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Preface

I would like to thank Professor D. K. Harrison who proposd the original problem and
without whose inspiration and generous help this would not have been completed.

2023 preface

I acquired an electronic version of the thesis and decided to retype it (doing it from a
paper copy would have been much harder). In the process, I silently corrected a number
of obvious mistakes (often failure to insert a non-typable character by hand) and added
a few notes on alternative ways to do things. But this is the thesis that was presented in
1962.

The essence of the thesis was the splitting of the Hochschild cohomology of a commu-
tative ring over a field of characteristic not 2 or 3 with coefficients in a symmetric module
into a commutative part and a skew part, but only in degrees ≤ 4. The proof is based
on an explicit construction of what has come to be called the shuffle idempotents in
those degrees. These are idempotents in the group ring of the symmetric groups k(Sn)
for n = 2, 3, 4.

Eventually, I discovered a way to give an inductive construction of these idempotents
in all degrees, but only for fields of characteristic 0.1

1See M. Barr, Harrison homology, Hochschild homology and triples. J. Algebra 8 (1968), 314–323.
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Introduction

In [3] and [4] Hochschild defined cohomology groups for associative algebras and discussed
some of their properties. In [2] Harrison defines special cohomology groups for commuta-
tive algebras. The question naturally arises as to the relation, for commutative algebras,
between the two theories. We let Hn(A,E) and Hn

c (A,E) denote the Hochschild and
Harrison cohomology groups, respectively, of the commutative algebra A with coefficients
in the a-module E. Then we know that H1(A,E) = H1

c (A,E) and that H2
c (A,E) is nat-

urally isomorphic to a subgroups of H2(A,E). We show here that it is possible, provided
the characteristic of the field over which A is defined is not two or three, to define groups
Hn
s (A,E) for n = 2, 3, 4 so that Hn(A,E) ∼= Hn

c (A,E) ⊕ Hn
s (A,E). Consequently it

would be desirable to extend this result to all n, even in the case of characteristic zero, al-
though it has not been possible as yet. Unfortunately, the computations even for n = 3, 4
are almost prohibitive. They are valuable because a) in applications to the study of al-
gebras the cases n = 2, 3, 4 are the most important ones, and b) the computations for
small n can give considerable insight into more general situation.2

In the second chapter of this paper we derive some computational results about these
cohomology groups and give a more natural interpretations of a theorem of Tate in the case
of radical algebras with the maximal condition. Using this we can show that H2

c (A,E) = 0
for all A-modules E implies that H3

c (A,E) = H4
c (A,E) = 0. There are two directions

of improvements possible for this result: a) to extend it to all commutative algebras,
and b) to extend it to higher dimensions. Just as above, however, the results are of
considerable value in themselves, and extension to higher n would almost certainly come
as a corollary to to construction of groups Hn

s (A,E) for larger n.
In a short appendix, we give a more natural proof of a theorem of Harrison that if A

is an algebra and S a multiplicatively closed subset of A with 1 ∈ S, 0 /∈ S, and E is an
AS-module, then H2

c (A,E) = H2
c (AS, E). We also add a few supplementary results which

should prove useful in future investigations along these lines.

1. Chapter I

Throughout this chapter, A will denote a commutative algebra over a field k with char-
acteristic not 2 or 3. a will denote an ideal of A and R denote the factor algebra A/a.
We let A(n) denote the tensor product over k of n copies of A and R(n) the tensor product
over k of n copies of R. We let a(n) denote the kernel of the canonical homomorphism of
A(n) onto R(n). It will be shown that

a(n) = a⊗ A⊗ · · · ⊗ A+ A⊗ a⊗ A⊗ · · · ⊗ A+ · · ·+ A⊗ · · · ⊗ A⊗ a

the tensor product taken over k; i.e. that a(n) is generated by all all elements a1⊗· · · an ∈
A(n) such that ai ∈ a for at least one integer i. Let E be an A-module with a · E = 0, so

2This turned out to be false. When the general problem was solved, the solution was simple and made
no use of the detailed computations here. See M. Barr, op. cit.
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that in a natural fashion E becomes an R-module. We let

Cn(A,E) = Homk(A
(n), E)

Cn(R,E) = Homk(R
(n), E)

Cn(A, a, E) = Homk(a
(n), E)

1.1. Proposition.

a(n) = a⊗ A⊗ · · · ⊗ A+ A⊗ a⊗ A⊗ · · · ⊗ A+ · · ·+ A⊗ · · · ⊗ A⊗ a

Proof. Clearly the right hand side is mapped to 0 under the canonical homomorphism
of A(n) onto R(n). To go the other way, we need

1.2. Lemma. If φ : U // V and φ′ : U ′ // V ′ are linear transformations over a field k,
and W = kerφ, W ′ = kerφ′, then kernel of φ⊗φ′ : U⊗U ′ //V ⊗V ′ is W ⊗U ′+U⊗W ′.

Proof. Clearly, by replacing, if necessary, V and V ′ by the images of φ and φ′, respec-
tively, we may assume that φ and φ′ are epimorphisms. Moreover, since k is a field, all
modules are projective so that tensor is an exact functor3. Then we get the following
commutative exact diagram.

0 0 0

0 W ⊗W ′ U ⊗W ′ V ⊗W ′ 0

0 W ⊗ U ′ U ⊗ U ′ V ⊗ U ′ 0

0 W ⊗ V ′ U ⊗ V ′ V ⊗ V ′ 0

0 0 0

�� �� ��
// i⊗I // φ⊗I // //

// i⊗I // φ⊗I // //

// i⊗I // φ⊗I // //

I⊗i′

��

I⊗i′

��

I⊗i′

��

I⊗φ′

��

I⊗φ′

��

I⊗φ′

��

�� �� ��

where i and i′ represent the injection maps of W and W ′, respectively, and I repreents
the identity map of any space. Now φ⊗ φ′ = (φ⊗ I) ◦ (I ⊗ φ′). Suppose x ∈ U ⊗U ′ with
(φ⊗φ′)(x) = 0. Then (φ⊗I)((I⊗φ′)(x)) = 0 so ∃y ∈ W⊗V ′ with (i⊗I)(y) = (I⊗φ′)(x).

3Although this is correct, in fact the argument needs only that the tensor product be right exact and
therefore works for any commutative ring k
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Since I⊗φ′ is an epimorphism, choose z ∈ W⊗U ′ with (I⊗φ′)(z) = y. Let x′ = (i⊗I)(z).
Then by the commutativity of the diagram,

(I ⊗ φ′)(x− x′) = (I ⊗ φ′)(x)− (i⊗ I)(I ⊗ φ′(z))

= (I ⊗ φ′)(x)− (i⊗ I)(y) = 0

Hence ∃z′ ∈ U ⊗W ′ with (I ⊗ i′)(z′) = x − x′. Let x” = (I ⊗ i′)(z′), then x = x′ + x”
with x′ ∈ (I ⊗ i′)(W ⊗U ′) and x” ∈ (i⊗ I(W ⊗U ′)). But i⊗ I and I ⊗ i′ are the natural
injections of W ⊗ U ′ and U ⊗W ′ into U ⊗ U ′ which completes the proof.

Now back to the proposition. We see from the lemma that a(2) = a ⊗ A + A ⊗ a
and that a(n) = a(n−1) ⊗ A + A(n−1) ⊗ a since a(n) is the kernel of the homomorphism
of A(n−1) ⊗ A onto R ∗ (n− 1) ⊗ R. Assuming, by induction, the result for n − 1, the
proposition follows.

Now we have an exact sequence

0 // a(n) // A(n) //R(n) // 0

which induces an exact sequence

0 // Cn(R,E) // Cn(A,E) // Cn(A, a, E) // 0

since we are operating over the field k. If f ∈ Cn(A,E), define δf ∈ Cn+1(A,E) by

δf(a1, . . . , an+1) = a1f(a2, . . . , an+1)

+
n∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1) + (−1)n+1an+1f(a1, . . . , an)

As usual δδf = 0. Now consider the diagram in which the rows are exact,

0 Cn+1(R,E) Cn+1(A,E) Cn+1(A, a, E) 0// // // //

0 Cn(R,E) Cn(A,E) Cn(A, a, E) 0// // // //

0 Cn−1(R,E) Cn−1(A,E) Cn−1(A, a, E) 0// // // //

δ

OO

δ

OO

1.3. Proposition. There are maps δ : Cn(R,E) //Cn+1(R,E) and δ : Cn(A, a, E) //Cn+1(A, a, E)
which make the above commutative abd such that δδ = 0.
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Proof. Let f ∈ Cn(R,E) and define

δf(r1, . . . , rn+1) = r1f(r2, . . . , rn+1)

+
n∑
i=1

(−1)if(r1, . . . , riri+1, . . . , rn+1) + (−1)n+1rn+1f(r1, . . . , rn)

If we let a 7→ a denote the projection of A onto R and f 7→ f the induced map from
Cn(R,E) to Cn(A,E), then f(a1, . . . , an) = f(a1, . . . , an) so that

δf(a1, . . . , an+1) = a1f(a2, . . . , an+1)

+
n∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1) + (−1)n+1an+1f(a1, . . . , an)

so that

δf(a1, . . . , an+1) = a1f(a2, . . . , an+1)

+
n∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1) + (−1)n+1an+1f(a1, . . . , an)

= δf(a1, . . . , an+1) since ae = ae and ab = ab for all a, b ∈ A and all e ∈ E. Clearly
δδ = 0 as before. Now let f ∈ Cn(A, a, E) and choose f ′ ∈ Cn(A,E) with f ′|a(n) = f .

Define δf = δf ′|(n)a . This clearly makes the diagram commutative and we continue to
have δδ = 0 since we can take δf ′ as the map extending δf . It is only necessary to show
that δf does not depend on f ′. If a1 ⊗ · · · ⊗ an ∈ a(n), then at least one ai ∈ a.

δf(a1, . . . , an+1) = a1f
′(a2, . . . , an+1)

+
n∑
i=1

(−1)if ′(a1, . . . , aiai+1, . . . , an+1) + (−1)n+1an+1f
′(a1, . . . , an)

If ai ∈ a for some 1 < i < n + 1, then in every term at least one variable is in a while if
a1 ∈ a, the first term is zero since a · E = 0 and all other terms contain a variable in a
and similarly if an+1 ∈ a. Hence we have a commutative diagram with exact rows,

0 Cn−1(R,E) Cn−1(A,E) Cn−1(A, a, E) 0// // // //

0 Cn(R,E) Cn(A,E) Cn(A, a, E) 0// // // //

0 Cn+1(R,E) Cn+1(A,E) Cn+1(A, a, E) 0// // // //

δ

��

δ

��

δ

��

δ

��

δ

��

δ

��
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and if we use Z ∗ n, Bn and Hn to denote the cycles, boundaries, and homology classes4,
respectively, the fundamental lemma of homological algebra gives an exact sequence

0 //H1(R,E) //H1(A,E) //H1(A, a, E)

//H2(R,E) //H2(A,E) //H2(A, a, E) // · · ·

//Hn(R,E) //Hn(A,E) //Hn(A, a, E) // · · · (∗)

The groups Hn(R,E) and Hn(A,E) are the Hochschild cohomology groups.
For n = 2, 3, 4 we define maps πn : Cn // Cn where Cn stands for any of the groups

Cn(A,E), Cn(R,E) or Cn(A, a, E) Recall that we have assumed that the characteristic
of k is not 2 or 3.

