EXACT CATEGORIES

by Michael Barr

Introduction

Exact categories, roughly speaking, are categories which satis-
fy the eguation

(Abelian) = (Exact) + (Additive),

Generally speaking, the axioms of abelian categories were
chosen precisely in order to define a good notion of the homology
theory of chain complexes of a category If one wishes to remove ad-
ditivity, there are two possible directions. One direction is to try
to axiomatize non-abelian homelogy. This leads to consideration of
pointed categories and then of normal monomorphisms and epimorphisms —
those which are kernels and cokernels, respectively. This is essen-
tially the point of view adopted by Brinkmann and Puppe in (BP] and
Gerstenhaber-Moore in [Ge]. In essence, it goes back at least as far
as Mitchell ([Mi), I.15). Brinkmann and Puppe even use the term exact
category to describe the type of categories they are considering.
Gerstenhabar does not name the type of categories he is dealing with.
His axioms are related to but somewhat different from those of Brink-
mann and Puppe. Both suppose as part of their axioms that normal epi-
morphisms are invariant under pullback. I do not know a single example
of a category satisfying that hypothesis unless it also satisfies the
hypothesis that every regular epimorphism is normal. A regular epi-
morphism is one which is the coequalizer of some pair of maps and it
is evident that every normal epimorphism is regular, since it is the
coequalizer of O and whatever it is the kernel of. But the nicest

pointed category of all, pointed sets, does not satisfy this assumption,



in sharp contrast of the result of Manes [Man]), that every additive
equational category is abelian. In addition, I have been unable to
decide, after a modest expenditure of time, whether the categories of
monoids and commutative monoids satisfy the Gerstenhaber-Moore axioms,
This is one motivation for ignoring earlier definitions of exactness.
A second is the essentially special nature of non-abelian cohomology.
Its interest is practically restricted to categories which are more or
less like groups. I feel that the term exact is too basic to be used

for such a special theory.

The second approach is in the direction of homotopy. By the
theorem of Dold-Puppe ({DP], Chapter 3}, in an abelian category chain
complexes (concentrated in non-negative degrees) are equivalent to
gimplicial objects. This suggests, at least, that one fruitful direc-
tion of inguiry is to find a good theory of homotopy for simplicial
objects. It would also be nice if every equational category satisfied

the conditions and, of course, if it satisfied the above equation.

The exact categories defined here have precisely these properties.

It all began with a theorem of Tierney (unpublished, but see I.(3.11)1
below)} that a category is abelian if and only if and only if it is
additive and has finite limits and colimits and universally effective
equivalence relations. The definition of exact category given here is

a slight weakening of the above, weakened only for technical reasons.

An exact category has certain finite limits and colimits and uni-
versally effective equivalence relations (see I. {1.2) and I. (1.3)

for definitions).

The contents of this paper include the elementary properties of

1 A reference of the form ¥, (a.b)} is to Chapter N , paragraph (a.b}.

2 reference of the form {a.b) is the same chapter, paragraph (a.b).



exact categories (I and II), an embedding and meta-theorem which
generalize those of Mitchell ([Mi] VI, theorem 1.2} in the abelian
case (III), and an application to cohomology and Baer addition of
extensions (IV and V). The simplicity of the presentation of the Baer
sum should be compared with that of Gerstenhaber in [Ge]. The com-
pleteness of the results should be compared with those of Chase in
[Ch] in which an unpleasant and unnatural assumption ("coflatness")

had to be introduced for want of the notion of right exact segquences.

The homotopy theory is not at all developed here. It is possible,
given a simplicial object in an exact category, to say when that is a
Kan object; and when it is,to define its homotopy. This will be the
subject of a subsequent work. The homotopy so defined will be an object
of the category in question, rather than a group. It is base-point free
and in sets is the usual groupoid (except in dimension 0) of homotopy
classes of maps of spheres. The usual homotopy is recovered as soon as

a principal component and a base peint there are chosen.

There is one more point I would like to mention., A useful axiom
which gives a notion intermediate bhetween being exact and being
abelian is the supposition that every reflexive subobject of the
square of any object is an equivalence relation (see I, {5.5}). This
condition is equivalent to every simplicial object being Kan. It is
also sufficient to have the theory of group actions of Chapter IV
work equally well for monoid actions. The theory of monoid actions
also works well in the category of sets, but for an entirely different
reascn: that category is cartesian closed so that cartesian products

commute with all colimits.



Chapter I. The Elementary Theory

1. Definitions and examples.

{1.1) One of the most important toolswill be the factorization of
every morphism as a regular epimorphism followed by a monomorphism

{see (2.3) bhelow}. A regular epimorphism is a map which is the co-
equalizer of some pair of maps, which can be supposed to be its kernel
pair, if that exists. We adopt (or adapt) the notation of MacLane

[Mac] and we use »—> to denote a monomorphism, —» to denote a regular
epimorphism, and -=~4- to denote an i{isomorphism. We will also use

these arrows as substantives and say,for example, "f is>—3" to mean

that £ is a monomorphism,

{(1.2) If £: X - X' is any map in any category, its kernel pair X"—3 X
has the property that (-,X"}>»— (- ,X)x(-,X) is a natural eguivalence
relation on (-,X); two maps to X are identified if and only if their
compositions with £ are egual. In general, two maps X" —=33X for

which {-,X")»——(-,X)x(~,X) is a natural equivalence relation on

{=,X) will be called on egquivalence relation on X. Not every equi-
valence relation on X need be a kernel pair, any completeness hypothesis
notwithstanding- See (1.4) example 5 below. An equivalence relation

which is a kernel pair will be called effective.

(1.3) Let X be a category. We say that X is regular if it satisfies
EX1) below and exact if it satisfies EX2) in addition.
(EX1) The kernel pair of every map exist and have a coequalizer; more-

over every diagram of the form

. h“mhhhﬁb.
,/”/’b



has a coequalizer which is of the form

N
~y.

EX2) Every equivalence relation is effective.

{(1.4) The following are examples of regular categories. All are exact

except example 5.

1. The category & of sets.

2, The category of non-empty sets.

3. Por any triple ] on 5, the category éTT of [T -algebras.

4. Every partially ordered set considered as a category.

5. The category of Stone spaces (compact hausdorff O-dimensional
apaces) .

&. Any abelian category.

7. For any small category C, the functor category (goP,gl.

8. For any topology on C, the category s(goP,g) of sheaves.

{1.5) Repark. It should be noted that unlike the notion of abeliamess,
exactness is not self-dual. Qutside of abelian categories and the
categories of sets and pointed sets, the only category that I know of
which is tripleable over § and both exact and coexact is compact
hausdorff spaces (and its duval, C*-algebras).
(1.6) Definition. Let X be a regular category. A sequence

a°® a

X' —3AxXx—— X"

dl

is called

a) left exact if (do,di} ig the kernel pair of 4d;



b) right exact if 4 is the coequalizer of @° and di, and ,more-

over thehmage of (do,dij in X x X is the kernel pair of 4 (see (2.1)

and {2.4) below):

c) exact if it is both left and right exact.

(1.7) Definition. Let X and Y be exact categories. A functor U: X - ¥

is called

a)
b)

c)

guasi-exact it it preserves exact seguencesy
exact if, in addition, it preserves all finite limits;
reflexively (quasi) exact if it is (gquasi} exact and reflects

isomorphisms.

(1.8) Examples. The following are examples of exact functors.

t.

2.

T

For any triple on S, the underlying functor 5 — S.

For any small category € and any object of &, the functor
[goP, §) =+ 8 which evaluates a functor at C. Of course this
functor preserves all limits and colimits.

For any topolegy on C, the associated-sheaf functor

(c°P,s) ~ 5(c°F,s).

