modules, the latter with the π-action induced by θ.
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The 1-1 correspondence in the third point above is actually mediated by a
principal homogeneous action of H2(π,Z (G)) on extensions (∗) ([Barr, 1969]).
The class [θ] is called the obstruction of [θ] (to arising from an extension) and
the last clause says that every element of H3(π,A) is the obstruction to some
homomorphism’s coming from an extension.

The most striking application of that theory was that if Z (G) = 1, then the
equivalence classes of extensions

1 // G // Π // π // 1

is in 1-1 correspondence with the homomorphisms

θ : π // Aut(G)/G

3 Hochschild cohomology of associative algebras

Gerhard Hochschild defined a cohomology theory for associative algebras in
[1945, 1946]. Formally, his definitions look almost identical to those of Eilenberg
and Mac Lane.

The setting of this theory is that of an associative algebra Λ over a (commuta-
tive) field K. It was later observed that the definitions can be given when K is any
commutative ring, but the resultant extension theory is limited to those extensions
that split as K-modules. Let A be a two-sided Λ-module. Define Cn(Λ, A) to be
the set of all n-linear functions Λn // A. Define δn : Cn(Λ, A) // Cn+1(Λ, A)
by the formula

(δnf)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)

+
n∑

i=1

(−1)if(x1, . . . , xixi+1, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn)xn+1

This differs from the formula for group cohomology only in that the last term is
multiplied on the right by xn+1. One can make the formulas formally the same by
making any left π-module into a two-sided π-module with the identity action on the
right. Alternatively, you can use two-sided modules, using the same coboundary
formula as for the Hochschild cohomology. This does not really give a different
theory, since you can make a two-sided π-module into a left π-module by the formula
x ∗ a = xax−1 without changing the cohomology.

Much the same interpretation of the low dimensional cohomology holds for the
Hochschild cohomology as for groups. Derivations are defined slightly differently:
d(xy) = xd(y) + d(x)y, that is the Leibniz formula for differentials. Commutative
normal subgroups are replaced by ideals of square 0.

The limitation to extensions that split as modules was avoided by having two
kinds of cocycles (in degree 2; n in degree n), one to express the failure of additive
splitting and one for the multiplication. This was first done by Mac Lane [1958]
and then generalized to algebras in [Shukla 1961].

4 Chevalley-Eilenberg cohomology of Lie algebras

The third cohomology theory that was created during the half decade after the
war was the Chevalley-Eilenberg cohomology of Lie algebras [1948]. The formulas
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are a little different, although the conclusions are much the same. If g is a Lie
algebra over the field K, then a g-module A is abelian group with an action of
g that satisfies [x, y]a = x(ya) − y(xa). It can be considered a two-sided module
by defining ax = −xa, a fact we will make use of when discussing the Cartan-
Eilenberg cohomology. A derivation d : g // A satisfies d[xy] = xd(y) − yd(x).
An n-cochain is still an n-linear map f : gn // M , but it is required to alternate.
That is f(x1, . . . , xn) = 0 as soon as two arguments are equal. The coboundary
formula is also quite different. In fact the coboundary formulas used for groups and
associative algebras would not map alternating functions to alternating functions.
The definition found by Chevalley and Eilenberg is given by the following formula,
in which the hat, ,̂ is used to denote omitted arguments.

δf(x0, . . . , xn) =
n∑

i=1

(−1)ixif(x0, . . . , x̂i, . . . , xn)

+
∑

0≤i<j≤n
(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xn)

The formula arose naturally as the infinitesimal version of the de Rham co-
boundary formula on Lie groups.

The same kinds of interpretations in low dimensions hold as in the other two
cases.

4.1 Comments on these definitions. Two of these three definitions arose
from topology in which homology and cohomology were, by the 1940s, coming to be
well understood. The cohomology of π is the cohomology of the space K(π, 1) and
the cohomology of a real or complex Lie algebra is that of the corresponding Lie
group. As far as I know, there was no topological motivation behind Hochschild’s
theory. Of course, the interpretations in dimensions ≤ 3 presumably gave some
confidence that the basic theory was correct. Nonetheless, the definitions, viewed
as purely algebraic formulas, were inexplicable and ad hoc. Among the questions
one might raise was the obvious, “What is a module?” To this question, at least,
we will give Beck’s surprising and entirely convincing answer.

5 Cartan-Eilenberg cohomology

When, as a graduate student in 1959, I took a course from David Harrison
on homological algebra, the definitions of cohomology of groups and associative
algebras given above were the definitions I learned. (If Lie algebras were mentioned,
I do not recall it.) The course was mainly concerned with Ext, Tor and the like,
leading to a proof of the Auslander-Buchsbaum theorem. I imagine the book of
Cartan-Eilenberg [1956] was mentioned, but I do not think I ever looked at it. The
purchase date inscribed in own copy is April, 1962, just after I had finished typing
my thesis. My thesis was on commutative algebra cohomology, which I will discuss
later, and the methods of that book do not work in that case for reasons I will
explain.

When I got to Columbia as a new instructor, the Cartan-Eilenberg book was the
bible of homological algebra and I gradually learned its methods. Basically, they
had found a uniform method for defining cohomology theories that included the
three theories I have described. Only later did it become apparent their methods
applied only to the three cohomology theories it was based on and not on any other.
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The way that Cartan and Eilenberg had proceeded was based on the observation
that in all three cases, for each object X of the category of interest, there was
an enveloping algebra Xe that had the property that the coefficient modules for
the cohomology were exactly the Xe-modules. And in all three cases, there was
some module—call it XJ—for which the cohomology groups could be described as
ExtXe(XJ ,M).