π2f(a, b) = 1/2[f(a, b)− f(b, a)]

π3f(a, b, c) = 1/6[4f(a, b, c) + 2f(c, b, a) + f(c, a, b) + f(b.c.a)− f(b, a, d)− f(a, c, b)]

π4f(a, b, c, d) = 1/12[9f(a, b, c, d) + f(c, d, b, a) + f(c, a, b, d) + f(d, b, c, a)

+ f(a, d, c, b) + f(c, d, a, b) + f(c, b, a, d) + f(d, c, a, b)

+ f(a, c, d, b) + f(b, c, a, d) + f(b, d, a, c) + f(a, d, b, c)

+ 3f(d, c, b, a)− f(a, b, d, c)− f(d, b, a, c)− f(a, c, b, d)

− f(b, c, d, a)− f(b, a, d, c)− f(d, a, b, c)− f(b, a, c, d)

− f(b, d, c, a)− f(d, a, c, b)− f(c, a, d, b)− f(c, b, d, a)]

1.4. Proposition. For n = 2, 3, 4, πn is idempotent.

Proof. If n = 2,

π2
2f(a, b) = 1/2[π2f(a, b)− π2f(b, a)]

= 1/4[f(a, b)− f(b, a)− f(b, a) + f(a, b)]

= 1/2[f(a, b)− f(b, a)] = π2f(a, b)]

For n = 3, we define maps σ3 and τ3 which will prove useful later.

σ3 abc = 1/2[ abc+ cba]

τ3 abc = 1/3[ abc+ cab+ bca]

Then we claim that σ3 and τ3 are idempotents and commute with each other.

σ2
3f(a, b, c) = 1/2[σ3f(a, b, c) + σ3f(c, b, a)]

= 1/4[f(a, b, c) + f(c, b, a) + f(c, b, a) + f(a, b, c)

= 1/2[f(a, b, c) + f(c, b, a)] = σ3f(a, b, c)]

4Actually, they should be called cocycles, coboundaries, and cohomology classes



8

τ 23 f(a, b, c) = 1/3[τ3f(a, b, c) + τ3f(c, a, b) + τ3f(b, c, a)]

= 1/9[f(a, b, c) + f(c, a, b) + f(b, c, a) + f(c, a, b) + f(b, c, a)

+ f(a, b, c) + f(b, c, a) + f(a, b, c) + f(c, a, b)

= 1/3[f(a, b, c) + f(c, a, b) + f(b, c, a)] = τ3f(a, b, c)]

σ3τ3f(a, b, c) = 1/2[τ3f(a, b, c) + τ3f(c, b, a)]

= 1/6[f(a, b, c) + f(c, a, b) + f(b, c, a) + f(c, b, a) + f(a, c, b) + f(b, a, c)]

= 1/3[σ3f(a, b, c) + σ3f(c, a, b) + σ3f(b, c, a)] = τ3σ3f(a, b, c)

Moreover, (σ3 + τ3 − σ3τ3)f(a, b, c)

= 1/2[f(a, b, c) + f(c, b, a)] + 1/3[f(a, b, c) + f(c, a, b) + f(b, c, a)]

− 1/6[f(a, b, c) + f(c, a, b) + f(b, c, a) + f(c, b, a) + f(a, c, b) + f(b, a, c)]

= 1/6[4f(a, b, c) + 2f(c, b, a) + f(c, a, b) + f(b, c, a)− f(b, a, c)− f(a, c, b)]

= π3f(a, b, c)

So that π3 = σ3 + τ3 − σ3τ3 which gives that

π2
3 = σ2

3 + τ 23 + σ2
3τ

2
3 + 2σ3τ3 − 2σ2

3τ3 − 2τ3σ
2
3

= σ3 + τ3 − σ3τ3 = π3

For n = 4, we introduce maps σ4 and τ4 as follows:

σ4f(a, b, c, d) = 1/2[f(a, b, c, d) + f(d, c, b, a)]

τ4f(a, b, c, d) = [f(a, b, c, d)− f(a, b, d, c) + f(c, a, b, d)

− f(a, c, b, d)− f(b, c, d, a) + f(c, d, a, b)

− f(d, a, b, c)− f(b, a, c, d) + f(a, c, d, b)

+ f(b, c, a, d)− f(c, a, d, b) + f(a, d, b, c)]

Then we claim that σ4 commutes with τ4 and that if σ4f = 0, then τ 24 f = τ4f , i.e. that
τ 24 (1− σ4) = τ4, and that σ4 is idempotent.

σ2
4f(a, b, c, d) = 1/2[σ4f(a, b, c, d) + σ4f(d, c, b, a)]

= 1/4[f(a, b, c, d) + f(d, c, b, a) + f(d, c, b, a) + f(a, b, c, d)]

= 1/2[f(a, b, c, d) + f(d, c, b, a)] = σ4f(a, b, c, d)
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σ4τ4f(a, b, c, d) = 1/2[τ4f(a, b, c, d) + τ4f(d, c, b, a)]

= 1/12[3f(a, b, c, d)− f(a, b, d, c) + f(c, a, b, d)− f(a, c, b, d)

− f(b, c, d, a) + f(c, d, a, b)− f(d, a, b, c)− f(b, a, c, d)

+ f(a, c, d, b) + f(b, c, a, d)− f(c, a, d, b) + f(a, d, b, c)

+ 3f(d, c, b, a)− f(d, c, a, b) + f(b, d, c, a)− f(d, b, c, a)

− f(c, b, a, d) + f(b, a, d, c)− f(a, d, c, b)− f(c, d, b, a)

+ f(d, b, a, c) + f(c, b, d, a)− f(b, d, a, c) + f(d, a, c, b)]

= 1/6[3σ4f(a, b, c, d)− σ4f(a, b, d, c) + σ4f(c, a, b, d)− σ4f(a, c, b, d)

− σ4f(b, c, d, a) + σ4f(c, d, a, b)− σ4f(d, a, b, c)− σ4f(b, a, c, d)

+ σ4f(a, c, d, b) + σ4f(b, c, a, d)− σ4f(c, a, d, b) + σ4f(a, d, b, c)]

= τ4σ4f(a, b, c, d)
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Now suppose σ4f = 0. Then τ 24 f(a, b, c, d)

= 1/6[3τ4f(a, b, c, d)− τ4f(a, b, c, d) + τ4f(c, a, b, d)− τ4f(a, c, b, d)

− τ4f(b, c, d, a) + τ4f(c, d, a, b)− τ4f(d, a, b, c)− τ4f(b, a, c, d)

+ τ4f(a, c, d, b) + τ4f(b, c, a, d)− τ4f(c, a, d, b) + τ4f(a, d, b, c)

= 1/36[9f(a, b, c, d)− 3f(a, b, d, c) + 3f(c, a, b, d)− 3f(a, c, b, d)

− 3f(b, c, d, a) + 3f(c, d, a, b)− 3f(d, a, b, c) + 3f(b, a, c, d)

+ 3f(a, c, d, b) + 3f(b, c, a, d)− 3f(c, a, d, b) + 3f(a, d, b, c)

− 3f(a, b, d, c) + f(a, b, c, d)− f(d, a, b, c) + f(a, d, b, c)

+ f(b, d, c, a)− f(d, c, a, b) + f(c, a, b, d)− f(b, a, d, c)

− f(a, d, c, b)− f(b, d, a, c) + f(d, a, c, b)− f(a, c, b, d)

+ 3f(c, a, b, d)− f(c, a, d, b) + f(b, c, a, d)− f(c, b, a, d)

− f(a, b, d, c) + f(b, d, c, a)− f(d, c, a, b)− f(a, c, b, d)

+ f(c, b, d, a) + f(a, b, c, d)− f(b, c, d, a) + f(c, d, a, b)

− 3f(a, c, b, d) + f(a, c, d, b)− f(b, a, c, d) + f(a, b, c, d)

+ f(c, b, d, a)− f(b, d, a, c) + f(d, a, c, b) + f(c, a, b, d)

− f(a, b, d, c)− f(c, b, a, d) + f(b, a, d, c)− f(a, d, c, b)

− 3f(b, c, d, a) + f(b, c, a, d)− f(d, b, c, a) + f(b, d, c, a)

+ f(c, d, a, b)− f(d, a, b, c) + f(a, b, c, d) + f(c, b, d, a)

− f(b, d, a, c)− f(c, d, b, a) + f(d, b, a, c)− f(b, a, c, d)

+ 3f(c, d, a, b)− f(c, d, b, a) + f(a, c, d, b)− f(c, a, d, b)

− f(d, a, b, c) + f(a, b, c, d)− f(b, c, d, a)− f(d, c, a, b)

+ f(c, a, b, d) + f(d, a, c, b)− f(a, c, b, d) + f(c, b, d, a)
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− 3f(d, a, b, c)− f(b, c, d, a) + f(b, d, a, c) + f(d, b, a, c)

+ f(a, b, c, d)− f(b, c, d, a) + f(c, d, a, b) + f(a, d, b, c)

− f(d, b, c, a)− f(a, b, d, c) + f(b, d, c, a)− f(d, c, a, b)

− 3f(b, a, c, d) + f(b, a, d, c)− f(c, b, a, d) + f(b, c, a, d)

+ f(a, c, d, b)− f(c, d, b, a) + f(d, b, a, c) + f(a, b, c, d)

− f(b, c, d, a)− f(a, c, b, d) + f(c, b, d, a)− f(b, d, a, c)

+ 3f(a, v, d, b)− f(a, c, b, d) + f(d, a, c, b)− f(a, d, c, b)

− f(c, d, b, a) + f(d, b, a, c)− f(b, a, c, d)− f(c, a, d, b)

+ f(a, d, b, c) + f(c, d, a, b)− f(d, a, b, c) + f(a, b, c, d)

+ 3f(b, c, a, d)− f(b, c, d, a) + f(a, b, c, d)− f(b, a, c, d)

− f(c, a, d, b) + f(a, d, b, c)− f(d, b, c, a)− f(c, b, a, d)

+ f(b, a, d, c) + f(c, a, b, d)− f(a, b, d, c) + f(b, d, c, a)

− 3f(c, a, d, b) + f(c, a, b, d)− f(d, c, a, b) + f(c, d, a, b)

+ f(a, d, b, c)− f(d, b, c, a) + f(b, c, a, d) + f(a, c, b, d)

− f(c, d, b, a)− f(a, d, b, c) + f(d, c, b, a)− f(c, b, a, d)

+ 3f(a, d, b, c)− f(a, d, c, b) + f(b, a, d, c)− f(a, b, d, c)

− f(d, b, c, a) + f(b, c, a, d)− f(c, a, b, d)− f(d, a, b, c)

+ f(a, b, c, d) + f(d, b, a, c)− f(b, a, c, d) + f(a, c, b, d)]

Collecting terms and using that σ4f = 0, we get

1/6[3f(a, b, c, d)− f(a, b, d, c) + f(c, a, b, d)− f(a, c, b, d)

− f(b, c, a, d) + f(c, d, a, b)− f(d, a, b, c)− f(b, a, c, d)

+ f(a, c, d, b) + f(b, c, a, d)− f(c, a, b, d) + f(a, d, b, c)]

Now (σ4 + τ4 − σ4τ4)f(a, b, c, d)

= 1/2[f(a, b, c, d) + f(d, c, b, a)

+ 1/6[3f(a, b, c, d)− f(a, b, d, c) + f(c, a, b, d)− f(a, c, b, d)

− f(b, c, d, a) + f(c, d, a, b)− f(d, a, b, c)− f(b, a, c, d)