Any (additive) exact functor between abelian categories.

Of these examples, only 1 is reflexively exact in general.



2, Preliminary results.

(2.1) Throughout this section, X denotes a regular category. We will

establish some of its basic properties, in particular the factoriz-

ation.

{2.2) Proposition. Suppose X —» ¥ —»Z is given. Then

x z X Y x z ¥ is an epimorphism.

Proof. The diagrams

—_—

XXZX————»YxZX szx szY

Py 91J P, pzj
x » Y X » ¥

are each easily seen to be pullbacks, where Py and p, are the respec-
tive coordinate projections. A composite of two —»is certainly an

epimorphism and, as we will see in (2.8), is —33.
‘ {2.3) Theotem. Every map has a factorization of the form . —p.p—a-
Proof. Begin with a map X = 2, form its kernel pair, and let Y be their

coequalizer. There is induced a map Y - % and we can form its kernel

pair to get

Xx o ——3 X

N
P

Yx o, Y T——33 Y
From the fact that X = Y coequalizes X x , X —=3X and that

Zz

X %, X—Y x , ¥ is an epimorphism, it follows that the two pro-

jections Y x z Y —=3Y are egqual and that Y»—3Z. Thus the map is



factored

X —»Y)»r—23Z.

(2.4) Remark. With minor modifications, this is essentially a theorem
of Kelly's ([Ke], proposition 4.2). It is clear that to prove it one
need only suppose that a pullback of a regular epimorphiam is an epi-

morphism.

{2.5} Propositiop. If the composite f.g i - », s0 is f.

Proof. If £.g9 is the coequalizer of a°® and di, than £ is the coequal-

izer of g.do and g.di.

{2.6) Proposition. Every commutative diagram

D .~ Y

l

e}
has a diagonal map as indicated so that both triangles commute

o———))c

|

=il 5+

Proof. Consider the diagram

- ;0 :.

-

.}.__._).

in which the top row is a coequalizer.

| (2.7) Corollary. Any map which is both »—— and —y iz o 5,

|

Proof. Consider
b e — 4



where the top and bottom are the given map and the vertical maps are

identities.

(2.8) corgllarv. 1f .-—f». i})., then i»

Proof. Factor gf as . ._13_» )k_, and consider

£
—

L
)——-).
k

The existence of a diagonal presents k as the second factor of a —»,

whence k is — % also, by (2.5}, and hence an —==3,

{2.9) Corollary. The factorization of (2.3) is unigue up to a unique

—

_;._.}.

Proof., Two applications of (2.6).

{2.10) Proposition. An exact functor preserves factorizations,

Proof. A right exact functor evidently preserves ——» and a left

exact functor, by preserving the pullback of , {(which has
£

a limit = dom(f) if and only if £ is»— ), preserves »— . Thus
it takes the ..—3) .3 3. factorization into one which by unique-

ness is the reguired factorization.

(2.11) proposition. Let X and Y be exact, X" 33X ——X' a left
{resp. right) exact sequence, and U an exact functor. Then

UX" —3U0X ——>» X' is left (resp. right) exact.

Proof. The left half of this is pretty clear. As for the right, let

xo>—)x x X be the image of X"——»X x X. Then we have
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L] L)
X —P Ay X TS X——HX
in which the second is exact. Applying U we have
L 1
UX"—» UX 3 UX /3 UX ——UX
in which the second is exact, But thig readily implies that
UX" /3 UX ——>UX"*
is right exact.
(2,12} Remark. It was to make true this proposition (whose proof is

the same as of II, proposition 4.3 of [CE]) that the somewhat unusual

definition of right exact seguence was chosen.

(2.13) Propogition. In order that X' —3X-——>X" be exact, it
is necessary and sufficient that x--f—»x“ and x'jx be its

kernel pair.

Proof, It is clearly necessary. But if £ is — 3, then it is evident-

ly the ccequalizer of its kernel pair.

(2.14) Corgllarv. A functor is guasi-exact if it preserves Kernel

pairs and ——a) 1 it is exact if it preserves all finite limits

and ——,

{2.15) pProposition. If the product of a finite number of exact

segquences exista, it is exact.

Proof. Since a product of kernel paira is a kernel pair, it is
sufficient to show that a product of —» is again —3). Suppose
X—»X' and Y —»¥'. As soon as X' x Y' exists, so do X x ¥' and
X x ¥, since each of the squares below is a pullback. The vertical

arrows are the evident coordinate projections,



il

X v ¥Y=————nX Y X ¥ —py X' » ¥

1

Y ——» Y X —» X'.

Compoging, we have X x ¥ —9» X' x ¥'.

(2.16) Corollary. For any object X of the exact category X,

Xx=p X=-—=3X is a quasi-exact Ffunctor (provided it exists).

Proof: X —3 X—>X (all maps being identity) is exact.
.

{2.17) gorollary. Let X have finite powers. For any finite integer

n, the cartesian n-th power functor X-—34X is exact.

Proof. Clear from (2.15) and the fact limits commute with each other.

{2.18) Remark. If the cartesian n-mgﬁ'nctor exists and preserves
— for all cardinals n or for all n « No, then that functor is

exact for al)l such n.
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3. Additive exact cateqories.

{3.1) This section is devoted toc proving Tierney's theorem that a non-
empty additive exact category is abelian. Throughout this section 2

denoctes such a categery: Ab denotes the category of abelian groups.

(3.2) Let A ¢ A, and consider any O map, say O: A—3A. Since O co-
equalizes any two maps, the kernel pair of this is A x &, which then

exists. Let Z be the coequalizer of the projections

AxXxA—=3RA—>2Z.

For any B € B,

{2,B) ——» (A,B}—3(A x A,B)-== (A,B)x(A,B)

is an egualizer, which implies, since all these homs take values in
Ab, (2,B) = 0. In an additive category, any initial object is a zero
object, and so Z = 0. Moreover, A was an arbitrary object and we

showed that A—)0. Thus we have proved

(3.3) Pgoggsiﬁion. There is a zero obhject O and A—»0 for any A.

(3.4) Corollary. Finite products exist in A.

Proof. For any A,B ¢ A,

A xB 5 B
l l
B aum— 0
is a pullhack.
(3.5) Proposition. Maps in & have kernels.
L o
L M
Proof. Let £: A—A', From the kermel pair A" —F—>A and let
d
o .1
g8t A=-3>A" be the diagonal map. I claim that A"-—JE—:E——>A is a weak

kernel. First, f.(do—dl) = fdo-fd1 = 0. Second, if g: B—>a is such
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that f.g = 0, let k: B—3 A" be such that d°.k = g and dl.k = O. Then
(a® - di).k = g. It is clear that the image of a°-a® must be the

kernel.

(3.6) Corollary. A has finite limits.

Proof. It is well-known that in an additive category kernels and finite

products are enough.

[r—————

(3.7) Proposition. Let A be an object of A and A"»——>A x A, con-

taining the diagonal of A. Then A' is an equivalence rxelation on A,

Proof. The property of being an equivalence relation is defined with
respect to the representable functors, which can be considered to
take values in Ab. But then (-,A')}— (-,A)x{-,A} will still con-
tain the diagonal. In 2b the assertion is trivial and the above

argument shows it is true for any additive category.

—

(3.8) Proposition. Every monomorphism of A is normal (that is, a

kernel).

Proof. Let A'l—f> A. Form
5
A' x A—=—3a,

o
()

It is easily seen that the induced map (f 2) : A' x A—33A x A is

>»—— and contains the diageonal, and hence is an equivalence relation

and therefore a kernel pair., But it is clear that a map coequalizes

i 1

izer of those maps is the cokernel of f. Conversely, (f\ and (g)

being the kernel pair of that cokernel is equivalent to f being its

(f) and (C)‘ if and only if it anpnihilates f so that that coequal-

kernel.

