
EXACT CATEGORIES 

by Michael Barr 

Introduction 

Exact categories, roughly speaking, are categories which satis- 

fy the equation 

(Abelian) = (Exact) + (Additive). 

Generally speaking, the axioms of abelian categories were 

chosen precisely in order to define a good notion of the homology 

theory of chain complexes of a category If one wishes to remove ad- 

ditivity, there are two possible directions. One direction is to try 

to axiomatize non-abelian homology. This leads to consideration of 

pointed categories and then of normal monomorphisms and epimorphisms-- 

those which are kernels and cokerne~s, respectively. This is essen- 

tially the point of view adopted by Brinkmann and Puppe in [BP] and 

Gerstenhaber-Moore in [Ge]. In essence, it goes back at least as far 

as Mitchell ([Mi], 1.15). Brinkmann and Puppe even use the term exact 

category to describe the type of categories they are considering. 

Gerstenhaber does not name the type of categories he is dealing with. 

His axioms are related to but somewhat different from those of Brink- 

mann and Puppe. Both suppose as part of their axioms that normal epi- 

morphisms are invariant under pullback. I do not know a single example 

of a category satisfying that hypothesis unless it also satisfies the 

hypothesis that every regular epimorphism is normal. A regular epi- 

morphism is one which is the coequalizer of some pair of maps and it 

is evident that every normal epimorphism is regular, since it is the 

coequalizer of O and whatever it is the kernel of. But the nicest 

pointed category of all, pointed sets, does not satisfy this assumption, 



in sharp contrast of the result of Manes [Man], that every additive 

equational category is abelian. In addition, I have been unable to 

decide, after a modest expenditure of time, whether the categories of 

monoids and commutative monoids satisfy the Gerstenhaber-Moore axioms. 

This is one motivation for ignoring earlier definitions of exactness. 

A second is the essentially special nature of non-abelian cohomology. 

Its interest is practically restricted to categories which are more or 

less like groups. I feel that the term exact is too basic to be used 

for such a special theory. 

The second approach is in the direction of homotopy. By the 

theorem of Dold-Puppe ([DP], Chapter 3) , in an abelian category chain 

complexes (concentrated in non-negative degrees) are equivalent to 

simplicial objects. This suggests, at least, that one fruitful direc- 

tion of inquiry is to find a good theory of homotopy for simplicial 

objects. It would also be nice if every equational category satisfied 

the conditions and, of course, if it satisfied the above equation. 

The exact categories defined here have precisely these properties. 

I 
It all began with a theorem of Tierney (unpublished, but see i.(3.11) 

below) that a category is abelian if and only if and only if it is 

additive and has finite limits and colimits and universally effective 

equivalence relations. The definition of exact category given here is 

a slight weakening of the above, weakened only for technical reasons. 

An exact category has certain finite limits and colimits and uni- 

versally effective equivalence relations (see I. (1.2) and I. (1.3) 

for definitions). 

The contents of this paper include the elementary properties of 

A reference of the form N. (a.b) is to Chapter N , paragraph (a.b). 

A reference of the form (a.b) is the same chapter, paragraph (a.b). 



exact categories (I and II), an embedding and meta-theorem which 

generalize those of Mitchell ([Mi] VI, theorem 1.2) in the abelian 

case (III), and an application to cohomology and Baer addition of 

extensions (IV and V). The simplicity of the presentation of the Baer 

sum should be compared with that of Gerstenhaber in [Ge]. The com- 

pleteness of the results should be compared with those of Chase in 

[Ch] in which an unpleasant and unnatural assumption ("coflatness") 

had to be introduced for want of the notion of right exact sequences. 

The homotopy theory is not at all developed here. It is possible, 

given a simplicial object in an exact category, to say when that is a 

Kan object; and when it is~to define its homotopy. This will be the 

subject of a subsequent work. The homotopy so defined will be an object 

of the category in question, rather than a group. It is base-point free 

and in sets is the usual groupoid (except in dimension O) of homotopy 

classes of maps of spheres. The usual homotopy is recovered as soon as 

a principal component and a base point there are chosen. 

There is one more point I would like to mention. A useful axiom 

which gives a notion intermediate between being exact and being 

abelian is the supposition that every reflexive subobject of the 

square of any object is an equivalence relation (see I. (5.5)). This 

condition is equivalent to every simplicial object being Kan. It is 

also sufficient to have the theory of group actions of Chapter IV 

work equally well for monoid actions. The theory of monoid actions 

also works well in the category of sets, but for an entirely different 

reason: that category is cartesian closed so that cartesian products 

commute with all colimits. 



Chapter I. The Elementary Theory 

I. Definitions and examples. 

(I.I) One of the most important tools will be the factorization of 

every morphism as a regular epimorphism followed by a monomorphism 

(see (2.3) below). A regular epimorphism is a map which is the co- 

equalizer of some pair of maps, which can be supposed to be its kernel 

pair, if that exists. We adopt (or adapt) the notation of MacLane 

[Mac] and we use > > to denote a monomorphism, ~ to denote a regular 

epimorphism, and "~ > to denote an isomorphism. We will also use 

these arrows as substantives and say,for example, "f is> >" to mean 

that f is a monomorphism. 

(1.2) If f: X ~ X' is any map in any category, its kernel pair X"--~)X 

has the property that (-,X")~ ~(-,X) x(-,X) is a natural equivalence 

relation on (-,X); two maps to X are identified if and only if their 

compositions with f are equal. In general, two maps X" %X for 

which (-,X")) )(-,X)×(-,X) is a natural equivalence relation on 

(-,X) will be called on equivalence relation on X. Not every equi- 

valence relation on X need be a kernel pair, any completeness hypothesis 

notwithstanding. See (1.4) example 5 below. An equivalence relation 

which is a kernel pair will be called effective. 

(1.3) Let X be a category. We say that X is reqular if it satisfies 

EXI) below and exact if it satisfies EX2) in addition. 

(EXl) The kernel pair of every map exist and have a coequalizer; more- 

over every diagram of the form 



has a coequalizer which is of the form 

EX2) Every equivalence relation is effective. 

(i.4) The following are examples of regular categories. All are exact 

except example 5. 

i. The category S of sets. 

2. The category of non-empty sets. 

3. For any triple ~--on S, the category S ~_ of ~- -algebras. 

4. Every partially ordered set considered as a category. 

5. The category of Stone spaces (compact hausdorff O-dimensional 

spaces). 

6. Any abelian category. 

7. For any small category C, the functor category (cOP,s). 

8. For any topology on C, the category ~(cOP,s) of sheaves. 

(1.5) Remark. It should be noted that unlike the notion of abelianness, 

exactness is not self-dual. Outside of abelian categories and the 

categories of sets and pointed sets, the only category that I know of 

which is tripleable over S and both exact and coexact is compact 

hausdorff spaces (and its dual, C*-algebras). 

(1.6) Definiti0n. Let X be a regular category. A sequence 

d ° d 
X t ~ X )X" 

d I 

is called 

a) left exact if (d°,d I) is the kernel pair of d! 



b) right exact if d is the coequalizer of d ° and d I, and,more- 

over the~mage of (d°,d 1) in X x X is the kernel pair of d (see (2.1) 

and (2.4) below)~ 

c) exact if it is both left and right exact. 

(1.7) Definition. Let X and Y be exact categories. A functor U: X ~ Y 

is called 

a) quasi-exact it it preserves exact sequences; 

b) exact if, in addition, it preserves all finite limits; 

c) reflexively (quasi) exact if it is (quasi) exact and reflects 

isomorphisms. 

(1.8) Examples. The following are examples of exact functors. 

i. For any triple on S, the underlying functor S T --~ S. 

2. For any small category C and any object of ~, the functor 

(cOP, S) ~ S which evaluates a functor at C. Of course this 

functor preserves all limits and colimits. 

3. For any topology on C, the associated-sheaf functor 

(cOp s~ ~ ~(cOp s~. 

4. Any (additive) exact functor between abelian categories. 

Of these examples, only I is reflexively exact in general. 



2. Prelim inar 7 results. 

(2.1) Throughout this section, X denotes a regular category. We will 

establish some of its basic properties, in particular the factoriz- 

ation. 

X~2.2) Proposition. Suppose X ~ Y >Z is given. Then 

x Z X ~ Y x Z Y is an epimorphism. 

Proof. The diagrams 

X x Z X ' >> Y x Z X Y × Z X >> Y × Z 

X >> Y X )> Y 

Y 

are each easily seen to be pullbacks, where Pl and P2 are the respec- 

tive coordinate projections. A composite of two ))is certainly an 

epimorphism and, as we will see in (2.8), is >). 

(2.3) Theorem. Every map has a factorization of the form . ;>.> >. 

Proof. Begin with a map X ~ Z, form its kernel pair, and let Y be their 

coequalizer. There is induced a map Y ~ Z and we can form its kernel 

pair to get 

x x z x 

Y x Z Y'_ ~ Y 

Z 

From the fact that X ~ Y coequalizes X x Z X----~X and that 

X x Z X )Y × Z Y is an epimorphism, it follows that the two pro- 

jections Y x Z Y---~Y are equal and that Y) )Z. Thus the map is 



factored 

X >,~Y> >Z. 

(2.4) Remark. With minor modifications, this is essentially a theorem 

of Kelly's ([Ke], proposition 4.2). It is clear that to prove it one 

need only suppose that a pullback of a regular epimorphism is an epi- 

morphism. 

I (2.5) Proposition. If the composite f.g is ~, so is f. 

Proof. If f.g is the coequalizer of d ° and d I, than f is the coequal- 

izer of g.d ° and g.~1. 

(2.6) Proposition. Every co~utative diagram 

. _ _  ~ ; .  

; l 
has a diagonal map as indicated so that both triangles commute 

• _ )). 

I./I 
Proof. Consider the diagram 

1 
in which the top row is a coequalizer. 

i (2.7) Corollary. Any map ; which is both 

Proof. Consider 

rl 

> and >; is N ). 



where the top and bottom are the given map and the vertical maps are 

identities. 

(2.8) Corollary. If f>> >>. then 
g gf 

h k 
Proof. Factor gf as . ;>. ~ -,. and consider 

f 

.> ~. 
k 

The existence of a diagonal presents k as the second factor of a 

whence k is D also, by (2.5), and hence an "~ ). 

(2.9) Corollary. The factorization of (2.3) is unique up to a unique 

Proof. Two applications of (2•6)• 

(2.10) Proposition. An exact functor factorizations. preserves 

Proof. A right exact functor evidently preserves ~ and a left 

exact functor, by preserving the pullback of > >i f (which has 
f 

a limit = dom(f) if and only if f is) )), preserves> >. Thus 

it takes the . . ~ .> ). factorization into one which by unique- 

ness is the required factorization. 

(2.11) Proposition. Let X and Y be exact, X" ~X >X' a left 

(resp. right) exact sequence t and U an exact functor. Then 

UX" ~UX >UX' is left (resp. right) exact. 

Proof• The left half of this is pretty clear. As for the right, let 

X O) )X x X be the image of X" )X x X. Then we have 



10 

X" ~X01Xo------~X DX' 

in which the second is exact. Applying U we have 

ux" >> ux0~ ux0------ ~ ux ~ux, 

in which the second is exact. But this readily implies that 

UX" ~ UX ~UX I 

is right exact. 

(2.12) Remark. It was to make true this proposition (whose proof is 

the same as of II, proposition 4.3 of [CE]) that the somewhat unusual 

definition of right exact sequence was chosen. 

(2.13) Pzoposition. In order that X t ' ~X >X" be exactp it 

I is necessary and sufficient that X f~x" and X t ~X be its 

L kernel pair. 

Proof. It is clearly necessary. But if f is ~, then it is evident- 

ly the coequalizer of its kernel pair. 

(2.14) Corollary. A functer is quasi-exact if it preserves kernel 

pairs and------~| it is exact if it preserves all finite limits 

and ~. 

(2.15) Proposition. If the product of a finite number of exact 

sequences exists, it is exact. 

Proof. Since a product of kernel pairs is a kernel pair, it is 

sufficient to show that a product of ~ is again )~. Suppose 

x ))x' and Y )>Y'. As soon as X' x Y' exists, so do X x Y' and 

X x Y, since each of the squares below is a pullback. The vertical 

arrows are the evident coordinate projections, 



X x Y ~X × Y' 

1 1 
Y >> Y' 

X >. yi 

X 

-- X' x Y' r{ 

l 
~> x' 

Composing, we have X x Y ~ X' x Y'. 

(2.16) Corol~. For any object X of the exact category X, 

X×-: x---~X is a quasi-exact functor (provided it exists). 

of: X. {X----~X (all maps being identity) is exact. 

(2.17) Corollar 7. Let X have finite powers. For any finite integer 

n, the cartesian n-th power functor X ~X is exact. 

Proof. Clear from (2.15) and the fact limits commute with each other. 

(2.18) Remark. If the cartesian n-~uunctor exists and preserves 

for all cardinals n or for all n < N 0, then that functor is 

exact for all such n. 
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3. Additive exact cateqories. 

(3.1) This section is devoted to proving Tierneyts theorem that a non- 

empty additive exact category is abelian. Throughout this section 

denotes such a category~ Ab denotes the category of abelian groups. 

(3.2) Let A ~ A, and consider any 0 map, say O: A )A. Since 0 co- 

equalizes any two maps, the kernel pair of this is A x A, which then 

exists. Let Z be the coequalizer of the projections 

For any B • B, 

(z,B) - 

A xA ~A ~Z. 

>(A,B)-"- - - '~(A x A,B) ~ (A,B) x(A,B) 

is an equalizer, which implies, since all these homs take values in 

Ab, (Z,B) = O. In an additive category, any initial object is a zero 

object, and so Z = O. Moreover, A was an arbitrary object and we 

showed that A-->>O. Thus we have proved 

(3.3) Proposltlon. There is a zero object 0 and A 

(3.4) Corollary. Finite products exist in A. 

Proof. For any A,B • A, 

A xB >A 

B >> 0 

>>0 for any A. 

is a pullback. 

I 3.5) Proposition. Maps in A_ have kernels. 

d ° 
Proof. Let f~ A' )A t . From the kernel pair A" ~A and let 

d I-> 
d°_d 1 

s: A, >A" be the diagonal map. I claim that A" )A is a weak 

kernel. First, f. (d°-d 1) = fd°-fd I = O. Second, if g: B----~A is such 
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that f.g = O, let k: B )A" be such that d°.k = g and dl.k = O. Then 

(d ° - dl).k = g. It is clear that the image of d°-d I must be the 

kernel. 

(3.6) Corollary. has finite limits. 

Proof. It is well-known that in an additive category kernels and finite 

products are enough. 

(3.7) Proposition. Let A be an object of A and A'~ )A x A, con- 

taining the diagonal of A. Then A' is an equivalence relation on A. 

Proof. The property of being an equivalence relation is defined with 

respect to the representable functors, which can be considered to 

take values in Ab. But then (-,A')> ~ (- ,A) × (- ,A) will still con- 

tain the diagonal. In Ab the assertion is trivial and the above 

argument shows it is true for any additive category. 

k~e3~8) Proposition. Every monomorphism of is normal (that is, a A_ 

nel) . 

f 
Proof. Let A') > A. Form 

A t xA ~A. 

) and contains the diagonal, and hence is an equivalence relation 

and therefore a kernel pair. But it is clear that a map coequalizes 

(f) and IOl if and only if it annihilates f so that that coequal- 

izer of those maps is the cokernel of f. Conversely, ¢fl and <0) 

being the kernel pair of that cokernel is equivalent to f being its 

kernel. 

Notice that in the course of this proof we have shown that every 
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) > has a cokernel, which implies, by the standard factorization, 

that every map does. The finite products are also coproducts. An 

additive category is cocomplete as soon as it has direct sums and co- 

equalizers. Thus we have: 

(3.9) Proposition. A is finitely cocomplete. 

I (3.10) Proposition. Every epimorphism in A is normal. 

h 
Proof. Let f be an epimorphism and factor it as g ~.> >. 

Since h is normal, it is the kernel of some k. If k ~ O, we would 

have kf = O, which contradicts f being an epimorphism. Thus h is an 

isomorphism, which means that f is ~. In an additive category this 

implies that f is normal. 

I (3.11) Theorem. is abelian. (Tierney). 

Proof. A is additive| it is finitely complete and cocomplete! every 

map has a factorization as an epimorphism followed by a monomorphisml 

every monomorphism and every epimorphism is normal. 

(3.12) Example. The category of torsion free abelian groups is regular, 

but not exact. 
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4. Reqular epimorphism sheaves. 

(4.1) If C is a category, a collection of families {Ui--gUli ~ I} 

(called coverings) is called a Grothendieck topology on C (see[Ar],.I~ 

Definition (O.I)), if it satisfies the following conditions. 

a) Every {U f ~ U'} with f an isomorphism is a covering. 

b) If 

{Uij 

c) If 

pu 1 ibacks 

{U i >U I i ~ I} is a covering and for each i ~ I, 

)Uil j ~ I i} is a covering, so is {Uij--~UIi~I, J~Ii}. 

{Ui---)U I i ~ I} is a covering and V-->U is a map, each of 

U. × V exists and 
l U 

{ui × uV ~vli ~ I} 

is a covering. 

It is easily seen from EXI) and (2.8) that these conditions are satis- 

fled if we take for coverings exactly the U' ~ U. This will be 

called the regular epimorphism topology. The axiom of a regular cate- 

gory might almost have been chosen with this topology in mind. 

(4.2) Given a topology on C as above, a sheaf of sets on C is a functor 

F: cOP )S such that for every covering {U i >Uli E I}, 

FU >i~I FUi ~i,~I F(Ui x U Uj) 

is an equalizer. The category of sheaves (with natural transformations 

as morphisms) is denoted ~(cOP §). It is equipped with a full faith- 

ful embedding ~(c°P,s) .... )(cOP S) which has an exact left adjoint. 

Conversely any coreflective subcategory E of a set-valued functor 

category (cOP S) with an exact coreflector (left adjoint for inclusion) 

will be a category ~(DoP S) for some D and some Grothendieck topology 

on D for which each of the representable functors is a sheaf. (Such 

a topology is said to be less fide than the canonical topology! the 
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the canonical topology is the finest topology for which all represent- 

able functors are sheaves~ Evidently D may be taken to be C 

iff each of the representable functors of (cOP S) is in E. Such an 

I 
E is called a topos. 

(4.3) Proposition. Let X be a small regular category. 

Let ~(x°P,s) denote the category of set valued sheaves for the regular 

epimorphism topology described above. Then the canonical embedding 

>~(x°P,s) is full, faithful and exact. 

Proof. It is clear that this topology is less fine than the canonical 

one, so the Yoneda embedding of X takes it into sheaves. The embedding 

preserves all limits, since the Yoneda embedding does, and it is well 

known that the embedding of sheaves into all functors creates limits. 

