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1 Introduction

If V is a symmetric tensored closed category and ⊥ is an object of V , there
is a construction described in [Chu, 1979], of a ∗-autonomous category based
on V . Very briefly, an object of Chu(V ,⊥) is a pair (V, V ′) of objects of V
together with a pairing 〈−,−〉 : V ⊗ V ′ −→ ⊥. These objects have been
called Chu spaces because in concrete examples one can think of V ′ as being
a kind of topology on V ([Pratt, 1993]).

An object (V, V ′) is called separated if the induced map V −→ V ′−◦⊥ is
monic and extensional if the induced V ′ −→ V −◦⊥ is monic. It is not true in
general that the tensor product of two separated Chu spaces is separated nor
that the internal hom of two extensional spaces is extensional. The purpose
of this note is to show that these claims (which are equivalent to each other)
are true when the ground category is vector spaces.

∗In the preparation of this paper, I have been assisted by a grant from the NSERC of
Canada and the FCAR du Québec.
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A complete introduction to Chu spaces and ∗-autonomous categories can
be found in [Barr, 1991]. See also [Barr, to appear]. We give a quick sketch.

1.1 The Chu construction

A morphism (f, f ′) : (V, V ′) −→ (W,W ′) is a pair of arrows f : V −→ W and
f ′ : W ′ −→ V ′ such that the diagram

V ⊗ V ′ ⊥-〈−,−〉

V ⊗W ′ W ⊗W ′-f ⊗W ′

?

V ⊗ f ′
?

〈−,−〉

If terms of elements, this says that for all v ∈ V and w′ ∈ W ′, 〈fv, w′〉 =
〈v, f ′w′〉.

Another way of expressing this is that the diagram

Hom(W ′, V ′) Hom(V ⊗W ′,⊥)-

Hom((V, V ′), (W,W ′)) Hom(V,W )-

? ?

(1)

is a pullback.

The category Chu(V ,⊥) is a ∗-autonomous category, with the following
structures. First, for Chu spaces (V, V ′) and (W,W ′), define a Vect-valued
hom (V, V ′)−• (W,W ′) so that

W ′−◦V ′ (V ⊗W ′)−◦K-

(V, V ′)−• (W,W ′) V −◦W-

? ?

is a pullback. Note that this diagram is simply the obvious strengthening
of (1) to V . Now we define

(V, V ′)⊗ (W,W ′) = (V ⊗W, (V, V ′)−• (W ′,W ))
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The pairing is most easily given in terms of elements. For v ∈ V , w ∈ W ,
f : V −→ W ′ and f ′ : W −→ V ′, we let 〈v ⊗ w, (f, f ′)〉 = 〈w, fv〉 = 〈v, f ′w〉,
The internal hom is given similarly by

(V, V ′)−◦ (W,W ′) = ((V, V ′)−• (W,W ′), V ⊗W ′)

The duality is (V, V ′)∗ = (V, V ′)−◦ (⊥,>) = (V ′, V ), where > is the tensor
unit.

It is shown in [Barr, 1991] (where “separated” is called “left separated”
and “extensional” is called “right separated”) that in general the tensor prod-
uct of extensional spaces is extensional, but, as shown in the example of the
introduction, the tensor product of separated spaces may fail to be separated.
The opposite happens for the internal hom, where the internal hom of two
separated spaces is separated, but the internal hom of extensional spaces may
not be extensional. We will see that this does not happen in Chu(Vect, K).
In light of the duality between the tensor and internal hom, it will follow,
when we show that the tensor product of separated spaces is separated, that
the internal hom of extensional spaces is extensional.

1.2 An example: abelian groups

Consider the category Chu(Ab, T ) where T = R/Z is the circle group. There
is a Chu space (Q,Z) using any pairing Q ⊗ Z ∼= Q −→ T that embeds Q
into T . Multiplication by any irrational number will do. Such a pairing
is both separated and extensional. On the other hand, (Q,Z) ⊗ (Q,Z) =
(Q⊗Q, (Q,Z)−• (Q,Z)) with the latter being the pullback

Q−◦Z Q⊗Q−◦T-

(Q,Z)−• (Q,Z) Q−◦Z-

? ?

which is evidently 0 since there are no non-zero homomorphisms Q −→ Z.
Thus (Q,Z)⊗ (Q,Z) = (Q, 0), which is evidently not separated.
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2 Vector spaces

Let K be a field and Vect = VectK be the category of vector spaces over a
field. We let A denote the category Chu(Vect, K).