+ f(a, c, d, b) + f(b, c, a, d)− f(c, a, d, b) + f(a, d, b, c)]
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− 1/12[3f(a, b, c, d)− f(a, b, d, c) + f(c, a, b, d)− f(a, c, b, d)

− f(b, c, a, d) + f(c, d, a, b)− f(d, a, b, c) + f(b, a, c, d)

+ f(b, c, d, a) + f(b, c, a, d)− f(c, a, b, d) + f(a, d, b, c)

+ 3f(d, c, b, a)− f(c, d, b, a) + f(d, b, a, c)− f(d, b, c, a)

− f(a, d, c, b) + f(b, a, d, c)− f(c, b, a, d)− f(d, c, a, b)]

= 1/12[9f(a, b, c, d)− f(a, b, d, c)− f(d, b, a, c)− f(a, c, b, d)

− f(b, c, d, a)− f(b, a, d, c)− f(d, a, b, c)− f(b, a, c, d)

− f(b, d, a, c)− f(d, a, c, b)− f(c, a, d, b)− f(c, b, d, a)

+ 3f(d, c, b, a) + f(c, d, b, a) + f(c, a, b, d) + f(d, b, c, a)

+ f(a, d, b, c) + f(c, d, a, b) + f(c, b, a, d) + f(d, c, a, b)

+ f(a, c, d, b) + f(b, c, a, d) + f(b, d, a, c) + f(a, d, b, c)

= π4τ4f(a, b, c, d)

Now σ4(1− σ4) = 0 so that τ 24 (1− σ4) = τ4(1− σ4). Hence

π2
4 = σ2

4 + τ 24 + σ2
4τ

2
4 + 2σ4τ4 − 2σ2

4

= σ4 + τ 24 + σ2
4τ

2
4 + 2σ4τ4 − 2σ2

4τ4 − 2σ4τ
2
4

σ4 + τ 24 + σ4τ
2
4 − 2σ4τ

2
4 = σ4 + t2 − sτ 24 = σ4 + τ 24 (1− σ4)

= σ4 + τ4(1− σ4) = σ4 + τ4 − σ4τ4 = π4

This completes the proof of the proposition.
We will let Cn

c (A,E) denote the chain groups used by Harrison in [3] of A with coef-
ficients in an A-module E.

1.5. Proposition. For n = 2, 3, 4,

Cn
c = Ker(πn : Cn(A,E) // Cn(A,E))

Proof. For n = 2, f ∈ C2
c (A,E) if and only if f(a, b) = f(b, a) for all a, b ∈ A if and

only if π2f = 0. For n = 3, f ∈ Cn
c (A,E) if and only if f satisfies,

(i) f(a, b, c)− f(a, c, b) + f(c, a, b) = 0

for all a, b, c ∈ A. Now if satisfies (i), we have f(a, b, c) − f(a, c, b) + f(c, a, b) = 0 and
f(a, c, b) − f(a, b, c) + f(b, a, c) = 0, and adding we get f(c, a, b) + f(b, a, c) = 0 or that
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σ3f = 0. Using this

τ3f(a, b, c) = 1/3[f(a, b, c) + f(c, a, b) + f(b, c, a)]

= 1/3[f(a, b, c)− f(a, c, b) + f(c, a, b)] = 0

so that π3f = 0.
Conversely, suppose π3f = 0. Then

0 = σ3π3f = (σ2
3 + σ3τ3 − σ2

3τ3)f = σ3f

and we see that σ3f = 0 also and putting these together, we get

0 = 3τ3f(a, b, c) = f(a, b, c) + f(b, c, a) + f(c, a, b)

= f(a, b, c)− f(a, c, b) + f(c, a, b)

so that f ∈ C3
c (A,E), since f satisfies (i).

For n = 4, C4
c (A,E) consists of those f ∈ C4(A,E) with

(ii) f(a, b, c, d)− f(b, a, c, d) + f(b, c, a, d)− f(b, c, d, a) = 0

and

(iii) f(a, b, c, d)− f(a, c, d, b) + f(c, a, b, d)− f(c, a, d, b) + f(a, c, d, b) + f(c, d, a, b) = 0

for all a, b, c, d ∈ A. Suppose f ∈ C4
c (A,E); we wish to show that π4f = 0. First we

show that σ4f = 0 and use this show that τ4f = 0 which implies that π4f = 0. From (ii)
we infer that

f(a, b, c, d)− f(b, a, c, d) + f(b, c, a, d)− f(b, c, d, a) = 0

and

f(d, c, b, a)− f(c, d, b, a) + f(c, b, a, d) + f(c, b, d, a) + f(b, c, d, a) + f(c, d, b, a) = 0

Adding these three equations gives f(a, b, c, d) + f(d, c, b, a) = 0 or σ4f = 0. Also from
(ii) we have that

f(a, b, c, d)− f(a, b, d, c) + f(a, d, b, c)− f(d, a, b, c) = 0

f(a, b, c, d)− f(b, a, c, d) + f(b, c, a, d)− f(b, c, d, a) = 0

f(a, c, d, b)− f(a, c, b, d) + f(a, b, c, d)− f(b, a, c, d) = 0

f(c, a, b, d)− f(c, a, d, b) + f(c, d, a, b)− f(d, c, a, b) = 0
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We add these, using that σ4f = 0, to obtain

0 = 3f(a, b, c, d)− f(a, b, d, c) + f(c, a, b, d)− f(a, c, b, d)

− f(b, c, d, a) + f(c, d, a, b)− f(d, a, b, c)− f(b, a, c, d)

+ f(a, c, d, b)f(b, c, a, d)− f(c, a, b, d) + f(a, d, b, c)

= 6τ4f(a, b, c, d)

Conversely, suppose π4f = 0. Then,

0 = σ4π4f = (σ2
4 + σ4τ4 − σ2

4)f = σ4f

from which we can see that τ4f = 0 also. Hence

0 = τ4f(a, b, c, d)− τ4f(b, a, c, d) + τ4f(b, a, c, d)− τ4f(b, c, d, a)

= 1/6[3f(a, b, c, d)− f(a, b, d, c) + f(c, a, b, d)− f(a, c, b, d)

− f(b, c, d, a) + f(c, d, a, b)− f(d, a, b, c)− f(b, a, c, d)

+ f(a, c, d, b) + f(b, c, a, d)− f(c, a, d, b) + f(a, d, b, c)

− 3f(b, a, c, d) + f(b, a, d, c)− f(c, b, a, d) + f(b, c, a, d)

+ f(a, c, d, b)− f(c, d, b, a) + f(d, b, a, c) + f(a, b, c, d)

− f(b, c, d, a)− f(a, c, b, d) + f(c, b, d, a)− f(b, d, a, c)

+ 3f(b, c, a, d)− f(b, c, d, a) + f(a, b, c, d)− f(b, a, c, d)

− f(c, a, d, b) + f(a, d, b, c)− f(d, b, c, a)− f(c, b, d, a)

+ f(b, a, d, c) + f(c, a, b, d)− f(a, b, d, c) + f(b, d, c, a)

− 3f(b, c, d, a) + f(b, c, a, d)− f(d, b, c, a) + f(b, d, c, a)

+ f(c, d, a, b)− f(d, a, b, c) + f(a, b, c, d) + f(c, b, d, a)

− f(b, d, a, c)− f(c, d, b, a) + f(d, b, a, c)− f(b, a, c, d)

Collecting terms and using that σ4f = 0, this reduces to

0 = f(a, b, c, d)− f(b, a, c, d) + f(b, c, a, d)− f(b, c, d, a)

which is (ii) above. Hence

0 = f(c, a, b, d)− f(a, c, b, d) + f(a, b, c, d)− f(a, b, d, v)

and
0 = f(a, c, d, b)− f(c, a, d, b) + f(c, d, a, b)− f(c, d, b, a)
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Adding these and using that σ4f = 0, we get

0 = f(a, b, c, d)− f(a, c, b, d) + f(c, a, b, d)− f(c, a, d, b)

+ f(a, c, d, b) + f(c, d, a, b)

which is (iii) above. This completes the proof of the proposition.
It is true, of course, that

Cn
c = Ker(πn : Cn(R,E) // Cn(R,E))

Now define
Cn
c (A, a, E) = Ker(πnC

n(A, a, E) // Cn(A, a, E))

Also we define Cn
s = Im(Cn // Cn), where Cn stands for any of the groups considered.

1.6. Proposition.

0 // Cn
c (R,E) // Cn

c (A,E) // Cn
c (A, a, E) // 0

and
0 // Cn

s (R,E) // Cn
s (A,E) // Cn

s (A, a, E) // 0

are exact for n = 2, 3, 4, the maps being the restrictions of the corresponding maps on
the full chain groups.

Proof. 5 We can write

πnf(a1, . . . , an) =
∑
p

rpf(ap(1), . . . , ap(n))

where p runs over the permutations of 1, . . . n which depend only on the n (not on the
particular group). If, as before, we let a 7→ a denote the map from A onto R and f 7→ f
the induced map from Cn(R,E) // Cn(A,E), then

πnf(a1, . . . , an) =
∑
p

rpf(ap(1), . . . , ap(1))

=
∑
p

rpf(ap(1), . . . , ap(1))

= πnf(a1, . . . , an)

= πnf(a1, . . . , an)

5Clearly Cn = Cn
c ⊕Cn

s . It is fairly easy to show that if the direct sum of two sequences is exact, each
of the constituents is. However, we give the original argument here.



16

Similarly, if f 7→ f ′ is the map from Cn(A,E) // Cn(A, a, E),

πnf
′(a1, . . . , an) =

∑
p

rpf(ap(1), . . . , ap(1))

=
∑
p

rpf(ap(1), . . . , ap(1))

= πnf(a1, . . . , an)

= (πnf)′(a1, . . . , an)

Since f 7→ f ′ is just the restriction map.

1.7. Proposition. (i) δCn
c ⊆ cn+1

c , for n = 1, 2, 3, (ii) δCn
s ⊆ Cn+1

s , for n = 1, 2 where
C1
c = C1.