Notice that in the course of this proof we have shown that every
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> has a cckernel, which implies, by the standard factorigzation,
that every map does. The finite products are also coproducts. An
additive category is cocomplete as soon as it has direct sums and co-

equalizers, Thus we have:

{3.9) proposition. A is finitely cocomplete.

(3.10) Proposition. Every epimworphism in A is normal.

Proof. Let f be an epimorphism and factor it as ._Jiq».)_E_e.

Since h is normal, it is the kernel of some k. If k ¥ 0, we would
have kf = O, which contradicts f being an epimorphism. Thus h is an
isomorphism, which means that £ is —3). In an additive category this

implies that £ is normal.

‘(3.11) Theorem. (Tierney). A is abelian.

Proof. A is additivej it is finitely complete and cocomplete) every
map has a factorization as an epimorphism followed by a monomorphism;

every monomorphism and every epimorphism is normal.

(3.12) Example. The category of torsion free abelian groups is regular,

but not exact.
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4. Regular epimorphism sheaves.

(4.1) If C is a category, a collection of families {Ui_.;Ul ie I}
{called coverings) is called a Grothendieck topelogy on C {see[Ar},.I,
Definition (0.1)}, if it satisfies the following conditions.

a) Every {U—-f—)U'} with f an isomorphism is a covering.

b) If {Ui——'>U|i ¢« I' is a covering and for each i ¢ I,

{Uij——)vi]j € Ii} is a covering, so is {U,.—U|i¢I, jeIi}.

i3
¢} If {Ui—QU[i € I} 1s a covering and V—3VU is a map, each of

pullbacks Ui gV exists and

{Ui x UV-—)VH. € I}

is a covering.
It is easily seen from EX1) and (2.8) that these conditions are satis-
fied if we take for coverings exactly the U'—3» U. This will be

called the regular epimorphism topology. The axiom of a regular cate-

gory might almost have been chosen with this topology in mind,

(4.2} Given a topology on C as above, a sheaf of sets on C is a functor

Fi QOP-—)g such that for every covering {Ui—-)UIi € I,

FU—> 8y U, =5, Jer Uy X g Uy)
is an equalizer. The category of gheaves (with natural transformations
as morphisms) is denoted ?’(QOP, 8). Tt is equipped with a full faith-
ful embedding ﬁ{gc’p,g)—-;(gc’p, S) which has an exact left adjoint.
Conversely any coreflective subcategory E of a set-valued functor
category (QOP,§) with an exact coreflector (left adjoint for inclusieon)
will ke a category $(§°p.§) for some D and some Grothendieck topology
on D for which each of the representable functors is a sheaf, {Such

a topology is said to be less fine than the canonical topology; the
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the canonical topology is the finest topology for which all represent-
able functors are sheaves?) Evidently D may be taken to be C
iff each of the representable functors of (g°p,§) is in E. Such an

E is called a topos.

(4.3) Proposition. Let X be a small regular category.

Let ﬁ(gop,g) denote the category of set valued sheaves for the regular
epimorphism topology described above. Then the canonical embedding

§-——98{§°P,§} is full, faithful and exact.

Proof. It is clear that this topology is less fine than the canonical

one, so the Yoneda embedding of X takes it into sheaves. The embedding
preserves all limits, since the Yoneda embedding does, and it iz well

known that the embedding of sheaves into all functors creates limits.

It is full and faithful for the same reason. Finally, a sheaf F,

evaluated at an exact sequence
Xt x o Xt —3 X' - X,

must produce an equalizer

P~ FX' X F(X' x o X'),
according to the definition of sheaf, By the Yoneda lemma, this is

{{_:X)F)“‘—"((-J{'}:F)ﬁ((“:x' x X')’P)

X

and that sequence being an egualizer is the some as
(-.x* x o X )T33(=,X") —»{(-,%)

being a coequalizer in this particular subcategory of the functor

category.

(4.5} From this proposition we see that regular categories may be
characterized as categories having kernel pairs, pullbacks along

an
regular epimorphisms, coequalizers of kernel pairsﬁgar every small

1 See Appendix for an improved statement and proof of this result.
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full subcategory stable under these operation, a full exact em-
bedding into a topos. The conversse iz clear. A topos is complete and
cocomplete and even exact. If our given category is itself small, we

¢an replace it by its finite limit completion in its embedding into

a topos and suppose it has finite limits.
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5. Copgtructions on reqular and exact categories.

(5.1) In this section X represents a regular (resp. exact) category.
We are going to describe two types of constructions which when applied

to X automatically produce another regular (resp. exact) category.

(5.2) Let I be an arbitrary category and D: I—>X a functor. We will
say that the pair (D._:I;) or D alone is a diagram in X. Note that I is
not required even to be small. The comma category (X,DP} has for
objects pairs (X,a), where X is an object of X and a is a natural
transformation from {the constant functor whose value is} X to D. A
morphism of (X,D) is & morphism f in X giving a commutative triangle

X—f_)X'

0\ at
-]
D

(5.3) Proposition. The forgetful functor {X,D)—3+X, which takes

(X, 0)+— X, creates whataver colimits exist in X as well as kernel
pairs, pullbacks, finite monomorphic families, and the limit of any
diagram E: J—3X in which J has a terminal object (and in which the

limit exists, of course}.

Proof. Given a diagram E: J--3 (X,D} which has a colimit in X, the
universal mapping property of colimit will endow that object with a
map to D. As for limits, supposing J has a terminal object jo. a
functor E¢ J—>(X,D) is precisely given by a functor E: J —>X to-
gether with a natural transformation Ejo——>D. This detarmines the
lifting of E to (X, D}. The limit X—>E, when it exists, will equally
have a unique map X—> Ejo—)D which 1lifts X into (X,D}. It is now
trivial to see that X is the limit there also. If fl....,fn: X —>Y

is a finite {or for that matter infinite) set of maps, it is called
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a monomorphic family if for all 2 and maps g.h:s Z —X, fi.g = fi'h
for i =1,...,n implies that g = h. If Y—>D is given and

fi"” ,fna X—>Y are all maps over D, then they are simultaneously
coequalized by Y—>D. If they do not form a monomerphic family in X,
then there are g ¥ h: 2 —»X with f,.9 = £,.h for i =1,...,n. Then
all the composites z:hx —fi—)Y—>D are the szame. Thus g # h

g
as maps over D, and so {fi} is not a monomorphic family in (X,D)

either.

{5.4) Theorem. Let X be regular (resp. exact) and D; I——X a

functor. Then (X,D) is regular (resp. exact).

Proof. Everything except exactness follows from (5.3} and the easily
proved (from (5.3)) assertion that (X,D)—X preserves —.
Exactness (when X is exact) also follows from (5.3} if we can show
that the underlying functor preserves equivalence relations. To do this
we show the following combinatorial characterization of equivalence

relations.

{5.5) Proposition. Let X be a category which has pullbacksof split
o
epimorphisms. Then xﬁgv is an eguivalence relation if and

1
d
only if the following conditions are satisfied.

O

a) X ﬁ!‘ is a monomorphic family.

c'll

b) There is an r3; Y—>X such that do.r =q3d .xr = ¥{= id ¥Y}.
¢) There is an s: X——X such that d®.s = d1 and di.s = 4°.
d) In the diagram below in which Z is a pullback of d° and a',

there is a map t as indicated making each of the outside

squares commutative.
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A
\/d\/\/

Proof. I leave it as an exercise to show that in. §, the existence of

r,s,t translates the usual reflexive, symmetric, and transitive laws
and hence the existence of (~,r), (-,s), (-,t}) will show that (-,X)

is an equivalence relation on {-,¥). To go the other way, suppose

o
X _d_—’)l' is an equivalence relation. Then (¥Y,X)—>{¥,Y¥)x(¥Y,Y) must

dl

contain the diagonal of (Y,Y), so in particular the diagonal element
(idy, idY) and the r ¢ (Y,X) mapping to it is the required map.

