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A. 
m 

Let A be a category and ~= (T,n,u) be a triple on 

Then we may form B - A ]I, the category of ~ algebras. 

There is then an adjoint pair A( F)B and we may ask whether or 
U 

not F is cotripleable. More explicitly, we may form a cotriple 

G = (FU,z,FnU) where ~- FU )I and n: 1 )UF = T are 

the adjointness morphisms. Then there is a natural functor 

u A )B = C and we are asking whether ~ is an equivalence. -~ - 

For general ~, the problem seems very difficult. It 

would, of course, be possible to continue forming categories 

A]I (A ~) , 0 o.. Myles Tierney has given an example to show that 
m' m 

this process needn't ever terminate. Presumably it is also 

possible that it terminate at any finite step. Thus we have, 

perhaps, a concept of a dimension of a category. 

Here we give a complete answer when A is the category 

of sets (denoted by S), pointed sets (denoted by (I,S)), or vec- 

tor spaces over the field K (denoted by V ). Ignoring those 
--K 

for which the functor T is constant, we show that dims = 1 

while dim(l,S) = dimV = O. Since the main difference between 
-- --K 

S and (I,S) is that the former contains some monomorphisms 
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which do not split (any # ) X), this concept of dimension 

does seem to be some kind of homological measure of the category. 

For the meaning and statements of the various tripleableness the- 

orems we refer to [Be] and [Li]. 

i t PRELIMINARIES 

According to the dual of the tripleableness theorem 

we must consider the question of whether F reflects isomor- 

phisms and whether it preserves equalizers of F-split pairs 

(since all of our categories are complete.) But U reflects 

isomorphisms and creates all limits and an F-split pair is al- 

so UF-split. Thus we need only consider these questions for T 

itself. First we consider the question of T reflecting isomor- 

phisms. In any concrete category we may call a triple consis- 

tent if it has a model of cardinality at least 2. We henceforth 

assume that A is one of the three categories mentioned above. 
m.i 

The following lemma is from [La]. 

Lemma I, 

Let ~= (T,n,.) be a consistent triple in A. 
..m 

Then  

is I-i. 

proof. Any object A r A with cardinality > 2 is a 

cogenerator. Then for all A' c A, A' c A x for some set X. If 

A is a ]~-algebra, so is A X c_#A X , and the given embedding A' 

can be completed to 
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so that hA' is i-i. 

A! ( ;A x 

~A' ~ /R 
TA'  

From now on we assume ~[ is consistent. It is easily 

seen that on S there are 2 inconsistent triples (TX - 1 for 

all X is one and TX = 1 for all X ~ ~, T~ = # is the other), 

while on (I,S) and V there is exactly one. 
-- --K 

Proposition 2. 

T is faithful. 

Proof. If f ~ g. X---~Y, then since n is l-l, 

Tf. nX = ,Y.f ~ ,Y.g = Tg. nX so Tf ~ Tg. 

Theorem 3, 

T (and hence F) reflects isomorphisms. 

Proof. For T, being faithful, reflects both epi- 

morphisms and monomorphisms, and A has the property that a map 

which is both is an isomorphism. 

2, SPLIT EQUALIZERS 

In order to apply the cotripleableness theorem, it 

is necessary to have a combinatorial description of split e- 

qualizers. It turns out to be the same (almost) in all three 

categories. 
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Theorem 4. 

di agr am 

satisfying 

Two maps 
d O 

X ~ Y  can be put into a split equalizer 
d r 

t ~ s 

td = E, sd ~ = X, sd I dt, d~ dld if the fol- 

lowing conditions are satisfied. 

(i) Equalizer (d~ I) ~ r (or X = Y = r 

(ii) d ~ is i-I. 

1 
(iii) If d~ = d x' then d ~ d 1 t X = X. 

Condition (iii) may be described by saying that there is a 

map u: P %E making the following diagram commute 

P ~-X 

E /Y 
d d ~ 

where P is the pullback (kernel pair) and E the equalizer. 

Proof. The necessity of (i) and (ii) is clear (con- 

dition (i) refers only to S anyway.) As for (iii), if 

1 dl x dlsd ~ dlsdlx ' dldtx, d~ = d x' then = x = = = d~ ' f = 

dosdlx , = dOsdO x = dOx. 