5.1 Comparison of Cartan-Eilenberg with earlier theories. Here is how
you see that the Cartan-Eilenberg (CE) cohomology of a group is the same as the
Eilenberg-Mac Lane (EM) cohomology. To compute the EM cohomology of a group
π with coefficients in a π-module A, you let Cn(π,A) = HomSet(πn, A). By using
various adjunctions, we see that

Cn(π,A) = HomSet(πn, A) ∼= HomAb(Z(πn), A)

∼= HomAb(Z(π)⊗n, A) ∼= HomZ(π)(Z(π)⊗(n+1), A)

Here M⊗n stands for the nth tensor power of a module M . It is easy to compute
that the boundary operator δ : Cn(π,A) // Cn+1(π,A) is induced by the map
∂ : Z(π)⊗(n+2) // Z(π)⊗(n+1) defined by

∂(x0 ⊗ · · · ⊗ xn+1) =
n∑

i=0

(−1)ix0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1

+ (−1)n+1x0 ⊗ · · · ⊗ xn

I claim that if you set Cn(π) = Z(π)⊗(n+1) with the boundary operator ∂, the resul-
tant complex is a projective resolution of Z made into a π-module by having each
element of π act as the identity. Let us note that the action of π on Z(G)⊗(n+1) is on
the first coordinate, in accordance with the adjunction isomorphism above. Thus
Z(π)⊗(n+1) = Z(π)⊗Z(π)⊗n and Z(π)⊗n is just the free abelian group generated by
πn and hence Z(π)⊗(n+1) is the free π-module generated by πn. The augmentation
Z(π) // Z is the linear map that takes the elements of π to the integer 1. In
order to show that Extπ(Z,M) is the Eilenberg-Mac Lane cohomology of π with
coefficients in M , it is sufficient to show that the augmented chain complex

· · · // Z(π)⊗(n+1) // Z(π)⊗n // · · · // Z(π) // Z // 0

is acyclic (that is, is an exact sequence), which implies that the unaugmented
complex is a projective resolution of Z as a Z(π)-module. We will actually show
that the augmented complex is contractible as a complex of Z-modules, although
not as a complex of Z(π)-modules. Define s−1 : Z // Z(π) to be the linear map
that sends 1 to 1 ∈ π (that is, the identity of π). For n > 0, define sn−1 : Z(π)⊗n

// Z(π)⊗(n+1) to be the linear map that takes x1 ⊗ · · · ⊗ xn to 1⊗ x1 ⊗ · · · ⊗ xn.
Then ∂0 ◦ s−1 = id clearly. For n = 1, we have

(∂1 ◦ s0 + s−1∂0)(x) = ∂1(1⊗ x) + s−1(1) = x− 1 + 1 = x
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For n > 1,

∂n ◦ sn−1(x1 ⊗ · · · ⊗ xn) = ∂n(1⊗ x1 ⊗ · · · ⊗ xn)

= x1 ⊗ · · · ⊗ xn

+
n−1∑

i=1

(−1)i(1⊗ x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn)

+ (−1)n1⊗ x1 ⊗ · · · ⊗ xn−1

while

sn−2 ◦ ∂n−1(x1 ⊗ · · · ⊗ xn) = sn−2

(
n−1∑

i=1

(−1)i−1(x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn)

)

+ (−1)n−1sn−2(x1 ⊗ · · · ⊗ xn−1)

=
n−1∑

i=1

(−1)i−1(1⊗ x1 ⊗ · · · ⊗ xixi+1 ⊗ · · ·xn)

+ (−1)n−11⊗ x1 ⊗ · · · ⊗ xn−1

and adding them up, we see that ∂n ◦ sn−1 + sn−2 ◦ ∂n−1 = id.
Thus it follows that the Eilenberg-Mac Lane cohomology groups of a group π

with coefficients in a π-module A are just ExtZ(π)(Z, A).
In the case of associative K-algebras, the development is similar. In this para-

graph, we will denote by ⊗, the tensor product ⊗K . A two-sided Λ-module is a
left Λe = Λ ⊗ Λop-module. The Hochschild cochain complex with coefficients in a
module A is shown to be the complex HomΛe(C•, A) in which Cn = Λ⊗(n+2) with
boundary ∂ = ∂n : Cn // Cn−1 given by

∂(x0 ⊗ · · · ⊗ xn+1) =
n∑

i=0

(−1)ix0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1

By a similar formula to the group case, one shows that this chain complex aug-
mented over Λ is linearly (actually even right Λ-linearly) contractible and there-
fore a projective resolution of Λ as a Λe-module. It should be observed that
Λ ⊗ Λ ∼= Λ ⊗ Λop as a Λe-module, although not, of course, as an algebra. The
upshot is that the Hochschild cohomology of Λ with coefficients in a two-sided
Λ-module A is simply ExtΛe(Λ, A).

The analysis of the Lie algebra case is somewhat more complicated (because
the coboundary operator is more complicated) but the outcome is the same. If
g is a K-Lie algebra, the category of g-modules is equivalent to the category of
left modules over the enveloping associative algebra ge. This is the quotient of the
tensor algebra over the K-module underlying g modulo the ideal generated by all
x⊗y−y⊗x−[x, y], for x, y ∈ g. Then one can show that the cochain complex comes
from a projective resolution of K—with trivial g-action—so that the cohomology
with coefficients in the g-module A is Extge(K,A).

5.2 Comments. It was certainly elegant that Cartan and Eilenberg were able
to find a single definition that gave cohomology theories of the previous decade in



Algebraic cohomology: the early days 11

all three cases. Nonetheless there were three ad hoc features of their definitions
that rendered their answer less than satisfactory:

1. what is a module;
2. what is Xe; and
3. what is XJ?
But the least satisfactory aspect of their definition did not become clear right

away. It was those three cohomology theories ended up as the only ones for which
the Cartan-Eilenberg theory was correct. This first showed up in Harrison’s theory
for commutative algebras.

6 The Harrison cohomology theory

Around 1960, Dave Harrison [1962] defined a cohomology theory for commuta-
tive algebras over a field. His original definition was rather obscure. As modified by
the referee (who identified himself to Harrison as Mac Lane) it became somewhat
less obscure, but still not obvious. Let R ba commutative K-algebra with K a field.
If 0 < i < n define a linear map ∗ : R⊗i ⊗R⊗(n−i) // R⊗n by

(x1 ⊗ · · · ⊗ xi) ∗ (xi+1 ⊗ · · · ⊗ xn) = (x1 ⊗ (x2 ⊗ · · · ⊗ xi) ∗ (xi+1 ⊗ · · · ⊗ xn))

+ (−1)i(xi+1 ⊗ (x1 ⊗ · · · ⊗ xi) ∗ (xi+2 ⊗ · · · ⊗ xn))

which together with

(x1 ⊗ · · · ⊗ xn) ∗ () = () ∗ (x1 ⊗ · · · ⊗ xn) = (x1 ⊗ · · · ⊗ xn)

defines inductively an operation on strings, called the shuffle.1 If A a left R-module
that is made into a two-sided R-module by having the same operation on both
sides. Harrison defined a commutative n-cochain as an f in the Hochschild cochain
group Cn(R,A) such that

f((x1 ⊗ · · · ⊗ xi) ∗ (xi+1 ⊗ · · · ⊗ xn)) = 0

for all 0 < i < n and all (x1⊗· · ·⊗xn) ∈ Rn. In other words, a commutative cochain
was one that vanished on all proper shuffles. The commutative coboundary formula
was the same as Hochschild’s and it required a non-trivial argument to show that
Harrison’s cochains are invariant under it. The details are in his 1962 paper and
can also be found in [Barr, 2002].