(X, X)—> (X,¥) x{X,Y) is symmetric, and since (do,di) is in the
image of (X,X) (it is the image of the identity map), so must (di,do)
be. The element of (X,X) having those projections is s . Pinally
letting 2 be the pullback as above, we observe that
(2,X)—>(Z,Y)x(Z,Y) is transitive. In particular the images of e®
and el are (d°.e°, at .e°) and (@ .ei, d .e ) respectively, and the
equation di.e =4 .ei implies the existence of t with projections

a®.e°% ana di.ei, exactly as required.

—
(5.6) Corollary. Suppose X has, and a functor U; X——Y preserves

pullbacks along split epimorphisms; in addition suppose U preserves

monomorphic pairs of maps. Then U preserves equivalence relations,

Proof. Trivial.

(5.7) Let Th be any finitary algebraic theory. This means Th is a
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category with a functor n+——={n) from the category of finite sets
which preserves coproduct {(n)+(m) = (n+m)) and is an isomorphism on
objects. The category §2h iz the category of product preserving
functors EQPP-———>§. Included are all the familiar categories of
algebra-= in particular groups and abelian groups. If X is an arbitrary
category, §1h carn be defined as the category whose objects consists
of objects X ¢ X together with a lifting of the hom functor (-,X}:
EOP-——a § into §2hu A morphism between two such objects is a natural
transformation between these functors. Since §Eh'--9 S is faithful,
this is equivalent, by the Yoneda lemma, to a map between the objects
which induces §1h' morphisms on the hom sets. When X itself has finite
products, it is well known that an algebra is also equivalent to a
product preserving functor 12?9-——¢‘§. Moreover this condition is
"local" in the sense that in order to recover the equivalence it is
only necessary to know the algebra structure for a few objects,
namely the powers of X. For example, a group structure on X is either
given by a lifting of (-,X) through the category of groups or by
giving morphisms 1—>X, X —3»X, XxX —>»X satisfying laws of a
group unit, inverse, and multiplication,respectively{l denotes the
terminal object or 0th power). These morphisms are found by ob-
serving that {1,X), (X,X) and{XxX,X) have group structures. The unit
of the first, the inverse (under the group law!) of the identity of X
in the second, and the product of the two projections in the third of
these groups are the required mappings. However, as the next pro-
position and its corollary show, when the theory has nullary opera-
tions (e.g. groups), then we may as well suppose it has products and
the two descriptions coincide, A nullary operation is & map in Th of

1 =0 and entails for any an algebra X an "element" of (-,X). This
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means a natural transformation of the constant functor 1 to {(-,X}.
Bquivalently it assigns to each Y an a¥: Y——>X such that for

f1 Y—YY, a¥'.f = a¥,

{5.8) Proposition. Let an object X ¢ X admit a constant operation.
en X has a terminal object.

Proof. Choose Y arbitrarily and factor aY as Yiw T y—-3X., If we

also factor oX as x——»To>—>x, then the diagonal fill-in of the
diagram
¥ —T

o |

X
BX L

To>—--—--)x
which commutes by naturality of «, gives that T}——)'I'o and that
every object has at least one map to 'I'o which factors ao¥. Naturality
gives aTo.GX = aX. Since we gave oX its unique factorization as pX
followed by inclusion of To’ it follows that a'ro is that inclusion.
Finally, for any £: Y—-—)TO, aTo.f = «¥Y, and we may cancel aTo
to conclude that f is ¥ i)'r P—)To. which means that Y has only

one map to To'

ES.Q) Corollarv. Every object of X has finite powers.

Proof., Once there is a terminal object 1, the kernel pair of X —> 1
is X x X. Higher products may be constructed by pulling back along

coordinate projections

xn-!-l 5 X2

x5 X
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which are -——» (split by the diagonal map).

(5.10} Proposition. Let &"’()_rc’p,g} be the category of set valued
sheaves in the regular epimorphism topology (4.1). Let Th be a
finitary theory. Then the functor XF——(-,X} preserves Th objects

and Th morphisms.

Proof. The inclusion of sheaves into the whole functor category
preserves limits, so the products given in the proof are the products
as sheaves. If X is a Th object in X, this means there is, for each
(n) —>(m) in Th, a map (¥, X)"—— (¥,x}" which is natural in Y.

Corresponding to each commutative diagram

{m)

(n} —————3{p)

the diagram

,5)F ———— (¥, "

A4

(v, x)"

mist also commute. Everything being natural in ¥, this means that
there is a natural transformation

(-, X)) — s (-, 0"

for each {n) —> {m) in Th such that diagrams corresponding to the
above commute. That is, we have a product preserving functor,

m —(-,X)" of lh_°p—--bﬁ{2_(°p.§} . If X and X' are Th objects, a map
f: X—X' iz a Th morphism if for each ¥, the induced map

(Y,X}) ——(Y,X') is a Th morphism, which means that for each (n) -~ (m)

in Th,



24

(v, o)™
(v, ————> (v, x1) "

It
(v, B8 gy x”

commutes. Evidently (using the fact that 3-—-ﬂ93(§°p.§) ig full and
faithful) this is the same as a natural transformation (—,X)—%3>(-,X!)

such that there is a commutative diagram

m
-0 "—2 (- xn)"

n
(-’x)n ? >(_1X'Jn

corresponding to each (n)——{m) in Th.

(5.11) Theorem. Let X be regular (resp. exact) and Th be a finitary
theory. Then gzh is also regular {resp. exact). The underlying
)__(E —X is a reflexively exact functor.

Proof. It ig clear that gzg————)g creates all inverse limits which

exigt in X and in particular reflects isomorphisms. The above dis-
cussion shows that it is sufficient to consider the case that X has
finite products. Now suppose that

X' —x ——pX"
is exact in X and that X' and X have been equipped with Th structures
in such a way that X' T—%}X are morphisms of Th-algebras (i.e. natural
transformations). In that case we have an exact sequence, in particular
a coequalizer

¥t =3 x"—x?,

and corresponding to any map {1)~—3{n} in Th there is a commutative



diagram
" == x"—x+"

| 1

X' /=3 x—>Xx"
the right hand arrow being induced by the coeqgualizer. This induces
all the operations on X" in such a way that X—=X" is a2 map of
algebras as soon as we know that X" is an algebra, i.,e. satisfies the

aquations. To show that, take a commutative triangle

(m)
(n) ————>{p)

in Th and consider

xP > X"
N

4
xup = xun

L

XII

in which each vertical square and the top triangle commute. Since
xp-———-»x"p, this can be canceled to show that the bottom triangle
1}&-——) X creates ——yand hence is exact. In particular, starting

with

in J_ET—h, we can pull it back in X, and the pullback will automatically
be an ﬂ algebra and the maps )_C'm morphisms. The appropriate arrow
will be —®» in X, and by the above in J_(Lh- as well, Now suppose that

X is exact. Given X' T”—3X in J_(E, which is an equivalence relation
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in gzh, then it follows from (5.6) that it is an equivalence relation
in ¥ as well. But then it is part of an exact sequence in X and the
third term can be given a unique Th structure so that it is exact in

EEQ as well.

(5.12)} Theorem. Let U: X —3Y be an exact functor and Th a finitary

theory. Then there is a natural lifting Ugh: 339-———-9ggh such that

Th

= )zgh

U

(S 4—————~l1§

a4

is commutative. Moreover U‘m is exact.