2.1 Theorem In Chu(VectK , K) the tensor product of separated spaces
is separated and the internal hom of extensional spaces is extensional.

Proof. This means that the map V ⊗W −→ ((V, V ′)−• (W ′,W ))∗ must be
shown to be injective. If not, there are finite dimensional subspaces V0 and
W0 of V and W such that the composite

V0 ⊗W0 −→ V ⊗W −→ ((V, V ′)−• (W ′,W ))∗

is not injective either. We will show that this is impossible by first showing
that (V0, V

∗
0 ) is a subobject, in fact split subobject, of (V, V ′) and similarly

for (W0,W
∗
0 ) −→ (W,W ′) and that the upper and right arrows in

V ⊗W ((V, V ′)−• (W ′,W ))∗-

V0 ⊗W0 ((V0, V
∗

0 )−• (W ∗
0 ,W0))∗-

? ?

(2)

are injective. Actually, the top arrow is an isomorphism.

From V0 −→ V , we have V ′ −→ V ∗ −→ V ∗0 which gives us a morphism
(V0, V

∗
0 ) −→ (V, V ′). I claim that V ′→→V ∗0 . If not, the arrow factors through

a proper subspace, say U ⊆ V ∗0 and then from vector space duality, we have
V0→→U∗ −→ V ′∗. Then we have a commutative square

V V ′∗--

V0 U∗--

? ?

and the diagonal fill-in gives U∗ −→ V such that the upper triangle commutes,
which implies, along with V0 )−→V , that V0 = U∗, and then that U = V ∗0 .

Next, I claim that the injection (f, f ′) : (V0, V
∗

0 ) )−→(V, V ′) is split. Let
v1, . . . , vn be a basis of V0 and let v∗1, . . . , v

∗
n be the dual basis of V ∗0 . This
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means that 〈vi, v∗j 〉 = δij. Since f ′ is surjective, let v′1, . . . , v
′
n ∈ V ′ be vectors

such that f ′v′i = v∗i , for i = 1, . . . , n. Now define g : V −→ V0 by

g(v) =
n∑
i=1

〈v, v′i〉vi

and g′ : V ∗0 −→ V ′ by g′v∗i = v′i. We want to show that (g, g′) : (V, V ′)
−→ (V0, V

∗
0 ) is a map in the category and that it splits (f, f ′). For the first,

we have, for v ∈ V and i = 1, . . . , n,

〈gv, v∗i 〉 = 〈
n∑
j=1

〈v, v′j〉vj, v∗i 〉 = 〈v, v′i〉 = 〈v, g′v∗i 〉

so that (g, g′) is a morphism. Then we have for i = 1, . . . , n,

gf(vi) =
n∑
j=1

〈fvi, v′j〉vi =
n∑
j=1

〈vi, f ′v′j〉vi =
n∑
j=1

〈vi, v∗j 〉vi = vi

We could similarly show that f ′g′ = id but it is unnecessary since in the sub-
category of separable extensional objects, the two halves of a map determine
each other.

Now the diagram

W0−◦V ∗0 (V0−◦W0)∗-

(V0, V
∗

0 )−• (W ∗
0 ,W0) V0−◦W ∗

0
-

? ?

is a pullback while the bottom and right arrows are isomorphisms and hence

(V0, V
∗

0 )−• (W ∗
0 ,W0) = (V0−◦W0)∗

so that
((V0, V

∗
0 )−• (W ∗

0 ,W0))∗ = V0−◦W0

which shows that the top map in (2) is an isomorphism, as claimed. As for
the right hand map in (2), we observe that (V0, V

∗
0 ) −→ (V, V ′) is split monic

and, dually, (W ′,W ) −→ (W ∗
0 ,W0) is split epic so that

(V, V ′)−• (W ′,W ) −→ (V0, V
∗

0 )−• (W ∗
0 ,W0)
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is split epic and then

((V0, V
∗

0 )−• (W ∗
0 ,W0))∗ −→ ((V, V ′)−• (W ′,W ))∗

is (split) monic, as required.
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