Proof. (i) is shown in [2]. (ii) for n = 2, suppose g ∈ C2
s and f = δg, then

π3f(a, b, c) = 1/6[4f(a, b, c) + 2f(c, a, b) + f(c, a, b)

+ f(b, c, a)− f(b, a, c)− f(a, c, b)]

= 1/6[4ag(b, c) + 2cg(b, a) + cg(a, b) + bg(c, a)− bg(a, c)− ag(c, b)

− 4g(ab, c)− 2g(cb, a)− g(ca, b)− g(bc, a) + g(ba, c) + g(ca, b)

+ 4g(a, bc) + 2g(c, ba) + g(c, ab) + g(b, ca)− g(b, ac)− g(c, ab)

− 4cg(a, b)− 2ag(c, b)− bg(c, a)− ag(b, c) + cg(b, a) + bg(c, a)]

Collwcting terms and using that π2g = g, we get

ag(b, c)− g(ab, c) + g(a, bc)− cg(a, b) = f(a, b, c)

Now in the case n = 4, we shall prove something stronger, in fact that π4δ = δπ3. Let
f ∈ C3(A,E). Then

π4δff(a, b, c, d) = 1/12δ[9f(a, b, c, d)− f(a, b, d, c) + f(c, a, b, d)− f(a, c, b, d)

− f(b, c, d, a) + f(c, d, a, b)− f(d, a, b, c)− f(b, a, c, d)

+ f(a, c, d, b) + f(b, c, a, d)− f(c, a, d, b) + f(a, d, b, c)

+ 3f(d, c, b, a) + f(c, d, b, a)− f(d, b, a, c) + f(d, b, c, a)

+ f(a, d, c, b)− f(d, a, b, c) + f(b, d, a, c)− f(c, b, d, a)]
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= 1/12[9af(b, c, d)− 9f(ab, c, d) + 9f(a, bc, d)− 9f(a, b, cd) + 9df(a, b, c)

− af(b, d, c) + f(ab, d, c)− f(a, bd, c) + f(a, b, dc)− cf(a, b, d)

+ cf(a, b, d)− f(ca, b, d) + f(c, ab, d)− f(c, a, bd) + df(c, a, b)

− af(c, b, d) + f(ac, b, d)− f(a, cb, d) + f(a, c, bd)− df(a, c, b)

− bf(c, d, a) + f(bc, d, a)− f(b, cd, a) + f(b, c, da)− af(b, c, d)

+ cf(d, a, b)− f(cd, a, b) + f(c, da, b)− f(c, d, ab) + bf(c, d, a)

− df(a, b, c) + f(da, b, c)− f(d, ab, c) + f(d, a, bc)− cf(d, a, b)

− bf(a, c, d) + f(ba, c, d)− f(b, ac, d) + f(b, a, cd)− df(b, a, c)

+ af(c, d, b)− f(ac, d, b) + f(a, cd, b)− f(a, c, db) + bf(a, c, d)

+ bf(c, a, d)− f(bc, a, d) + f(b, ca, d)− f(b, c, ad) + df(b, c, a)

− af(d, b, c) + f(ad, b, c)− f(a, db, c) + f(a, d, bc)− cf(a, d, b)

+ 3df(c, b, a)− 3f(dc, b, a) + 3f(d, cb, a)− 3f(d, c, ba) + 3af(d, c, b)

+ cf(d, b, a)− f(cd, b, a) + f(c, db, a)− f(c, d, ba) + af(c, d, b)

− df(b, a, c) + f(db, a, c)− f(d, ba, c) + f(d, b, ac)− cf(d, b, a)

+ af(d, b, c)− f(ad, b, c) + f(a, db, c)− f(a, d, bc) + cf(a, d, b)

+ af(d, c, b)− f(ad, c, b) + f(a, dc, b)− f(a, d, cb) + bf(a, d, c)

− bf(a, d, c) + f(ba, d, c)− f(b, ad, c) + f(b, a, dc)− cf(b, a, d)

+ cf(b, a, d)− f(cb, a, d) + f(c, ba, d)− f(c, b, ad) + df(c, b, a)

+ df(c, a, b)− f(dc, a, b) + f(d, ca, b)− f(d, c, ab) + bf(d, c, a)

− bf(d, c, a) + f(bd, c, a)− f(b, dc, a) + f(b, d, ca)− af(b, d, c)

− df(a, c, b) + f(da, c, b)− f(d, ac, b) + f(d, a, cb)− bf(d, a, c)

+ bf(d, a, c)− f(bd, a, c) + f(b, da, c)− f(b, d, ac) + cf(b, d, a)

− cf(b, d, a) + f(cb, d, a)− f(c, bd, a) + f(c, b, da)− af(c, b, d)
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= 1/6[4af(b, c, d)− 4f(ab, c, d) + 4f(a, bc, d)− 4f(a, b, cd) + 4df(a, b, c)

+ 2af(d, c, b)− 2f(d, c, ab) + 2f(d, bc, a)− 2f(cd, b, a) + 2df(c, b, a)

+ af(c, d, b)− f(c, d, ab) + f(bc, d, a)− f(b, cd, a) + df(b, c, a)

+ af(d, b, c)− f(d, ab, c) + f(a, d, bc)− f(cd, a, b) + df(c, a, b)

− af(b, d, c) + f(ab, c, d)− f(a, d, bc) + f(a, cd, b)− df(a, c, b)

− af(c, b, d) + f(c, ab, d)− f(bc, a, d) + f(b, a, cd)− df(b, a, c)]

aπ3f(b, c, d)− π3f(ab, c, d) + π3f(a, bc, d)− π3f(a, b, cd) + dπ3f(a, b, c)

= δπ3f(a, b, c, d)

This completes the proof.

1.8. Proposition. πn(Zn) ⊆ Zn, for n = 2, 3, 4.

Proof. We know that δσ2 = π3δ and that δπ3 = π4δ. So suppose that f ∈ Z4. We must
show that π4f ∈ Z4. First we note that δf = 0 means that

δσ4f(a, b, c, d, e)

= aσ4f(b, c, d)e− σ4f(ab, c, d)e+ σ4f(a, bc, d)e− σ4f(a, b, cd)e+ σ4f(a, b, c)de− eσ4f(a, b, c)d

= 1/2[af(b, c, d, e)− f(ab, c, d, e) + f(a, bc, d, e)− f(a, b, cd, e) + f(a, b, c, de)− ef(a, b, c, d)

− ef(d, c, b, a) + f(ed, c, b, a)− f(e, dc, b, a) + f(e, d, cb, a)− f(e, d, c, ba) + af(e, d, c, b)]

= 1/2[δf(a, b, c, d, e)− δf(e, d, c, b, a)] = 0

Hence it suffices to show that f ∈ Z4 implies τ4(1 − σ4)f = 0. Now σ4(1 − σ4) = 0 and
(1 − σ4)f ∈ Z4 if f is, so that it is even sufficient to assume that f ∈ Z4 with σ4f = 0
and show that π4f ∈ Z4. We now compute 6δτ4f(a, b, c, d, e)

= τ4af(b, c, d, e)−τ4f(ab, c, d, e)+τ4f(a, bc, d, e)−τ4f(a, b, cd, e)+τ4f(a, b, c, de)−τ4ef(a, b, c, d)

to which we can freely add

3δf(a, b, c, d, e) + δf(d, e, c, b, a) + δf(e, c, b, a, d)− δf(e, c, b, d, a) + δf(e, c, d, b, a)− δf(e, b, c, d, a)

+ δf(b, a, c, d, e)− δf(d, e, b, c, a) + δf(e, b, c, a, d)− δf(e, b, c, d, a) + δf(a, c, b, d, e)− δf(a, b, d, e, c)

− δf(c, a, b, d, e)− δf(a, c, d, b, e) + δf(a, d, b, e, c) + δf(c, a, d, b, e) + δf(b, e, c, d, a) + δf(e, c, d, a, b)
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Since δf = 0.

3af(b, c, d, e)− af(b, c.e, d) + af(d, b, c, e)− af(b, d, c.e)− af(c, d, e, b) + af(d, e, b, c)

− af(e, b, c, d)− af(c, b, d, e) + af(b, d, e, c) + af(c, d, b, e)− af(d, b, e, c) + af(b, e, c, d)

− 3f(ab, c, d, e) + f(ab, c.e, d)− f(d, ab, c, e) + f(ab, d, c.e) + f(c, d, e, ab)− f(d, e, ab, c)

+ f(e, ab, c, d) + f(c, ab, d, e)− f(ab, d, e, c)− f(c, d, ab, e) + f(d, ab, e, c)− f(ab, e, c, d)

+ 3f(a, bc, d, e)− f(a, bc.e, d) + f(d, a, bc, e)− f(a, d, bc.e)− f(bc, d, e, a) + f(d, e, a, bc)

− f(e, a, bc, d)− f(bc, a, d, e) + f(a, d, e, bc) + f(bc, d, a, e)− f(d, a, e, bc) + f(a, e, bc, d)

− 3f(a, b, cd, e) + f(a, b.e, cd)− f(cd, a, b, e) + f(a, cd, b.e) + f(b, cd, e, a)− f(cd, e, a, b)

+ f(e, a, b, cd) + f(b, a, cd, e)− f(a, cd, e, b)− f(b, cd, a, e) + f(cd, a, e, b)− f(a, e, b, cd)

+ 3f(a, b, c, de)− f(a, b.de, c) + f(c, a, b, de)− f(a, c, b.de)− f(b, c, de, a) + f(c, de, a, b)

− f(de, a, b, c)− f(b, a, c, de) + f(a, c, de, b) + f(b, c, a, de)− f(c, a, de, b) + f(a, de, b, c)

− 3ef(a, b, c, d) + ef(a, b.d, c)− ef(c, a, b, d) + ef(a, c, b.d) + ef(b, c, d, a)− ef(c, d, a, b)

+ ef(d, a, b, c) + ef(b, a, c, d)− ef(a, c, d, b)− ef(b, c, a, d) + ef(c, a, d, b)− ef(a, d, b, c)

− 3af(b, c, d, e) + 3f(ab, c, d, e)− 3f(a, bc, d, e) + 3f(a, b, cd, e)− 3f(a, b, c, de) + 3dff(a, b, c, d)

+ df(e, c, b, a)− f(de, c, b, a) + f(d, ec, b, a)− f(d, e, cb, a) + f(d, e, c, ba)− af(d, e, c, b)

+ ef(c, b, a, d)− f(ec, b, a, d) + f(e, cb, a, d)− f(e, c, ba, d) + f(e, c, b, ad)− df(e, c, b, a)

− ef(c, d, b, a) + f(ec, d, b, a)− f(e, cd, b, a) + f(e, c, db, a)− f(e, c, d, ba) + af(e, c, d, b)

+ ef(c, d, b, a)− f(ec, d, b, a) + f(e, cd, b, a)− f(e, c, db, a) + f(e, c, d, ba)− af(e, c, d, b)

+ af(c, d, e, b)− f(ac, d, e, b) + f(a, cd, e, b)− f(a, c, de, b) + f(a, c, d, eb)− bf(a, c, d, e)

+ bf(a, c, d, e)− f(ba, c, d, e) + f(b, ac, d, e)− f(b, a, cd, e) + f(b, a, c, de)− ef(b, a, c, d)

+ df(e, b, c, a)− f(de, b, c, a) + f(d, eb, c, a)− f(d, e, bc, a) + f(d, e, b, ca)− af(d, e, b, c)

+ ef(b, c, a, d)− f(eb, c, a, d) + f(e, bc, a, d)− f(e, b, ca, d) + f(e, b, c, ad)− df(e, b, c, a)

+ af(d, b, e, c)− f(ad, b, e, c) + f(a, db, e, c)− f(a, d, be, c) + f(a, d, b, ec)− cf(a, d, b, e)

− ef(b, c, d, a) + f(eb, c, d, a)− f(e, bc, d, a) + f(e, b, cd, a)− f(e, b, c, da) + af(e, b, c, d)

+ af(c, b, d, e)− f(ac, b, d, e) + f(a, cb, d, e)− f(a, c, bd, e) + f(a, c, b, de)− ef(a, c, b, d)

− af(b, d, e, c) + f(ab, d, e, c)− f(a, bd, e, c) + f(a, b, de, c)− f(a, b, d, ec) + cf(a, b, d, e)

− cf(a, b, d, e) + f(ca, b, d, e)− f(c, ab, d, e) + f(c, a, bd, e)− f(c, a, b, de) + ef(c, a, b, d)
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+ cf(a, d, b, e)− f(ca, d, b, e) + f(c, ad, b, e)− f(c, a, db, e) + f(c, a, d, be)− ef(c, a, d, b)

+ bf(e, c, d, a)− f(be, c, d, a) + f(b, ec, d, a)− f(b, e, cd, a) + f(b, e, c, da)− af(b, e, c, d)

+ ef(c, d, a, b)− f(ec, d, a, b) + f(e, cd, a, b)− f(e, c, da, b) + f(e, c, d, ab)− bf(e, c, d, a)