The coboundary of a 0-chain in C(R,A)—an element of a ∈ A is the one
chain f for which f(x) = ax − xa. But if A has the same action on both sides,
this is 0. Thus the cochain complex breaks up into two pieces, the degree 0 piece
and the rest. Hence for Harrison, H0(R,A) = A and H1(R,A) = Der(R,A), the
group of derivations of R to A. The groups H2(R,A) and H3(R,A) have the
same interpretations as in the Hochschild theory, but restricted to the case that
everything is commutative.

Harrison observed moreover that, provided the characteristic of the underlying
ground field is not 2, the group of 2-cochains can be written as the direct sum of
the commutative cochains and a complementary summand in such a way that the

1The reason it is called a shuffle is that it is the alternating sum of all possible ways of
shuffling the first i cards in an n card deck with the remaining n − i. The inductive formula
corresponds to the obvious fact that any shuffle can be thought of as consisting of taking the top
card from one of the two decks, shuffling the remaining cards and then replacing that top card on
top.
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Hochschild cohomology splits as the direct sum of two groups, one of which is the
commutative cohomology and the other is a complementary term. In my Ph.D.
thesis, [1962], I pushed this splitting up to degree 4, except that now characteristic
3 also had to be excluded. What I actually showed was the Hochschild cochain
complex, truncated to degree 4, could be written as a direct sum of the Harrison
cochain subcomplex and a complementary subcomplex and this splits the cohomol-
ogy up to degree 4. (It might be thought that you need a splitting of the cochain
complex up to degree 5 to do this, but that turns out to be unnecessary.) This was
used to show various facts about the Harrison cohomology group of which the per-
haps the most interesting was that when R is a polynomial ring, then Hn(R,A) = 0
for all R-modules A and n = 2, 3, 4. Actually, Harrison had shown this for n = 2, 3
in a different way, but it was not obvious how to extend his argument to higher
dimension.

My proofs were highly computational and it was unclear how to extend any of
it to higher dimensions. But I gnawed at it for five years and did eventually [Barr,
1968] find a relatively simple and non-computational construction of an idempo-
tent in the rational group rings of symmetric groups that when applied to the
Hochschild chain complex of an algebra over a field of characteristic 0 splits it
into a commutative part and a complement, each invariant under the coboundary.
This showed that when the ground field has characteristic 0, the Hochschild coho-
mology splits into two parts; one of the two is the Harrison cohomology and the
other is a complement. Later, Gerstenhaber and Shack [1987], by discovering and
factoring the characteristic polynomial of these idempotents, discovered a “Hodge
decomposition” of the Hochschild groups:

Hn(R,A) =
n∑

i=1

Hn i(R,A)

where Hn 1(R,A) is the Harrison group and the other summands are part of an
infinite series whose nth piece vanishes in dimensions below n, so that in each
degree the sum is finite.

Harrison’s original paper also contained an appendix—written by me—that
used the same ideas from Mac Lane’s 1958 paper to deal with the case of a commu-
tative algebra over a general coefficient ring. However, the referee—who identified
himself to Harrison as Mac Lane—insisted on an appendectomy and the paper is
now lost. From this, I conclude that Mac Lane felt the approach was likely a dead
end and I tend to agree.

6.1 Does the Harrison cohomology fit the Cartan-Eilenberg model?
As I have already hinted, Harrison was not a fan of the Cartan-Eilenberg model of
what a cohomology theory was. I do not recall that he ever mentioned it, I do not
think I was even aware of it before arriving at Columbia in the fall of 1962 and I do
not know if Harrison had ever considered whether his theory fit into it. It is a bit
odd, since it seems clear that Cartan and Eilenberg believed that their book defined
what a cohomology theory was. They scarcely mentioned the older definitions in
their book and, as far as I can tell (the book lacks a bibliography), they did not
even cite either Eilenberg-Mac Lane paper [1947a,b]. But Harrison’s definition was
in the style of the older definitions. To put his theory into the Cartan-Eilenberg
framework, there would have to be, for each commutative ring R, an enveloping
algebra Re such that left Re-modules were the same as left R-modules and a module
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RJ for which Hn(R,A) = ExtnRe(RJ , A). Since left R-modules were the same as
left Re-modules, we would have to take Re to be R or something Morita equivalent
to it. But Ext is invariant under Morita equivalence so nothing can be gained by
using anything but R. As for RJ , we leave that aside for the moment and point out
that one consequence of the cohomology being an Ext is that it vanishes whenever
A is injective. This is true for cohomology theories of groups, associative algebras,
and Lie algebras, but is not true for commutative algebras. The easiest example
is the following. Let K be any field. It is easy to see (and well-known) that the
algebra of dual numbers R = K[x]/(x2) is self-injective. On the other hand, we
have the non-split exact sequence

0 // x2 ·K[x]/x4 // K[x]/(x4) // K[x]/(x2) // 0

of commutative rings, whose kernel is, as an R-module, isomorphic to R and hence
is injective. Thus H2(R,R) 6= 0. See [Barr, 1968a]. This example doomed the
attempted redefinition of commutative cohomology that appeared in [Barr, 1965a,
1965b].

Here is an explanation of what goes wrong. If R is a commutative K-algebra,
then the chain complex that has R⊗(n+2) with the Hochschild boundary operator,
is a projective resolution of R as an R ⊗ R-module. If A is a symmetric module
and B is any two-sided R-module, it is evident that

HomR⊗R(B,A) ∼= HomR(R⊗R⊗R B,A)

since R⊗R⊗RB is just the symmetrization of B. Since R⊗R⊗RR⊗(n+2) = R⊗(n+1),
the Hochschild cochain complex of R with coefficients in A is

HomR⊗R(R⊗(n+2), A) ∼= HomR(R⊗(n+1), A)

It follows that the symmetrized chain complex is not generally acyclic; its homology
is TorR⊗R(R,R) and that is trivial if and only if R is separable. Even if it is, the
quotient complex modulo the shuffles will not be generally acyclic.