It is full and faithful for the same reason. Finally, a sheaf F, 

evaluated at an exact sequence 

X I x X Xl-----~>Xt >X, 

must produce an equalizer 

FX- ~FX' ~F(X' x X X') , 

according to the definition of sheaf, By the Yoneda lemma, this is 

, X' ) ,F) ((-,X) F) ~((-,X'),F) ~((-,X' × X 

and that sequence being an equalizer is the some as 

(-,x' x x x')---~(-,x'), ,, ~(-,x) 

being a coequalizer in this particular subcategory of the functor 

category. 

(4.5) From this proposition we see that regular categories may be 

characterized as categories having kernel pairs, pullbacks along 

argo r e g u l a r  epimorphisms,  c o e q u a l i z e r s  o f  k e r n e l  pa i r s~  r e v e r y  smal l  

I See Appendix for an improved statement and proof of this result. 
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full subcategory stable under these operation, a full exact em- 

bedding into a topos. The converse is clear. A topos is complete and 

cocomplete and even exact. If our given category is itself small, we 

can replace it by its finite limit completion in its embedding into 

a topos and suppose it has finite limits. 
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5. Constructions on rggu!ar ' and exact cateqories. 

(5.1) In this section X represents a regular (resp. exact) category. 

We are going to describe two types of constructions which when applied 

to X automatically produce another regular (resp. exact) category. 

(5.2) Let I be an arbitrary category and D: I >X a functor. We will 

say that the pair (D,I) or D alone is a diagram in X. Note that I is 

not required even to be small. The comma category (X,D) has for 

objects pairs (X,a) , where X is an object of X and = is a natural 

transformation from (the constant functor whose value is) X to D. A 

morphism of (X,D) is a morphism f in X giving a commutative triangle 

f X >X t 

(5.3) ~ .  The forgetful functor (X,D) )X, which takes 

(X,a)~---~X, creates whatever colimits exist in X as well as kernel 

pairs, pullbacks, finite monomorphic families, and the limit of any 

diagram E: J- )X in which J has a terminal object (and in which the 

limit exists, of course). 

Proof. Given a diagram E: J~ )(X,D) which has a colimit in X, the 

universal mapping property of colimit will endow that object with a 

map to D. As for limits, supposing J has a terminal object Jo' a 

functor E~ J >(X,D) is precisely given by a functor E: J >X to- 

gether with a natural transformation EJo )D. This determines the 

lifting of E to (X, D). The limit X >E, when it exists, will equally 

have a unique map X ) EJo >D which lifts X into (X,D). It is now 

trivial to see that X is the limit there also. If fl,...,fn: X >Y 

is a finite (or for that matter infinite) set of maps, it is called 
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a monomorphic family if for all Z and maps g.hz Z )X, fi.g = fi.h 

for i = l,...,n implies that g = h. If Y )D is given and 

fl,...,fnZ X >Y are all maps over D, then they are simultaneously 

coequalized by Y >D. If they do not form a monomorphic family in X, 

then there are g ~ h: Z >X with fi.g = fi.h for i = 1,...,n. Then 
h f. 

all the composites Z ~X l >Y )D are the same. Thus g / h 
g 

as maps over D, and so {fi } is not a monomorphic family in (X,D) 

either. 

I (5.4) Theorem. Let X be regular (resp. exact) and D: I )X a 

functor. Then (X,D) is regular (resp. exact). 

Proof. Everything except exactness follows from (5.3) and the easily 

proved (from (5.3)) assertion that (X,D) >X preserves ~. 

Exactness (when X is exact) also follows from (5.3) if we can show 

that the underlying functor preserves equivalence relations. To do this 

we show the following combinatorial characterization of equivalence 

relations. 

(5.5) Proposition. Let X be a category which has pullbacksof split 

4 ° 
epimorphisms. Then X '~Y is an equivalence relation if and 

d I 

only if the following conditions are satisfied. 

a) X 

b) 

c) 

d) 

d ° 

d I 

Y is a monomorphic family. 

There is an r: Y >X such that d°.r = dl.r = Y(= id Y). 

d I d I" d ° There is an s: X )X such that d°.s = and s = . 

In the diagram below in which Z is a pullback of d ° and d I, 

there is a map t as indicated making each of the outside 

squares commutative. 
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Z 

X X X X 

Y Y Y 

Proof. I leave it as an exercise to show that in ~, the existence of 

r,s,t translates the usual reflexive, symmetric, and transitive laws 

and hence the existence of (-,r), (-,s), (-,t) will show that (-,X) 

is an equivalence relation on (-,Y). To go the other way, suppose 

d ° 
X ~Y is an equivalence relation. Then (Y,X) >(Y,Y)×(Y,Y) must 

d 1 

contain the diagonal of (Y,Y), so in particular the diagonal element 

(idY, idY) and the r ~ (Y,X) mapping to it is the required map. 

(X,X) ~(X,Y)×(X,Y) is symmetric, and since (d°,d 1) is in the 

image of (X,X) (it is the image of the identity map), so must (dl,d O) 

be. The element of (X,X) having those projections is s . Finally 

letting Z be the pullback as above, we observe that 

o (Z,X) >(Z,Y) x(Z,Y) is transitive. In particular the images of e 

and e I are (d°.e °, dl.e °) and (d°.e I , dl.e 1) respectively, and the 

equation dl.e ° = d°.e I implies the existence of t with projections 

d°.e ° and d 1. 1 e , exactly as required. 

m~SR. 6) ~ .  Suppose x has, and a functor Uz X >Y preserves 

llbacks along split epimorphisms! in addition suppose U preserves 

omorphic pairs of maps. Then U preserves equivalence relations. 

Proof. Trivial. 

(5.7) Let T._h_h be any finitary algebraic theory. This means T h is a 
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category with a functor nl >(n) from the category of finite sets 

which preserves coproduct ((n)+(m) = (n+m)) and is an isomorphism on 

objects. The category S T-~h is the category of product preserving 

functors Th___ °p ) S. Included are all the familiar categories of 

algebra--in particular groups and abelian groups. If X is an arbitrary 

category, X Th can be defined as the category whose objects consists 

of objects X ~ X together with a lifting of the hom functor (-,X): 

X Op ~ S into sTh _ --. A morphism between two such objects is a natural 

transformation between these functors. Since S Th , > S is faithful, 

this is equivalent, by the Yoneda lemma, to a map between the objects 

which induces sT__hh morphisms on the hom sets. When X itself has finite 

products, it is well known that an algebra is also equivalent to a 

product preserving functor Th___ Op > X. Moreover this condition is 

"local" in the sense that in order to recover the equivalence it is 

only necessary to know the algebra structure for a few objects, 

namely the powers of X. For example, a group structure on X is either 

given by a lifting of (-,X) through the category of groups or by 

giving morphisms 1 >X, X >X, XxX >X satisfying laws of a 

group unit, inverse, and multiplication,respectively(l denotes the 

terminal object or O th power). These morphisms are found by ob- 

serving that (l,X), (X,X) and(XxX,X) have group structures. The unit 

of the first, the inverse (under the group law!) of the identity of X 

in the second, and the product of the two projections in the third of 

these groups are the required mappings. However, as the next pro- 

position and its corollary show, when the theory has nullary opera- 

tions (e.g. groups), then we may as well suppose it has products and 

the two descriptions coincide. A nullary operation is a map in Th of 

1 )O and entails for any an algebra X an "element" of (-,X). This 
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means a natural transformation of the constant functor I to (-,X). 

Equivalently it assigns to each Y an ~Y: Y ........... >X such that for 

fz Y )yt ~y1.f = ~y. 

(5.8) Proposition. Let an object X E X admit a constant operation. 

en x has a terminal object. 

Proof. Choose Y arbitrarily and factor aY as Y ~Y ~ T ) )X. If we 

also factor aX as X ~To." >X, then the diagonal fill-in of the 

diagram 

Y ~>T 

° Ix I 
T> >X 
o 

which commutes by naturality of a, gives that T) )T O and that 

every object has at least one map to T O which factors ~Y. Naturality 

gives ~T .~X = a.X. Since we gave aX its unique factorization as ~X 
o 

followed by inclusion of T O , it follows that ~T ° is that inclusion. 

Finally, for any f: Y 

to conclude that f is Y 

)To, UTo.f = aY, and we may cancel aT ° 

@Y )T> >T , which means that Y has only 
o 

one map to T . 
o 

E5.9) Corollary. Every object of has finite powers. 

Proof. Once there is a terminal object I, the kernel pair of X )I 

is X x X. Higher products may be constructed by pulling back along 

coordinate projections 

X n+1 _> X 2 

xn - ~> X 
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which are )) (split by the diagonal map). 

(5.10) Proposition. Let ~(x°P,s) be the category of set valued 

sheaves in the regular epimorphism topology (4.1). Let T__hh be a 

finitary theory. Then the functor X! >(-,X) preserves T h objects 

and T h morphisms. 

Proof. The inclusion of sheaves into the whole functor category 

preserves limits, so the products given in the proof are the products 

a s sheaves. If X is a T h object in X, this means there is, for each 

(n) )(m) in T h, a map (Y,X) m )(Y,X) n which is natural in Y. 

Corresponding to each commutative diagram 

(m) 

(n) / ~.~ (p) 

(Y,X) p > (Y,X) n 

\ / 
the diagram 

(Y,X) m 

must also commute. Everything being natural in Y, this means that 

there is a natural transformation 

(-,X) m ) (-,X) n 

fbr each (n) ) (m) in T__h_h such that diagrams corresponding to the 

above commute. That is, we have a product preserving functor, 

m! )(-,X) m of ThZ p ¢~(x°P,s) . If X and X' are T h objects, a map 

f.. X )X' is a T h morphism if for each Y, the induced map 

(Y,X) )(Y,X') is a T h morphism, which means that for each (n) ~ (m) 

in T_~h, 
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(y,f)m 
(Y,X) m > (Y,X') m 

n 
(Y,X) n (Y'f) ~(Y,X' ) n 

commutes. Evidently (using the fact that X 
>~(~op§) 

faithful) this is the same as a natural transformation 

is full and 

(-,x) ~(-,x,) 

such that there is a commutative diagram 

m 
(_ X) m • )(_,X,) m 

i n l 
(- X) n ~ >(_,X,) n 

corresponding to each (n) ~ 

t~Th5.11) Theorem. Let X be regular 

eory. Then X Th is also regular 

T h x  is a reflexively exact 

~(m) in Th. 

(resp. exact) and T h be a finitary 

(resp. exact). The underlying 

functor. 

Proof. It is clear that Tx~-h= >X creates all inverse limits which 

exist in X and in particular reflects isomorphisms. The above dis- 

cussion shows that it is sufficient to consider the case that X has 

finite products. Now suppose that 

X ' ~  )X" 

is exact in X and that X' and X have been equipped with T h structures 

in such a way that X' ~ X  are morphisms of Th-algebras (i.e. natural 

transformations). In that case we have an exact sequence, in particular 

a coequalizer 

x,n ~X n 

and corresponding to any map (I) 

,~X ''n , 

> (n) in Th there is a commutative 
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diagram 

X 'n ~ X n >X" n 

1 1 1 
X I ~ X >X" 

the right hand arrow being induced by the coequalizer. This induces 

all the operations on X" in such a way that X ~X" is a map of 

algebras as soon as we know that X" is an algebra, i.e. satisfies the 

equations. To show that, take a commutative triangle 

(mS 

(n) >(p) 

in Th and consider 

x p > x n 

X" [] / 

in which each vertical square and the top triangle commute. Since 

X p- ~X ''p, this can be canceled to show that the bottom triangle 

xTh ~ ~ X creates ~and hence is exact. In particular, starting 

with 

in X Th, we can pull it back in X, and the pullback will automatically 

be an xTh algebra and the maps xTh morphisms. The appropriate arrow 

will be ~in X, and by the above in X Th as well. Now suppose that 

is exact. Given X' ~X in X Th, which is an equivalence relation 
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in x Th, then it follows from (5.6) that it is an equivalence relation 

in X as well. But then it is part of an exact sequence in X and the 

third term can be given a unique T h structure so that it is exact in 

xTh as well. 

(5.i2) Theorem. Let Uz X 

U Th X Th theory. Then there is a natural lifting --: -- 

>Y be an exact functor and T h a finitary 

)yTh such that 

x~__ ~-- > yLh 

1 l 
U 

X >Y 

is commutative. Moreover U ~ is exact. 

Proof. Except for the last line, this is an easy consequence for any 

U which preserves finite products. The last assertion is also easy, 

since the other functors in the diagram are exact and yTh )y 

is reflexively exact. 

(5.13) Remark. When X = S, (5.11) is true for all theories T h (not 

just finitary ones). This can be easily proved (by the same argument) 

for any X which satisfies the following. The n-th power functor exists 

and is exact for all cardinal numbers n. For this we need only that 

n-th powers exist and preserve ~. Or these conditions may be valid 

for all n < N . In that case, the result bolds for all theories T__h_h 
o 

of rank < N O . Similar remarks apply to (5.12) when X and Y have, 

and U preserves all n-th powers, or n-th powers for all n < N O , as 

the case may be. 
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Chapter II. Locally Presentable Cateqories. 

I. Definitions. 

(I.I) What follows here is a brief description of a more general theory 

due to Gabriel and Ulmer, as yet unpublished(except as an outline [U1]) 

Some of the definitions here differ slightly from theirs in that I 

restrict consideration to colimits of monomorphic families. I rather 

think that for exact categories this does not really give a more 

general theory, although the cardinal numbers used to satisfy some of 

the definitions might become larger, Throughout this chapter, X and 

will be two regular categories which are cocomplete. 

(1.2) Definition. Let I be a partially ordere~set and n be a cardinal 

number. We say that I is ~ n directed if every set of ~ n elements 

of I has an upper bound in I. An n-filter in X is a functor D: I ~ 

with ~ ~ n directed and such that for each i ~ j in I, the value of 

D at i )j, denoted D(j,i),is a monomorphism. Sometimes, for emphasis 

we will call it a mono-filter. An object X ¢ X is said to have rank 

~< n if for every n-filter D: I >X, (X, colim Di) ~ycolim(X,Di). 

(1.3) Definition. A set F of objects of X is said to be a set of 

generators of X if for every f: X> IX' which is not an isomorphism 

there is a G ~ F and a map G )X' which does not factor through f. 

X is said to be locally presentable if it has arbitrary coproducts 

(denoted II ) and a set of generators each one of which has rank. 

(~.4) P;oposition. X locally presentable, any X, Let be Then for X E 

r there is a ~ G~ • ~'~X where, for each j E J, G. E F. 
I 3~u 3 3 

Proof. Form il {I G the coproduct of one copy of G for each 
G e t  (G,X) ' 

map to X from each G ~ F. There is a canonical evaluation 

e: J[ ~ G -->X defined by e.<u> = u Where <u> : G ;JI~G is the co- 
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ordinate injection corresponding to u: G )X. Factor e as 

J~ JIG eO f ~X ° ) ~X. 

If u: G )X is any map, e.<u>= u so that u = f.eo.<U> factors 

through f. Since this is true for all such u, f must be an isomorphism. 

(1.5) It is easy to see that the above characterization could have 

been taken as the definition of this kind of generator. To distinguish 

it from the more common kind of generator, whose definition is equi- 

valent (in the presence of coproducts) to the same map being an 

ordinary epimorphism, these could be called a set of regular generators. 

Here, however, we will simply call them generators. 

(1.6) Proposition. Let f: X )X t . Then 

a) If (G,f) is ~for all G ~ F, f is )>. 

b) (G,f) is ~ ) for all G ~ F if and only if f is~ ;. 

c) (G,f) is ~ > for all G ~ F if and only if f is ~ >. 

Proof. a) This follows easily from 

/L i (G,X) 

X 

b) One way is trivial. If (G,f) is~ 

XVtt ' d ) X" X 

d I 

)~//.I(G,X') 

..-X ~ 

), consider the diagram 

)X' 

in which d ° and d I are the kernel pair of f and d is their equalizer, 

Since (G,-) preserves limits and (G,f) is> 7, it follows that 

(G,d O) = (G,d I) , and then (G,d) is an isomorphism. Since d is a 

monomorphism, it follows from the definition of generator that d is 
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"~ >. But then d ° d i = , which in turn implies that f is 

c) This is now clear. 

(1.7) Remark. It is clear from the above argument that, in particular, 

the more usual definition of generator is also satisfied. 
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2. Preliminary results. 

Throughout this section X is a cocomplete regular category and F a set 

of generators. 

(2.1) Proposition. X is well-powered. 

Proof. For any object X a subobject X is determined by those maps 
o 

from a G E F which factor trough X . In other words, there are no 
o 

more subobjects of X than there are subsets of U(G,X), the union 

taken over G ~ F.* 

(2.2) Corollary. Each object of X has only a set of regular quotients. 

Proof. A regular quotient of X is determined by its kernel pair, and 

that is a subobject of X x X. 

(2.3) Proposition. Let D: I >X be a small diagram. Then the set 

(F,D) of all objects (G,y)~(X~D) for which G ~ F form a generating 

set in (X~D) . 

Proof. It is a set since each G has only a set of maps to a small 

diagram. If X) f > Y ..... )D is a monomorphism, not an isomorphism 

in (X,D) , then X) f >Y is a monomorphism as noted in I, ~5.3) abov~ 

and clearly not an isomorphism, as the inverse would also be a map of 

(X,D). Then there is a map G ...... ~Y which does not factor through X, 

and if we use the composite G ......... >Y >D to lift G into (X,D) it be- 

comes an element of (F,D) with the required property. 

(2.4) Theorem. Let X be a cocomplete, regular category with a set of 

regular generators and such that each object has only a set of 

far quotients. Then X is complete. 

Proof. For a diagram D: I >X, a limit of D is a terminal object 

of (X,D). It is easily seen that cocompleteness is inherited by that 

*For nested subobjects,this is clear from the definition of generator. 

For others,consider the intersection and reduce to the previous case. 
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category as well as the property of each object having a set of 

regular quotients. By I. (5.4) and (2.3) the other properties of the 

statement are also inherited. Hence it suffices to show that such an 

X always has a terminal object. Let F be the set of generators, 

X = ~LG, G ~ F, and Q be the colimit of all the regular quotients of 

X. First I claim that Q is itself a regular quotient of X. It is 

sufficient to show that every commutative square 

X .......... >Q 

i [ 
Y ;  ~ Z  

has a diagonal fill-in. (Just take Z = Q and Y the image of X in Q.) 

But by commutativity of the diagram, we have, for each regular 

quotient X ~ ;)X' , 

X )>X' 

Y> ; Z  

giving a family X' >Y, obviously coherent and extending to 

Q )Y. Thus Q itself can have no regular quotient, for that would 

be a further regular quotient of X. For any Y ~ X, there will be a 

I~ -G i ~Y, and evidently there is a ~/ G i ~X, since X is the map 

coproduct of all the G ~ F.- Pushing out, we get 

JLG -- >x >Q 
1 

Y > Q' 

whence Q ~ Q' and (Y,Q) ~ ~. If there were distinct maps Y ~Q 

for some Y, their coequalizer would be a regular quotient of Q. 
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(2.5) Remark. It should be noted that this method works for any 

factorization system and is a form of the special adjoint functor 

theorem. That is, if there is some factorization system and generators 

such that the appropriate map is an epimorphism for that system, and 

if the objects have only a set of quotients in that system, then the 

special adjoint functor theorem (here in dual form) holds. 