Now, collecting terms and using that σ4f = 0, this reduces to

− f(ab, c, d, e) + f(e, ab, c, d)− f(d, e, ab, c) + f(c, d, e, ab)

− f(ab, e, c, d) + f(d, ab, e, c)− f(c, d, ab, e) + f(e, c, d, ab)

− f(bc, a, d, e) + f(e, bc, a, d)− f(d, e, bc, a) + f(a, d, e, bc)

+ f(bc, d, a, e)− f(e, bc, d, a) + f(a, e, bc, d)− f(d, a, e, bc)

− f(bc, d, e, a) + f(a, bc, d, e)− f(e, a, bc, d) + f(d, e, a, bc)

− f(cd, e, b, a) + f(a, cd, e, b)− f(b, a, cd, e) + f(e, b, a, cd)

− f(cd, e, a, b) + f(b, cd, e, a)− f(a, b, cd, e) + f(e, a, b, cd)

+ f(cd, e, a, b)− f(b, cd, e, a) + f(a, b, cd, e)− f(e, a, b, cd)

− f(cd, e, a, b) + f(b, cd, e, a)− f(a, b, cd, e) + f(e, a, b, cd)

− f(de, a, b, c) + f(c, de, a, b)− f(b, c, de, a) + f(a, b, c, de)

− f(de, b, c, a) + f(a, de, b, c)− f(c, a, de, b) + f(b, c, a, de)

− f(ec, b, a, d) + f(d, ec, b, a)− f(a, d, ec, b) + f(b, a, d, ec)

− f(ad, b, e, c) + f(c, ad, b, e)− f(e, c, ad, b) + f(b, e, c, ad)

− f(ac, d, e, b) + f(b, ac, d, e)− f(e, b, ac, d) + f(d, e, b, ac)

− f(be, c, a, d) + f(d, be, c, a)− f(a, d, be, c) + f(c, a, d, be)

Now define g ∈ C4 by

g(a, b, c, d) = f(a, b, c, d)− f(d, a, b, c) + f(c, d, a, b)− f(b, c, d, a)

Then it is clear that g(a, b, c, d) = −g(d, c, b, a) and that

g(a, b, c, d) = −g(d, a, b, c) = g(c, d, a, b) = −g(b, c, d, a)
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from which it follows that g(a, b, c, d) = −g(b, c, d, a). Then have that

δτ4f(a, b, c, d) = −g(ab, c, d, e)− g(ab, e, c, d)− g(bc, a, d, e) + g(bc, d, a, e)

− g(bc, d, e, a)− g(cd, e, b, a) + g(cd, a, e, b)− g(cd, e, a, b)

− g(de, a, b, c)− g(de, b, c, a)− g(ec, b, d, a)− g(ad, b, e, c)

− g(ac, d, e, b)− g(be, c, a, d)

At this time we need

1.9. Lemma.

g(ab, c, d, e) + g(ea, b, c, d) + g(de, a, b, c) + g(cd, e, a, b) + g(bc, d, e, a) = 0

Proof.

0 = −δf(a, b, c, d, e)− δf(e, a, b, c, d)− δf(d, e, a, b, c)− δf(c, d, e, a, b)− δf(b, c, d, e, a)

= −af(b, c, d, e) + f(ab, c, d, e)− f(a, bc, d, e) + f(a, b, cd, e)− f(a, b, c, de) + ef(a, b, c, d)

− ef(a, b, c, d) + f(ea, b, c, d)− f(e, ab, c, d) + f(e, a, bc, d)− f(e, a, b, cd) + df(e, a, b, c)

− df(e, a, b, c) + f(de, a, b, c)− f(d, ea, b, c) + f(d, e, ab, c)− f(d, e, a, bc) + cf(d, e, a, b)

− cf(d, e, a, b) + f(cd, e, a, b)− f(c, de, a, b) + f(c, d, ea, b)− f(c, d, e, ab) + bf(c, d, e, a)

− bf(c, d, e, a) + f(bc, d, e, a)− f(b, cd, e, a) + f(b, c, de, a)− f(b, c, d, ea) + af(b, c, d, e)

= g(ab, c, d, e) + g(ea, b, c, d) + g(de, a, b, c) + g(cd, e, a, b) + g(bc, d, e, a) = 0

from which the lemma follows.
Using the lemma and the fact that g(a, b, c, d) = g(a, d, c, b), we get

0 =− g(ab, c, e, d)− g(bc, e, d, a)− g(ce, d, ab)− g(ed, a, b, c)− g(da, b, c.e)

− g(bd, a, c, e)− g(da, c, e, b)− g(ac, e, bd)− g(ce, b, d, a)− g(eb, d, a.c)

+ g(ba, c, e, d) + g(ac, e, d, b) + g(ce, d, ba) + g(ed, b, a, c) + g(db, a, c.e)

− g(de, b, a, c)− g(eb, a, c, d)− g(ba, c, de)− g(ac, d, e, b)− g(cd, e, b.a)

+ g(be, a, c, d) + g(ea, c, d, b) + g(ac, d, be) + g(cd, b, e, a) + g(db, e, a.c)

− g(ae, c, d, b)− g(ec, d, b, a)− g(cd, b, ae)− g(db, a, e, c)− g(ba, e, c.d)

+ g(bd, e, a, c) + g(de, a, c, b) + g(ea, c, bd) + g(ac, b, d, e) + g(cb, d, e.a)

− g(ea, c, b, d)− g(ac, b, d, e)− g(cb, d, ea)− g(bd, e, a, c)− g(de, a, c.b)
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=− g(ab, c, d, e)− g(ab, e, c, d)− g(bc, a, d, e) + g(bc, d, e, a)

− g(bc, d, e, a)− g(cd, e, b, a) + g(cd, a, e, b)− g(cd, e, a, b)

− g(de, a, b, c)− g(de, b, c, a)− g(ec, b, a, d)− g(ad, b, e, c)

− g(ac, d, e, b)− g(be, c, a, d)

= δτ4f(a, b, c, d, e)

which completes the proof.

1.10. Proposition. πn(Bn) ⊆ Bn for n = 2, 3, 4.

Proof. If n = 2, suppose f ∈ B2. Then

f(a, b) = ag(b)− g(ab) + bg(a) = f(b, a)

so that 0 = π2f ∈ B2. If n = 3 and f ∈ B3, then π3f(a, b, c)

= 1/6[4f(a, b, c) + 2f(c, b, a) + f(c, a, b) + f(b, c, a)− f(b, a, c)− f(a, c, b)

= 1/6[4ag(b, c)− 4g(ab, c) + 4g(a, bc)− 4cg(a, b)

+ 2cg(b, a)− 2g(cb, a) + 2g(c, ba)− 2ag(c, b)

+ cg(a, b)− g(ca, b) + g(c, ab)− bg(c, a)

+ bg(c, a)− g(bc, a) + g(b, ca)− ag(b, c)

− bg(a, c, ) + g(ba, c)− g(b, ac) + cg(b, a)− ag(c, b, ) + g(ac, b)− g(a, cb) + bg(a, c)]

= 1/2[ag(b, c)− g(ab, c) + g(a, bc)− cg(a, b)

− ag(c, b, ) + g(ac, b)− g(a, cb) + bg(a, c)]

= π2ag(b, c)− π2g(ab, c) + π2g(a, bc)− π2cg(a, b)

For n = 4, we already know that δπ3 = π4δ

1.11. Definition. Zn
c = Zn ∩ Cn

c , Zn
s = Zn ∩ Cn

s , Bn
c = Bn ∩ Cn

c , Bn
s = Bn ∩ Cn

s ,
Hn
c = Zn

c /B
n
c , Hn

s = Zn
s /B

n
s , for n = 1, 2, 3, 4, where we let C1

c = C1 and C1
s = 0.

1.12. Theorem. Let 0 // a //A //R // 0 be exact. Then the following sequences are
exact and the sequence (∗) on page 7 is the direct sum of them:

0 //H1
c (R,E) //H1

c (A,E) //H1
c (A, a, E)

//H2
c (R,E) //H2

c (A,E) //H2
c (A, a, E)

//H3
c (R,E) //H3

c (A,E) //H3
c (A, a, E)

//H4
c (R,E) //H4

c (A,E) //H4
c (A, a, E)
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0 //H1
s (R,E) //H1

s (A,E) //H1
s (A, a, E)

//H2
s (R,E) //H2

s (A,E) //H2
s (A, a, E)

//H3
s (R,E) //H3

s (A,E) //H3
s (A, a, E)

//H4
s (R,E) //H4

s (A,E) //H4
s (A, a, E)

Proof. First we show that Hn ∼= Hn
c ⊕hns . πn(Zn) ⊆ Zn∩Zn

s and (1−πn)(Zn) ⊆ Zn∩Cn
c

give Zn = Zn
c ⊕ Zn

s and similarly we see that Bn = Bn
c ⊕Bn

s , so that

Hn =
Zn
Bn

=
Zn
c ⊕ Zn

s

Bn
c ⊕Bn

s

∼=
Cn
c

Bn
c

⊕ Zn
s

Bn
s

= Hn
c ⊕Hn

s

To finish the proof we must show that the maps used in the exact sequence (∗) on 7 map
commutative (skew commutative) to commutative (skew commutative) cocycles. In the
case of the maps induced by the injection of a into A and the projection of A onto R,
it is clear. The dimension raising map Hn−1(A, a, E) // Hn(R,E) is given as follows:
Let f : a(n−1) // E with δf = 0. Choose f ∈ Cn(A,E) which extends f . If f is
commutative (skew commutative), this may be expressed by saying that f vanishes on
a certain subspace B ⊆ a(n). We can write B = C ∩ a(n) where C is the subspace of
A(n) on which all commutative (skew commutative) maps vanish. Then we can assume
f vanishes on C also since are merely linear maps; i.e. f ∈ Cn

c (A,E) (Cn
s (A,E)). Then

δf(a1, . . . an+1) = 0 if any ai ∈ a since f |a(n) ∈ Zn(A, a, E) so that f is a well defined
map in Cn+1(R,E). Also δδf = 0 so δf ∈ Zn+1(R,E). Since δ maps commutative (skew
commutative) maps to commutative (skew commutative) ones the theorem is proved.

2. Chapter II

This chapter is devoted to an examination of some of these groups. It is known that
H1(A, a, E) is isomorphic to all the groups HomA(a, E), Hom(a/a2, E), HomR(a/a2, E)
where since a · a/a2 = 0, a/a2 becomes an r-module.

2.1. Theorem. There are exact sequences

(i) 0 //H2
c (A, a, E) // Ext1A(a, E) // HomA(a⊗A a, E)

(ii) 0 //H2
s (A, a, E) // HomA(a, H1(A,E)) // HomA(a⊗A a, E)

(iii) 0 //H2(A, a, E) // Ext1A⊗A(a, E) // HomA(a⊗A a, E)
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Proof. Let f ∈ Z2
c (A, a, E). We define and extension

0 // E
θ //B

φ // a // 0

as follows: Let B be the additive group a⊕E and define a(α, e) = (aα, ae+ f(a, α)), for
all a ∈ A, α ∈ a, e ∈ E. To see that this defines an associative operation of A on B, we
compute (ab)(α, e) and a(b(α, e)).