7 Cohomology as a functor in the first argument

Although Harrison had an 8 term exact sequence involving the cohomology of
R, that of R/I for an ideal I and ExtR(I,−), the functoriality of cohomology in
its first argument had been mostly ignored. If a connected series of functors is
to look like a derived functor in a contravariant variable, it should vanish in all
positive dimensions when that variable is free. But cohomology did not vanish
when its first variable was free. In fact, when the group, algebra, or Lie algebra
is free, the cohomology vanishes in dimensions greater than 1. This is also the
case for commutative algebras, but only in characteristic 0. This, as well as other
indications, suggested that if one wanted to view cohomology as a functor in the
first variable, it would be best to drop the lowest degree term, renumber all the
rest by −1 and also change the new lowest degree term from derivations modulo
inner derivations to simply derivations. Thus was born the idea of cohomology as
the derived functor of derivations, see [Barr and Rinehart, 1964].

Let us call this cohomology with the lowest term dropped and the next one
modified the dimension-shifted cohomology. For the commutative cohomology, as
already noted, there are no inner derivations and the lowest degree term is merely
the coefficient module, so dropping it entails no loss of information. For the others,
there is some cost. For associative and Lie algebras the cohomology vanishes in
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all dimensions if and only if the algebra is (finite-dimensional and) separable. For
other purposes, the dimension-shifted cohomology seems better. For instance, the
Stallings-Swan theorem states that a group is free if and only if its cohomological
dimension is 1. Using the dimension-shifted theory, that number changes to 0,
which is what you might expect for projectives (of course, every projective group
is free).

So the first definition of the dimension-shifted is simply apply the functor
Der(X,−) (here X is the group or algebra or whatever) to the category of X-
modules and form the derived functor. This means, given a module A find an
injective resolution

0 // Q0
// Q1

// · · · // Qn // · · ·
apply Der(X,−) to get the chain complex

0 // Der(X,Q0) // Der(X,Q1) // · · · // Der(X,Qn) // · · ·
and define the cohomology groups to be the cohomology of that cochain complex.
The trouble with this definition is that it automatically makes the cohomology van-
ish when the coefficients are injective and therefore can represent the cohomology
only for theories that vanish on injective coefficients.

Before turning to other theories, there is one more point to be made. Since
Der is like a homfunctor, it is quite easy to see that it preserves limits. The special
adjoint functor theorem implies that it is representable by an object we call Diff
(for module of differentials, since differentials are dual to derivations). The map
A // Der(X,A) that sends an element of A to the inner derivation at A is the
component at A of a natural transformation HomXe(Xe,−) // HomXe(Diff,−)
and is thereby induced by a homomorphism Diff // Xe. In the three classic cases
of groups, associative algebras and Lie algebras, this homomorphism is injective
and the quotient module Xe/Diff is the heretofore mysterious XJ . Thus in those
three cases, not only is the cohomology ExtXe(XJ , A), but the dimension-shifted
cohomology is ExtXe(Diff, A). Thus we have removed one of the ad hoc features
from the Cartan-Eilenberg theory. It can be replaced by a question as to why the
map from Diff // Xe is injective in those cases, but at least we know where XJ

comes from. The second special item is Xe but Xe is determined, up to Morita
equivalence, by the fact that Xe-modules are the same as X-modules. Since Ext is
invariant under Morita equivalence, that ambiguity is not important. The third ad
hoc feature of the Cartan-Eilenberg definition is the definition of module and we
will explain Jon Beck’s surprising and elegant answer to that question next.

8 Beck modules

8.1 The definition of Beck modules. We begin Beck’s theory by looking
at an example in some detail. Denote by Grp the category of groups. If π is a
group, the category Grp/π has as objects group homomorphisms p : Π // π. If
p′ : Π′ // π is another object, a map f : p′ // p is a commutative triangle

Π′

π

p′

��????????????Π′ Π
f // Π

π

p

��������������
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Given a π-module A, denote by A o π the extension corresponding to the 0 element
of H2(π,A). This means the underlying set is A×π and the multiplication is given
by (a, x)(b, y) = (a + xb, xy). The second coordinate projection makes A o π into
an object of Grp/π.

Let us calculate the set HomGrp/π(Π p //π,A o π //π). A homomorphism f : Π
// A o π is a function Π // A × π. But in order to be a morphism in the

category, the second coordinate must be p. If we call the first coordinate d, then
f = (d, p). In order to be a group homomorphism, we must have, for any x, y ∈ Π
that

(d(xy), p(xy)) = (d(x), p(x))(d(y), p(y)) = (d(x) + p(x)d(y), p(x)p(y))

Since p is already a homomorphism, the second coordinates are equal. As for the
first coordinates, the required condition is that d(xy) = p(x)d(y) + d(x). Except
for the p on the right hand side, this is just the formula that defines a derivation.
But we can use p to make any π-module into a Π-module and then this condition
is just that d is a derivation of Π to A. Thus we have shown that

HomGrp/π(Π p //π,A o π //π) = Der(Π, A)

Evidently, Der(Π, A) is an abelian group from the additive structure of A and
it is easy to see that a morphism (Π′ //π) // (Π //π) induces not merely a
function but a group homomorphism Der(Π, A) // Der(Π′, A). This means that
A o π //π is actually an abelian group object in Grp/π.

The converse is also true. It is a standard fact about abelian group objects in
categories with finite products that a group object G is given by a global section
1 // G, an inverse map G // G and a multiplication G × G // G and that
the multiplication map is just the product of the two projections. If p : Π // π
is a group object in Grp/π, the terminal object of the category is id : π // π
and thus the zero map is just a homomorphism π // Π that splits p. If K is the
kernel of p, it is a normal subgroup and we will write its group operation as + and
its identity element as 0 even though we have not yet proved it commutative. By
extending the notation to the non-commutative case, we can write Π = K o π.
In this notation, the zero morphism is given by z(x) = (0, x). The product in the
category Grp/π is just the fibered product over π. Since Π×π Π = K ×K o π, the
multiplication is a homomorphism

m : K ×K o π // K o π

over π. We can write this as m(a, b, x) = (f(a, b, x), x) for a, b ∈ K and x ∈ K.
Since m preserves the identity of the group object, m(0, 0, x) = (0, x) from which
it follows that f(0, 0, x) = 0 for any x ∈ π. But then

m(a, b, x) = m(a, b, 1)m(0, 0, 1) = (f(a, b, 1), 1)(f(0, 0, x), x)