(2.6) Proposition. Suppose I is some index category; D: I >X, 

E: I >X are functors~ and D )E is a natural transformation such 

that Di----~E i for all i. Then colim D )~colim E. 

Proof. Let X = colim D., Y = colim E.. For each i we have a commutative 
1 1 

diagram 

d ° 
D, × D. 

d, 
1 

X x 
d ° 

X 
Y 

d I 

~' D. )>E. 

~X ~Y . 

Given X >Z, which coequalizes d ° , d I, this induces E. ~Z, which 
1 

coequalizes d0 and d~ and induces a unique E. ~Z making the dia- 
l 1 i 

g r a m  c o m m u t e .  T h i s  f a m i l y  o f  maps  i s  e a s i l y  s e e n  t o  be  n a t u r a l  i n  i ,  

and then there is further induced a map Y ......... ~ Z. Then the outer 

pentagon of 

X ,>Y 

commutes for each i. Since X = colim D , this implies that the triangle 
1 

commu t e s. 
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3.  R~nk. 

(3.1) Throughout this section, X will denote a locally presentable 

regular category and F a set of generators with rank. We will suppose 

that n I is an infinite cardinal number sufficiently large that 

n I ~ @ (F) ( @ is used to denote cardinality) and n I ~ the rank 

of every object of F. 

(3.2) Let F I denote the set of coproducts of n I or fewer objects of F 

and F 2 denote the set of regular quotients of objects of F I. Let 

n 2 
n 2 = sup # (G~F (G,X)) and n = 2 . Let X denote the full sub- 

X~ F 2 -n 

category of X consisting of all objects whose rank ~ n. 

(3.3) ProDositipn. With n and ~n as above, the objects X ~ ~n are 

characterized by each of the following properties. 

a) There is a map i--~i Gi ~>X with each Gi~ F and such 

b) 5( u (G,X)) < n. 
G~F 

This remains true for any power cardinal ~ n. 

Before giving the proof, we require the following. 

(3.4) Proposition. Every object of X is a colimit of those subobjects 

of it which satisfy condition a). 

Proof. Let X ~ X and consider the set of all subobjects of X which 

satisfy condition a). It follows from (2.6) that the object&satisfying 

condition a) are closed under n-fold coproducts and, by forming 

images, that these subobjects form an n-filter. Let X' be its colimit. 

For G ~ F, any map G-->X lands in a subobject of X satisfying a) , 

namely its image, and hence factors through X'. Thus (G,X') ~(G,X). 

If two different maps G ~X' are given, each of them, since rank 

G ~ n i < n, must factor through one of the given subobjects of X and, 
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by directedness, through some one subobject. Thus, since they factor 

through a subobject of X, they must remain distinct in X. Thus 

(G,X')~ >(G,X) also, and by (1.6) X' ~ )X. 

(3.5) Proof of (3.3). Write X = colim X. where X. ranges over the 
3 3 

subobject of X satisfying condition a). Now since rank X ~ n, the 

identity map X )X, being a map to the colimit of an n-filter, must 

factor through one of the objects in that filter. This evidently 

implies that X itself is one of them and so satisfies a). Now suppose 

an object satisfies a). Then for each J ¢ I such that ~(J) ~ n I, let 

Xj be the image ~ G i >X. Then evidently Xj ~ F 2 , and so 

(G~F (G,Xj)) ~ n 2. The number of such subsets of I is limited by 

nl (2n2)nl 2n2 × n I 2n2 
n . . . .  n. It is clear that the set of all Xj 

is an nl-filter on X. Just as above, this permits showing that for 

each G ~ F, (G, colim Xj)> >(G,X) , and hence by (1.6) that 

colim X? )X. On the other hand, each of the G i >X factors through 

one of the Xj, and hence we have a factorization 

~G i ~colim Xj >X 

whose composition is >>, which shows that the second factor is 

also. Thus X = colim Xj. Now (G, colim Xj) = colim(G,Xj) , and so 

(G~F (G,X)) = ~ (G~F colim(G,Xj)) 

Z Z ~ (G,Xj) ~< X • (colim(G,Xj)) ~< GIF J¢I 
G~F 

nl-n-n 2 = n. Thus condition a) implies condition b) and the 

reverse implication is obvious. Now suppose an object X satisfies 

condition a) and we have an n-filter {YjlJ ~ I}. We see from (G,Yj) 

> colim (G,Yj)--~ (G,colim Yj) and (1.6) that Y.) )colim Y.. Now 
3 3 

supposing ~ G i DX and #(I) ~ n, we use the readily proved fact 

that in S, I-indexed products commute with n-filters and thus 
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(~G i, colim Yj)~ ~(G i, colim Yj) 

"~ colim(Gi,Yj) "~ colim ~(Gi,Y j) 

colim(~Gi,Yj), which shows that HG i has rank ~ n. 

The fact that X does follows from a diagonal fill-in in the diagram 

~G ~X 

l i 
Y > > colim Y . 
3 3 

The last remark about power cardinals ~ n is trivial from the proof. 

(3n.6) Corollary. ~n is n-cocomple~e, finitely complete, and closed 

der sub- and regular quotient objects. 

Proof. It is clear that the condition a) above is inherited by n-fold 

coproducts as well as by regular quotients while condition b) is in- 

herited by subobjects and finite products (in fact, by n2-fold 

products). 

([(3.7) Cprollarv. Every object of X is the colimit of those subobjects 

it which belong to X . 
-n 

~ .8) Coroliarv. ~n is a dense subcategory of X. 

Proof. This means that every X E X is the colimit of the functor 

(Xn,X) )X which associates to each X' >X the domain X'. By 

factoring every such map as . ~ ~.> >. and using the fact that 

~n is closed under regular quotients, we see that the monomorphisms 

in (Xn,X) are cofinal. Thus the colimits are the same and the result 

is a corollary of (3.7). 

[ 
(31 (39) Proposition. Let X £ X and X' ~ X_n. Given any X ~X', there 

an X subob3ect X'~>---~X such that the composite X"} >X---~X' is 
-n 

7>- 
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Proof. Consider a map ~ Gi-----~X. Among all the composites 

G i ....... ~G i >>X ,,, )X ~ there can be at most n distinct maps. Choose 

J ¢ I so that the set of such composite maps for i ~ J is represented 

exactly O ~ J. Then $(J) <~ n, while evidently . Gi--->X >X t 

must have the same image in X t and hence is >>. Then let X" be the 

image of ~ G i )X. 
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4. Kan extension of functors. 

The purpose of this section is to prove: 

(4.1) Theorem: Let X and Y be locally presentable regular categories 

and n be a cardinal such that x satisfies 13.3) and such that Y 
-n -n 

contains a set of generators of Y. Suppose U: X ~ >Y is a 
~n -n 

functor and let ~: X >Y be its Ken extension. Then: 

a) If U is reflexively exact, so is U. 

b) If U is faithful (resp. full and faithful) , so is U. 

(4.2) The rest of this section is devoted to proving this theorem. 

Without further mention, X, _Y, n, U, and ~ will be as in the statement. 

(4.3) Proposition. Colimits of n-filters in commute with finite _Y 

I limits. 

Proof. Suppose we are given n-filters {YI} and _ j{Y") indexed by 

i • I, j • J, and we let Y~ = colim Y!I' Y" = colim Y'i' Yi3 =" Y!I x Y"j, 

and Y = colim Y... Then we want to show that the natural map 
~3 

Y ~ )Y' x Y". We use (1.6) Let A be a generating set in -Yn" For 

L e A, (L,Y) =~ (L,colim Yi-)3 ='~ c°lim(L'YiJ ) ~= colim(L,Y!1 x Y':)3 =~ 

= colim((L,Yl) x(L,Y ) ~ colim(L,Y x colim(L,Y" ~ (since directed 

colimits commute with finite limits in S) ~ (L,colim Y[)×(L,colim Y") 
- 3 

(L,Y')x(L,Y") ~ (L,Y' x Y"). The proof for equalizers is similar 

and we omit it. It is not necessary to have, in that case, maps 

Y! ~Y" given for all i,j but only for sufficiently many pairs of I j 

indices that the resulting subset of I × J remain n-directed. 

(4.4) Proposition. Let X', X" E X. Then the set of maps 

X! x X" • >X t x X", indexed by all X n subobjects X!) >X t and all 
I 3 I 

X n subobjects X")3 ...... >X" , is cofinal among all the Xn-SUbobjects_ of 

X' x X". 
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Proof. Given Xk) )X' x X" with ~ , ~n' we let ~ be the image of 

~X' x X" >X' and similarly ~ the image in X". Then,since 

products of ~ > are certainly ~ >, and from the universal mapping 

property of products, we have 

Xk~----~ ~ x X~) ) X' x X". 

(4.5) Pr_~osition. Let X' % X ~ X "  be an equalizer diagram in 

X. Then each ~n subobject X~ > 
- 1 

> X t appears at least once among 

the possibie equalizer diagrams 

1 3 )~ 

in which Xj and ~ are ~n subobjects of X and X" respectively. 

Proof. Let X = X~ 
3 3 

maps 

itself and ~ be the image in X" of the equal 

X'. % X t ~  X". 
1 

(4.6) Remark. The implication of these last two propositions is that 

for X = X' x X", the functor which associates to X!) >X' and 
1 

X!) ) X" X! x X? X t X" , > ) x is cofinal. Similarly, suppose 
3 l 3 

X' )X~X" is an equalizer diagram. Then the functor which, to 

each pair X~ )X, ~) ) X" for which the restrictions take 

Xj into ~, associates the equalizer of these restrictions is cofinal. 

(4.7) Proposition. Given X ~X" as above, let {Xjl j ~ J} and 

{~Ik 6 K} be the n-filters of ~n subobjects of X and X" 

respectively. Let L be the subset of J x K of those pairs (j,k) 

for which the restrictions of the given maps each take Xj into ~. 

Then L is an n-directed set. 

Proof. Given n or fewer indices of L, we can find j greater than any 

of the first coordinates and k' greater than any of the second. We 

have morphisms 
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xj 

X .- ~ X" 
3 

X" f 
k' 

where Xj and X"k, both belong to X_n. Let + denote coproduct and X k 

.+ ~, > X". Clearly the domain of that map be the image of Xj+ X 3 

belongs to X and (j,k) ~ L dominates each of the given indices. 
-n 

I (4.8) CorolloarY. If U preserves finite limits, so does U. 

(4.9) Proposition. If U preserves ~, so does U. 

Proof. Let X DX'. For any ~n subobject X'>o 

get 

X t, we pull back to 

i, 
X ~ , > X  t 

and let X) ) X I be an X subobject, whose existence is guaranteed 
o ' -n 

" X' Then UX )>UX' Now if I and J by (3.9), such that X ° ~ o" o o" 

are the index sets for the X -subobjects of X and X' respectively, 
-n 

. ,---+> X'. what we have is a map j,* i(j) of J ;I such that Xi(3) I 

Then colim UXi(j) ) colim UX i = >colim UX~ is such that the 

composite is >>by (2.6). This implies that the second is also. 

This second map is just ~rX ............. ~ . D - X ' .  

'(4.10) Proposition. If U reflects monomorphisms, so does U. 

Proof. Let f: X ...... )X' be a map such that Uf: UX> ..... >UX'. If f is not 

d ° 
>, then there are two maps X" ...... ~X >X' which are co- 

d I 

equalized by f and, as observed in (1.7), there is a G ~ F and a 

map G ~X" which does not equalize d ° and d I. Let X" be the 
o 
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image of G 

have 

in X" and X be the image of G + G 
o 

o 

I ° X" ee I ........ ;" i ° 

d ° X" ........ .~ X 

d 1 

f ...... >X l 

)X. Then we 

with X" and X in X and e ° ~ e I. Now apply U to get 
o o -n 

Ue ° 
UX" O -~ UXo 

~X " ~ d °  

I ) d  1 

Uf > ~X' . 

Now U reflects isomorphisms and is faithful, so that Ue ° / Ue I, 

which implies that Ud O ~ udl! while Uf.Ud ° = Uf.Ud I contradicts Uf 

being ~ >. 

(4.11) Proposition. If U reflects isomorphisms, so does U. 

Proof. First I claim that U reflects ~----->. If f: X >X' is such 

that Ug.. UX~ )UXV, consider 

X Itl >X"----~X f >X I 

where X" ---~X is the kernel pair of f and X 'it ) X" is the 

equalizer of them. Apply U and reason as in the proof of (1.6). Now 

suppose that ~f: ~X--~-~X '. By (4.10) , f: X> >X'. If this is not 

an "~.~, there is a map G >X' which does not factor through f. 

If we let X t be the image of G .... ~X' and X be the pullback in 
o o 
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f 
o X ~ )X ~ 

f 
X > ~ X t ,  

it is clear that X'o ~ X_n, and Xo, being a subobject of X t_ , is also. 

Now apply U to get the diagram 

Uf 
UX ~ o >UX' 

If Uf is an isomorphism, so is Uf O, since the diagram remains a pull- 

back| and then f : X "~ )X'. But this implies that the given map 
o o o 

G "~X' really does factor through f, and we have a contradiction. 

I (4.12) Propos_ition. Let U be faithful (rasp. full and faithful). Then 

~ is also. 

Proof. Write X = colim Xi, X' = colim X t 3' each colim taken over the 

diagram of X subobjects of X and X' respectively. Of course from the 
-n 

properties of X n it is clear that these diagrams are n-directed. Then 

! (X,X') ~- (colim Xi, colim X~) ~ lim(x i, colim Xt.) --~" lim colim (Xi,X j) 
J • 

@~--" lim colim (UX i,UXj') ~--" lim (UXi,colim UXt.)3 ---~ 

(colim UXi, colim UXt.) ~--- (UX, UX'). The arrows labeled ~ and 
3 

are isomorphisms because X. and UX. are objects of rank < n in X 
1 l 

and _Y respectively. If U is faithful (resp. full and faithful), then 

the arrow labeled @ is for each i and j a monomorphism (rasp. iso- 

morphism) and both directed colimit and arbitrary limit preser,ve 

monomorphisms, while, of course, everything preserves isomorphisms. 

Hence U will also be faithful (rasp. full and faithful). 
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5. Toposes. 

(5.1) We have already seen how every small regular category has a full 

exact embedding into a topos. Moreover, every regular category has a 

full exact embedding into an illegimate topos. In this section we will 

show that every cocomplete locally presentable exact category has a 

full exact embedding into a topos, while, conversely, a topos is itself 

a locally presentable exact category. We begin with the latter. 

(~.2) Theorem: Every topos is locally presentable. 

Proof. Let E be a topos, and write E = ~(c°P,s) for some small cate- 

gory C and some topology on C which is less fine than the canonical 

topology. Let n be an infinite cardinal number sufficiently large that 

no covering in the topology on C has more than n-elements. Then, as is 

well known, the objects of C (i.e. the representable functors) form a 

set of generators. I claim that each C ~ C has rank ~ n in E. Since 

in the wholefunctor category, (-,C) commutes with all colimits (by 

the Yoneda lemma, ~-,C) , colim G i) = colim GiC = colim((-,C) ,Gi)) , it 

is sufficient to show that if D: I )E is a functor with I an n- 

directed index set, then the colim D i is the same in E as in (c°P,s)_ _ 

or, which is the same thing, to show that an n-directed colimit of 

sheaves is a sheaf. So suppose {Cj >C I j E J} is a covering of C 

and I is an n-directed set. In S, n-directed colimits commute with 

n-fold products and, since n is infinite, with equalizers. If F = 

colim D., we have that 
1 

x ) FC >HFGj -----~F(Cjl C Cj2 

is isomorphic to 

colim Di(C ) >I~colim Di(Cj)~Hcolim Di(Cjlx C C > 
3 2 

which is isomorphic to 
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colim Di(C)--}colim EDi(Cj)~c°lim(EDi(CjlX C Cj2)) 

which, since each Di is a sheaf, is a directed colimit of equalizers 

and again an equalizer. 

(5.3) Corollary. Every cocomplete locally presentable regular cate- 

gory has a full exact embedding into a topos. 

Proof. Let X be such a category and find a cardinal n such that ~n 

satisfies (3.3}. Let C = ~n' and we have an embedding of ~n >~(cOP S) 

which, since the cardinality of each covering of the topology is 1, 

embeds X as objects of finite rank. Then the h~potheses of (4.1) are 
-n 

satisfied. 
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Chapter III. Th9 Embeddinq 

1. Statements of result. 

(1.1) Theorem. Every locally presentable category has a full exact 

embedding into a functor category. 

(1.2) Theorem. Every topos has a full exact embedding into a functor 

category. 

(1.3) Theorem. Every small regular category has a full exact embedding 

into a functor category. 

(1.4) Theorem. Every small, finitely complete regular category has a 

full exact embedding into objects of finite rank of a functor cate- 

gory. 

(1.5) Except for the last clause of (1.4), it is clear from I. (4.4) 

II. (4.1) and II. (5.2) that these statements are all equivalent. 

That last clause could also be derived from the previous theorems, but 

since we have to prove something, we will prove (1.4). In fact, we will 

prove something even stronger. Recall that an object ~ of a category 

is an empty object if it is initial and if every map to it is an iso- 

morphism. Let us denote the terminal object of X by 1. Then, 

(1.6) Theorem: Let X be a small finitely complete regular category. 

Then there is a small category C, whose objects may be identified 

with the non-empty subobjects of I, and a full exact embedding 

>(c°P,s)_ _ which sends each object of X to a regular quotient of 

a representable functor. 

(1.7) Proposition. A regular quotient of a representable functor has 

I finite rank. 

Proof. As observed above (in the proof of II. (5.2)), any representable 
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functor has finite rank - its hom commutes with all colimits. If {Fi} 

is a monofilter (cf. II. (1.2)) of functors and F = colim F. , then for 
1 

each representable functor (-,C) , 

((-,C) ,F) = colim((-,C) ,F i) . 

The filter of sets ((-,C) ,F i) is still a monofilter, which implies 

that ((-,C),Fi)> >((-,C),F) and by II.(1.6) that Fi) )F. Now 

suppose E e (cOP,s) is a regular quotient of (-,C). To see that 

colim(E,E i) ~ > colim(E,F), first observe that by the above, the 

natural map is 1-I. To show it is onto, consider a map E >F. The com- 

posite (-,C) ) E .... )F must factor through some F i and the result is 

obtained from the diagram 

(-,C) ))E 

F . )  ~ F  
1 

by filling in the diagonal. 

I (I.S) ~ .  Let X be a small, finitely complete regular category 

in which the terminal object has no non-empty subobject. Then there 

.S C [ is a menoid C and full exact embedding X ....... • . 

(1.9) Coro!~arv (Mitchell). Let A be a small, finitely complete 

regular additive category (or locally presentable or an Ab-topos). 

Then A has a full exact embedding into a category of modules. 

Proof. Take an embedding into S C as above (there aren't any subobjects 

of 1 in the additive case). Since it preserves finite products, it 

lifts to a still exact (additive) embedding into Ab c, the category of 

ZC-modules. 