(ab)(α, e) = (abα, abe+ f(ab, α))

a(b(α, e)) = a(bα, be+ f(b, α)) = (abα, abe+ af(b, α) + f(a, bα))

so that we must show that af(b, α) − f(ab, α) + f(a, bα) = 0, but this just says that
δf(a, b, α) = 06. We let θ : E // B by θ(e) = (0, e) and φ : B // A by φ(α, e) = α.
θ(ae) = (0, ae) = a(0, e) = aθ(e) [and] φ(a, (α, e)) = φ(aα, ae + f(a, α)) = aα = aφ(α, e)
so that (θ, B, φ) ∈ Ext1(a, E). Suppose that (θ, B, φ) is equivalent to the split extension;
i.e. that have a map t : // a⊕ E such that the following diagram is commutative

0 E B a 0

0 E a⊕ E a 0

// θ // φ // //

// // // //
��

t

�� ��

where unlabeled maps are the obvious ones. If t(α, e) = (α′, e′), then by the commutativity
of the diagram α = α′. Also, t(0, e) = (0, e) by the commutativity of the diagram which
gives t(α, e) = t(α, 0) + t(0, e) = (α, e′ − e) so that e′ − e depends only on α. Let
g(α) = e′ − e and we get that t(α, e) = (α, e+ g(α)). Than

t(a(α, e)) = t(aα, ae+ f(a, α)) = (aα, ae+ f(a, α) + g(α))

while
at(α, e) = a(α, e+ g(α)) = (aα, ae+ ag(α))

and setting these equal,

f(a, α) = ag(α)− g(aα) = δg(a, α)

Now suppose there is a map g : a // E with f = δg. Map t : B // a ⊕ E by
t(α, e) = e+ g(α). Then

t(a(α, e)) = t(aα, ae+ f(a, α)) = t(aα, ae+ ag(α) + g(aα))

= (aα, ag(α)− g(aα) + g(aα)) = a(α, e+ g(α)) = at(α, e)

6Note that aE = 0 so that the fourth term of δf(a, b, α) is 0
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Hence we get a monomorphism of H2
c (A, a, E) into Ext1A(a, E). Now let

0 // E
φ //B

θ // a // 0

be an extension of E by a. Choose a linear map g : a // B with θg the identity map.
Then for a ∈ A, α ∈ a, f(a, α) = ag(α) − g(aα) ∈ E. We define f : a ⊕ a // E by
f(α, β) = f(α, β)− f(β, α) = αg(β)− βg(α).

f(aα, β)− af(α, β) = aαg(β)− βg(aα)− aαg(β) + βag(α)

= (
¯
ag(α)− g(aα)) = 0

since a · E = 0, and

f(aα, β)− f(α, aβ) = aαg(β)− g(aαβ)− αg(aβ) + g(aαβ)

= α(ag(β))− g(aβ) = 0

so that f ∈ Hom(a ⊗ a, E). If g′ is another choice for g, then g′(α) − g(α) ∈ E for all

α ∈ a, so that if f ′ = δg′ and f
′
(α, β)− f ′(β, α), then

f(α, β)− f ′(α, β) = f(α, β)− f(β, α)− f ′(α, β) + f ′(β, α)

= αg(β)− βg(α)− αg′(β) + βg′(α)

= α(g(β)− g′(β))− β(g(α)− g′(α)) = 0

since a · E = 0. f 7→ 0 under this map if and only if f(α, β) = f(β, α) for all α, β ∈ a.
Clearly if f is in the image of H2

c (A, a, E) it satisfies this condition. Conversely, suppose
f satisfies this condition. Then by choosing a basis for a and extending it to a basis for
A, we can find f ∗ : a(2) //E which extends f and continues to satisfy f ∗(a, b) = f ∗(b, a)
for all a, b ∈ a(2). Now if α ∈ a and a, b ∈ A, we have

f ∗(αa, b)− f ∗(α, ab) = bf ∗(a, a) = f ∗(b, αa)− f ∗(ba, α) + bf ∗(a, α)

= f(b, αa)− f(ba, α) + bf(a, α) = 0

and

af ∗(α, b)− f ∗(aα, b) + f ∗(a, αb)− bf ∗(a, α) = af(b, α)− f(b, aα) + f(a, αb)− bf(a, α)

= abg(α)− ag(bα)− bg(aα) + g(baα) + ag(αb)− g(aαb)− bag(α) + bg(aα) = 0

and we see from this that f ∗ ∈ Z2
c (A, a, E). Clearly f ∗ induces that given extension,

which proves that (i) is exact.
Now let f ∈ Z2

s (A, a, E), α ∈ a, and a, b ∈ A. Then

f(αa, b)− f(α, ab) + bf(α, a) = 0
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−af(α, b) + f(bα, a)− f(b, αa) + af(b, α) = 0

−f(b, α) + f(ab, α)− f(a, bα) = 0

Adding as using that f(a, b) = −f(b, a), we get after divison by 2, f(αa, b) − f(α, ab) +
f(a, bα) = 0. Subtracting this from the first equation above, we get f(αb, a) = bf(α, a).
From this we see that f(α, ab) = af(α, b) + bf(α, a), so that each α ∈ a, f(α, ·) is
a derivation of A to E. Hence if we make H1(A,E) into an A-module by (ag)(b) =
ag(b) for all a, b ∈ A and g ∈ H1(A,E), we see that f ∈ HomA(a, H1(A,E)), and that
f(α, β) = −f(β, α), for all α, β ∈ a. Conversely, let f ∈ HomA(a, H1(A,E)) satisfy
f(α, β) = −f(β, al) for all α, β ∈ a. Now we think of f as a map from a ⊗ A // E.
Extend to a map f ∗ : A(2) // E which continues to satisfy f ∗(a, b) = −f ∗(b, a).7 Then

f ∗(αa, b)− f ∗(α, ab) + bf ∗(α, a) = f(αa, b)− f(α, ab) + bf(α, a)

= af(α, b)− af(α, b)− bf(α, a) + bf(α, a) = 0

and
af ∗(α, b)− f ∗(aα, b) + f ∗(a, αb)− bf ∗(a, α)

= −af(b, α) + af(b, α) + bf(a, α)− bf(a, α) = 0.

Hence the image of H2
s (A, a, E) is

{f ∈ HomA(a, H1(A,E)) | f(α, β) = −f(β, α) for all α, β ∈ a}

Now map HomA(a, H1(A,E)) into Hom(a⊗ a, E) as follows: Let f ∈ Hom(a, H1(A,E)),
then f : a⊗ A // E. If α, β ∈ a, let f ′(α, β) = f(α, β) + f(β, α). Then if a, b ∈ A,

f ′(aα, β) = f(aα, β)+f(β, aα) = af(α, β)+af(β, α)+αf(β, a) = a(f(α, β)+f(β, α)) = af ′(α, β)

Since f ′(α, β) = f ′(β, α) we see that f ′(α, aβ) = f ′(aβ, α) = af ′(β, α), so that f can be
thought of as a map in Hom(a ⊗A a, E). The kernel of this map is clearly the image of
H2
s (A, a, E) so that the sequence (ii) is exact.

Ext1A⊗A(A,E) is the group of extensions

0 // E θ //B
φ // a // 0

where B is a two-sided A-module with possibly different operations on each side, and θ
and φ are two-sided A-homomorphisms. Ext1A(a, E) can be thought of as that subgroup
consisting in which the operations are the same on each side. Suppose f ∈ Z2(A, a, E).
Let B be the additive group a ⊕ E and define a(α, e) = (aα, ae + fa, α) and (α, e)a =
(αa, ea + f(α, a)). The verifications that (ab)(α, e) = a(b(α, e)) and that (α, e)(ab) =
((α, e)a)b are the same as in the proof of the exactness of (i).

(a(α, e))b = (aα, ae+ f(aα))b = (abα, abe+ bf(a, α) + f(aα, b))

= (abα, abe+ f(a, αb) + af(α, b)) = a(ba, be+ f(α, b)) = a((α, e)b)

7The original here is f∗ : a(2) // E, but this makes no sense.
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since δf = 0. Suppose that f induces the split extension so that we have a commutative
diagram

0 E B a 0

0 E a⊕ E a 0

// // // //

// // // //
��

t

�� ��

As before we see that t(α, e) = (α, e+ g(α)) and that f = δg. Conversely, if f = δg. then
f is commutative and makes A operate the same on sides of B and then just as before f
induces the split extension.

Suppose

0 // E
θ //B

φ // a // 0

is a two-sided extension of E by a. Let g : a // B a linear map such that φg is the
identity. Let f1(a, α) = ag(α) − g(aα) and f2(α, a) = g(α)a − g(aα) for all a ∈ A and
α ∈ a. Then

af1(b, α)−f1(ab, α)+f1(a, bα) = abg(α)−ag(bα)−abg(α)+g(abα)+ag(bα)−g(abα) = 0

while

f2(αa, b)−f2(α, ab)+f2(α, a)b = g(αa)b−g(αab)−g(α)ab+g(αab)+g(α)ab−g(αa)b = 0

and

af2(α, b)− f2(aα, b) + f1(a, αb)− f1(a, α)b

= ag(α)b− ag(αb)− g(aα)b+ g(aαb) + ag(αb)− g(aαb)− ag(α)b+ g(aα)b = 0

We associate the extension with the pair (f1, f2). Suppose g′ is another choice for g and
f ′1, f

′
2 are the corresponding maps. Let h = g − g′. Then (f1 − f ′1)(a, α) = ah(α)− h(aα)

and (f2 − f ′2)(α, a) = h(α)a − h(aα) = ah(α) − h(aα) since h(α) ∈ E, and A operates
the same on both sides of E. In accordance with this we will say (f1, f2) ∼ (f ′1, f

′
2) if and

only if there is an h ∈ C1(A, a, E) with (f1 − f ′1)(a, α) = δh(a, α) and (f2 − f ′2)(α, a) =
δh(α, a). The map from Z2(A, a, E) // Ext1A⊗A(a, E) associates with f the pair (f1.f2)
where f1(a, α) = f(a, α) and f2(α, a) = f(α, a) for all a ∈ A and α ∈ a. From the
previous discussion we see that the kernel of this map is exactly B2(A, a, E). Hence
we have a monomorphism from H2(A, a, E) to Ext1A⊗A(a, E). If (f1, f2) is in the image,
then for all α, β ∈ a, f1(α, β) = f2(α, β). Conversely, suppose this is satisfied. Then
by the usual basis argument we can find a map f ∈ C2(A, a, E) with f |A⊗a = f1 and
f |a⊗A = f2. From the relations satisfied by f1 and f2 we infer that δf = 0 and hence f
is in the image of H2(A, a, E). Now given a pair (f1, f2) corresponding to an extension,
let f ′(α, β) = f1(α, β) − f2(α, β) for all α, β ∈ a. We then see that f ′ = 0 if and only if
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(f1, f2) is in the image of H2(A, a, E), so that f ′ = 0.

f ′(aα, β)− af ′(a, β) = f1(aα, β)− f2(aα, β)− af1(α, β) + af2(α, β)

= aαg(β)− g(aαβ)− g(aα)β + g(aαβ)− aαg(β) + ag(αβ)− g(aα)β

= (ag(α)β − g(aα))β = 0

since E · a = 0. Similarly, f ′(α, aβ) = af ′(α, β) = f ′(αa, β) so that f ′ ∈ HomA(a⊗ a, E).
This completes the proof.

In the next part of this chapter we apply some of these results to the theory of local
noetherian algebras. Let A now denote a commutative radical algebra with ascending
chain condition and let A∗ denote with an identity adjoined; i.e. A∗ is that additive group
A ⊕ k made into an algebra by defining (a, λ)(b, µ) = (ab + µa + λb, λµ) for all a, b ∈ A
and λ, µ ∈ k. Saying that A is a radical algebra is the same thing as saying that A∗ is a
local algebra with maximal ideal A.