= (f(a, b, 1), 1)(0, x) = (f(a, b, 1), x)

so that f does not depend on x. Write f(a, b, 1) = a ∗ b. Then since (0, x) is the
identity in the fiber over x, m(a, 0, x) = (a, x) = m(0, a, x) so that a∗0 = 0∗a = a.
But then

m(a, b, x) = m(a, 0, 1)m(0, b, 1)m(0, 0, x) = (a ∗ 0, 1)(0 ∗ b, 1)(0, x)

= (a ∗ 0 + 0 ∗ b, x) = (a+ b, x)
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while at the same time
m(a, b, x) = m(0, b, 1)m(a, 0, 1)m(0, 0, x) = (0 ∗ b, 1)(a ∗ 0, 1)(0, x)

= (0 ∗ b+ a ∗ 0, x) = (b+ a, x)

from which we conclude that ∗ = + and is commutative. The action of Π on K is
by conjugation and since K is commutative, this induces an action of π on K. If
q : Γ // π is a group over π, then a morphism f : (Γ //π) // (Π //π) has the
form f(y) = (dy, qy) and to be a homomorphism we must have

(d(yy′), q(yy′)) = f(yy′) = f(y)f(y′) = (dy, qy)(dy′, qy′)

= (dy + (qy)(dy′), (qy)(qy′))

which means that d(yy′) = dy + (qy)(dy′) which is the definition of a derivation
(with respect to q).

This is one case of:

Theorem 2 (Beck) Let X be one of the familiar categories (groups, algebras
and rings, Lie algebras, commutative algebras and rings, Jordan algebras, . . .).
Then the category of modules over an object X of X is (equivalent to) the category
of abelian group objects in the category X /X. Moreover, let A be an X-module
with Y // X the corresponding abelian group object in X /X. Then for an
object Z // X of that category, Hom(Z //X,Y //X) is canonically isomorphic
to Der(Z,A).

The upshot of this result is that not only do we know what a module is for an
object of any category, we also know what a derivation into that module is. For
example, a module over the set I is just an I-indexed family A = {Ai | i ∈ I}
of abelian groups and Der(I,A) =

∏
i∈I Ai. For any X // I, which is just an

I-indexed family {Xi | i ∈ I}, one can see that Der(X,A) =
∏
i∈I A

Xi
i .

After I gave my talk, I had a private discussion with Myles Tierney and Alex
Heller. Heller remarked that he first heard the definition of Beck module from
Eilenberg and wondered whether the definition was originally his. Tierney, who
was a student of Eilenberg’s at the same time as Beck, recalled that it taken a
couple months for Beck to convince Eilenberg of the correctness of his definition,
but that once convinced, Eilenberg embraced it enthusiastically.

As an aside, let me say that this is the definition of bimodule. One-sided
modules cannot be got as special cases of this and are apparently a different ani-
mal. Apparently one-sided modules are part of representation theory and two-sided
modules are part of extension theory.

9 Enter triples

Triples (also known as monads) have been used in many places and for many
reasons in category theory (as well as in theoretical computer science, especially in
the theory of datatypes). They were originally invented (by Godement in [1958]) for
the purpose of describing standard flabby resolutions of sheaves. They were being
used for this purpose by Eckmann and his students around 1960 and by Eilenberg
and Moore in their Memoir [1965a]. But this was always in additive categories
(although the triples were not always additive, but Eilenberg and Moore assumed
not only that but that they preserved kernels, although neither hypothesis was
necessary for their purposes).
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Beck was the first person who used a triple (more precisely, a cotriple) in a
non-additive category to define a cohomology theory. Once more, I will illustrate
what he did in the category of groups.

9.1 Triples and Eilenberg-Moore algebras. The definitions are available
in many places and so I will just give a rapid sketch. If X is a category, a triple T
on X consists of (T, η, µ) where T is an endofunctor on X and η and µ are natural
transformations: η : Id // T and µ : T 2 // T such that the diagrams

T T 2
Tη //T

T

=

""DDDDDDDDDDDDD T 2 Too ηT
T 2

T

µ

��

T

T

=

||zzzzzzzzzzzzz

T 2 Tµ
//

T 3

T 2

µT

��

T 3 T 2
Tµ // T 2

T

µ

��

commute. A cotriple is a triple in the dual category. Hence a cotriple G consists
of (G, ε, δ) with G an endofunctor and ε : G // Id and δ : G // G2 natural
transformations such that the dual of the above diagrams commute. Given an
adjoint pair F : X // Y left adjoint to U : Y // X , with adjunction
arrows η : Id // UF and ε : FU // Id, then (UF, η, UεF ) is a triple on X and
(FU, ε, FηU) is a cotriple on Y . Peter Huber (a student of Eckmann’s) told me once
that they had proved this theorem—a simple argument with naturality—because
they were having so much trouble verifying the commutations in the diagram above
and noticed that all their triples and cotriples were associated with adjoint pairs
(see [Huber, 1961]). It is much easier to verify an adjunction than a triple. The
converse is also true; every (co-)triple does arise in this way from an adjoint pair.
There are two distinct proofs of this; due to Kleisli [1964, 1965] and Eilenberg-
Moore [1965b]. For most purposes in algebra, the Eilenberg-Moore algebras are
more interesting. But triples have also entered theoretical computer science and
there the Kleisli construction is the main one.

9.2 Beck cohomology. As above, it is convenient to illustrate Beck’s results
in the category of groups. The adjoint pair F U where F : Set // Grp and
U : Grp // Set is the underlying set functor, gives rise to a cotriple on Grp as
described. If π is a group, then Gπ is the free group on the underlying set of
π. As with any cotriple, there results a functor that assigns to each group π a
simplicial group that has Gn+1π in degree n. The face operators are constructed
from ε by di = din = GiεGn−i : Gn+1 // Gn and si = sin = GiδGn−i : Gn+1

// Gn+2. The naturality and the commuting diagrams satisfied by a cotriple
imply the simplicial identities:

din ◦ d
j
n+1 = dj−1

n
◦ din+1 if 0 ≤ i < j ≤ n+ 1

sjn ◦ s
i
n−1 = sin ◦ s

j−1
n−1 if 0 ≤ i < j ≤ n

sj−1
n−1

◦ din if 0 ≤ i < j ≤ n
din+1

◦ sjn =





1 if 0 ≤ i = j ≤ n or 0 ≤ i− 1 = j < n

sjn−1
◦ di−1

n if 0 < j < i− 1 ≤ n
We now form, for each object X and each X-module A, the cochain complex

0 // Der(GX,A) // · · · // Der(GnX,A) // Der(Gn+1X,A) // · · ·
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with the coboundary map
n∑

i=0

(−1)i Der(diX,A) : Der(GnX,A) // Der(Gn+1X,A)

Curiously, the δ of the cotriple plays no part in this, but it is absolutely necessary
in applying the acyclic models theorem mentioned below.