(1.10) The remainder of this chapter is devoted to proving (1.6). 

Throughout this chapter with the exception of section (2.12)-(2.16), 



~6 

X denotes a small, finitely complete regular category. 
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2. Support. 

(2.1) Choose X e X and factor the terminal map X )I as X ~S> >i. 

The map X >S is constant, which means that it coequalizes every pair 

of maps to S. This is because X-->S and X >I have the same 

kernel pair, X × X. This S is called the support of X and we will 

write S = supp X. 

(2.2) When X = (c°P,s) and X e X, supp X is that functor whose value 

is I wherever the value of X is non-empty and whose value is 

where X~s is. Thus supp X is the "characteristic functor" of what 

would normally be called the support of X. 

(2.3) An object S E X will be called a partial terminal object if 

every map to it is constant. 

(2.4) Proposi!ion. Let S be an object of X. Then the following are 

equivalent. 

a. S is a partial terminal object. 

b. The projections pl,P2 ~ S × S >S are equal. 

c. The projections pl,P2: S × S - >S are equal. 

d- The diagonal s: S >S > S is an isomorphism. 

Proof. Trivial. 

(2.5) Proposition. Let f: S ~T where S is a partial terminal 

object. Then f is an isomorphism. 

Proof. Consider the kernel pair. 

(2.6) Proposition. Let f: X ~ S be constant. Then S is a partial 

terminal object and S = supp X. 

Proof. As any constant map factors through supp X, we have 

X ~ supp X ~ S, the second being ~ by I (2.5). Now apply 
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(2.5) . 

(2.7) Let Supp X denote the full subcategory of X whose objects are 

the partial terminal objects. There is at most one map between any 

two objects of S upp X and we will often write S ~ S' for S )S'. 

I (2.8) Proposition. supp: X ~ SuppX is left adjoint to inclusion. 

Proof. We must show that for S E Supp X, (X,S) ~ ~ if and only if 

(supp X, S) ~ ~. The "if" part is clear from the map X- >supp X. 

and the other follows from the fact that any constant map from X 

factors through supp X. 

I(219) ProP0sition. The functor 

Proof. Since X ~supp x> )1 

by (2.14) , 

supp 

and 

preserves finite products. 

Y ~ supp Y> >1, we have, 

X x Y ~supp X x supp Y) )Ixl = I. 

Thus supp X x supp Y enjoys the characteristic property of supp(XxY). 

(2.10) Proposition. Let X and Y be objects of X. Then supp X = 

= supp Y if and only if there is an object Z and maps Y<f Z DX. 

Proof. Given such maps, we conclude from Z ~X---->> supp X that 

supp Z = supp X and similarly supp Z = supp Y. Conversely, given 

supp X = supp Y = S we have 

X × Y )~Y 

Y )>S 

(2~iI) Proposition. Let X be regular, X • X. 

reflects isomorphisms if and only if supp X 

X x -: X )X 

is a terminal object 
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Proof. First observe that X x supp X ~X by product projection is 

an isomorphism, since each map to X induces a unique map to supp X. 

For each S • Supp X, supp X x S = supp(X x S). Moreover S x supp X-->S 

gives X x supp X x S ..... >X × S, which is evidently an isomorphism. 

Thus if X x - reflects isomorphisms, we have S x supp X = S or 

S ~ supp X for all S E Supp X. Since every object maps to some 

S • Supp X, every object has a map, necessarily unique to supp X, which 

means that it is terminal. On the other hand, suppose supp X is the 

f 
terminal object, which we will denote I, and suppose that Y ~Y' 

is any map with X x Y 

that f must be ~. 

The diagram 

X x f 
>X x Y' an isomorphism. We first show 

X x Y' ~Y' 

X -- 7>1 

is a pullback, whence X x Y' >>Y', which together with the com- 

mutative diagram 

X x Y .... ,w ~X x yt 

and I. (2.5) implies that Y 

y . > yt 

~,>yt. 

Now form 

y,,, _ d >y,, d ° ~ y f >y, 

d I 

d ° in which Y" ~ Y is the kernel pair of f and Y''' d >y,, 

d I 

is 

their equalizer. Exactly as in the proof of I (2.16), X x - preserves 
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kernel pairs and equalizers, and so 

X × yt,t ....... >X x Y" .... ~X x Y ~X x yt 

is a sequence of the same type But now X x f ~ > ---~X x d ° = X x d 1 

implies that X × d is ~ ). By the above, this implies that d is 

--~ , which implies d ° = d I and then that f is2 }. By the 

uniqueness of the factorization, only an isomorphism can be both. 

(2.12) Definition. Let X be a regular category with a terminal object 

1. An object X ~ X is said to have full support or to be fully 

supported if X ,. ~I. X is called fully supported if every object 

of X is. This is equivalent to the existence of only one partial 

terminal object, since the existence of a terminal object is enough to 

show that supports exist. 

(2.13) It is clear from the results of this section that the functor 

S~pp is a fibration, that the fibres are fully supported regular 

categories (and exact if the total category is), and that the trans- 

ition functors are exact. This last follows from the fact that the 

transition functor from the fibre over S for S ~ S' is given by S x -. 

This functor preserves all projective limits, since S n = S for all 

cardinals n. Conversely, any partially ordered P together with a 

functor pOp to the category of regular (resp. exact) categories and 

exact functors can be pasted together to make a regular (resp. exact) 

category. 

(2.14) : Proposition. Every map in X may be factored f = g.h where 

supp h is an identity and f is a cartesian map in the fibration. 

Proof. This is the essence of a fibration. Given f: X >Y, we factor 

it as X > supp X × Y ~Y. The existence of f implies supp X , 

so supp(supp X x Y) = supp x. The second factor is exactly a cartesian 
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map. 

(2.15) Proposition. Let S be a full subcategory of supp X. Then the 

full subcategory of X consisting of those objects whose support lies 

in S is regular (and exact when X is). 

Proof. Trivial. 
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3. Diaqrams 

(3.1) Let I be an (index) category and D: I )X be a functor. Then 

we will often say that the functor D, or for emphasis, the pair (I,D), 

is a diagram in X. 

(3.2) If (_I,D) is a diagram in _X and X is an object, let (D,X) denote 

the set colim(Di,X), the colimit being taken over i c I. Then an 

element of (D,X) is represented by an object i ~ I together with a 

map f: Di, )X. We may denote this (i,f) and its class by Hi,flf. 

Then lli,fJl = llj,qll if f: Di >X and g: Dj >X are the same in the 

colimit. In the special case when I is filtered (the only type of 

diagram we will have - in fact they will all be directed sets), this 

means that there is a k ~ I and ~: k ~i, ~: k ......... >j in I such that 

D~ 

Dk 

I 
Dj 

D~ 
)Di 

~X 

commutes. When I is not filtered, take the equivalence relation 

generated by that relation. 

(3.3) More generally, if (I,D) and (J,E) are diagrams, we define (D,E) 

as lim(D,Ej), the limit taken over j ~ J. In effect, an element of 

(D,E) is represented by choosing for each j ~ J a aj ~ I and a map 

fj: Dj ---~Ej such that for ~: jl----~j2 in J, al~jl, E~.fjll~ = 

= ll~j2,fJ211 in (D,EJ2). Then two families (a,{fj}) and (T,{gj}) re- 

present the same element of (D,E) if for each j ~ J, ll~j,fj~l = 

= llTj,gjll as maps of D )Ej. The composition of two such families is 

obvious and gives a category. Diag X, of diagrams in X. 
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(3.4) Proposition. If (~,D) and (~,E) are two diagrams, then (D,E) = 

= lim. _ colim. _ (Di,Ej) 
3~J IEl 

Proof. This is just a shorthand form of the above discussion. 

(3.5) If X ~ X, we let X also denote the diagram (~,D) where I has 

exactly one object i and one map and Di = X. Then this embedding is 

obviously full and faithful. In fact, it can be easily seen that 

Diag ~ is just (~,S~ °p and that this embedding is the Yoneda embedding. 

However, this fact is not needed here, as we will work directly with 

diagrams. On account of this, we will call such a diagram either re- 

presentable or the diagram represented by X. 

(3.6) From now on, all diagrams will be over partially ordered sets, in 

fact, over inverse directed sets. In terms of functor categories, this 

means that we are restricting our attention to the category of finite- 

limit-preserving functors. If, for i,j ~ ~ there is a map j >i, i.e. 

if j ~ i, we use (i,j) to denote it; and then, of course, D(i,j): 

Dj )Di is the corresponding map in the diagram. 

(3.7) Recall that every f: X ...... ~Y can be factored in the form 

X .... h >X x supp X g L>y. 

We will say that f is special if h is ~. 

i 

(3.8) Proposition: Special morphisms are stable under composition 

and pullbacks. 

Proof. Let X >Y and Y >Z be special. Then X Dsupp X × Y and 

Y ~supp Y x Z give supp X × Y ~supp X x supp Y x Z = supp X x Z. 

This, together with I. (2.8), gives the first result. As for the 

second, if X. )Y is special and we form a pullback 
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X ~ u p p  X x Y x y Y' PY' 

X ' >>supp X x Y > Y 

Y' ~ supp X x Y' then supp X x Y × Y 

(3.9) Given a diagram (I,D) , we define a new diagram (Is,Ss) for any 

S ~ Supp X by letting I S = {i I supp Di >i S} and Dsi = Di × S. We see 

that D S can be thought of as being a functor IS-----~X S, where the 

latter denotes the full subcategory of all objects whose support is S. 

(3.10) Given a diagram (I,D) we say it is P-diagram if it satisfies: 

PI) I S is an inf semilattice for all S ~ Supp X. 

P2) For any i ~ I and any special morphism f- X ~Di, there is a 

j ~< i with D(i,j) = f (and of course Dj = X). 

The diagram (I,D) is called an A-diagram if it satisfies: 

AI) = Pl). 

A2) For any i < j, the interval (i,j] = {kli < k ~< j} is finite. 

A3) For any i < j, the natural map Di >lim(D I (i,j]) is 

special. 

(3.11) It should be noted that these definitions are not isomorphism 

invariant and should be supplemented by saying that a diagram iso- 

morphic to one of the above type is of that type also. It would be 

useful to discover, purely in terms of the functors represented, what 

these definitions mean. 

(3.12) Proposition. Let (I,D) be a P-diagram (resp. A-diagram) 

in X. 
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I Then is a P-diagram (resp. A-diagram) in (~s,Ds) ~s" 

Proof. The condition P1) = AI) is evidently designed to be inherited 

in this way. If f: X .... )Dsi is special, supp X = S clearly is equi- 

valent to X--->>Dsi. There must exist j < i with D(i,j) = f. We have 

supp Dj = S, so j ~ I S and DsJ = Dj. Thus P2) is inherited. If (I,D) 

is an A-diagram, (Is,Ds) satisfies A1 as above and A2 is clear. Then 

Di >lim DI (i,j ] being special implies that 

Di ~supp Di x lim DI (i,j], 

and if supp Di I> S, 

S xDi .... 

since supp Dk >I S 

>~S x supp Di x lim D I (i,j] 

= S x lim D I (i,j] 

= lim DSI (i,j], 

for all k > i and S × - is an exact functor. 

(3.13) Proposition. Let (~,D) be an A-diagram. Then D(j,i) is special 

for i < j. Also DS(j,i) is >> for all i < j such that supp Di/> S. 

Proof. Since the interval (i,j] is finite, there is a finite chain 

i = i ° < i I < .... < i n = j such that each (ir,ir+ I] has only one 

element, namely Jr+l, and then A3 implies that Di r ~ Dir+ I is 

special. Then D(j,i), being the composite of these, is special also. 

The last statement is obvious, since a special morphism between two 

objects of the same support is 

I (3-~-'.14) Proposition. Let 

is exact. 

Proof. Since ~S is inverse directed, it evidently preserves finite 

limits. If f: X----~Y, then supp X = supp Y. Let lli,gtl: D S >Y be a 

> • 

(_I,D) be a P-diagram. Then for any S ~ Supp X_, 

(D s,-): _x- >s 
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map. Since the pullback of 

X 

Dsi g bY 

comes equipped with a ~Dsi, it is represented in the diagram, so 

there is a commutative diagram 

Ds(i,j) 

DS] 

Dsi 

h 
~X 

i g 
>Y. 

Then llj,hU: D S )X is a map such that (Ds,f) llj,hll = Uj,g.Ds(i,j) U = 

= lli,gll, which implies that (Ds,f) is onto. 

I (3.15) Proposition. Let be a P-diagram. For each i (I,D) I.S. 

Dsi![: DS-----~Dsi is an epimorphism. 

Proof. As pointed out in (3.13) , every map in the diagram D S is ~. 

If f,g: Di 2X are distinct, then for all j < i, D(i,j)f ~ D(i,j).g. 

Evidently every diagram is the limit of representable diagrams and an 

inverse limit of monomorphisms is a monomorphism. 
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4. The Lubkin completion process. 

(4.1) In this section we show how to "complete" a given diagram to a 

P-diagram. This construction was first described by Lubkin in his 

original proof of the abelian category imbedding, [Lu]. As a matter of 

fact, Lubkin observed then that there was nothing inherently abelian 

in his proof. Lubkin even stated a non-abelian embedding theorem, 

although based on the notion of ordinary, rather than regular, epi- 

morphisms. 

(4.2) Let (I,D) be a diagram, i O ~ ~ and f: X---~Di O be a map in X. 

We describe a new diagram Lub(I,D,io,f ) = (I',D') as follows. Let 

I* be a partially ordered set disjoint from and order isomorphic to 

~ Ill ~ io}, by a map i( )i*. Let ~' denote I u I*, in which each 

component has its own order and moreover i* < j if and only if i ~ j. 

In particular, i* < i, and the order is generated by that relation 

together with the orders in ~ and I*. We define D' by D'II = D, 

D'i*o = X, D'(io,i ~) = f, and for i ~ i O, D'i* is defined so that the 

diagram 

D' (i,i*) 

D' (io,i*) 
DIi * ~ X = Dti 

L i 
Di D(io,i ) > Di ° 

is a pullback. D' is defined on maps i* ~i~ and i* >i as shown. 

• D'(j*,i*) is uniquely induced by a pullback and For i ~ j ~ I O, 

D'(j,i*) is defined as D'(j,j*). D'(j*,i*) = D(j,i).D'(i,i*). This 

last equality is a consequence of the definition of D'(j*,i*) as a 

map into a pullback. 

(4.3) Let (I,D) and (I',D') be diagrams. We say that (I',D') is a 

Lubkin-extension of (I,D) if there is some i O • I and f: X >Di 
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with (_I',D') = Lub(I,D,io,f). In particular, this means that I ¢ I' 

and D'I_I = D. 

(4.4) Let n be an ordinal number. A sequence {(Im,D m) Im ~< n} of 

diagrams is called a Lubkin-sequence if for each m, (_Im+l,Dm+ I) is 

a Lubkin-extension of (Im,D m)_ and if for each limit ordinal m, -mI = 

= U I " DmlI =D 
p<m p ' -p p 

(4.5) Let (_I,D) be a diagram. If n is an ordinal number and {fmlm < n} 

is a sequence of morphisms fm: Xm }Dim, we define a Lubkin-sequence 

by letting (_Io,D o) = (_I,D), and for each m, (Im+l,Dm+ I) = 

= Lub(Im,Dm,im,fm) , while for each limit ordinal m, I m = ~m Ip, 

Dml I_p = Dp. 

(4.6) Let (-I,D) be a diagram. Let n I be an ordinal such that there is 

a I-I correspondence m } >fm between the ordinals m < n and the 

set of all special morphisms whose codomain is a Di for i E -i. Then 

applying the above construction, we get a diagram (_Inl,Dnl) . This 

diagram has the property that given i ~ I and f: X >Di special, 

there is some j ~ I such that j < i and f: X----,Di = 
-n I 

= Dnl(i,j) : Dnl j >Di. Now let n 2 be an ordinal such that there is 

a I-I correspondence m! >fm between all the ordinals n I ~< m < n 2 

and the set of all special morphisms whose domain is a D i,i ~ I 
n I -n 1 

Extend the Lubkin-sequence {(_Im,Dm) Im < nl} to one defined for m ~< n 2 

by applying the process of (4.5) beginning with (_Inl,Dnl) . Then we may 

continue in this way with ordinals n2,n 3 ..... Let n = sup{nil i ~ w}. 

By letting I m~n Im' DnlIm = D , we construct a Lubkin sequence -n m 

{(_Im,D m) Im ~< n} with the property that for all special f: X~Di, 

i E I , there is a j < i in I such that f- X ;Di = D(i,j)- Dj---~Di. 
-n -n 
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The diagram (!n,Dn) will be called a Lubkin completion of (!,D). 

li~7) Proposition. Let (I,D) be a diagram in which is an inf Is 
ilattice for each S ~ Supp X. Then a Lubkin completion of it is 

-diagram. 

Proof. PI) is an inductive property, so it suffices to consider a 

single Lubkin extension. Let (I,D) satisfy P1) and (I',D') = 

= Lub(!,D,io,f). Let i A j denote the inf of two elements of IS. If 

i < i ° and i ~ ~S' then i O ~ ~S also and supp Di* = supp Din supp X, 

where X is the domain of f. If supp X is not ~ S, then I~ = ~S" If 

supp X 9 S, then supp Di* ~ S if and only if supp Di ~ S. Now if 

i,j ~ IS, i A j ~ I~, being the same as in ~S" If i,j ~ IS, i < " l O 

• i* A j * = i* A j = (i A j)* and is in ~S when i*o is. If also j ~ 1 O, 

(i A j)* as well. As for P2), this is what the Lubkin completion is 

all about. Supposing that i ~ I and f: X-->Di is special, then 
-n 

i ~ I for some r ~ w and f = f for some ordinal m such that 
-n m 

r 
n r < m < nr+ 1. Then f is represented in the diagram (!m,Dm) and there- 

after. 

I (4.8) Proposition. Suppose (~,D) is an A-diagram. Then any Lubkin 

l extension of it is an A-diagram. 

Proof. Let (!',D') = Lub(I,D,io,f). We have just seen that A1) = PI) 

is preserved by Lubkin extension. As for A2), if i,j ~ I, (i,j] is 

_ _ _ " (i*,j] = (i* (jAi)*]u[i,j] the same in I and I'. If i,j ~ I, i < i o , 

and the first term is order isomorphic to (i,j A i]. If j < i O also, 

(i*,j*] is order isomorphic to (i,j]. To show A3) is satisfied, we 

consider the cases. 

Case 1. i < j in I. This follows directly from the fact that D'I! = D. 

Case 2. i* < j*. This case is a simple application of the fact that 
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limits commute with limits to show that 

Dti * 

Di ...... 

;lira D' I (i*,j*] 

i 
> tim D 1 (i,j] 

is a pullback. Then since the bottom arrow is special, so is the top. 

Case 3. i* < j but i = i A j. In this case, (i*,j] = [i,j] and 
o 

so lim D' I (i*,j] = Di. Then since f is special, so is D'i* >Di. 