Proof. Except for the last line, this is an easy consequence for any
U which preserves finite products. The last assertion is also eawsy,
since the other functors in the diagram are exact and gzh-——-ag

ig reflexively exact,

(5.13) Remark. When X = §, {(5.11} is true for all theories Th {not
just finitary ones). This can be easily proved (by the same argument)
for any X which satisfies the following. The n~th power functor exists
and is exact for all cardinal numbers n. Por this we need only that
n-th powers exist and preserve —), 0Or thege conditions may be valid
for all n < No. In that cagse, the result bolds for all thecries Th
of rank < N, - Similar remarke apply to (5.12} when X and Y have,

and U preserves all n~th powers, or n-th powers for all n <« No, asg

the case may be,
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Chapter II. Locally Presentable Categories.

1. Defjinitions.

{1.1) what follows here is a brief description of a more general theory
due to Gabriel and Ulmer, as yet unpublished{except as an outline [Ul})
Some of the definitions here differ slightly from theirs in that I
restrict consideration to colimits of monomorphic families. I rather
think that for exact categories this does not really give a more
general theory, although the cardinal numbers used to satisfy some of
the definitions might become larger, Throughout this chapter, X and ¥

will be two regular categories which are cocomplete.

{1.2) Definition. Let I be a partially orderedset and m be a cardinal
number. We say that I is £ n directed if every set of £ n elements
of I has an upper bound in I. An n~-filter in X is a functor D: I - X
with I £ n directed and such that for each i € j in I, the value of

D at i —3j, denoted D{j,1i},is a wmonomorphism. Sometimes, for emphasis
we will call it a mono-filter. An okject X ¢ X is said to have rank

£ n if for every n-filter D: I —-X, (X, colim Di}~-=3colim(X,Di}.

(1.3) Definition. A set T of objects of X is said to be a set of
generators of X if for every f: X>— X' which is not an isomorphism
there is a G ¢ I and a map G —3X' which does not factor through £.
X igs said to be locally presentable if it has arbitrary coproducts

{denoted L) and a set of generators each one of which has rank.

(1.4) Proposition. Let X be locally presentable. Then for any X ¢ X,

there is a 593 Gj-—-ibx where, for each j ¢ J, Gj € .

Proof. Form G, the coproduct of one copy of G for each

Ger  (G,X)
map to X from each G & I'. There is a canonical evaluation

et L Il 6 —>X defined by e.<u> = u where <u> : 6~ L& is the co-



8

ordinate injection corresponding to uvw: G —3X. Pactor e as

e

M He—2px 5 »x,

If u: G—¥X is any map, e.<u>= u so that u = f.eo.<u> factors

through £. Since thie is true for all such u, f must be an isomorphism.

{1.5) It is easy to see that the above characterization could have

been taken as the definition of this kind of generator. To distinguish
it from the more common kind of generator, whose definition is equi-
vatent {in the presence of coproducts) to the same map being an
ordinary epimorphism, these could be called a set of regular generators.

Here, however, we will simply call them generators.

(1.6) Proposgition. Let f: X —X*'. Then
a} If (G,f) is —»for all @ e I', £ is —3).
b) (G,£) is > for all G « T if and only if f is »——,

c) (G,£) is = s for all G ¢« I if and only if f is —L .

e

Proof. a) This follows easily from

4 le,x) ———» Y lita,x")

L l

X — X!

b) One way is trivial. If (G,f) is })—3, consider the diagram
o

wr Il..L) x'! ——d—-gx .__f‘...._)xll
di
in which do and d1 are the kernel pair of f and 4 is their equalizger,
Since {G,-) preservas limits and (G,f} is >——>, it follows that
(¢,8%) = (G,dl} » and then (G,d) is an isomorphism. Since d is a

monomorphism, it follows from the definition of generator that 4 is



—= 5. But then a = di, which in turn implies that £ is > .

c} This is now clear.

(1.7} Remark. It is clear from the above argument that, in particular,

the more usual definition of generator is also satisfied.
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2, Preliminary results.
Throughout this section X is a cocomplete regular category and T a set

of generators.

{2.1) Proposition. X is well-powered.

Proof. For any object X a subobject xo is determined by those maps
from a G € ' which factor trough XO. In other words, there are no
more subobjects of X than there are sgubsets of U(G,X), the union

taken over G € T.*

{2.2) Corollaxy. Each object of X has only a set of regular guotients.

Proof. A regular gquotient of X is determined by its kernel pair, and

that is a subocbject of X x X.

(2.3) proposition. Let D: T — X be a small diagram. Then the set

(r,b) of all objects {(G,y)«(X,D) for which G ¢ I form a generating

set in (X,D}.

Proof., It is a set since each G has only a set of maps to a small

diagram. If J()——E—b ¥ —D is a monomorphism, not an isomorphism

in {X,D}, then £y s a monomorphism as noted in I, ((5.3) above)
and clearly not an isomorphism, as the inverse would also be a map of
{(X,D). Then there is a map G —>Y which does not factor through X,
and if we use the composite 6 —3>Y—>D to lift G into (X,D}) it be-

comes an element of (I',D) with the required property.

(2.4) Theorem, Let X be a cocomplete, regular category with a set of
regular generators and such that each object has only a set of

regular quotients. Then X is complete.

Proof, For a diagram D: I —>X, a limit of D is a terminal object

of (X,D}. It is easily seen that cocompleteness is inherited by that
*For nested subobjects,this is clear from the definition of generator.

For others,consider the intersection and reduce to the previous case.
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category as well as the property of each object having a set of
regqular guotients, By I, (5.4) and (2.3) the other properties of the
statement are also inherited. Hence it suffices to show that such an
X always has a terminal object. Let I be the set of generators,
X = JLG, @ €T, and Q be the colimit of all the regular quotients of
X. First I claim that Q is itself a regular quotient of X. It is

sufficient to show that every commutative square
Q
Z

has a diagonal f£ill-in. (Just take Z = Q and ¥ the image of X in Q.)

>

HE—— »

———

But by commutativity of the diagram, we have, for each regular
quotient X -—»X"',

X ———a X!

./(12
l

Y y——3Z ,

giving a family X' >Y, obviously coherent and extending to

Q —Y,. Thus O itself can have no regular quotient, for that would
be a further regular quotient of X. For any Y ¢ X, there will be a
map _u..-Gi——‘»Y, and evidently there is a .“.Gi——bx, since X is the

coproduct of all the ¢ & I'.- Pushing out, we get

JLGi — % r

J

~
Y

s

0 &E— 0

whence 9 = Q' and (Y,Q) # @. If there were distinct maps Y —30Q

for some Y, their coequalizer would be a regular guotient of Q.
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(2.5) Remark., It should be noted that this method works for any
factorization system and is a form of the spscial adjoint functor
theorem. That ie, if there is some factorization system and generators
such that the appropriate map is an epimorphism for that system, and
if the objects have only a set of quotients in that system, then the

special adjoint functor theorem (here in dual form) holds.

—

{2.6) propogitjon. Suppese I is some index category; D: I —X,
E: I —>X are functors; and D—>E is a natural transformation such

that D]..—))E‘.i for all i, Then colim D ——pcolim E.

Proof. Let X = colim Di.' Y = colim Ei' For each i we have a commutative

diagram
@
Y an

DJ. k3 E Di )Di /rEi
i 1
4’
i

o v

X x o X < > X >Y .
X 1
d

Given X—>Z, which coequalizes ac, d1

, this induces Ei——-)z, which
coequalizes d‘; and di and induces a unique Ei—-—->Z making the dia-
gram commute. This family of maps is easily seen to be natural in i,
and then there is further induced a map Y —>Z. Then the outer

pentagon of

commutes for each i. Since X = colim D, , this implies that the trianmgle

commutes.
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3. Rank.