This gives a uniform treatment for cohomology in any equational category.
Beck also showed that the group H1(X,A) did classify extensions of X with kernel
A, as expected. He did not explore the second cohomology that in known cases was
relevant to extensions with non-abelian kernels. Later I did in a couple cases and
discovered some problems in the general case that showed that the interpretation
of the dimension-shifted H2 could not be quite the same as in the known cases
(Jordan algebras supplied the first counter-example).

10 Comparison theorems

Jon Beck and I started thinking in early 1964 about the connection between
the various cohomology theories that had been invented in an ad hoc way and
the Beck (or cotriple) cohomology theories. Let us assume that we are talking
about the dimension-shifted versions of the former. So we know that H0(X,A) =
Der(X,A) for both theories and that both versions of H1(X,A) classify the same set
of extensions and hence that they are at least isomorphic (although naturality was
still an issue). But we had no idea whatever about H2 or any higher dimension.
The complexes look entirely different. The Eilenberg-Mac Lane complex has, in
degree n, functions of n+ 1 (because of the dimension shift) variables from π to A,
while the cotriple complex has functions of one variable from Gn+1π to A. We spent
the fall term of 1964 working on this problem and getting exactly nowhere. For
group cohomology, one approach would have been to show that the chain complex

· · · // Diff Gn+1π // Diff Gnπ // · · · // Diff Gπ // Diff π // 0

with boundary operator
∑n
i=1(−1)n Diff di, is exact; for then the positive part of

that complex would have been a projective resolution of Diff π. In retrospect, we
now know how to do that directly. Fortunately for us we did not find that argument
for it would have been a dead end.

Instead, Beck spoke to Harry Appelgate during the term break between 1964
and 1965. Appelgate suggested trying to solve the problem by using acyclic models,
one of the subjects of his thesis [1965]. We did and within a few days we had solved
the comparison problem for groups and associative algebras. For some reason,
we never looked at Lie algebras, while commutative algebras, for the time being,
resisted our methods.

The case of commutative algebras was settled in the late 1960s. In finite char-
acteristic, Harrison’s definition was not equivalent to the cotriple cohomology, as
shown by an example due to Michel André. In characteristic 0, it was shown in
[Barr, 1968] that the two theories coincided. It is shown in [Barr, 1996] that the
same is true for Lie algebras.

10.1 Acyclic models. Here is a brief description of the acyclic models the-
orem that we proved and used to compare the Cartan-Eilenberg cohomology with
the cotriple cohomology. The context of the theorem is a category X equipped
with a cotriple G = (G, ε, δ) and an abelian category A . We are given augmented
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chain complex functors K• = {Kn}, L• = {Ln} : X // A , for n ≥ −1. We say
that K• is G-presentable if there is a natural transformation θn : Kn

// KnG
for all n ≥ 0 (note: not for n = −1) such that Knε ◦ θn = id for all n ≥ 0. We
say that L• is G-contractible if the complex L•G // 0 has a natural contracting
homotopy (which is called s below).

Theorem 3 Suppose that K• is G-presentable and L• is G-contractible. Then
any natural transformation f−1 : K−1

// L−1 can be extended to a natural trans-
formation f• : K• // L•. Any two extensions of f−1 are naturally homotopic.

Proof Here are the two diagrams required for the proof. The computations
are straightforward. The map fn is defined as the composite,

Kn KnG
θn // KnG

Kn−1G

d

��
Kn−1G Ln−1G

fn−1 // Ln−1G

LnG

s

OOLnG Ln
Lnε //

while the nth homotopy is defined as the difference of the upper and lower composite
in,

Kn KnG
θn // KnG

Kn−1G

d

��
Kn−1G

LnG

hn−1

::ttttttttttttt

LnG

Ln+1G

s

OOLn+1G Ln+1

Ln+1ε //

KnG LnG
fn−gn //

Of course, an immediate consequence of this is that if K• and L• each satisfy
both hypotheses and K−1 is naturally isomorphic to L−1, then K• is naturally
homotopic to L•. This result is augmented by

Proposition 1 Suppose that Ln = L−1G
n+1 with coboundary

n∑

i=0

(−1)iGiεGn−i

Then L• is both G-presentable and G-contractible.

In fact, δ is used to show both claims.
Before describing the modern acyclic models theorem that can be used to prove

this, we will describe the issues involved. Basically, two things are required to show
that a cochain complex functor is cohomologous to the cotriple complex. The
first seems somewhat odd at first glance, but is satisfied in examples. That is
that the terms of the complex do not depend on the structure of the object in
question, but only on the underlying set (or module). It is a curious fact, but
obvious from the definition that the structure is used only in the definition of the
coboundary homomorphism. The second condition required is that the cohomology
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of a free object should vanish in positive degrees. This condition is automatic for
the cotriple cohomology; hence this is a necessary condition if the two theories
are to be equivalent. This is where the problem arises for Harrison’s commutative
cohomology in finite characteristic. Michel André showed that in characteristic p
there was a non-zero cohomology class in degree 2p− 1.

Here is the argument for acyclicity in the case of free groups. We begin by
observing that a free group is also free as far as derivations is concerned.

Proposition 2 Suppose that Π is free on basis X and M is a Π-module. Then
any function τ : X // M extends to a unique derivation Π // M .

Proof Let U : Grp // Set denote the underlying functor. This result follows
from the sequence of isomorphisms

Der(Π,M) ∼= HomGrp/π(Π //π,M o π //π)

∼= HomSet/Uπ(X //Uπ,UM × Uπ //Uπ)

∼= HomSet(X,UM)

This implies that Diff(Π) is the free π-module generated by S.
It is not hard to show that C• is an exact chain complex and hence C•(Π) is a

free resolution of Diff(Π). In the case that Π is free, this is then a free resolution of
a free module and hence necessarily split. However, we would rather get the extra
information available if we know that the splitting is natural, namely that we then
get a homotopy equivalence between the two chain complex functors.