Case 4. i* < j and i < i A j. I claim that in this case Di* is 
o 

the limit under consideration. To see this let Jo = j A i O, and 

suppose we are given g(k): Y ...... ~Dk for each k ~ [i,j] and g(k*): 

Y >Dk* for each k E (i*,j~], which constitute a coherent family. 

Then D' (Jo,9~) .g(j~) = D' (9o,i) .g(i) , so that since 

D I i* % D 13o'* 

l 1 
Di ~ DJo 

is a pullback, there is a unique g. Y >D'i* such that D'(i,i*).g = 

'* '* = g(j~) If k ~ [i,j] then g(k) = D(k,i).g(i), = g(i) and D' (3o,1).g . , 

so that D' (k,i*).g = D(k,i).D' (i,i*).g = D(k,i).g(i) = g(k). If 

k* ~ (i,Jo], then to show that D'(k*,i*).g = g(k*), we use the fact 

that 

D'k* ) D t 30 

1 l 
Dk ) DJo 

is a pullback. We have D'(j*,k*).D'(k*,i*).g = D'(Jo,i*).g = g(jo ) = 
o 

= D' (j~,k*) .g(k*) and D' (k,k*) .D' (k*,i*) .g = D' (k,i*) .g = 
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= D(k,i).D'(i,i*).g = D(k,i).g(i) = g(k) = D' (k,k*).g(k*). 

(4.9) Corollary. A Lubkin completion of an A-diagram is simultaneous- 

ly an A- and P-diagram. 
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5. The embeddinq. 

(5.1) we are now ready to describe the embedding.The functor X(1,-) 

is represented by the diagram Do: -oI >X_ in which -oI has one 

object and D at that object is the terminal object 1. This is evi- 
o 

dently an A-diagram and we let (I,D) be a Lubkin completion of it. 

we let C be the category whose objects are the non-empty subobjects 

of 1, and whose morphisms are defined by 

C(S1,S 2) = (Ds1,Ds2) : 

that is, morphisms (as defined in (3.3)) between the diagrams 

(IS I,DSI) and (Is 2,DS2). This is equivalent to natural transformations 

between the functors represented by the diagrams. Composition in C is 

just the composition of natural transformations. Note that C(SI,S2)= 

= ~ unless S 1 ~ S2, which means that there is a functor 

)Supp X. We define U: X ~(c°P,s)_ _ by (UX)S = (Ds,X), the 

mapping described in (3.2). Composition of natural transformations 

(recall that this is really natural transformations between (X,-) 

and (Ds,-)) makes this functorial in ~ and (contravariantly) in ~. 

Since limits and colimits in functor categories are computed element- 

wise, it follows that U is exact as long as (U-)S is for each S. That 

functor is (Ds,-). 

I (5.2) Proposition. U is exact. 

Proof. See (3.14). 

(5.3) Proposition. Let E: J .... ~S be a P-diagram and F: ~--->~S be 

an A-diagram. Let k ~ K and 
o 

llJo,fll 
E >Fk 

o 

be a map. Then it extends to a map E 7F. This means that there is 

a map E ~' )F such that 
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E ....... ~F 

IIJo'EJoU ~ ~ llko'Fkotl 

EJ o > Fk o 

commutes, since always f.,Jo,EJo, = tiJo.fil. 

Note that we use the name of an object to denote also its 

identity map. 

Proof. First we observe that F (like any diagram based on an inverse 

directed set) is isomorphic to the diagram gotten by truncating F 

above ko: That is, replacing K by {klk ~ ko} and restricting F. 

This new diagram~ moreover, satisfies the conditions for being an 

A-diagram itself (not merely being isomorphic to one). Thus we may 

suppose that k ° is terminal in K. Next we observe that E = E s re- 

presents an exact functor of X >S. This means that the S diagram 

(K,F) defined by Fk = (E,Fk) is an A-diagram in S, since exact 

functors preserve the properties defining an A-diagram, finite limits 

as well as regular epimorphisms (which are what special maps reduce 

to in XS ) . Since (E,F) = lim(E,Fk), then (E,F) = lim Fk , taken over 

k ~ K. Hence this proposition is reduced to the following special case 

(when E = I and X = S). 

(5.4) Proposition. Let (K,F) be an A-diagram in S and k O • 

be terminal. Then lim F ~Fk is onto. 
o 

Proof. We choose a point of Fk O which we will denote by P(ko). We 

consider families (L,p(L)) in which L is a full subset of _K that is, 

a subset with the restricted order) and p(_L) = {p(1) Ii ~ L} is a 

point of lim F/L subject to the following conditions. 

a) k eL. 
o 

b) p(k O) is the already given point. 

C) For k ~ K, i ~ L, i < k i ~k ~ L. 
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This family is partially ordered 
in the obvzous way: (LI,P(L1) ) < (~2'P(~2) ) if ~1 ¢ ~2 and 

P(L2) IL1 = P(L1 ) . This set is inductivel the only thing non-trivial 

is showing that a union of a nested family has a point of the limit. 

But the test of whether a point of {FZII ~ L} is a point of the 

inverse limit involves only two indices at a time, and in an inductive 

union the satisfaction of such a test is inherited. Hence there is a 

maximal (L,p(L)) among the family. We need only show that K = L. 

If not, there is k ~ K, k f L: Since the interval (k,ko] is finite 

and k O E L,_ there must be some k f L_ for which (k,ko] ¢ L._ But since 

Fk ~lim FI (k,k o] 

is onto and {P(~) I~ ( (k,ko]) is an element of that inverse limit, 

there is a p(k) e Fk such that for all k' ~ (k,ko], i.e. all k' > k, 

F(k',k)p(k) = p(k'). By condition c) above, no element of L precedes 

k, so that in fact p(L) u {p(k)} is a point of lim FIL u {k}. 

Clearly the conditions a) ,b) , and c) above are satisfied and we have 

constructed a proper extension of (L,p(L)), which is a contradiction. 

(5.5) Now for an object X ~ X with support S. Let (I,D) be the dia- 

gram constructed in (5.1). Since X >I factors as X ~S> >i, 

= X. Let J = {i ~ Isli ~ io}. Let there is some i O ~ I with Di O 

E = DIJ. Evidently (J,E) ~ (~s,Ds), and (J,E) is easily seen to be 

both an A- and a P-diagram. Let FI J >X be the functor whose value 

at i ~ J is the kernel pair of E(io,i) = D(io,i). Since Di and Di ° 

have the same support, this amounts to saying that 

dOi E ( i ° , i) 
Fi ~ Ei ..... > Ei ° = X 

dli 

is exact. 

15.6) Proposition. The diagram (_J,F) is an A-diagram. 
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Proof. A1) and A2) are obvious. Let k < j ~ J. Since limits commute 

with limits, 

lira F I (k,j] = lim(E × X E) I (j,k] = lim E] (j,k] x x lira EJ (j,k]. 

Since Ej >>lim El (j ,k], the result 

follows from I. (2.2) . 

Ej x X Ej >>lim(E x X E) I (j'k] 

(5.7) Proposition. The diagram 

d ° iii ,XIJ 
O F ~E >X 

d I 

is a coequalizer. 

Proof. Since every diagram is a limit of objects of X, it is sufficient 

to show this for maps into them. Suppose lj,gI: E ...... )Y is a map co- 

equalizing d ° and d I. This means that Jj,g.d°l = Uj,g.dll, and since 

F Ij,Fjl >Fj is an epimorphism (see (3.15)), it follows that g.d O= 

g.d I . But 
d°j E(io,J) 

Fj ~ Ej > X 

alJ 

Y 

is a coequalizer and hence there is induced f: X >Y with 

f.E(io, j) = g. Since E(io, j) is a map in the diagram, it represents 

the map IIio,X,: E >X. Uniqueness of f follows from (3.15). 

* (5.8) PropQsition. Let G: be diagram and F the diagram any 

constructed in (5.5). Given two distinct maps F ~G, there is a 

E >F with E ---~F~G also distinct. 

Proof. It is sufficient, as above, to consider the case when G is an 

object of X, say G = Y. Let the two maps be IIi,fII: F > Y and 

llj ,gll: F ..... )Y. By choosing k ~> i,j we may suppose that i = j. 
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Since Fi 
E(io,i).d°i 

.............. ))X, there is some ~ E J such that E[ = Fi. 

Since F is an A-diagram (see (5.6)), the map EZ >Fi can be ex- 

tended to a map E >F, giving a commutative diagram 

E )F 

1 1 
EZ > Fi 

and E ~E1 an epimorphism. Since 

E ~ >E[. ~Fi >Y, and then E 

5.9) ~roposition. 

Proof. Suppose x 

FiJJ 

>F ~Y. 

U is full and faithfull. 

f ~Y and Uf = Ug. If Z 
g 

~Y are distinct, so are 

e >X is the 

equalizer, this implies that Ue is an isomorphism. If S = supp X, 

(UZ)S ~ (UX) S and (UX) S ~ ~ implies that (UZ)S ~ ~ and that 

S ~ supp Z, while clearly supp Z ~ S. Now choose a vertex i ~ ~S 

with Di = X. By the isomorphism, the element Hi,XlJ ~ (UX)S must 

come from (UZ) S and be represented by some ilj,hil. By choosing 

k = i A j and observing that DS------>Dsk is epi (see (3.15)), we 

have a commutative diagram 

D(i,k) 

h.D(j ,k) 
Dk > Z 

Di ~ X 

from which we see that e is )>. Since e is also an equalizer, 

this implies that e is an ~ > and that f = g. 

Now suppose that ~: UX ~, >UY is a natural transformation of 

functors. Taking S = supp X, we see that ~S= (UX)S >(UY)S, and 

since (UX)S ~ ~ , (UY)S ~ ~ and S < supp Y. If s= X >>S is the 
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map (there is only one), then (@,Us) z UX >UY × US = U(Y x S) is 

also natural. If we show that (~,Us) = U(f,s),f: X >Y, then 

(~,Us) = (Uf,Us): UX >UY × Us and ~ = p2.(~,Us) = pl.(UftUs) = 

= Uf. Hence it is sufficient to consider the case that supp Y = S as 

well. Let (J,E) and (J,F) be the diagrams constructed in (5.5) 

above. Then (UX) S = (F,X) 

E > X. Then by (5.7) , 

and (UY) S = (F,Y). Let d denote IIi O,xli: 

d ° d 
F ~E >X 

d I 

is a coequalizer. Now the map d represents an element, also denoted d, 

of UX, and is transformed into an element ~(d) : E. >Y. If 

~(d).d ° ~ ~(d).d I as maps F ~Y, there would exist, by (5.8), a 

map g: E ..... >F such that @(d) .d°.g / @(d).dl.g. But the statement 

that ~ is natural means that for any map S >S in C, that is to 

say, any natural transformation u: E . >E, and for any h- E >X, 

@(h.u) = @(h).u. But d°.g and dl.g are maps E ~E, and so 

we have ~(d) .d°.g = ~(d.d°.g) = @(d.dl.g) = @(d).dl.g, which is a 

contradiction. Thus ~(d).d ° = @(d).d I, and by the property of equal- 

izers, there is induced a map f- X ...... >Y with f.d = ~(d). Now 

suppose e: E. >X represents some other element of (UX)S. Since E 

is an A- and P-diagram, e- E .... }X can be extended to v: E >E 

such that d.v = e. Then ~(e) -- ~(d.v) = ~(d).v = f.d.v = f.e. Hence 

= Uf. This completes the proof. 

(5.10) Proposition. For each object X of X, UX is a regular quotient 

of a representable functor. 

Proof. Let S = supp X. Choose an index i ~ I S with Dsi = X and 

let d = ,i,Xll: D s ...... >X. By (5.3), we have for any P-diagram E, 
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(E,Ds) " 

or 

)> (E,X). In particular, this holds for E = DS,, and so 

(Ds, ,Ds) >> (Ds, ,X) , 

c(s',s) ~(ux)s', 

which means that C(S',-) maps onto UX, or that UX is a regular quotient 

of c (s',-) 

With this we have completed the proof of (1.6) as well as of 

all the other results stated in section I. 

(5.11) Remark. It seems worthwhile to make two additional remarks 

about this embedding. First, as a colimit of a directed set of re- 

presentable functors, it does more than merely preserve the finite 

limits that exist. Rather it will preserve the finite limits in any 

reasonable finite limit completion of the category, e.g. that described 

in I.(4.5). The second is that as a consequence of the fact that 

Ds~>Dsi for each i, the functor commutes with intersections of any 

family of subobjects of an object which have an intersection. This 

property is apparently a completely accidental consequence of the 

construction and it is not known what, if any, use it might have. 

(5.12) If V is an exact closed category with exact direct limits and 

a faithful underlying functor, then by interpreting the S valued 

functor as taking values in V, we get a V-valued exact (not full) em- 

bedding which reflects isomorphisms. If V is the form S ~ , where~ is 

a commutative triple of finite rank, this is satisfied and one may 

even see directly that the full embedding lifts to a full exact em- 

bedding into a V-valued functor category. 
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6. Diaqram chasin q. 

(6.1) When one has an embedding theorem of this sort, the obvious 

thing to do with it is to chase diagrams. In the abelian cases this 

was usually cited as one of the main applications. In fact, however, 

in the abelian case, most of the diagrams can be chased almost as 

easily in the original abelian category. In fact most of the diagrams 

to be chased seem to involve, one way or another, the snake lemma. 

(I am loosely using the term "diagram-chasing" to include "diagram 

filling" as well.) As seen in the next two chapters, the non-abelian 

case offers diagrams of both greater variety and greater difficulty. 

This seems to be largely because exact sequences involve kernel pairs, 

rather than kernels~ coequalizers, rather than cokernels. 

(6.2) One further point, equally valid in the abelian and non-abelian 

case,, should be mentioned here. The embedding theorem is valid for 

small (or locally presentable) regular categories. There are three 

possible ways around this difficulty for large categories, of which at 

least two work and one is set-theoretically unassailable. Taking that 

one first, any diagram, any set of objects, can be extended to a full 

regular (resp. exact) subcategory by a more - or - less evident process. 

Given a set of objects, make a full subcategory. Add to this this 

a) the kernel pair of any map, 

b) the regular image of any map (equivalent to the coequalizer of its 

kernel pair), and 

c) the pullback of any pair of maps like 

Each of the processes adds a set of objects whose number is (roughly) 
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the set of maps of the given subcategory.Now iterate this countably 

many times and take the union. The result will evidently be a full, 

small, regular (resp. exact) subcategory. If the original category 

had finite limits we could obviously modify this to give finite limits 

to this subcategory. 

(6.3) A second possibility is to relate everything to Grothendieck 

universes. If a category is large in one universe, it is small in the 

next and can be embedded in a functor category there. Or it can first 

be embedded into a locally presentable category. If S is the first 

universe (which may as well be identified with its category of sets) 

and 2" is an enlargement, the embedding of X into all S-continuous 

functors of X °P )S* is evidently S-continuous and the functor 

category is locally presentable, since X is embedded as generators, 

each of rank ~ to the cardinal of S as an object of S*. 

(6.4) The final way is more speculative but would be the most satis- 

factory (or, anyway, the most satisfying) if it worked. It is possible 

that every regular category X possesses a class of exact functors 

U~ X )S, U ~ U, with the following property. Every class 

{~UIU ~ U~ of maps UX ~U ~UY for which each natural transform- 

ation ~: U >U' gives a commutative diagram 

UX ~U ) UX t 

U'X - -  ~UI --->UtX I 

implies the existence of a unique f: X >Y such that ~U = Uf for 

all U ~ U. Since a class U is a collectively full and faithful family, 

a diagram can be chased by applying every such U. "Every" is, in this 
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context, the same as "any" and can be supposed for purposes of 

verification to be just one. It is not known whether such a class 

always exists. 

(6.5) Whichever strategem is adopted doesn't change the fact that 

certain types of diagram chasing in regular categories can be carried 

out in functor categories. Strict diagram chasing (that is, not in- 

volving filling-in, but only commutativity) can be carried out in S, 

since the evaluating functors (cOP S) >S given by evaluativy 

at the objects of C form a family of exact functors which are collective- 

ly faithful. In fact more is true. 

(~ op >S 6) Proposition. The evaluation functors (C ,S) _ for C E 

~ ollective!y are faitkful, exact,reflect isomorphisms and reflect 

~ ivalence relations. 

Proof. That they are faithful is clear, since equality of natural 

transformations is defined that way. The evaluations preserve all 

limits and col imits (limits and colimits are calculated "pointwise") , 

so exactness is also clear. For similar reasons they reflect isomor- 

phisms (collectively). Finally suppose F .... >G × G is such that FC 

is an equivalence relation on GC for all C ~ C. First, FC> >(G×G)C = 

= GC x GC implies that F> )G x G. Next, the coequalizer F__~G---~H 

is computed pointwise so that FC----~GC >HC is a coequalizer for 

each C E C. But the kernel pair of GC ~ HC is just FC, which 

means that F ~ G is a kernel pair, afortiori an equivalence re- 

lation. 

c~(6a!7) Corollary. Let X be a small (or loca~ly presentable) regular 

egory. Then there is a family of! exact functors Ui: X ~S, 

I, which collectively ~re faithful, reflect isomorphisms, and 
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reflect equivalence relations. If, in addition, X is exact, then these 

d ° 
U i preserve the coequalizer of any pair of maps X ~ Y such that 

d 1 

the image of (Uid°,Ui dl) : UiX >UiY x UiY is an equivalence re- 

lation for each i ~ I. 

Proof. If U: X >(c°P,s)_ _ is full, faithful, and exact, we let I be 

the objects of C and U be U followed by evaluation at the corresponding 
- l 

object. Then every thing but the last statement is clear. To see that, 

suppose d ° and d I are as above. Then we can fac%or (d°,d 1) as 

X ~Z > ) Y x Y. By the proposition and the given conditions, UZ is 

an equivalence relation on Y. If the diagram 

Z ...... ~Y >yt 

is a coequalizer, it is exact. Then for each i ~ I, 

and 

U.X >>U.Z 
1 I 

UiZ-----TUi Y ) UiY' 

is a coequalizer, which implies that 

UiX ~ UiY > U Ytl 

is a coequalizer. 

(6~8) Metatheorem. Let X be a regular category. Then any small dia" 

gram chasing arsument valid in S is valid in X, provided the data of 

the diagram involve only finite inverse limits and coequalizers of 

right exact sequences~ if, moreove~, the category is exact, these 

data may also include coequalizers of pairs of maps which, in S, can 

be shown to have as image an equivalence relation. 

(6.9) Given the somewhat vague statement of this metatheorem, it is 

hardly susceptible of being proved. To apply it, it is necessary only 
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to verify that the type of diagram to be chased is by its nature sus- 

ceptible of being proved by applying a family of reflexively exact 

functors which also reflect equivalence relations. 

(6.10) Example. Suppose X is a regular category and we are given a 

zommutative diagram 

y !  

e e 

y ,  

ym! .... 

f! 
)X' 

~ X  f 

~- X" 
f .  

in which both columns are exact and the square 

O 
e 

ft 
yI . . . .  >X' 

Y f >Y 

1 
is a pullback (which is equivalent to the square with e 

a pullback). Then the square 

and d i being 

e 

f 
Y" >X 

Y" ~ X" 
f,, 

is also a pullback. 