2.2. Proposition. Hn
c (A,E) ∼= Hn(A∗, E) and Hn

s (A,E) ∼= Hn
s (A∗, E) for n = 2, 3, 4.

Proof. In [4], it is shown that Hn(A,E) ∼= Hn(A∗, E), for all n ≥ 1, with the isomor-
phism by restriction. If we consider the sequence

0 //H1(A,E)
j1 //H1(A∗, E)

i1 //H1(A∗, A,E)

d2 //H2(A,E)
j2 //H2(A∗, E)

i2 //H2(A∗, A,E)

d3 //H3(A,E)
j3 //H3(A∗, E)

i3 //H3(A∗, A,E)

d4 //H4(A,E)
j4 //H4(A∗, E)

i4 //H4(A∗, A,E)

we see that i1 = d2 = i2 = d3 = i3 = d4 = i4 = 0 since j2, j3 and j4 are isomorphisms.
Hence the commutative and skew commutative parts of these maps are 0 and we have
0 //Hn

c (A,E) //Hn
c (A∗, E) // 0 and 0 //Hn

c (A,E) //Hn
s (A∗, E) // 0 are exact for

n = 2, 3, 4. k becomes an A-module if we let aλ = 0 for all a ∈ A, λ ∈ k.

2.3. Proposition. Hn(A, k) ∼= TorA
∗

n (k, k).

Proof.Hn(A, k) ∼= Hn(A∗, k) from above. From [1], page 170, we see thatHn(A∗,Homk(k, k)) ∼=
ExtnA∗(k, k). But of course Homk(k, k) ∼= k, so we have Hn(A, k) ∼= ExtnA∗(k, k). Now we
need

2.4. Proposition. dimk ExtnA∗(k, k) is finite.
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Proof. We have 0 //A //A∗ //k //0 the beginning of a free resolution for k. Suppose
we have

0 //Kn
// Fn // Fn−1 // · · · // A∗ // k // 0

exact with every Fi free and finitely generated. Then Kn is a submodule of Fn a finitely
generated A∗-module and A∗ is noetherian, so Kn is finitely generated. Hence we can find
a finitely generated free module Fn+1 mapping onto Kn. Let Kn+1 be the kernel of this
map, so we have

0 //Kn+1
// Fn+1

// Fn // · · · // A∗ // k // 0

exact with every Fi free and finietly generated. Hence, inductively, we have a free res-
olution for k in which every Fi is finitely generated, Fi =

∑
A∗, the sum being finitely

so
HomA∗(Fi, k) ∼= HomA∗(

∑
A∗, k) ∼=

∑
HomA∗(A

∗, k) ∼=
∑

k

and hence is a finite dimensional space. ExtiA∗(k, k) is a quotient of a subspace of this
and hence is a finite dimensional space. This completes the lemma.

Now by [1], page 120, TorA
∗
(Homk(k, k), k) ∼= Homk(ExtnA∗(, k, ), k) but again Homk(k, k) ∼=

k and since ExtnA∗(k, k) is finite dimensional, we also have Homk(ExtnA∗(k, k), k) ∼= ExtnA∗(k, k),
so that TorAn (k, k) ∼= ExtnA∗(k, k) ∼= Hn(A, k).

Now, in [5], it is shown that if A∗ is a local algebra with maximal ideal A and

dimk(A/A
2) = n, then dimk(TorA

∗

i ) ≥
(
n
i

)
with equality for all i > 1 if and only

if equality for any i > 1 if and only if A∗ is regular.
Let Pm(A, k) be the set of all f ∈ Zm(A, k) with f(aσ(1), . . . , aσ(m)) = sgnσf(a1, . . . , am)

for all permutations σ of 1, . . . , m where sgnσ is +1 or −1 according as σ is even or odd
(i.e. the alternating maps).

2.5. Lemma. If the characteristic of k does not divide m and f ∈ Pm(A, k) then f(a1, . . . , am) =
0 if any ai ∈ A2.

Proof. Since f ∈ Pm(A, k) and A · k = 0, we get that

0 = δf(a2, a3, . . . , am+1, a1) = −f(a2a3, a4, . . . , am+1, a1) + · · ·

+ (−1)m−1f(a2, . . . , amam+1, a1) + (−1)mf(a2, . . . , am+1, a1) (i)

and

0 = δf(a3, a4, . . . , am+1, a1, a2) = −f(a3, a4, . . . , am+1, a1, a2) + · · ·

+ (−1)mf(a3, . . . , amam+1a1, a2) + (−1)mf(a3, . . . , am+1, a1a2)

= (−1)mf(a2, a3a4, . . . , a1) + · · ·+ f(a2, a3, . . . , am+1a1) + (−1)mf(a1a2, a3, . . . , am+1)



30

and multiplying by (−1)m we get

0 = −f(a2, a3a4, . . . , am+1, a1) + · · ·+ (−1)m−1f(a2, a3, . . . , am+1a1)

+ (−1)mf(a1a2.a3, . . . , am+1) (ii)

Adding (i) and (ii) gives

−f(a2a3, . . . , am+1,a1) + (−1)mf(a1a2, . . . , am+1) = 0

or
(−1)mf(a1, a2a3, . . . , am+1) + (−1)mf(a1a2, a3, . . . , am+1) = 0

and finally
f(a1, a2a3, . . . , am+1) = −f(a1a2, a3, . . . , am+1)

Then using again that f is an alternating map, we get

f(a1, . . . , ajaj+1, . . .) = −f(a1 . . . , aj−1aj, . . . am+1)

= · · · = (−1)j−1f(a1a2, a2, . . . , am+1)

Then
0 = δf(a1, a2, . . . , am+1) =

∑
(−1)jf(a1, . . . , ajaj+1, . . . , am+1)∑

−f(a1, a2, a3, . . . , am+1) = −mf(a1a2, a3, . . . , am+1)

and if the characteristic of k does not divide m, f(a1a2, a3, . . . .am+1) = 0. Since f this
implies that f(a1, . . . , am) = 0 if any ai ∈ A2.

Hence f induces anm-linear map from A/A2 to k. Conversely, anym-linear alternating
map from A/A2 to k comes from such a cocycle. For if g : A/A2 // k is such a map, let

f(a1, a2, . . . , am) = g(a1 + A2, a2 + A2, . . . am + A2)

Then since g alternates, so does f . Moreover δg = 0 since every term has a variable in
A2. It is well known that the dimension of the space of m-linear alternating maps of an

n-dimensional vector space into its coefficient field is

(
n
m

)
. Hence we have

2.6. Proposition. dimk P
m(A, k) =

(
n
m

)
.

2.7. Proposition. If f ∈ Bm(A, k), then
∑

sgnσf(aσ(1), . . . , aσ(m)) = 0, where the sum
is taken over all permutations of 1, . . . ,m.

Proof. see [6].

2.8. Theorem. If the characteristic of k does not divide m!,8 then Bm(A, k)∩Pm(A, k) =
0.

8Obviously this means that the characteristic is > m
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Proof. For if f ∈ Pm(A, k), then

0 =
∑

sgnσf(aσ(1), . . . , aσ(m)) =
∑

f(a1, . . . , am) = m!f(a1, . . . , am)

which gives that f(a1, . . . , am) = 0.

2.9. Proposition. Pm(A, k) ⊆ Zm
s (A, k) for m = 2, 3, 4.

Proof. It is sufficient to show that if f ∈ Pm(A, k), then πmf = f .

π2f(a, b) = 1/2[f(a, b)− f(b, a)] = f(a, b)

π3f(a, b, c) = 1/6[4f(a, b, c) + 2f(c, b, a)− f(b, a, c) + f(b, c, a)− f(a, c, b) + f(c, a, c)]

= 1/6[(4− 2 + 1 + 1 + 1 + 1)f(a, b, c)] = f(a, b, c)

π4f(a, b, c, d) = 3/4f(a, b, c, d) + 1/4f(d, c, b, a) +D

where D is a sum of terms of the form 1/12[f(a, y, z, t) − f(t, z, y, x) and is 0 for an
alternating map, so π4f = f .

2.10. Theorem. If H2(A, k) = 0, then A is regular. If A is regular, then Hm(A, k) = 0,
for m = 2, 3, 4.

Proof. Using Tate’s theorem and Proposition 2.3, we get that dimkH
m(A, k) ≥

(
n
m

)
with equality if and only A is regular. Consequently, since dimk P

2(A, k) =

(
n
m

)
, A is

reguar if and only if Hm(A, k) = Pm(A, k). Now for m = 2, P (A, k) = H2
s (A, k) so that A

is regular if and only if H2
c (A, k) = 0. Moreover, by Proposition 2.9, Pm(A, k) ⊆ Zm

s (A, k)
so that if A is regular, Hm

c (A, k) = 0, for m = 3, 4.
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3. Appendix

Here we give a more natural proof of Theorem 16 of [2] and add a few miscellaneous
results.

3.1. Theorem. Let A be a commutative algebra with identity, and S a multiplicatively
closed subset of A with 1 ∈ A, 0 /∈ A and AS the algebra of quotients. Suppose E is an
AS-module, then H2

c (AS, E) ∼= H2
c (A,E).

Proof. We first consider the case in which there are no zero divisors of S in A. In this
case A is a subalgebra of AS. We know from [2] that H2

c (A,E) is the group of extensions

0 // E
θ //B

φ // A // 0

in which B is a commutative algebra, E is an ideal of B with E2 = 0 and be = φ(b) for
all b ∈ B and e ∈ E.

3.2. Lemma. If B is such an extension, then B has an identity.

Proof. Choose b ∈ B with φ(b) = 1. If e ∈ E, be = e. φ(b2 − b) = 0, so if we let
e = b2 − b, then since e2 = 0,

(b− e)2 = b2 − 2be = b2 − 2eb = b2 − e+ b− b2 = b− e

so that replacing, if necessary, b by b − e we may assume that b2 = b. Then if b′ ∈ B,
bb′ − b′ ∈ E, so that bb′ − b = b(bb′ − b′) = b2b′ − bb′ = 0 and we get that b = 1.9

Now let T = φ−1(S).

3.3. Lemma. There are no zero divisors of T in B.

Proof. For if b ∈ B. t ∈ T with tb = 0, then 0 = φ(tb) = φ(t)φ(b) and φ(t) ∈ S, so that
φ(b) = 0. Then b ∈ E so that 0 = tb = φ(t)b. But E is an AS-module, so that b = 0.
Hence we can form the ring of quotients BT . Map φT : BT

//AS by φT (b/t) = φ(b)/φ(t)
and θT : E //BT as θ followed by the inclusion of B into BT .

3.4. Lemma. The sequence

0 // E
θT //BT

φT // AS // 0

is exact.

Proof. Clearly θT is a monomorphism, φT is an epimorphism, and φT θT = 0. If φT (b/t) =
0, then φ(b)− 0 and b ∈ E. Then b = φ(t)(b/φ(t)) = t(b/φ(t)) so that b/t = b/φ(t) ∈ E.