(3.1) Throughout this section, X will denote a locally presentable
reqular category and T a set of generators with rank. We will suppose

that n, is an infinite cardinal number sufficiently large that

n, > #* (r} { # is used to denote cardinality) and n, 2 the rank
of every object of T.

(3.2) Let ry denote the set of coproducts of n, or fewer objects of T

1
and P2 denote the set of regular quotients of objects of ry- Let
n
n, = sup # (GUP {(G,X)) and n = 2 2. Let X denote the full sub-
XeT, ¢ -n

category of X consisting of all objects whose rank £ n.

{3.3) Proposition. With n and X, as above, the objects X ¢ X are
characterized by each of the following properties.
a) There is a map {gf Gf—ﬁéx with each G;eT and such
#{1I} < n.
b} #{. V. (6,X)) < n.
This remaing true for any power cardinal 2 n.

Before giving the proof, we require the following.

(3.4) Proposition. Every object of X is a colimit of those subobjects

of it which satisfy condition a).

Proof. Let X ¢ X and consider the set of all subohjects of X which
satisfy condition a}. It follows from (2.6) that the objectssatisfying
condition a} are closed under n-fold coproducts and, by forming
images, that these subobjects form an n-filter. Let X' be its colimit.
For G ¢« I, any map G —>»X lands in & subobject of X satisfying a),
namely its image, and hence factors through X'. Thus (G,X')—»{G,X}.
If two different maps G ——2 X' are given, each of them, since rank

G £ ny < n, must factor through one of the given subobjects of X and,
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by directedness, through some one subobject. Thus, since they factor
through a subobject of X, they must remain distinct in X. Thus

{G, Xt} (G,X) also, and by (1.6) X' ———9X,

(3.5) Proof of (3.3). Write X = colim xj where J(j ranges over the
subobject of X satisfying condition a). Now since rank X € n, the
identity map X —=$ X, being a map to the colimit of an n-filter, must
factor through one of the objects in that filter. This evidently
implies that X itself is one of them and so satisfies a). Now suppose

an object satisfies a). Then for each J ¢ I such that #(J} € n let

1!

A —
Xy be the image TeF Gi——éx. Then evidently Xy € Ty, and so

# (Y (G.KJ}) £ n,. The number of such subsets of I is limited by

Ger 2
n,. n X n n
ey taa? 1o,

n
n

n
2 _ n. It is ¢lear that the set of all XJ

is an ni-filter on X. Just as ahove, this permits showing that for
each G € I, {G, colim xJ)J-—>(G,x), and hence by (1.6) that
colim XJHX. On the other hand, each of the Gi—a‘x factors through

one of the XJ. and hence we have a factorization

A Gi-—-hcolim XJ—w(

whose composition is —3), which shows that the second factor is
also. Thus X = colim XJ. Bow {G, colim XJ) = ¢olim (G.XJ}. and so

* (o7 (G.X)) = # (U colim(G,X;))

< < I z
< Gfr‘ # (colim(G,xJ)) € Gir ger # (G,xJ)

£ n,.n-n, =n. Thus condition a) implies condition b) and the
reverse implication is obvious. Now suppose an object X satisfies
condition a) and we have an n-filter {Yj|j € I1. We see from (G,Yj}
> —— colim (G,Yj)ﬂ‘i(c,coli.m Yj) and (1.6) that Yj)—)colim Yj. Now
supposing 'I.Jﬁ!i Gi—-»x and #(I) £ n, we usé the readily proved fact

that in §, I-indexed products commute with n-filters and thus
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, ~ .
(iLGi, colim Yj}__ H{Gi, colim Yj)
2N colim(G, ,Y.) == colim n{G.,Y.)

i’ 1773

o2 colim(llGi,Yj) , which shows that IG; has rank < n.

The fact that X does follows from a diagonal f£ill-in in the diagram

_ﬂ.ci —_—x

|

Yj >—me—> colim Yj.

The last remark about power cardinals 2 n is trivial from the proof.
(3.8) Corollary. En is n-cocomplete, finitely complete, and closed

under sub- and regular guotient objects.

Proof. It is clear that the condition a) above is inherited by n-fold
coproducts as well as by regular quotients while condition b} is in-

herited by subobjects and finite products (in fact, by n, -fold

2
products),

(3.7) Corollary. Every object of X is the colimit of those subobijects

of it which belong to X .
—_— -n

I
{3.8) Corollary. gn is a dense subcategory of X.

—

Proof. This means that every X ¢ X is the colimit of the functor
(X,,X)—3X which associates to each X'——X the domain X'. By
factoring every such map as .-—,»—3, 2and using the fact that
En is closed under regular quotients, we see that the monomorphisms
in (X ,X) are cofinal. Thus the colimits are the same and the result

is a corollary of (3.7).

{3.9) Proposition. Tet X ¢ X and X' € X- Given any X -—»X', there

lg an X subobject X"»—X such that the composite X")——X —pX' is

| —
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Proof. Consider a map i'}aLI Gi——»x. Among all the composites

G; ——91].61—»3{ -—3X' there can be at most n distinct maps. Choose
J ¢ I so that the set of such composite maps for i ¢ J is represented
exactly oncl?j.;e J. Then #(J)} € n, while evidently T.'L_I Gi—)x —x
must have the same image in X' and hence is —. Then let X" be the

A
image of T3 Gi—-—)x.
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4. Kan extepngion of functorg.
The purpose of this section is to prove:
(4.1) Theorem: Let X and Y be locally presentable regular categories
and n be a cardinal such that X satisfies (3.3) and such that Y
containg a set of generators of Y. Suppose U: J_gn-—:» Xn is a
functor and let T: X—>Y be its Kan extension. Then:

a) If U is reflexively exact, so is U.

b) 1f U is faithful (resp. full and faithful), so is U.

(4.2) The rest of this section is devoted to proving this theorem.

Without further mention, X, ¥, n, U, and ¥ will be as in the statement.

(4.3) Proposition. Colimits of n-filters in Y commute with finite

limits.

Proof. Suppose we are given n-filters {Y]!'} and {Y;} indexed by

. : t — : T "o o - 1 “
i €I, 3 «€J, and we let Y colim Yi’ Y colim Yi' Yij Yi x Yj’

and Y = colim Yi. j° Then we want to show that the natural map
Y —SI9Y' x Y". We use (1.6) Let A be a generating set in Y . For

z ; = i o~ i ] wy &
L € A (L,Y) (L,colim Yij) colm(L,Yij) col:.m(L,Yi X Yj)

= colim((L,Y;)x(L,Yg)} ¥ colim(L,Yi) x ¢olim{L,Y") . (since directed

3

colimits commute with finite limits in 8) < (L,colim Y1) x(L,colim Y;)
2 (L, ¥ x{L,¥*) = (L,Y' x Y"). The proof for equalizers is similar

and we omit it. It is not necessary to have, in that case, maps

Y 3y
i

p——— given for all i,j but only for sufficiently many pairs of

indices that the resulting subset of I x J remain n-directed.

{4.4) Propositiop. Let X', X" ¢ X. Then the set of maps

xi xx'j')—}x' % X", indexed by all - subocbjects x'i>——->x' apd all

?-[n subobjects x:".')—sax", is cofinal among all the §n-subobjects of

Xt X X",
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Proof. Given xk>—-—>x' x X" with xk € J_{n. we let x]'( be the image of
xk——>x' X X" =——3X' ané similarly x]'; the image in X", Then,since
products of ) are certainly »——>, and from the universal mapping
property of products, we have

](k>—')}(!" ® X]';)—-)X' x X",

(4.5) Proposition. Let X'— X “—3X" be an equalizer diagram in
X. Then each X, subobject K}_}—~> X' appears at least once among
the possible egualizer diagrams

—> yn
e et

in which xj and X}'c' are ?-{n subobjects of X and X" respectively.