We start by defining a homomorphism ∂ : C0(Π) // Diff(Π). There is a
function τ : X // Diff(Π) which is the inclusion of the basis. This extends to a
derivation τ : Π // Diff(Π) as above. Since C0(Π) is freely generated by the ele-
ments of Π, this derivation τ extends to a π-linear function ∂ : C0(Π) // Diff(Π).
In accordance with the recipe above, ∂ is defined on elements of Π recursively as
follows. We will denote by 〈w〉 the basis element of C0(Π) corresponding to w ∈ Π.
As above, either w = 1 or w = xv or w = x−1v for some x ∈ X and some v ∈ Π
shorter than w. Then

∂〈w〉 =

{
x∂〈v〉+ x if w = xv
x−1∂〈v〉 − x−1x if w = x−1v
0 if w = 1

Now define s : Diff(Π) // C0(Π) to be the unique π-linear map such that s(dx) =
〈x〉 for x ∈ X. Since Diff(Π) is freely generated by all dx for x ∈ X, this does
define a unique homomorphism. For x ∈ X, we have that ∂ ◦ s(dx) = ∂〈x〉 = dx
and so ∂ ◦ s = id.

For each n ≥ 0 we define a homomorphism s : Cn // Cn+1 as follows. We
know that Cn is the free π-module generated by Πn+1. We will denote a generator
by 〈w0, · · · , wn〉 where w0, . . . , wn are words in elements of X and their inverses.
Then we define s : Cn // Cn+1 by induction on the length of the first word:

s〈w0, . . . , wn〉 =




xs〈w,w1, . . . , wn〉 − 〈x,w,w1, . . .〉 if w0 = xw
x−1s〈w,w1, . . . , wn〉+ x−1〈x,w0, w1, . . .〉 if w0 = x−1w
〈1, 1, w1, . . . , wn〉 if w0 = 1

Proposition 3 For any word w and any x ∈ X
s〈xw,w1, . . . , wn〉 = xs〈w,w1, . . . , wn〉 − 〈x,w,w1, . . . , wn〉
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s〈x−1w,w1, . . . , wn〉 = x−1s〈w,w1, . . . , wn〉+ 〈x−1, w0, w1, . . . , wn〉

Proof These are just the recursive definitions unless w begins with x−1 for
the first equation or with x for the second. Suppose w = x−1v. Then from the
definition of s,

s〈w,w1 . . . , wn〉 = x−1s〈v, w1, . . . , wn〉+ x−1〈x,w,w1, . . . , wn〉

so that

s〈xw,w1, . . . , wn〉 = s〈v, w1, . . . , wn〉

= xs〈w,w1, . . . , wn〉 − 〈x,w,w1, . . . , wn〉
The second one is proved similarly.

Now we can prove that s is a contraction. First we will do this in dimension
0, then, by way of example, in dimension 2; nothing significant changes in any
higher dimension. In dimension 0, suppose w is a word and we suppose that for
any shorter word v, we have that s ◦ ∂〈v〉+ ∂ ◦ s〈v〉 = 〈v〉. If x = 1, then

s ◦ ∂〈1〉+ ∂ ◦ s〈1〉 = ∂〈1, 1〉 = 1〈1〉 − 〈1〉+ 〈1〉 = 〈1〉

If w = xv, with x ∈ X, then

∂ ◦ s〈w〉+ s ◦ ∂〈w〉 = ∂(xs〈v〉 − ∂〈x, v〉) + s(dw)

= x∂ ◦ s〈v〉 − x〈v〉+ 〈xv〉 − 〈x〉+ s(x∂(v) + dx)

= 〈w〉+ x(∂ ◦ s+ s ◦ ∂ − 1)〈v〉 − 〈x〉+ 〈x〉 = 〈w〉

A similar argument takes care of the case that w = x−1v. In dimension 2, the chain
group C2(Π) is freely generated by Π3. If we denote a generator by 〈w0, w1, w2〉,
we argue by induction on the length of w0. If w0 = 1, then

s ◦ ∂〈1, w1, w2〉 = s(〈w1, w2〉 − 〈w1, w2〉+ 〈1, w1w2〉 − 〈1, w1〉)

= 〈1, 1, w1w2〉 − 〈1, 1, w1〉

while

∂ ◦ s〈1, w1, w2〉 = ∂(〈1, 1, w1, w2〉)

= 〈1, w1, w2〉 − 〈1, w1, w2〉+ 〈1, w1, w2〉 − 〈1, 1, w1w2〉+ 〈1, 1, w1〉

and these add up to 〈1, w1, w2〉. Assume that (∂ ◦ s + s ◦ ∂)〈w〉 = 〈w〉 when w is
shorter than w0. Then for w0 = xw,

∂ ◦ s〈xw,w1, w2〉 = x∂ ◦ s〈w,w1, w2〉 − ∂〈x,w,w1, w2〉

= x∂ ◦ s〈w,w1, w2〉 − x〈w,w1, w2〉+ 〈xw,w1, w2〉

− 〈x,ww1, w2〉+ 〈x,w,w1w2〉 − 〈x,w,w1〉
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while

s ◦ ∂〈x,w,w1, w2〉 = xws〈w1, w2〉 − s〈xww1, w2〉+ s〈xw,w1w2〉 − s〈xw,w1〉

= xws〈w1, w2〉 − xs〈ww1, w2〉+ 〈x,ww1, w2〉

+ xs〈w,w1w2〉 − 〈x,w,w1w2〉 − xs〈w,w1〉+ 〈x,w,w1〉

= xs ◦ ∂〈w,w1, w2〉+ 〈x,ww1, w2〉 − 〈x,w,w1w2〉+ 〈x,w,w1〉
Then,

(∂ ◦ s+ s ◦ ∂)〈xw,w1, w2〉 = x(∂ ◦ s+ s ◦ ∂)〈w,w1, w2〉 − x〈w,w1, w2〉

+ 〈xw,w1, w2〉 − 〈x,ww1, w2〉+ 〈x,w,w1w2〉

− 〈x,w,w1〉+ 〈x,ww1, w2〉 − 〈x,w,w1w2〉+ 〈x,w,w1〉
Using the inductive assumption, the first two terms cancel and all the rest cancel
in pairs, except for 〈xw,w1, w2〉, which shows that s ◦ ∂+∂ ◦ s = 1 in this case. The
second case, that w0 begins with the inverse of a letter is similar.