Proof. Even in the category of sets this is moderately difficult to 

prove. In an arbitrary regular category it follows from the meta- 

theorem. I am indebted to Anders Kock for suggesting this example. It 
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arises in the theory of elementary toposes and also in descent theory. 
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Chapter IV. Groups add Representations 

i. ~inaries. 

(1.1) Throughout this chapter and the next, X denotes a fixed exact 

category. From I(5.11) both GpX and AbX, the categories of groups and 

abelian groups in X, respectively, form exact categories. The latter, 

in particular, is abelian. 

(1.2) Let G E GpX, and uz I >G, i: G )G, and m: G × G >G 

be the unit, inverse, and multiplication maps, respectively. A pair 

(X,a) where X • X and az G x X ) X is called a left representa- 

tion of G or a left G-object if the following diagrams commute: 

G xG xX 

x 1 

G x a 
>G xX 

a 
GX X ;X 

a 

X ~ >l×X 

X 

u x X  

A morphism fz X. >X' is a morphism of G-objects (X,a) ~(X',a') 

provided 

G × f G x X ~G x X t 

X f- > X t 

commutes. 

Note that all these products exist, since, for example, 

G × X - - - - - - - - - ~ X  

i i, 
G )~ I 
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is a pullback. 

The left G-objects and their morphisms evidently form a category L__OO(G) 

which has an evident underlying functor L_OO(G) ) X. Turning every 

thing around, we can define the category R__OO(G) of right G-objects 

and their morphisms. Finally, we say that a 3-tuple (X,a,a') where 

(X,a) E L__OO(G) and (X,a') e R~(G) 

GxXxG 

axG 

XxG 

is a 2-sided G-object if 

G x a i 
~G x X 

1 a a ~ ~X 
commutes. The category of these objects and morphism which are 

simultaneously in L_OO(G) and R O(G) is called B_.OO(G). It is clear 

that one could define G Op and show that L O(G °p) is the same as 

R__OO(G) and L__OO(G x G Op) is the same as B._O(G). 

(1.3) Theorem. Let X be a regular category (resp. exact). Then LO(G) 

is regular (resp. exact) and the functor L O(G) ~ is a reflexive- 

ly exact functor. 

Proof. That it reflects isomorphisms is trivial. Now consider an 

exact sequence 

in which 

morphisms. 

(X',a') and 

d ° d 
X t' ~ X >X" 

d I 

(X,a) are left G-objects and d ° , d I are G- 

Then the top row of 

G x X I " ~G x X ~ > G  × X" 

1 i  ' 
X' " ~ X ~' X" 
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is still exact and hence a" is induced as indicated. From here the 

proof proceeds exactly as in I.(5.11). 

(1.4) Corollary. R O(G) and B O(G) and their underlying functors to 

enjoy the same properties. 

Proof. This can be either proved the same way or made to follow as a 

corollary via the remark preceding (1.3). 

(1.5) Theorem: Let U: ~- ~ be exact. Then there is induced, for 

each G ~ X an exact functor 

L O(G) >LO(UG) 

such that 

L0 (G) ~ L_~O (US) 

x ~ X  

commutes 

Proof. Recall that according to I.(5.11), UG will be a group object 

in ~. That U takes G-objects to UG-objects follows easily from the 

fact that U preserves products. The exactness is a consequence of the 

reflexive exactness of LO(UG) >~. 

(1.6) Corollary. RO(G) and BO(G) enjoy the same properties. 

(1.7) Lemma: Suppose (X,a,a') is an object of :BO(G) and s: 

G x X )X x G is the map which interchanges the factors. Then the 

immage of G x X (a,a'.s) 9X x X is an equivalence relation on 

X. That is, if X' is defined as the coequalizer in the diagram 

G x X a ~ X. >X', 
at.s 

then this sequence is right exact. 
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Proof. If X is small, choose U: X ~S which is reflexively exact 

and reflects equivalence relations. Then UG is an ordinary group 

and UX is a 2-sided UG-object. Thus it suffices to consider the case 

of ordinary groups operating on ordinary sets by a 2-sided operation. 

So we have G × X • >X x X by a map taking (g,x) | ~(g~,xg) 

and we want to show the image is an equivalence relation on X. It is 

reflexive as (l,x) ~----> (x ,x) and symmetric as (g-l,gxg) ~ ) (xg,gx) . 

If (gx,xg) and (g'x t,xtg t) satisfy xg = gtxt, (ggt,xtg -I) ! > 

> (gg'x'g-l,x'g ') = (gxgg-l,x'g ') = (gx,x'g'), and so the image 

is transitive. When X is large, use an appropriate modification (cf. 

III. (6.4)) . 
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2. Tensor products. 

(2.1) Proposition. Let G be a group in X, (X,a) • L__OO(G) and X'~ X. 

Then (X x X', a x X') e L__0.O(G) also. 

Proof. Trivial. 

(2.2) Of course X' x X J X x X', so that X' x X • L__OO(G). If 

(X',a')~ R__Q_O(G), X' x X has the structure of a left G-object from X 

and of a right G-object from X'. 
i 

I (2.3) Proposition. X' x X with this structure is an object of BO(G). 

Proof. Trivial. 

(2.4) Definition. Let X ~ L_.OO(G), X' ~ R_OO(G). We define X' 

coequalizer in the diagram 

atxX 
X w x G x X .... > X' x X >X t ~ X. 

> G 
Xxa 

X as the 
G 

Note that thou~ X' × X is a left and right G-object, it is most 

convenient to put G in the middle. It follows from (1.7) that the 

sequence is right exact and thus remains right exact (in particular 

a coequalizer) when any right exact functor is applied. 

I (2.5) PrQposition. - ® G - is a functor R O(G) x L__OO(G) > X. 

Proof. If (X,a) f ~(Y,b) is a map of left G-objects, the diagram 

X t 

X' 

X I 

. atxX 
x G x X ~ X' x X 

I Xtxa 

x G × f X w × f 

at×Y xGxY ~ >XtxY > 

X' xb 

>X t ® X 
G 

! 
! 
! 
! 
! 

>X I ® Y 
G 

commutes, whence X' ~ f is induced from the coequalizer. 
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(2.6) Proposition. Suppose X' ~ L__OO(HxG Op) (This means that it is a 

left H, right G Tbi-object) and X E L__OO(G). Then X' ~ G X) has the 

natural structure of a left H object. 

Proof. The top row of 

H x X' x G x X----~H x X' x X >H x(X' ® 

1 ' 
I 

b x G × X b x I 

X t x G x X . ~X I x X >Xt -- ® G X 

x) 
G 

is still a coequalizer. Here b: H × X' >X' is, of course, the 

H'-structure map and the commutativity of one the squares at the left 

is exactly the fact of X' being a hi-object. The induced map 

H x(X' ® X) -----> X' ~ X is easily shown to be a structure map, using, 

for example,that 

H x H x X' x X >>H x H x(X' @ G X). 

(2.7) It is clear that G with its left and right multiplication maps 

belongs to BO(G). If f: H )G is a morphism of group objects, 

there is an obvious functor f*: L._OO(G) >LO(H), in which 

(X,a) } } (X,a. (f×X)). There is also included a functor f,: L__OO(H) > 
. 

>L_qO(G) which takes a H-object X to G X, evidently a G-object 
H 

from the above remark. 

I (2.8) Theorem. The functor f, ~ f*. 

Proof. The inner adjunction is the map X (u't'X)~G x X >G ~ H X 

in which X ~ t ~ I • u %G is the terminal map of X followed by the 

unit of G. The outer adjunction is induced by 
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G x H ×X ~G x X .... 

X 

;G® X 
H / 

/ 
/ 

/ 
/ 

/ 

That the first is H linear, the second exists and is G-linear, and the 

two satisfy the laws of an adjunction may be easily verified by 

applying the metatheorem. 

I (2.9) Corollary. For any G, the underlying functor B O(G) ...... 

eft adjoint, X! > G x X. 

Proof. Apply the above to G--~I. It is evident that G ® I 

(2.10) Theorem. 

)~ has a 

X=G x X. 

Let X ~ L.O0(GxH°P) , Y ~ L__OO(HxK°P) , Z ~ L__O_O(K ~ L °P ) . 

Then there is a canonical map 

(x ® H Y)® K Z >X ® H(Y ® K Z) 

such that the diagram 

X~Y×Z 

(x ® H Y)® K Z ~X @ H(¥ ® K 
z) 

commutes (see the proof for the definition of these vertical maps), 

and that map is an isomdrphism. 

Proof. The vertical maps in the diagram are gotten by letting t(X,Y) 

denote the canonical projection X x Y. ~X ® H Y" Then the one map 

is t(X ~ H Y,Z).t(X,Y) ~ Z and the other is similar. One way of 

proving this is to first prove it in ~ (trivial). Then use the meta- 

theorem to show that in the diagram 
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X x Y x K x Z × X ~ Y × Z ~X ×(Y ® 

/ 

/ 

/ 

(x  ® H Y) ® K Z 

z) 
K 

the vertical arrow coequalizes the two maps on the left. Since the 

row is a right exact, it is a coequalizer, and there is induced 

X x (Y ~ K Z) ) (X ~ H Y)® K Z with the appropriate property. An- 

other use of the metatheorem shows that in the diagram 

X x H x(Y ® K Z) L ~ X x(Y ~ K Z) >X ~ H(Y ~ K Z) 

/ 
/ 

/ 

( x  ® H Y) ® N g 

the vertical arrow again coequalizes the two arrows on the left and 

the required map is the one induced. That it is an isomorphism may be 

readily verified by a third use of the embedding. 

(2.11) Theoremz If X ~ L__OO(G) , G ~D G X ~ G! and if Y ~ R O(G) , 

Y® G Y. 
G 

Proof. These can be derived either directly from adjointness or from 

arguments similar to (but simpler than) the above. 

~ .12) Theoremz The associativity and unit of the previous two 

] theorems are jointly coherent. 

Proof. Prove it in ~ and use the metatheorem. 

(2.13) Corollary. If gz K~ ~H, f~ H )G, then (f.g), = f!.g,. 

Proof. From the previous theorems we have for 

= G ® H ( H  ® K X  ) ~" (G ® H H ) ®  K X ~ G ® K X = 

X ~ L O(K), f!(g,X) 

(fg), (x) 
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(2.14) Remark. Later on, when G is commutative (and then L_.OO(G) and 

RO(G) are equivalent to the same full subcategory of BO(G), namely 

the subcategory of symmetric objects), there will be a commutativity 

isomorphism as well, which by the same reasoning will be jointly co- 

herent with the above. 

~ .15) Proposition. 

RO(G) , and X 2 ~ IO(G). Then 

Let U: ~ ...... )X be an exact functor, G i ~, 

U(Xj. @ G X2) ~ UXl @ UG UX2" 

Proof. Exact functors preserve both products and right exact sequences. 

Apply U to 

X 1 x G x X 2 ~  X 1 x X 2 ";Xl @G X2" 
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3. Principal objects. 

(3.1) Definition. Let G be a group in ~. A left G-object X will be 

called a principal left G-object if 

a) x ~1. 

(a'P2) > 
b) G x X ........... X x X is an isomorphism. Here a: G x X >X is 

the structure while P2: G × X ) X is the second coordinate pro- 

jection. We let PLO(G) denote the full subcategory of these objects. 

(3.2) The definition is, in view of III(2.11), exactly the same as 

Chasers [Ch] which goes back, in turn, to Beck [Be]. Much of the pre- 

liminary material in this section is special cases of resul~ proved 

by Chase, His proofs, however, were generally much more complicated 

because he had no metatheorem available. 

I (3.3) Proposition. Let U: ~'----->X be exact. Then U(PLO(G)) ¢ PLO(UG). 

Proof. U preserves )>, finite products, and (like any functor) iso- 

morphisms. 

~i 
.4) Proposition. Let G be a group (in S~. Then PLQ(G) consists (up 

isomorphism) of the single ebject G, and the morphisms, all ....... ~ 7, 

nsist of the right multiplications by the elements of G. 

Proof. Let X ~ PLO(G). Condition i) of (3.1) says that X ~ @. 

Condition ii) says that the map G x X ~X × X, which takes 

(g,x) t .)(gx,x) for g ~ G and x ~ X, is an isomorphism. This 

amounts to saying that if x is held fixed, there is for each x' ~ X a 

unique solution in G to gx = x'. In other words, if x ~ X is fixed, 

the mapping G ~X by gP %gx is an isomorphism. The rest of the 

proposition is trivial. 

3.5) Proposition. PLO(G) 

Proof. 

is a groupoid (that is every map is ~ )). 

If X )X' is a map in PLO(G) choose an embedding and 
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apply the last proposition. 

(3.6) Proposition X ~ PLO(G) is isomorphic to G if and only if 

there is a map 1 }X in X. In fact, PLO(G) (G,X) ~ X(I,X). 

Proof. PLO(G) C L O(G) is full and faithful. Hence this follows from 

adjointness: 

L__OO(G) (G,X) = L__OO(G) (G x I,X) ~ ~(I,X). 

(3.7) Theorem: Let U: ~ > S  range over a family of exact embeddings 

which collectively reflect isomorphisms. Then pLQ(G) consists of 

those X for which UX ~ UG as UG-objects. 

Proof. If UX = UG, then the canonical map (Ua,P2): UG × UX ...... }UX x UX 

is an isomorphism, which means that U(a,P2) : U(G x X) >U(X × X) is 

also, and finally that (a,P2): G x X >X x X is. On the other hand, 

by (3.3) and (3.4); X ~ PL0(G) implies UX ~ UG. 
?--- 

(I (~.8) Theorem: Let f: H >G be a morphism of groups. Then 

b (PLO(H)) ¢ PLO(G) . 

Proof. For any exact U: ~ >~, U(G ~ H X) JUG ~ UH UX ~ UG ~ UH UH 

UG. Note that f! is not in general exact, so that (3.3) does not 

apply here. 

(3.9) Proposition. Suppose fz H ~G is the trivial map, 

91 u > G. Then for X ~ PLO(H), f!(X) ~ G. 

Proof. It is sufficient to show that there is a G-morphism of f,(X)--~G. 

In the diagram 

G x H xX ~G xX ~X 

/ 

P I  " /  

~ / 

G 
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the vertical map coequalizes the two maps on the left (the structure 

G × H > G, is in this case just the projection) and induces 

X ~G, evidently a G-morphism. 
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4. Structure of qroups. 

(4.1) In this section we derive a few results about the relation 

between kernels and kernel pairs. We continue to let ~ denote an exact 

category. 

(4.2) We know from I.(5.11) that the underlying functor from Gp X ~ 

is exact and hence preserves limits and regular epimorphisms. Since 

the category is also pointed, the notions of normal monomorphisms and 

epimorphisms also arise. It is evident that a normal epimorphism is 

always regular, but in general (e.g. in pointed sets) the converse is 

not always true. Here we will show that it is. 

(4.3) Proposition. Gp ~ has finite products. 

Proof. The terminal map G. 

the unit. Then the pullback 

exists. 

71 of any group is 

G x H- >)G 

H ~> I 

~, being split by 

I (4.4) Proposition. Gp ~ has finite limits. 

Proof. It is necessary only to show that equalizers exist. During this 

argument we will denote the composition of morphisms by a dot, as f.g, 

while the multiplication of two morphisms to some group will be de- 

noted simply by juxtaposition, as fg. The inverse, under the group 

law, will be denoted f-1. This latter is particularly ambiguous but 

none of the maps arising in the proof will be isomorphisms (except 

accidently) and the inverse in the category will not be used. Of 

course neither f-1 nor fg will generally be morphisms of Gp ~ when f 

and g are. Now suppose we are given two maps f,gz G ~H. We let 
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u: I--)G, I >H denote interchangeably the unit morphisms. In 

particular f.u = u, g.u = u and fg-l.u = (f.u)(g-l.u) = (f.u)(g.u) -I) = 

-i fg-1 = uu = uu = u. If X is the image of : G ~H, this shows that 

u: I )H factors through X via fg-l. Now let K be the pullback in the 

diagram 

K 

G 

Once this pullback exists, it follows that 

K ~ , I  

G >H is also a pullback. 

Now K is a group, and in particular h: K) )G is a subgroup, if 

and only if (X,K)> (X,h) )(X,G) is a subgroup for each X. Applying 

(X,-), we still get a pullback in 

(X,K) ~ ~ (X,i) = I 

(X,G) ' -1 > (X,H) 
(x, f) (X,G) 

and (X,K) really is the equalizer of the two group homomorphisms (X,f) 

and (X,g), and hence is a subgroup. 

(4.5) Proposition. Every regular epimorphism is normal. 

Proof. We use the same conventions as in the proof above. The under- 

lying functor Gp ~ )~ preserves finite inverse limits.It pre- 

serves, in particular, kernels, since the kernel of a map is the 

equalizer of that map and the trivial map. As in (3.9), we let u also 
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denote this trivial map between any two groups. Now suppose that 

is a coequalizer and 

G l d---~_~ G f >G" 

e 

H g >G is the kernel of f. We want to show 

that f is the cokernel of h, and it clearly suffices to show that for 

any hz G >K, h.g = u implies h.e = h.d. But g is also the equalizer 

of f and u as maps in X. Now f.de -1 = (f.d) (f.e -1) = (f.d) (f.e)-I = 

=(f.d) (f.d)-I = u. Hence there is map k.- G t )H such that g.k = de -1. 

Now for any h: G. ~K with h.g = u, u = h.g.k = h.de -1 = (as above) 

(h.d) (h.e) -1, and on multiplying this by u, which is the unit of (G,K), 

we have h.e = h.d, which completes the proof. 
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Chapter V. Cohomoloqy. 

1. Definitions. 

(1.1) In this chapter we will define cohomology Sets of ~ with co- 

efficients in a group in ~. Only H ° and H 1 will be defined here. There 

are several suggestions for higher setsl these are being investigated 

currently. The "cohomology sets" are covariant functors of the co- 

efficients. What they are contravariant functors of is suggested by 

the classical examples (cf. section 4). If X is exact, so is (X,X) 

for any X ~ ~ by I.(5.4)! and if X >X' is a map, there is in- 

duced (~,X') >(X,X) by pulling back, provided the pullbacks 

exist. Even if they don't, they do for all Y---->>X I , and that is all 

the cohomology is concerned with. If G is a group in (~,X) , it also 

is in (X,X'), and there is induced Hi(X',G) ~Hi(X,G), i = O,1. 

In the discussion below, the X is suppressed and we write Hi(G), 

which should actually be Hi(I,G). (X is terminal in (X,X) and the 

cohomology of X is the cohomology of that terminal object.) 

(1.2) Throughout this chapter we will keep certain notational con- 

ventions. In addition to ~ being exact, we suppose that it has a 

terminal object 1 and that t: X >I denotes the terminal map of 

every object. Each group comes equipped with its multiplication m, 

its inverse i, and its unit u. For any object X and group G, we will 

also use u: X >G to denote the composite X .... t~ 1 u >G. 