Also as a corollary to the proof, we have

9A conceptually simpler argument is to use the multiplication (a, e)(a′, e′) = (ae′, a′e+ ae′ + f(a, a′))
on A ⊕ E. Let g(a) = −f(1, a). Then (f − δg)(1, a) = −1f(1, a) − af(1, 1). Using that δf(1, 1, a) = 0
yields 1f(1, a) − af(1, 1) = 0, so that, replacing f by f − δg, we can suppose that f(1, a) = 0 and then
(1, 0)(a, e) = (a, e+ f(1, a)) = (a, e).
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3.5. Corollary. e/t = e/φ(t) for all e ∈ E and t ∈ T .

We denote this extension (θS, BT , φT ) by (θ, B, φ)T . It will be shown that the map
T : H2

c (A,E) // H2
c (AS, E) given by T (θ, B, φ) = (θ, B, φ)T is well defined and an

isomorphism of the groups.
Suppose (θ, B, φ) amd (θ′, B′, φ′) are two extensions. Their sum, which we will denote

by (θ, B, φ) ∗ (θ′, B′, φ′) is given as follows. Let M = {(b, b′) ∈ B ⊕ B′ | φ(b) = φ′(b′)},
N = {(θ(e),−θ′(e′)) | e ∈ E}, and B∗B′ = M/N . We denote the class containing (b, b′) by
b∗b′. Define φ∗φ′ by (φ∗φ′)(b∗b′) = φ(b) = φ′(b′) and θ∗θ′ by (θ∗θ′)(e) = θ(e)∗0 = 0∗θ′(e).
Let T ′ = φ′−1(S) and T ∗ T ′ = (φ ∗ φ′)−1(S).

3.6. Lemma. (θ, B, φ)T ∗ (θ′, B′, φ′)T ′ ∼ (θ ∗ θ′, B ∗B′, φ ∗ φ′)T∗T ′.

Proof. We define f : Bt ∗ B′T ′ // (B ∗ B′)T∗T ′ as follows: Let b/t ∗ b′/t′ ∈ BT ∗ BT ′ .
Choose u ∈ B′ with φ′(u) = φ(t)/φ′(t′). φ′(u) is invertible in AS so there exists v ∈ B′T ′
with uv − 1 = e ∈ E. Then

u(v − e/φ′(u)) = uv − ue/φ′(u) = 1 + e− φ′(u)e/φ′(u) = 1

which gives that u is invertible in B′T ′ . Then b′/t′ = ub′/ut′,

φ′(ut′) = φ′(t′)φ′(u) = φ′(t′)φ(t)/φ′(t′) = φ(t)

and
φ′(ub′) = φ′(ut′b′) = φ′(ut′)φ′(b′/t′) = φ(t)φ(b/t) = φ(b)

so that (b ∗ ub′)/(t ∗ ut′) ∈ (B ∗ B′T∗T ′ and we let this be f(b/t ∗ b′/t′). (Using the same
argument as before it is see that t ∗ ut′ is an invertible element of (B ∗ B′)T∗T ′ .) It is a
straightforward calculation to show that does depend on u and defines a homomorphism of
BT ∗B′T ′ to (B∗B′)T∗T ′ . If f(b/t∗b′/t′) = 0, then there exists e ∈ E with b = θ(e) and ub′ =
−θ′(e). Then from Corollary 3.5, b/t = θ(e/φ(t)), and b′/t′ = ub′/ut′ = −θ′(e/φ′(ut′)) =
−θ′(e/φ(t)), so that b/t ∗ b′/t′ = 0. Moreover, if (b ∗ b′)/(t ∗ t′) ∈ (B ∗ B′)T∗T ′ , then
f(b/t ∗ b′/t′) = (b ∗ b′)/(t ∗ t′) so that f is an isomorphism. Also we have

(φ ∗ φ′)T∗T ′f(b/t ∗ b′/t′) = (φ ∗ φ′)T∗T ′((b ∗ ub′)/(t ∗ ut′))

= (φ ∗ φ′)(b ∗ ub′)/φ ∗ φ′(t ∗ ut′)

= φ(b)/φ(t) = φT (b/t) = (φT ∗ φ′T ′)(b/t ∗ b′/t′)

and
f(θT ∗ θ′T ′)(e) = f(θ(e)/1 ∗ 0/1) = (θ(e) ∗ 0)/(1 ∗ 1) = (θ ∗ θ′)T∗T ′(e)

This proves the lemma.

3.7. Lemma. (θ, B, φ) is the split extension if and only if (θ, Bφ)T is.
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Proof. Suppose (θ, B, φ) splits, with g : E ⊕ A // B the isomorphism. Define gT :
E ⊕ AS // BT by gT (e, a/s) = g(e, 0) + g(0, a)/g(0, s) for all e ∈ E, a ∈ A and s ∈
S. It is easily checked that gT is an algebra homomorphism. If gT (e, a/s) = 0, then
g(0, a) = −g(e, 0)g(0, s) = −g(es, 0), or since g is an isomorphism, (0, a) = −(es, 0).
Hence (e, a/s) = 0. Further, if g(e, a)/g(e′, s) ∈ BT , then

g(se− ae′) + g(ae′, as) = g(se, as) + g(se′, s2)g(e/s− ae′/s2, 0) + g(0, a)g(0, a)g(e′, s)

= g(e, a)g(0, s) + g(e/s− ae′/s2, 0) + g(0, a)g(e′, s)

+ gT (e/s− ae′/s2, a/s))(g(e, a)/g(e′, s)

so that gT is an isomorphism. It clearly induces an equivalence between (θ, B, φ)T and
the split extension.

Conversely, suppose (θ, B, φ)T is the split extension and h : E ⊕ AS // BT is the
isomorphism. If b ∈ B, choose (e, a/s) ∈ E ⊕ AS with h(e, a/s) = b, then a/s =
φT (e, a/s) = φ(b) ∈ A, so that s is an invertible element of A and (e, a/s) ∈ E ⊕ A. If
(e, a) ∈ E ⊕A, choose b ∈ B with φ(b) = a, and (e′, a′/s′) ∈ E ⊕AS with h(e′, a′/s′) = b.
Then a′/s′ = φTh(e′, a′/s′) = φ(b) = a, so that h(e′, a) ∈ B. h(e, a) = h(e′, a) + h(e −
e′, 0) = h(e′, a) + θ(e− e′) ∈ B. Hence if we let g = h|E⊕A, then g defines an equivalence
between (θ, B, φ) and the split extension. Hence the proof of the theorem in the special
case in which S has no zero divisors in A reduces to

3.8. Lemma. The map T is an epimorphism.

Proof. Suppose (Γ, C,∆) is an extension of E by AS. Let B = ∆−1(A) ⊇ ∆−1(0) =
Γ(E). Let θ : E //B just be Γ and φ : B //A be the restriction of ∆. Clearly (θ, B, φ)
is an extension of E by A. We claim that (
th, Bφ)T ∼ (Γ, C,∆). Now if t ∈ T , then φ(t) = ∆(t) so that by the same argument as in
Lemma 3.6, t is invertible in C. Map f : BT

//C by f(b/t) = b/t. Clearly f is an algebra
monomorphism since the operations in BT and C coincide. Let c ∈ C and ∆(c) − a/s.
Choose t ∈ T with φ(t) = s, then ∆(ct) = ∆(c)∆(t) = (a/s)s = a so that ct ∈ B and
c = ct/t gives that f is an isomorphism. Moreover, it clearly gives an equivalence of the
extensions.

The theorem will now follow from

3.9. Lemma. Let f : A //AS. If a = ker(f) and R = A/a, then H2
c (A,E) ∼= H2

c (AS, E).

Proof.
HomA(a, E) //H2

c (R,E) //H2
c (A,E) //H2

c (A, a, E)

is exact so it is sufficient to show that HomA(A,E) = H2
c (A, a, E) = 0. 10 Now we know

that for all α ∈ a, there exists s ∈ S with αs = 0 But E is an AS-module so there are

10This is a consequence of Theorem 1.12 that actually asserts the exactness of

H1(A, a, E) //H2
c (R,E) //H2(A,E) //H2(A, a, E)

But since H1
c (A, a, E) is a subquotient of HomA(A,E) it will be 0 when the homset is.
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no zero divisors of S in E. Hence if f ∈ HomA(a, E), 0 = f(sα) = sf(α) which implies
that f(α) = 0. Since α was arbitrary, f = 0. Now let f ∈ Z2(A, a, E), α ∈ a, and
s, t ∈ S with sα = tα = 0. Then 0 = sf(t, α) − f(st, α) + f(s, tα) − αf(s, t) together
with tα = 0 and a · E = 0 give f(st, α) = sf(t, α) and similarly f(st, α) = tf(s, al) so
that (1/s)f(sα) = (1/t)f(t, α). If we let g(α) = (1/s)f(s, α), it is easily checked that g is
a linear map. Then if a ∈ A, 0 = sf(a, α) + f(s, αa)− af(s, α) = g(αa)− ag(α). Hence
H2(A, a, E) = 0 and the theorem is proved.

3.10. Theorem. If R is an affine algebra11 and H2
c (R,E) = 0 for all finitely generated

R-modules E, then H2
c (R,E) = 0 for all R-modules E.

Remark. This improves Theorem 22 of [2].

Proof. If R is an affine algebra, we can find a polynomial algebra A in finitely many
variables over k and an epimorphism φ : A // R. Let a be the kernel of this map. We
have the exact sequencw

H1(A,E) // Hom(a, E) //H2(R,E) // 0

since H2(A,E) = 0 (see [2], Theorem 11). Hence H2
c (R,E) = 0 if and only if the map

from H1(A,E) to HomA(a, E) is an epimorphism. If this is true of all finitely generated
modules E, then we can take E = a/a2 which is a quotient module of a submodule of a
finitely generated module over a noetherian ring. Then there is a derivation d : A //a/a2

which when restricted to a bives the canonical projection of a onto a/a2, i.e. d(α) = α+α2

for all α ∈ a. Now let E be any R-module, and f : a // E an A-homomorphism. Since
a · E = 0, f(a2) = 0 and f induces an R-homomorphism f : a/a2 // E. Consider
g = fd : A // E.

g(ab) = fd(ab) = f(ad(b) + bd(a)) = afd(b) + bfd(a) = ag(b) + bg(a)

for all a, b ∈ A so that g ∈ H1(A,E) and if a ∈ a, fd(α) = f(α+ a2) = f(α). This proves
the theorem.

3.11. Theorem. If A is an algebra with identity 1 and E is an A-module with 1 ·E = 0,
then Hn(A,E) = 0, for all n > 0.

For n = 1, the result follows from f(a) = f(1 ·a) = 1 · f(a) +a · f(1) for all a ∈ A, and
f ∈ Z1(A,E). If n > 1, and f ∈ Zn(A,E), let g(a1, . . . , an−1) = f(1, a1, . . . , an−1). Then

0 = δf(1, . . . , an) = 1 · f(a1)−
∑

(−1)if(1, a1, . . . aia(i+ 1), . . . , an)

= −
∑

(−1)ig(a1, . . . , aiai+1, . . . , an)

from which the theorem can be seen.12

11a quotient of a polynomial ring in finitely many variables
12Clearly, if 1 · E = 0, then A · E = 0.
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3.12. Corollary. If A has an identity, and E is an A-module, then Hn(A,E) ∼=
Hn(A, 1 · E).

Proof. The result can be seen from the sequence

Hn−1 //Hn(A, 1 · E) //Hn(A,E) //Hn(A,E/1·)

3.13. Corollary. Hn
c (A,E) ∼= Hn

c (A, 1 · E) and Hn
s (A,E) ∼= Hn

s (A, 1 · E), for n =
1, 2, 3, 4.

Remark. This improves Theorems 17 and 22 of [2].
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