This completes the proof of the homotopy equivalence for group cohomology.
For associative algebras the argument is quite similar. For Lie algebras and, espe-
cially for commutative algebras, it is a good deal more complicated because it is less
obvious that the cochain complex of a free algebras splits. In fact, for Harrison’s
cochain complex, it splits only in characteristic 0 and the equivalence fails in finite
characteristic. As a result, the cohomology that results from the cotriple resolution
has been seen as primary.

11 Acyclic models now

Besides the acyclic models theorem quoted above, there was a weaker form
due to Michel André [André, 1967, 1974] in which the conclusion was the weaker
homology isomorphism and one could not infer naturality, at least as it was stated
and proved. In the process of trying to settle the naturality question I discovered an
acyclic models theorem that included both the version above and André’s as special
cases, along with at least one other interesting version. I outline the definitions and
theorems. For proofs, I refer to my recent book [Barr, 2002].

In this definition, C = CC(A ) is the category of chain complexes of an abelian
category A .

11.1 Acyclic classes. A class Γ of objects of C will be called an acyclic class
provided:

AC–1. The 0 complex is in Γ.
AC–2. The complex C• belongs to Γ if and only if SC• does.
AC–3. If the complexes K• and L• are homotopic and K• ∈ Γ, then L• ∈ Γ.
AC–4. Every complex in Γ is acyclic.
AC–5. If K•• is a double complex, all of whose rows are in Γ, then the total
complex of C• belongs to Γ.

Given an acyclic class Γ, let Σ denote the class of arrows f whose mapping
cone is in Γ. It can be shown that this class lies between the class of homotopy
equivalences and that of homology equivalences.
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Suppose that G : X // X is an endofunctor and that ε : G // Id is a
natural transformation. If F : X // A is a functor, we define an augmented
chain complex functor we will denote FG•+1 // F as the functor that has FGn+1

in degree n, for n ≥ −1. Let ∂i = FGiεGn−i : FGn+1 // FGn. Then the
boundary operator is ∂ =

∑n
i=0(−1)i∂i. If, as usually happens in practice, G and

ε are 2/3 of a cotriple, then this chain complex is the chain complex associated to
a simplicial set built using the comultiplication δ to define the degeneracies. Next
suppose that K• // K−1 is an augmented chain complex functor. Then there
is a double chain complex functor that has in bidegree (n,m) the term KnG

m+1.
This will actually commute since

KnG
m Kn−1G

m
dGm

//

KnG
m+1

KnG
m

KnG
iεGm−i

��

KnG
m+1 Kn−1G

m+1dGm+1
// Kn−1G

m+1

Kn−1G
m

Kn−1G
iεGm−i

��

commutes by naturality for 0 ≤ i ≤ m hence so does

KnG
m Kn−1G

m
dGm

//

KnG
m+1

KnG
m

Pm
i=0(−1)iKnG

iεGm−i

��

KnG
m+1 Kn−1G

m+1dGm+1
// Kn−1G

m+1

Kn−1G
m

Pm
i=0(−1)iKn−1G

iεGm−i

��

However, the usual trick of negating every second column produces an anticom-
muting double complex.

This is augmented in both directions, once, using ε, over the single complex K•
and second, using the augmentation of K•, over the complex K−1G

•+1. We say
that K• is ε-presentable with respect to Γ if for each n ≥ 0, the augmented chain
complex KnG

•+1 // Kn
// 0 belongs to Γ. We say that K• is G-acyclic with

respect to Γ if the augmented complex K•G // K−1G // 0 belongs to Γ.
It could be notes that an augmented chain complex C• // C−1

// 0 is the
desuspension of the mapping cone of the map of chain complexes C• // C−1 in
which the latter is considered as a chain complex with C−1 in degree 0 and 0 in
all other degrees. Thus an equivalent formulation of the two definitions above is
that K• is ε-presentable with respect to Γ if for each n ≥ 0, the chain map KnG

•+1

// Kn belongs to Σ and that K• is G-acyclic with respect to Γ if the chain map
K•G // K−1G // 0 belongs to Σ.

Theorem 4 Let Γ be an acyclic class and Σ be the associated class of arrows.
Suppose α : K• // K−1 and β : L• // L−1 are augmented chain complex
functors. Suppose G is an endofunctor on X and ε : G // Id a natural trans-
formation for which K• is ε-presentable and L• // L−1

// 0 is G-acyclic, both
with respect to Γ. Then given any natural transformation f−1 : K−1

// L−1 there
is, in Σ−1C , a unique arrow f• : K• // L• that extends f−1.
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Although we give no proof, here is the “magic diagram” from which it all
follows:

L−1G
•+1 L•G•+1oo

βG•+1

K−1G
•+1

L−1G
•+1

f−1G
•+1

��

K−1G
•+1 K•G•+1oo αG•+1

K•G•+1

L•G•+1

K•G•+1

L•G•+1L•G•+1 L•L•ε
//

K•G•+1

L•G•+1

K•G•+1

L•G•+1

K•G•+1 K•
K•ε // K•

L•

K•

L•

Note that each of the two hypotheses implies that one of the “wrong way” arrows
belongs to Γ. When these are inverted, you get a map K• // L•.

11.2 Examples. We mention three examples of acyclic classes.
Let Γ be the class of contractible complexes. In that case, Σ is the class of

homotopy equivalences. It is trivial to show that when the rows and columns
of a double complex are contractible so is the total complex. It is a little more
surprising—but still true—that if the rows or the columns are contractible, so is
the total complex. The only other point to make is that in this case, the functor C

// Σ−1C is surjective on arrows, so that you actually get a homotopy equivalence
as conclusion.

Let Γ be the class of acyclic complexes. In that case, Σ is the class of chain
maps that induce an isomorphism on homology (called homology isomorphisms).
One can use a trivial spectral sequence argument to show that if all the rows or
all the columns of a double complex are acyclic, then so is the total complex, but
it is not hard to give a direct argument using a filtration. Since the functor C

// Σ−1C is not surjective on arrows, the arrows you get are not induced by
arrows between the chain complexes, but they are natural.

Let Γ be the class of chain complexes that are, at each object of X , contractible,
but not naturally so. In that case, Σ consists of arrows that induce, at each X,
homotopy equivalences. This means that the arrows are natural, but the homotopy
inverse and the homotopies involved are not necessarily natural. This situation
arises quite naturally in topology. For example, on the category of C∞ manifolds,
the inclusion of the C∞ chains into all the chains can be shown to induce a homotopy
equivalence on any space, but there is no obviously natural way of doing this. This
example answered a question raised by Rob Milson who was working with these
homology groups.
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