It is seen that these conditions will be necessary 

in any concrete category. Their sufficiency depends very 

heavily on the explicit categories at hand. We must consider 

cases. It is only necessary to find s: Y ) X with sd ~ = X 
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and d~ I = dlsd I, for then t" Y ;E 

d 1 dt = s by the nature of equalizers. 

can be chosen so that 

d~ X 

dOx 

s i Y1 i s  c o n s t a n t  x o. 

Case S. Write Y = Y 
u O 

= )Yo ( abus ing  n o t a t i o n ) .  

= dlx . Then define s : Y 
O O 

Clearly 

then 

dOx , 

+ Y where Y = ImX. Then 
1 o 

Choose x z X with 
O 

X by s I Y o = (d~ -I and 

sd~ = X. If d I x~ imd ~ 

sdlx = x o and dlsdlx = dosdlx. If dlx = d~ ', then 

= dlx ', and then dlsdlx = dlsd~ ' = dlx ' = d~ ' = 

dOsdOx , = dosdlx. 

Case (i,~)o This is exactly the same except that x 
O 

should be taken to be the basepoint. 

Case ~K" 

write X = X o + X 1 where d: E )Xo. 

Now since d ~ is i-i, we can assume that 

and d ~ is the inclusion. Moreover, 

Let E be the equalizer of d ~ and d I and 

We may assume E = Xo. 

Y = X~ + X +Y2 
1 

Y s Imd ~ ~ Im dl-T'~Y = d~ = dlx '. Then y = dOx = dlx and 

so Y s Im d~ = X o. Hence we may choose Y2 so that 

Im dlc X o + Y2" In terms of this decomposition the maps 

d, d", d I have matrix representations as follows. 

d = , d ~ 8 

> X and 8" X 1 ) Y2 where ~" X 1 o are arbitrary. 
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Le t 

S = , t = o t  

0 X 1 0 

and then the required equations are clear. 

3 t PRESERVATION OF T-SPLIT EQUALIZERS 

In this we show that T-split equalizers are preserv- 

ed in cases (I,S) and V K and examine the sole failure of this 

in S. The methods are really quite vulgar, since they prove 

that T (and hence F) is co-VTT. 

Proposition 5 

T (and hence F) reflects conditions (ii) and (iii) 

of theorem 4. 

Proof. If d~ X )Y and Td ~ is i-i, then 

bY.d ~ = TdO.pX and ~X is I-i, so pY.d ~ and hence d ~ is I-i. 

For the other part we use the diaqram. 

p |  

| 

! IE---+ X 

E ' )TX 
! 

d 

W m ~T 

w )X//~X 

l dl  Td I 

d ~ ~ 

Td o 
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It is only necessary to show that d~ = dlv. The universal 

property of P' allows a map ~: P ~P' as indicated. Now 

~Y.d~ = Td~ = Td~ = Td~ = Td I d' ' �9 ,U ,W = 

Tdl.v'.~ = Td I.~Xov = ~y.dl.v and by lemma i, bY is i-i, so 

d ~ d 1 .V = .V. 

Theorem 6. 

In cases (i,~) and ~K' F is co-VTT. 

Proof. There is nothing left to prove. 

4. S 

There are easy examples which will become clear 

later which show that T does not necessarily reflect condition 

(i) of theorem 4. 

Theorem 7. 
m 

(l,U) : A ~ 

If T# ~ #, then there is a factorization 

)(i,~) such that 

A~ (l.U))(I,S) 

commutes, where V is the usual underlying functor. Moreover, 

there is a left adjoint (I,F) [ (I,U) and (I,F) is co-VTT. 
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Proof. 

to be I--A-~T# = UF~ U*)UA where ,~ F~ )A 

map in (F~,A) = (%,UA). Clearly V.(I,U) = U. 

on objects by letting (I,F) (i ~X) = F(X-{I}). 