The maps denoted t form a right ideal with respect to all the objects 

and those denoted by u form a left ideal with respect to groups and 

group homomorphisms. In addition, for this Section we fix an exact 

sequence of groups and group homomorphisms 

u f f' t 
1 ) G ! ......... > G > G" ....... ~ 1. 



(1.3) The cohomology will be relative to an underlying functor U: 

X~>Y. Although the functor U and the category X are usually exact, 

it seems desirable to develope the relative theory without those 

assumptions. Accordingly we will suppose only that U preserves finite 

limits. The absolute, or unrelativized, theory may be recovered by 

letting U be an exact functor to a category (C,S) where C is discrete, 

for in that category every epimorphism splits and every principal G- 

object is isomorphic to G. The desirability of considering such a 

relative theory was pointed out by Jon Beck. 

(1.4) Definition. Let G be a group in X and X E PLO(G). We say that X 

is split by a functor U if UX UG as a UG object. 

o~nll.5) Proposition. With U,X and G as above, X is split by U if and 

y if there is a morphism 1 >UX. 

Proof. Of course in the case in which Y is exact, this follows from 

IV. (3.6). But we have not supposed that. In any event, (I,UG) / @, 

so one direction is trivial. To go the other way, let H = UG and 

Y = UX, and suppose there is a map s: 1 ~Y. Now H is a group, Y is 

an H object, and H x Y ~ >Y x Y. This implies that the representable 

functor (-,H) is a group, (-,Y) is an H-object, and 

(-,H) x (-,Y) ~ "~(-,X) × (-,Y). 

yt Then for any yt such that (Y' ,Y) / ~, (Y' ,Y) is a principa ,G)~. 

This implies that (Y' ,G) "~ >(Y' ,Y) by the map that, associates to 

a fixed f : y1. ~Y and to an arbitrary map g: Y' )G, the map 
o 

(g, fo ) 
y1- ) G x Y >Y, 

the second map being the structure. If we take for fo the composite 

yw t > I s )y, 
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this defines a natural (-,G) equivalence (-,G) N ~(-,Y) which 

must be induced by a G equivalence G ~ >Y. 

(1.6) Definition. We know that PLO(G) is a groupoid (IV.(3.5)). 

In addition, there is a distinguished component in P L0(G), the one 

containing G. We define HOG to be the set of automorphisms of G, 

and given U: X------9~, we define HI(U,G) to be the set - or maybe 

class - of all components of PLO(G) split by U. That means those 

components containing a representative split by U. Since the distin- 

guished component is clearly split by U, this may be considered as a 

pointed set - or class - with the distinguished component as base point. 

In the case that the functor U is exact and takes values in ~, whence 

every X ~ PLO(G) splits,the resultant set HI(u,G) is simply the set 

of connected components of PLO(G) and is denoted HI(G). This is 

the "absolute" cohomology. 

X~7) Proposition. Let f: G'-----~G be a group homomorphism. Then if 

PLO(G') is U split, so is f! (X) ~ PLO(G). 

Proof. There is a map X %f!(X) (essentially the front adjunction) 

and a map 1 )UX gives one 1-->UX ...... >Uf!(X). 

(1.8) Theorem (Beck). Suppose ~ is exact and Uz X )~ is a 

tripleable underlying functor. Then for G ~ Gp X, H°(G) and 

HI(U,G) are the zeroth and first (non-abelian) triple cohomology 

sets of the object 1 with coefficients in G. 

The proof is rather long and is given in [Be]. If F is left 

adjoint to U and the front and back adjunctions are given by n:X >UF 

and e: FU )X, then the triple sets are computed from the complex 

I ~X(FUI ,G) i ~ ~(FUFUI,G) ~ ~(FUFUFUI 
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the arrows induced by such things as eFU and FUe and similar maps 

at the next stage. The fact, standard in tripleable categories, that 

FUzX 
F U F U X  ~ ~ ->> F U X  

U F ~ X  

eX 
>X 

is a coequalizer, implies easily, if X is taken as 1, that the zeroth 

cohomology is X(1,G). 

(~1.9) Corollary. Suppose U: X- >S is tripleable. Then U is exact 

l - - 
and the zeroth and first triple cohomology of the object i with co- 

efficients in a group object G are exactly H°(G) and HI(G). 

Proof. The exactness of U in this case is well-known (in fact is the 

direct ancestor of the definition of exactness used in this paper) 

and the rest then follows from the preceding theorem. 
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2. The exact sequence. 

(2.1) If Uz ~-----~ is a finite limit preserving functor and 

f ft 
1 ) G ~' > G > G" )1 

sets. 

Proof. One can easily show that 1. 

sequence in Gp ~ is equivalent to 

1 ...... ~(-,G') 

>G I - > G • ~ G" being an exact 

>(-,G) >(-,G") 

being an exact sequence of group valued functors on X (cf. I. (5.10)). 

In particular, evaluated at I, we get 

I ~ ( 1 , G ' )  ,,, > ( 1 , G )  > ( 1 , G " )  

is exact, which gives the exactness of half of the sequence. The next 

step is to give the connecting map. Suppose dz I )G" is given 

(we identify (I,G") with Aut G"). Let X be the pullback in the dia- 

gram 

is an exact sequence in Gp X, we say that it is a U-split exact 

sequence if Uf I is a split epimorphism. Thus 

1 ~ UG t Uf > UG Uft > UG" >I 

is a split exact sequence. 

(2.2) Theorem. Let U: X ~ > Y preserve finite limits and 

1 ~G t >G >G" ~i 

be a U-split exact sequence. Then there is a natural map 6: 

HOG ''. -->HI(u,G t) such that the resulting sequence 

1 > H°G t > HOG >HOG ,, 

H (U,Gt) - >H (U,G) >H' (U,G") 

is exact, the last four terms being exact as a sequence of pointed 
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t 
X 

G 9G" 

Since G >G" is a U-split epimorphism and U preserves pullback, 

X }1 is also a U-split epimorphism. A map 

a~ G' x X )X 

is defined by t.a = t and g.a = (f.p!)(g.p2). Recall that t denotes 

everybody's terminal map, Pl and P2 are coordinate projections, and 

q.a is to be the product in the group ~(G' × X,G) of (f.pl) and 

(q.p2) We see that a is well defined from 

f'. (f.pl) (q.p2) = (f'.f.pl) (f'.q.p2) = (u.Pl) (d.t.P2) = u(d.t) = d.t. 

Here we use the fact that f' is a homomorphism of group objects. To 

see that this gives X the structure of a a principal G-object -- 

evidently U-split-- it suffices to consider the situation in S. There 

d picks out a point of G" and X is the inverse image of that point, 

operated on by left translation by G'. It is evidently isomorphic to 

G' in that case and so, in general, is a principal G'-object whose 

class we denote by 6(d). 

(I (2.3) Proposition. The sequence 

O . 
HOG ~ H  G ' ,  >H I(U,G') 

exact. 

Proof. Refering to the definition of 6(d) above, we see that if d 

lifts to a map I, ~G, this gives a splitting of X )I by the 

pullback property. The converse is trivial. 

~ .4) Proposition. The sequence 

H°G"~> HI(u,G , ) > HI(U,G) 

Lis exact. 
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Proof. If d: I >G" is given, and X is a principal G'-object 

representing 6(d), X comes equipped with a map X q ........ ~G, easily seen 

to be G'-linear. From the adjointness 

HOmG, (X,G)"" " "  ~HOmG(G (D G' X,G) 

we see that there is a map G ® G' X >G and so they are isomorphic. 

Conversely, if they are isomorphic, there is a map X q >G. Consider 

the diagram 

G v x X 
a 

>~ X > 1  
P2 lq 

f, 
G ~G". 

Since (a,P2): G' x X ~ >X × X and X ~1, the top row is a 

coequalizer. The facts that f'.f = u and q is a G'-linear morphism 

imply that f'.q.a = f''q'P2 (e.g., use the metatheorem) and hence 

a map d: I >G" is induced making the square commute. If 6(d) is 

represented by an X ° e PO(G°), the properties of pullback give a map 

X ~X', easily seen to be a G-morphism and hence an isomorphism. 

p(2.5) Proposition. The sequence 

HI(u,G ' ) 

is exact. 

)- H I ( u , G )  ,~ H I ( u , G  " ) 

Proof. The composite map is f,.f' = (f' f) = u , which is trivial 

by IV(3.9). To go the other way, suppose that G" ~ G X ~ G". The 

front adjunction gives a map X )G" ~ G X and we see from the 

commutative diagram 
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G x X >G t x X 

X >G' @ 
G 

X 

that X >>G' 

1 '  >G I ® 
G 

X Then we may pull this back along any 
G 

X to obtain 

X v ) >  f 

X )>G' ® X 
G 

The map G' x X '.L > G x X >X gives X t the structure of a G' 

object. Applying U, we get a.pullback square 

UX' >1 

UG .......... > UG". 

Since UG ..... >UG" is a split epimorphism, so is UX' >1. Similarly, 

we may use the metatheorem to see that X t E PLO(G w) . Finally, the 

map X t )X, easily seen to be a G1-morphism, gives a G-isomorphism 

X t .'~ >X. This completes the proof of (1.2). G~G~ 
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3. Abelian qroups. 

(3.1) In this section we consider the special case of the theorem (2.2) 

in which G is abelian. To emphasize this fact, we use A instead of G 

throughout this section to denote an abelian group object of ~. Ab 

denotes the category of abelian group objects of ~ and morphisms of 

groups. The first observation we have is an immediate consequence of 

I. (3.11) and I~5.1~ . 

I (3.2) Theorem: Let ~ be an exact category. Then Ab ~ is abelian. 

(3.3) When A is abelian L__OO(A) can be embedded as a full subcategory 

of B O(A) as the subcategory of symmetric objects. Namely, given an 

a: A x X )X making X into a left A-object, X becomes a right A- 

object, indeed a 2-sided A-object, via the composite 

a 
X x A ~A x X iX, 

in which the first morphism is the switching isomorphism. Via this 

embedding we may consider the tensor product as defining a functor 

- e - : L__OO(A) x LO(A) ~ B__OO(A). 

I (3.4) Proposition. The image of the isomorphism above is contained 

~__ L O(A) . 

Proof. In sets, a symmetric 2-sided A-object X satisfies ax = xa. In 

X ~ A Y' we have a(x ~ y) = ax ~ y = xa ® y = x ® ay = x ® ya = 

(x ~ y)a, given that both X and Y are symmetric. Now use the meta- 

theorem. 

(3.5) Proposition. The image of - ~ - restricted to PLO(A) × PLO(A) 

is contained in PLO(A). 

Proof. Using IV.(2.11), IV.(2.15) and IV.(3.7), we have, for X, 

Y ~ PLO(A), and for exact U: ~ ~, 
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U(X ® A Y) ~ UX ~ UA UY ~ UA ® UA UA ~ UA, 

whence by again applying IV.(3.7) X ~ A Y ~ PLO(A). 

.ma~oSi6) .Proposition. The functor - ~ - : L0(A) x LO(A) >LO(A) A 

ociative,commutative, and unitary up to jointly coherent iso- 

phism. 

is 

Proof. Prove it in ~ and use the metatheorem. 

(3~.7) Corollarv. The set HI(A) is an abelian monoid, the product 

Ibeing induced by ~ A -" 

(3.8) Theorem. HI(A) is an abelian group with respect to the tensor 

product. 

Proof. We need only show that there are inverses. Let X ~ L_OO(G) have 

structure map a: A x X > X and i: A >A be the inverse map of 

A, a homomorphism since A is commutative. Let X $ denote X with structure 

map 

i x X a 
A x X >A xX >X. 

An application of the embedding shows that it is principal. Let b: 

X x X ----gA be the composite 

-I 
(a ,p2 ) 

X x X ">A x X 
Pl 

>A 

-I 
from which (a,P2) = (b,P2) . Now consider 

X ~ ,~ X @ X @ X x A x >X × >X 
/ A 

b 

/ 

A 

/ 
/ 

/ 

which makes sense since X and X ~ are the same object of X. In sets, 
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A = X, and we may suppose A = X. In that case, a: A × A~ >A is 

addition and we may easily check that b: A x A >A is subtraction, 

X ~ . Pl- P2" Then b coequalizes the two maps X x A x X ~ to X x Then 

X ~ there is induced a map X ~ A > A, easily seen to be an A- 

morphism, hence an isomorphism. The metatheorem allows us to pull this 

argument back to ~. 

(~9) Proposition. If U: ~ >~ preserves finite limits, HI(u,A) 

is a subgroup of HI(A). 

Proof. If UX 1 and UX 2 are split, then we have a map 1 .... >UX 1 x UX 2 

U(X 1 x X2) ..... >U(XI ~ A X2) ' the latter being this image under U of 

the natural projection X 1 x X2--> X 1 ~ A X2" If X ~ A X~ ~ A, then 

X and X ~ are isomorphic in ~, so UX splits if and only if U(X $) does. 

Finally, the trivial class, that of A, splits already in ~. 

I (3.10) Theorem: Let U: ~= ~ preserve finite limits and 

0 ~ A' > A ~ A" -i--> O be a U-split exact sequence in Ab X. 

Then the sequence of (2.2) is an exact sequence of abelian groups. 

Proof. 0 ~H°(A ' ) ~ H°(A) >H°(A '') 

g: B-->B', the induced map HI(U,B)~ 

X7 >B' ~ B X. Using 

is Obviously exact in A__bb. For 

>HI(u,B1 ) is given by 

((B' @ B Xl) ® B' B') 

so that the induced map 

(3.6) , we have (B' ~ B X1) ~ B' (B' ~ B X2) 

® B X2) ~ (B' ~ B Xl) ~ B X2 = B' ~ B(Xl ® B X2) 

HI(U,B) ~HI(U,B ') is an abelian group 

homomorphism. In particular 

HI(U,A') , > HI(u,A) >HI(U,A ") 

is an exact sequence of abelian groups. Thus we need only show that 

the connecting homomorphism 6z H°(A") ~ > HI(U,A ') is additive. That 

is, given 
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X I 

ql ], 

A - 

d ! 

A" 

X 2 > 1 

A ~ A" 

pullback squares, we must show that there is a pullback square 

Xl ~ A X2 

A 

>i 

dl+ d 2 

A" 

As in the proof of (l.iO), it is sufficient merely to exhibit a 

commutative square of that sort. Consider the diagram 

X 1 x A t x X 2 .... ~X I x X 2 

l ql x q2 

A x A 

~m 

A 

> X 1 ~ A t X 2 

where m is the addition. By applying the metatheorem we see that the 

vertical map coequalizes the given maps and induces X 1 ~ At X2= >A. 

Another application of the embedding (or a simple direct argument 

based on the facts that m induces the addition in (-,A) and that 

A' >A" is a homomorphism) shows that 

X 1 ® X 2 > 1 

I [d I + d 2 

A >A" 

commute s. 
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4. Extensions. 

(4.1) Consider an exact category ~ and a fixed object X. Then Y = (X,X) 

is also exact by I.(5.4). This category also has a terminal object, 

X }X, by the identity map. A map Y ~X will be called an ex- 

tension of X. If G is a group of ~, we say that G is an X-group. A 

principal G-object is a Y ~ DX on which G operates principally. It 

is in particular an extension and will be called a singular extension 

with kernel G. G .... ~X itself will be called the split extension 

with kernel G. Note that the unit law shows up in this case as a map 

X~>G which splits G ~X~ so that this really is a split epi- 

morphism. In particular, a U-split extension is one which really splits 

when U is applied. 

(4.2) Suppose X is the category GD of groups and X ~ ~ is a fixed 

group. Then an X-group G is a G---~X whose group law considered as 

a map G x X G )G is a homomorphism of groups. Since G DX is 

split, G is a semi-direct product X x M where M is the kernel of 

G .... >X. G x G is X x M × M and it is a moment's calculation to 
X 

see that M must be abelian and that G operates on M as a G-module. 

(4.3) If 

O ~M > G ~ X ----->i 

and 

0 ........ > M > Y --> X --> i 

are (still in the category of groups) two singular extensions of X 

with kernel M, the upper being split, then we can form the pullbacks 

(1) 0 - ->M ~ +G ....... > X "' >± 

H T 
(2) 0 ........ ~ M-->G X x Y >Y >I 
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P1 
(3) O-->M >Y × X Y - > Y ~i 

I i 
(4) 0 ~ M > Y - ~ X ~. 

Both sequences (2) and (3) split, the first because (I) is split and 

the second by the diagonal Y >Y x X Y" It is a familiar fact in 

extension theory (and reappears as IV.(3.6) in this formulation) that 

any two split sequences are equivalent, which means that 

(a,P 2) 
G x X Y ' 9Y × X Y is an equivalence. It can be seen directly 

(e.g. use the metatheorem) that a determines an action, evidently 

principal, of G on Y. Note,of coUrse, that fibred product over X is 

precisely cartesian product in ~. 

(4.4) Considering the same diagram, we see that (a,P2) : G x X y } 

Y x X Y gives that G x X Y and Y x X Y are extensions of Y with 

the same kernel M, which implies that G and Y are extensions of X 

with the same kernel M, the first being split. Hence we have shown: 

(4.5) Theorem. Let X be a group, M an X-module, G the split extension 

of X with kernel M. Then singular extensions of X with kernel M are 

equivalent to principal G-objects in (GD,X). Equivalent extensions 

correspond to isomorphic objects of PLO(G). 

Proof. We have shown everything but the last, but that is obvious. 

(4.6) Proposition. Let M,X,G be as above. Then 

Der(X,G) ~ (GD,X) (X >X,G .... >X). 

Proof. Note that the last is X(1,G) = H°(G). The proof is easy and 

also well-known. See the remark in the middle of p.255 of [4]. 

(4.7) Thus we have identified H°(G) with H°(X,M) = Der(X,M) and 



104 

HI(G) with HI(x,M), the usual group of singular extensions of (2.2) 

corresponds, as far as it goes, with the usual one. It is also evident 

that the identical analysis would work for any of the standard 

equational categoriesz associative, commutative, Lie, Jordan rings or 

algebras~etc. In each of those categories, as well as any equational 

category in which there is a group law among the operations, each 

group object must be abelian. 

(4.8) In all these categories of algebras we might consider a relative 

cohomology, relative to some suitable functor. In the common examples 

this functor is algebraic, i.e. induced by a map of triples, and hence 

exact. The most common is the underlying functor from a category of 

K-algebras of some type to K-modules. In that case the relative co- 

homology classifies, in dimension one, those singular extensions 

which are split as K-modules. The Hochschild cohomology of associative 

algebras is of this form, while the corresponding absolute cohomology 

was given by Shukla. See [BB] for some of the details and further 

references. 

(4.9) The Baer sum of singular extensions is defined in the following 

way. Given 

O >M X 71 , 

Y2 

two extensions with the same kernel, we first form Y1 x X Y2 and 

then observe that there are two embeddings M.----~Y 1 x X Y2" When 

these are rendered equal (or coequalized), the result is the Baer sum. 