Proof. Let Xj = xJ! itself and X.J‘; be the image in X" of the equal

maps

X} — X' 2= x".

(4.6) Remark. The implication of these last two propositions is that
for X = X' x X", the functor which associates to x;_>—>x' and
XJ!>—> x", x; X X; > X' x X" is cofinal. Similarly, suppose
x'———-—-—px"_.:"_,x" is an equalizer diagram. Then the functox which, to

each pair Xj)—-—) X, "> X" for which the restrictions take

X, into x;:, asgociates the equalizer of these restrictions is cofinal.

(4.7) Proposition. Given X—33X" as above, let {Xj|j ¢ J} and
{XEIk ¢ K} be the n-filters of X subcbhjects of X and X"

respectively. Let L be the subset of J x K of those pairs (3.k)
for which the restrictions of the given maps each take xj into xl‘;.

Then L is an n-directed set.

Proof. Given n or fewer indices of L, we can find j greater than any
of the first coordinates and k' greater than any of the second. We

have morphisms
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where xj and X"  both beleng to X,- Let + denote coproduct and X
‘kt
be the image of xj+ Xj+ x;,—-—)x". Clearly the domain of that map

belongs to X, and (j,k} ¢ I. dominates each of the given indices.

——

(4.8) Corolloary. If U preserves finite limits, so does 0.

(4.9) Propogition, If U preserves ———3», so does 7.

e

Proof. Let X—» X', For any X0 subobject xé)-——) X', we pull back to
get

ad
"

1

—»
——

=
L

and let X>—>X,, be an X subobject, whose existence is guaranteed
by (3.9}, such that xo———»xé. Then Uxo—-»UXc". Now if I and J
are the index sets for the Jjn—subobjects of X and X' respectively,
what we have ig a map jb—1i(j) of J—I such that xi(j)-——-»xi.
Then colim Uxi.(j}_> colim ux, ———2 colim UXS is such that the
composite is —— by {2,6). This implies that the second is also.

This second map is just UX —»Ox*,

{4.10) Proposition. If U reflects monomorphisms, so does U.
Proof. Let £: X —>X' be a map such that Uf; UX>—>UX'. If £ is not
o
po—-y , then there are two maps X" _—d:;x—-—)x' which are co-
1
a

equalized by f and, as observed in (1.7), there is a G ¢ I' and a

map G —>X" which does not equalize d° ana dl. Let x; be the
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image of G in X" and xo he the image of G + G ——3X. Then we

have
[
X =t
I .
(=3
o
x* d = X £ x
1
3

with x; and X in X and e° # el. Now apply U to get

Q
— e
13- U s UX
s Q

o
Uei
v - ) -
g~ —24 2 UK~y Txr .
ta®

How U reflects isomorphisms and is faithful, so that ve® # Uei,

which implies that ©Ud° # ud"; while Uf.ud® = Uf.ua' contradicts UE

being p—3.

(4.11} Ppropogition. If U reflects isomorphisms, so does 4.

Proof. First I c¢laim that U reflects »——, If £f: X —3X' is such
that Ug: UX>—3 UX', consider

b S L I‘——gx _..g_).xl

where X" —3X is the kernel pair of £ and X'''——X" is the
equalizer of them. Apply U and reason as in the proof of (1.6). Now
suppose that Uf: x5 0x'., 8y (4.10), f£: X>—X'. If this is not
an ———, there is a map & ——X' which does not factor through £.

If we let x(; be the image of G —X' and XO be the pullback in
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X o>r—m X!

x5 5%,
it is clear that xé € J_{n, and xo, being a subobject of X*, is alseo.
Now apply U to get the diagram

Ufo
—— 0 ¥
UKO > UX

Ox —OF | fur

If Uf is an isomorphism, so is Ufo’ since the diagram remains a pull-
backs and then foz xo—‘i—-bxc',. But this implies that the given map

G —»X' really does factor through £, and we have a contradiction.

{(4.12) Proposition. Let U be faithful (resp. full and faithful). Then

~

U is also,

Proof, Write X = colim Xy X' = colim x;, each colim taken over the

diagram of §n subobjects of X and X' respectively. Of course from the
properties of En it i= clear that these diagrams are n-directed. Then
(X,X*) & (colim X, colim x;} = lim(X;, colim Xi} & lim colim {xi,xg)

é lim colim (Uxi,Ux__;) = 1lim (UX,.colim UX:'.l) o

= (colim UX,, colim UXJ!) & (UX, UX'). The arrows labeled @ ana @
are isomorphisms because xi and Uxi are objects of rank £ n in X
and ¥ respectively. If U is faithful (xesp. full and faithful), then
the arrow labeled GD is for each i and j a monomorphism (resp. iso-
morphism) and both directed colimit and arbitrary limit preserve

monomorphisms, while, of course, everything preserves isomorphisms.

Hence U will also be faithful (resp. full and faithful).
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5. Toposes.

{(5.1) We have already seen how every small regular category has a full
exact embedding into a topos. Moreover, every regular category has a
full exact embedding into an illegimate topos. In this section we will
show that every cocomplete locally presentable exact category has a
full exact embedding inte a topos, while, conversely, a topos is itself

a locally presentable exact category. We begin with the latter.

i———

(5.2) Theorem: Every topos is locally presentadkle.

Proof. Let E be a topos, and write E = ${§°p,§) for some small cate-
gory C and some topology on C which is less fine than the canonical
topology. Let n be an infinite cardinal number sufficiently large that
no covering in the topology on C has more than n-elements. Then, as is
well known, the objects of C {(i.e. the representable functors) form a
set of generators. I claim that each € ¢ C has vrank £ n in E. Since
in the whole functor category, (-,C) commutes with all colimits (by

the Yoneda lemma, {{-.C), colim Gi) = colim G,c = colim{(«,C),Gi)}, it
is sufficient to show that if D: I——E is a functor with I an n-
directed index se%t, then the colim Di is the same in E as in (g°p,§);
or, which is the same thing, to show that an n-directed colimit of
sheaves is & sheaf. So suppose {Cj-——éc|j € J} is a covering of C
and I is an n-directed set. In §, n-directed colimits commute with

£ n-fold products and, since n is infinite, with equalizers. If F =

colim Di’ we have that

FC ——> PG, :;mcji X o € )

is isomorphic to

colim D, {C) —>lcolim Di(C,)=Bheolim Dilc, x | €, )
i 3 i, e iy

which is isomorphic to



43

colim Di(C)—==dcolim ODi{C,) —Jeolim(Ii(C, x C. })
] i ¢ 3,

which, since each Di is a sheaf, is a directed colimit of equalizers

and again an egualizer.

(5.3) Corollary. Every cocomplete locally presentable regular cate-

gory has a full exact embedding into a topos.

Proof. Let X be such a category and find a cardinal n such that §n
satisfies (3.3). Let C = En’ and we have an embedding of §h-.,3(909,§,
which, since the cardinality of each covering of the topology is %,
embeds X as objects of finite rank. Then the hypotheses of (4.1) are

satisfied.



Chapter I1II. The Embedding

1. Statements of result.

{1.1) Theorem. Every locally presentable category has a full exact

embedding into a functor category.

{1.2) Theorem. Every topos has a full exact embedding into a functor

category.

{1.3) Theorem. Every small regular category has a full exact embedding

inte a functor category.

(1.4} Theorem. Every small, finitely complete regular category has a

full exact embedding into objects of finite rank of a functor cate-

gory.

(1.5} Except for the last clause of (1.4), it is clear from I. (4.4)
II. (4.1) and II. (5.2) that these statements are all equivalent.