Pick a point a: 1 )T~. Define (I,U)A 

is the unique 

Define (I,F) 

Then 

(F(X-{I}),A) = (X-{I},UA) -- (I,S) (i ~X, (I,U)A), the last 

isomorphism being obvious. Then (I,F) has a unique extension 

to a functor left adjoint to (I,U) and hence, by theorem 6, 

is co-VTT. Note that I---~X'~-'-~X-{I} cannot be extended to 

a functor, which is the reason for the indirect definition of 

(I,F) first as an object function. 

Theorem 8, 

If T~ ~ %, then F is cotripleable. 

WX= 1 

Proof. If Wz S ) (I,S) is defined by 

1 + X, then Wl V. But then F = (I,F).W, and 

since (I,F) is co-VTT, it is only necessary to show that W is 

tripleable. 

That is, 

It is, in fact, co-CTT, as may readily be checked. 

E Y 

is an equalizer if and only if 

WE is. 

Theorem 9, 

(in S). 

Suppose e ~ 1 , e are the two distinct maps of 1 ) 2 

If ~----~TI ~T2 is an equalizer, then F is co-trip- 
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leable. 

Proof. It is sufficient, evidently, to show that if 

E' d') Td~ 
TX "~ TY 

Td I 
is a split equalizer, then the equalizer 

d ~ 
E d ) X ~ Y  is non-empty. 

d • 

At any rate condition (iii) is reflected, which means there 

will be a map P )E so that if E = %, so is P. But if P is 

empty, this means we can find a map 2 ~Y so that 

commutes. 

~O 

x i $i 
e o 

i i )2 
e 

This means each of the diagrams 

d ~ d I 
x }Y x ;Y 

1-----~e ~ 2 l ' " - ~  2 e l  

commute s �9 

so that E' = ~. 

This provides us with a commutative diaqram 

-------~ T 1 ) T2 

This completes the proof. 

Now we suppose that T# - ~, but that 

~ E---~ TI 
Te @ 

~T2 
Te 1 

is an equalizer. Since the underlying 
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functor creates equalizers, it is clear that E has the struc- 

ture of a~ algebra, so that there is a map TE u#~E defining 

this structure. Also we let n#~: #--~E denote the unique 

map. Let T # be defined by 

trivial to check that with 

(Tl,n # u # = , ) becomes a triple on S. 

Clearly every "l~#-algebra 

** , 

T#X = . It is 
E if X = 

n#X = nX and ~#X = ~X for X ~ ~, 

Moreover, T #~ ~ # . 

is also a ~-algebra, since E is the 

only new free algebra and it was already an algebra. This de- 

fines a functor S ~# ) S ]~ which is easily checked to be full, 

faithful and almost onto. The only difference is that ~ is a 

model for T but not for ~#. S Y# has an initial object E, while 

in S T , E is not initial but has a single predecessor ~ . Also 

the induced cotriples on each category commute (on the nose!) 

with the inclusion S~#---~S ~. From this it follows that 

_ _ is full, faithful and almost onto, the only 

difference, again, being that # is a coalgebra in (ST)~. The 

failure of the diagram 

to commute 

T 

S 
I 

F% = ~--also makes exactly--F## = E, 

not quite commute. In fact the comparison ~ is such that 

= ~. Thus (ST)~__ is as in the following. 
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Theorem 10. 

Suppose Tr = r but the equalizer E----@TI--'~T2 

is non-empty. Then (S~) G may be described as S U {y] where 

(r = (Y,Y) = i and (X,y) = r for any other X E S. The 

comparison S ~)(s1r)~ is just the inclusion functor. More- 

over, this induced triple on S U {y} has S Y as its algebras. 

Note that if ~ is a triple with T#r ~ r we may 

define ~ by Tr = r and get a i-I correspondence between 

triples for which Tr = r E ~ r and these for which Tr ~ r 

(in which case it is easily seen-- owing to the lack of empty 

models-- that Tr = E). On the other hand, if E = r (as when 

T = ~), this can't happen. E is called the set of pseudo- 

constants. This is justified by the fact that it is the set of 

constant natural transformations of U )U (whereas Tr is the 

set of natural transformations of U r )U -- the indeterminancy 

of 0 ~ rears its ugly head again). Then we may restate our 

results. 

Theorem Ii. 

If the set of pseudo-constants of]~is equal to the 

set of constants, then (ST)~__ = S. Otherwise it is S U{y} 

as above. 
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