We may indicate the process as 

M------~YIX X Y2 >YI ~Y2' 
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where YI~Y2 is the Baer sum. In our generality, the embeddings 

M >Yi are replaced by actions G x Yi > Yi' i = 1,2. The fibred 

product Y1 × X Y2 is simply the product in the category (GD,X). 

Thus it seems more or less likely and is trivial to prove that the 

above sequence corresponds to our definition of the product in HI(G) 

(G commutative) given by the following diagram being a coequalizer: 

Y1 × G x Y2 >~Y1 x Y2 '' >Yi ~ G Y2" 

This provesz 

(4.10) Theore______mm: The equivalence between H'(G) and HI(x,M) given 

by (3.5) takes the tensor product multiplication in the first to the 

r sum in the second. Analogous results hold in the relative case. 
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Appendix) Giraud's theorem. 

(A.I) After the completion of the five preceding chapters, I received 

from Ira Wolf a sketch of his proof of the Giraud theorem character- 

izing toposes. As I read it I realized that exact categories made a 

very convenient setting for the,proof. This appendix presents a proof 

given along these lines. The proof is actually much closer to the one 

published by Verdier [Ve] than to Wolf's. It differs from the former 

in that it treats the question entirely in terms of Grothendieck 

topologies (in the sense of Artin) and that it involves neither a 

change of universe nor any essential use of an illegitimate category. 

(A.2) The following terminology will be used throughout. 

Let ~ be a category, C an object, F: C °p >~ a functor. A family of 

maps to C, {C i >C}, is called a sieve (or a sieve on C). A sieve 

is called an F-sieve if every C i x C Cj exists and 

FC • >KFCi~F(C i x C Cj) 

is an equalizer. It is called a universal F-sieve if for C'~>C, 

every C' x C C exists and {C' x C C >C'} is an F-sieve. It is 
i i 

evident that if it is a universal F-sieve, then {C' × C Ci" >C'} 

will be universal also. If C" is an object of ~, a sieve is called a 

(universal)C"-sieve if it is a (universal) (-,C")-sieve. It is called 

a regular epimorphic sieve if it is a C"-sieve for every object C" of 

(this is an evident generalization of D) and a universal 

regular epimorphic sieve if it is a universal C"-sieve for every C" 

of ~. These last two notions will be abbreviated r.e.s, and u.r.e.s. 

respectively. 

I (A.3) Proposition. Let {C i ) C}, and for each i, {Cij >Ci} be 

l universal F-sieves. Then {Cij >C} is one also. 
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Proof. It is sufficient to show it is an F-sieve, since pullback 

commutes with composition. In order to do this we need the following 

lena. 

(A.4) Lemma. Let the diagram 

X 
o 

d d ° 
"> Yo ~Zo 

commute (that is, with d°,e°,f O and with dl,el,fl), g be a monomorphism 

and e be the equalizer of e O and e I. Then d is the equalizer of d ° 

and d I if and only if f is the equalizer of fo and fl. 

Proof. Chase the diagram. 

(A.5) Now we return to the proof of (1.3). Apply the lemma with 

X ° = FC, Yo = 1'K FCi, 

Z = i,~ F(C i x C Ck) YI = ~ FC., o ' i,j i 3 

= K F(Cij x CiX) Z 2 = ~ F(Cij Y2 i ,j .~ C. ' i,j ,k,~ 
1 

x c Ckz)" 

The maps • and d are equalizers by assumption and we need only define 

h and show g is a monomorphism. The former is easily done by product 

= ~ F (Cij x C k) projections. As for the latter, we define Z 1 i,j,k C " 

Now {Cij .............. >Ci} is a universal F-sieve, so thatb~ulling back along 

the projection {C i x C Ck >Ci} we find that 

~ij x C Ck--'---~Ci x C Ck} is an F-sieve. This implies at least that 

F(C i x C Ck)~" > j ~ F(Cij x C C k) or that 
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F (C x C k) ) ) E F (C x C k) i,k i C i,j ,k ij C ' 

which is Z o~ >Z I. Similarly, {Ckl % Ck} is a universal F-sieve, 

and by pulling it back along Cij x C Ck-----~Ck we see that 

{Cij x C Ckf ~ Cij x c Ck} is an F-sieve too. Thus 

F(Cij x C Ck)> )~ F(Cij × C Ck~) ' 

and by taking products over i,j,k we find ZI~----~Z 2. 

~ )  Proposition. If {Ci--> C}, and for each are {cij----~ c i } 

e.s, then so is {Cij )C}. 

(A.7) From the previous proposition it is clear that the class of all 

u.r.e.s, in a category ~ forms a topology, called the canonical 

topology. Any topology less fine than the canonical topology is 

called a standard topology. 

(A.8) Another consequence of this proposition is that the usual 

assumption in a Grothendieck topology that the composition of covers is 

a cover (I.(4.1).b) is unnecessary. In fact, it is an easy corollary 

that given an arbitrary collection of sieves, the sheaves for the 

coarsest topology it generates are exactly those F for which every one 

of the given sieves is a universal F-sieve. 

I 
(A.91 Proposition. Let ~ have pullbacks. Then a topology on ~ is a 

standard topology if a~d only if every representable functor is a 

sheaf. 

The proof is very easy and is omitted. 

(A.IO) Let E be a category. E is called a topos if 

a) E has finite limits. 

b) E has disjoint universal sums. 

c) E is exact. 
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d) E has a set of generators. 

The precise meanings of these follow, a) is clear, b) means 

that for every family {El} of objects there is a sum ~Ei! that the 

square 

6..E ->E. 

E . '  ~ j IEi 

is a pullback where 

f 
=~E i if i = j 

6ij E i 

O, the initial object, when i ~ j! 

and that given E i >E (---E', E' x E ~Ei J ~(E' × E El) by the 

natural map. By interpreting this condition when i ~ ~, we see that 

E' x E 0 = 0 for any E' )E and if E' .... 90, that 

E' ~ E' × O 0 ~ O. This implies that 0 is empty and will henceforth be 

denoted by ~. c) is used in the sense of this paper and d) in the 

sense of II.(l.3) ! that is, there is a set F of objects such that for 

any E ; )E' not an isomorphism there is a G ~ F and a map G )E' 

which does not factor through E. 

(A.Ii) Theorem (Giraud). Let ~ be a category. Then the following are 

equivalent. 

a) There is a small category [ with finite limits such that E = 

= ~(C__°P,s~ for the canonical topology on ~. 

b) There is a small category ~ such that E = ~(~op S), sheaves for 

some topology on ~. 

c) There is a small category ~ and a full embedding I: 

which has an exact left adjoint. 



110 

I 
d) E is a topos. 

e) E = ~(~°P,s) ,(canonical topology) and has a set of generators. 

(A.12) It is obvious that a) -->b). That b)~_~c) is found in [Ar] 

and since the setting of exact categories in no way improves his proof, 

we omit it. The only thing to note in this connection is that if 
! 

P> ) F where P,F: CZ p. )~ and F is a sheaf (in some topology), 

then the sheaf P* associated to P is the subfunctor of F gotten by 

adding to PC every point in FC N HFC i where {C i )C} is a cover 

in the topology. This obviously works even when ~ is large and the 

associated sheaf functor may not exist. The P* so constructed can 

easily be seen to have the required universal mapping property: 

(P*,F) ~ (P,F) when F is a sheaf. 

(A.13) Proposition. Condition c) ---> condition d). 

Proof. Suppose I: E .......... >(~op,~) is a full embedding with left adjoint 

J. Then sums (as well as other colimits) are computed in E by 

~E i = J~IE i. We leave to the reader the easy task of showing that 

(~°P,s~ is itself a topos. In what follows we automatically identily 

the composite JI with the identity functor on E. Then for a family 

~i } of objects of E. 

6.. IE. >IE. 
13 l i 

,[ i 
IE. }~[IE. 

3 I 

is a pullback. If we apply J and recall that J preserves initial 

objects, we get that 

,[ I 
E,  ~ ' ~ E .  

3 1 
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is a pullback. Similarly, given E. 
X 

E' x E~Ei~ ~ JIE' x JIE J( i[IEi)-- 

~E and E' >E, we have 

J(IE' x IE/4IEi) ~ J(_~IE' x IE IEi) 

J(~I(E' × E Ei)) ~]4(E' × E Ei)" 

Thus E has universal disjoint sums. If 

E O )> E l 

is a pullback in E, apply I and factor IE 
o 

>IE I to get 

iEO >> F' ) ) IEI 

1 1 1  
IE o ....... ~ F ) IIE i 

F' is defined to make the right hand square a pullback, and since the 

whole square is a pullback, so is the left hand square, whence 

TEl . 
O 

~F' as shown. The functor J preserves both ~ and > 

(the latter because it preserves finite limits), so we can apply I 

to get 

! 
E' ~ JF' ~ ~ E 1 O 

1 1 t 
E o >7 JP > ~ E 1 . 

in which both squares are pullbacks. But since E ° ~E1, it follows 

that JF. ~E I, whence JF "~>E1, and then JF t ~ ~E I, which implies 

that E'-o ~E I. Thus the pullback of a regular epimorphism is also a 

regular epimorphism. 

Suppose E1----~E O is an equivalence on E o. It is clear from 

I(5.3) that a limit preserving functor preserves equivalence relations~ 
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so that there is an exact sequence 

IEI--------~IE ° )F 

in (cOP,s) and since J is exact 

E I ' " - - - ' ~ E  ° ) JF  

is an exact sequence as well. Thus E is exact. 

Finally, if E)----~E' is not an isomorphism, it follows, 

since I is full and limit preserving, that IE% >IE' and is not 

an isomorphism. This means there is a C ~ ~ with IEC ~ >IE'C not 

an isomorphism or, by the Yoneda lemma, a map (-,C) >IE' which 

does not factor through IE. In view of adjointness, this is the same 

as a map J(-,C) ~E' which does not factor through E. Thus the 

objects J(-,C), C ~ ~ generate E. 

This completes the proof of (A.13). 

(A.14) Now we turn our attention to showing d)--~e). Until that is 

finished, E denotes a topos! ~(E._°P,~) , the category of sheaves in the 

canonical topology~ and Rz E~)~(E°P,s)_ _ , the embedding as re- 

presentable functors. 

I (A.15) Proposition. R is exact. 

Proof. The proof of I(4.3) is equally valid for any topology less fine 

than the canonical and finer than the regular epimorphism topology. 

(A.16) Proposition. Let F be a sheaf. Then F(~Ei) = KFE i for any 

amily of objects E i of E. 

Proof. First observe that {E i 

since for any E", 

= (~,E") >i~ (Ei'E") 

is an equalizer, while there are no non-trivial 

> ~}i~ is a cover. This is so 

x Ej ,E") i,j~ Ei 
E' > ~ to pull 
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back along. Replacing (-,E") 

Now let E =~i" Since E i x 

by any sheaf F, we see that F~ = I. 

, , . J E Ej = 613E I we have, for any E" that 

(E,E") ~E(Ei,E") -~E(E i x E Ej,E") 

is an equalizer (all maps being isomorphisms). Hence {E i )E}iE ~ 

is an r.e.s, and, using the universality of the sums, it is easily 

seen to be a u.r.e.s. Then for any sheaf F, 

FE > ~FE i ~F(E i x E Ej) 

• = 5. E. and F@ = i, the third term is an equalizer. Since Ei × E E 3 13 l 

is the same as the second, which implies that FE = ~FE i. 

I(A.17) Proposition. preserves sums. R 

Proof. For any F and any {Ei}, (RL[Ei,F) = F(J~E i) = HFE i = E(REi,F) 

= (~ RE i,F) . 

(A.18) Proposition. Every map of factors as ~>. ; ~,. ~ (E__°P, S) 

Proof. Let F' ) F be a map. Let P be the image as a functor. Then 

F' × F F' ~F' ~P 

is an exact sequence of functors and F' × F F~ is a sheaf. Since 

P~ ~ F, P has an associated sheaf P*~ ~F, which satisfies the 

universal mapping property that for F" a sheaf, (P,F") = (P*,F"). 

F' ~F' ~P* is exact in ~(E°P,s) From this, we see that Ft × F -- -- 

while P*~ >F (see (A.12)). 

(A.19) Proposition. A sieve {E i .... >E} is a cover in the canonical 

:opology if and only if ~E i ~ E. 

Proof. The "only if" is trivial. Suppose ~E i E. Then 

is exact. The kernel pair is 
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-liE. x 
I E/LEi ~'(Ei × E/LEj) = (Ei × E Ej), 

so that 

is exact, from which 

~(E i x E Ej) ~E i ~E 

(E,E') > ~(Ei,E') 

is an equalizer for all E and {E i 

ty follows easily from that of sums. 

~(Ei × E Ej,E') 

E} is an r.e.s. The universali- 

I (A.20) Proposition. The set of objects RG, with G ~ F, is a set of 

generators for ~(E2P,~). 

Proof. Suppose F~ >F' is a monomorphism of sheaves such that 

FG "~ >FIG for each G ~ F. We will show that F "~ >F t . Let B be 

an object and find ~G.I ~E with each G.I ~ F. Then {G i )E} 

is a cover and hence we have the commutative diagram 

FE - )~FGi ~z ~F(Gi × E Gj) 

F'E ' ~,~F'G i ~F~ (Gi :~ E Gj) , 

whose rows are equalizers, and an easy diagram chase shows FE "~>FtE. 

(A.21) Proposition. For any sheaf F, there is a regular epimorphism 

RE ~F. 

Proof. Since ~(E°P,s)_ _ has . >>. > . factorizations, we can 

repeat the argument of II(1.4) to see that 

~I! II G) =/i~RG DF. R( F (RG,F) 

Proposition. Every sheaf is representable. 

Proof. Consider the sequence 
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F t ~RE >F 

~F and F' is the kernel pair. Again we can find where RE 

RE t ~F t . 

Now we have E' ..... >E x E, which factors E' 9E"> )E × E, and 

since R is exact, 

RE' ~RE") )R(E x E), 

and by the uniqueness of the factorization, RE" ~ F. Then 

RE" ..... ~ RE is an 

equivalence relation and R is a full exact embedding, so that 

E" ---~E is one too. Then there is an exact sequence 

E " ~ E  }E t~! 
f 

and again, since R is exact, RE it' ~ F. 

This completes the proof that d)- >e). 

(A.22) From now on E will be a category in which every sheaf for the 

canonical topology is representable. We suppose that ~ is a sub- 

category of E which is closed under subobjects and finite products 

and which contains a set of generators. Note that every sheaf's being 

representable implies that ~ has all limits. Our aim is to show that 

~ ~(~op,~) for the canonical topology on ~. 

We say that a sieve {E i .... >E} is an extremal sieve if there 

is no subobject of E which factors each of the maps. 

c~oA~3) Proposition. A sieve in ~ is extremal if and only if it is a 

r in the canonical topology. 

Proof. The "if" part is easy. For if E'> >E were a subobject 

factoring all the E. ) E, then the fact that (-,E') is a sheaf 
1 

would provide an inverse to the inclusion E') )E. To go the other 

way, suppose a sieve is extremal. Let P: EZ p >~ be defined by 
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PE 1 = {f: E 1 .......... ~Elf factors through at least one E i )E}. Then 

P) >(-,E), and by the remark (A.12) there is a sheaf P*) )(-,E) 

associated to P. If P* = (-,E'), then E t) 

E i )E, so P* = (-,E). Now in the category 

)E factors every 

(~op,§), 

× ,~( -, F i) ---gP ~(-'E i) p ~(-'E i) 

is exact. Since P) ) (-,E), we have 

~(-,Ei) x p_~.(-,Ei) -~/[(-,Ei) x (_ E)~-(-,Ei) 

N i Ej) 
~[(-,Ei) x (-,E) (-,Ej)] =J~(-,E i x E ' 

so that 

_~(-,E i X E Ej)----~>-~(-'Ei) ' }P 

is exact. Let E" be an arbitrary object. Then using the fact 

(P,(-,E")) = (P*,(-,E")) = (E,E") we hom this sequence into E" and 

have that 

(E,E") ~H(Ei,E") ~(E i x E Ej,E") 

is an equalizer. Hence {E i ~E} is an r.e.s. To show the universal- 

ity, it is sufficient to show that for any E' ........ ~E, the sheaf asso- 

ciated to P' = P x E (-,E') is (-,E') itself. This is easily done 

by using the remark of (A.18) together with the usual proof that the 

associated sheaf functor is exact. 

(A.24) Corollary. The topology induced on ~ by the inclusion 

is the canonical topology. 

Proof. Since ~ is closed under subobjects, a sieve {C. 
1 

tremal in ~ if and only if it is in ~. 

(A.25) This implies that there is a functor I: E .... 

~E 

) C ] is ex- 

 F(c°P,s3 This 

* I am indebted to H. Schubert for pointing out an error in my 

original proof of this proposition. 
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functor is faithful, since ~ contains a set of generators of E. If we 

can find a J: W(c°P,~) >~ such that JI = identity, it follows 

that I is an equivalence. Let F: CZ p )~ be a sheaf. We extend it to 

a functor F: E °p >~ in what by (A.23) is the only possible way. 

For E e E, choose an extremal sieve 

{C i )E}, C i e ~, 

which certainly exists, since ~ contains a set of generators. Now let 

FE be defined so that 

FE- >~FCi-----'~'~F(Ci-- × E C.) 
3 

is an equalizer. Note that C. × C c C. x C. and hence is an 
z E 3 z 3 

object of ~ for all i,j. There remain two problems: to show that 

doesn't depend on the choice of an extremal sieve and that it is a 

sheaf. First we need: 

(A.26) Lemma. Let the diagram 

d ° 
Y 
o dl 

X2 > Y2 .......... -~ Z2 

be commutative and the rows and columns be equalizers. Then the 

equalizer of d ° and d I is the same as that of e O and e . 

Proof. Chase the diagram. 

I (A.27) Proposition. F is well defined. 

Proof. Let {C i. > E} and {C~ >E} be two extremal sieves with 
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C i, C~ ~ C. Apply the above lemma with Yo = ~FCi,Zo= ~F(C i x E Cj), 

= , x 2 =(c~ × c~), Xl ~Ck ' = E 

Y1 = ~F(Ci x E C~), Z 1 = ~F(C i x E Cj x E C~) , 

Y2 -- =cci × ~ c~ × ~ c~), 

Z 2 = KF(C i x E Cj × E C~ x E C~). In all cases the products are taken 

over all available sets of indices. 

IIA.28) Proposition. F is a sheaf. 

Proof. Let {E i )E} be an extremal sieve, and for each i, choose 

{Cij > Ei} an extremal sieve. Then {Cij >E} is an extremal 

sieve and can be used to define FE. We now apply (A.4) with X = FE, 
o 

Yo = ~Ei' Zo = ~(Ei x E E2)' Y1 = ~F(Cij)' Y2 = ~F(Cij x E. CLK)' 
1 

Z 2 = ~(Cij x E CkX)" In applying the theorem in this direction, you do 

o I 
don't actually need g to be > > if you know that e .e = e .e. 

Thus F is a sheaf, and it is clear that F restricted to ~ is 

F. This completes the proof of Giraudls theorem. 
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