That last clause could also be derived from the previous theorems, but
since we have to prove something, we will prove (1.4). In fact, we will
prove something even stronger. Recall that an object ¢ of a category
is an empty object if it is initial and if every map tc it is an iso-

morphism. Let us denote the terminal object of X by 1. Then,

(1.8) Theorem: Let X be a small finitely complete regular category.

Then there is a small category C, whose cbiects may be identified
with the non-empty subobjects of 1, and a full exact embedding
§-———%{§°P,§) which sends each object of X to a regular quotient of

a representable functor.

{1.7) Proposition. A regular quotient of a representable functor has

finite rank.

Proof, As observed above (in the proof of II, {5.2)), any representable
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functor has finite rank -~ its hom commutes with all colimits. If {Fi}
is a monofilter {cf. II. (1.2}) of functors and F = colim F,, then for
each representable functor (-,C),

((-,¢),F) = colim((-,C),F.).
The filter of sets ((-,C),Fi} is still a monofilter, which implies
that ({(-,C},F,)>—>((-,C) ,F) and by II.(1.6) that F >—F. Now
suppose E &£ (g°P,§} is a regular quotient of (-,C}. To see that

colim{E,Ei} =% colim{E,F), first obgerve that by the above, the

natural map is 1-1. To ghow it is onto, consider a map E —>F. The com-
posite (-,C})—> B —3F mwust factor through some F. and the result is
obtained from the diagram

{-,.8) ———»E

F.——>F
1

by filling in the diagonal.

{1.8) Corollary. Let X be a small, finitely complete regular category
in which the terminal object has no non-empty subobject. Then there

is a moncid C and full exact embedding g-——ﬂagc.

[11.9) corollary (Mitchell). Let A be a small, finitely complete

regular additive category (or locally presentable or an Ab-topos).

Then A has a full exact embedding into a category of modules.

Proof, Take an embedding inteo §c as above (there aren't any subobjects
of 1 in the additive case). Since it preserves finite products, it
lifts to a still exact (additive) embedding into 5@9, the category of
ZC-modules.,

(1.10) The remainder of this chapter is devoted to proving (1.6).

Throughout this chapter with the exception of section (2.12)-(2.18),
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X denotes a small, finitely complete regular category.
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2. Support.

{(2.1) Choose X ¢ X and factor the terminal map X —31 as X—»S»—1.
The map X-——45 is constant, which means that it coequalizes every pair
of maps to 5. Thias is because X —>S and X —>1 have the same
kernel pair, X x X, This § is called the support of X and we will

write S = supp X.

(2.2) When X = (g°p,§l and X ¢ X, supp X is that functor whose value
is 1 wherever the value of X is non-empty and whese value is ¢
where X's is, Thus supp X is the “characteristic functor" of what

would normally be called the support of X.

{2.3) An object S € X will be called a partial terminal object if

every map to it is constant.

{2.4) Proposition. Let § be an object of X. Then the following are
equivalent.

a. 5 is a partial terminal object.

k. The projections PyoBys 8 %08 >»& are equal.

. The projections By 1Pyt § x §—>§ are equal.

d. The diagonal §: S—38 » 5 is an isomorphism.

Proof. Trivial.

{2.5) Propeogition. Let f£: S5 -——»T where S is a partial terminal

object. Then £ is an isomorphism.
Proof. Consider the kernel pair.

(2.6) Propositiop. Let £f: X —» 5 be constant. Then S is a partial

terminal object and 5 = supp X.

Proof. As any constant map factors through supp X, we have

X — 5 supp X ——» S, the gecond being —» by I (2.5). Now apply
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(z.5).
(2.7) Let Supp X denote the full subcategory of X whose objects are
the partial terminal objects. There is at most one map betwaeen any

two objects of Supp X and we will often write 5 € st for 5 ——»8',

lZz.a; Propggition. supp: X —+ SuppX is left adjoint to inclusion.

Proof. We must show that for s « sopp X, (X,8) #¢@ if and only if
{supp X, 8) # @. The "if" part ig clear from the map X—)supp X.
and the other follows from the fact that any constant map from X

factors through supp X.

p—

{2.9) Proposition. The functor supp preserves finite products.

L

Proof. Since X —» supp X>—1 and Y —wsupp Y»—— 1, we have,

by (2.14),

X x ¥Y—psupp X x supp ¥Y»—31ix1l = 1,

Thus supp X x supp ¥ enjoys the characteristic property of supp{XxY).

{2.10) proposition. Let X and Y be okjects of X. Then supp X =

= supp Y if and only if there is an object Z and maps Y& —32Z —»X.

Proof. Given such maps, we conclude from Z —3»X —» supp X that

supp 2 = supp X and gimilarly supp 2 = supp Y. Conversely, given

supp X = supp Y = § we have

X Y —

W x
thile—— &

—_—»

{2.11) Pproposition. Let X be regular, X € X. X x -: X—X

reflects isomorphisms if and only if supp X is a terminal object

of X.




49

Proof. First observe that X x supp X —3X by product projection is
an isomorphism, since each map to X induces a unigue map to supp X.
For each S8 ¢ Supp X, supp X x 8 = supp{X x 8). Moreover § x supp X 3§
gives X x gupp X x S ~—>X x 8, which is evidently an isomorphism.
Thus if X x - reflects isomorphisms, we have S x supp X =8 or

5 € supp X for all 5 ¢ Supp X. Since every object maps to some

8 € Supp X, every object has a map, necessarily unique to supp X, which
means that it is terminal. On the other hand, suppose supp X ia the
terminal object, which we will denote 1, and suppose that Y—f—}Y'

is any map with X x Y#_f__?x *x ¥' an isomorphism. We first show
that £ must he —»,

The diagram

X x¥t—a»¥!

X ———»1

is a pullback, whence X x ¥'-——»Y', which together with the com-

mutative diagram

X x ¥ —=——ax x ¥

Y ———m ¢!

and I. (2.5) implies that Y —a7Y¥*,

Now form
a e a | £
] .,
vV —y __1_} Y > Y
a

° a
in which Y¥Y* :d___i Y is the kernel pair of £ and Y'''———>Y" ig

1

a

their equalizer. Exactly as in the proof of I (2.16), X x - preserves
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kernel pairs and equalizers, and so

X x YV —— X x Y" “T"3X x Y ——X x ¥!

is a sequence of the same type But now X x £ - =3 X x a® = xx dl
implies that X x @ ig - 35 ., By the above, this implies that 4 is
—— % , which implies a° = d1 and then that f igz)——» . By the

uniqueness of the factorization, only an isomorphism can be both.

(2.12) pefipition. Let X be a regular category with a terminal object
1. An object X € X is said to have full support or to be fully
supported if X —»1. X is called fully supported if every object
of X is. This is equivalent to the existence of only one partial
terminal obkject, since the existence of a terminal object is enough to

show that supports exist.

(2.13) It is clear from the regults of this section that the functor
Supp is a fibration, that the fibres are fully supported regular
categories {and exact if the total category is), and that the trans-
ition functors are exact. This last follows from the fact that the
transition functor from the fibre over 8§ for § € S8' is given by 5§ x -.
This functor pregerves all projective limits, since s® = § for all
cardinals n. Conversely, any partially ordered P together with a2
functor goP to the category of regular (resp. exact) categories and
exact functors can be pasted together to make a regular (resp. exact)

category.

(2.14) s+ Proposition. Every map in X may be factored f = g.h where

supp h is an identity and f is a cartesian map in the fibration.

Proof. This is the essence of a fibration. Given f; X—Y, we factor
it as X-—> supp X x ¥ —~>Y. The existence of f implies supp X 1Y,

so supp(supp X x ¥} = supp X. The second factor is exactly a cartesgian
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map.

(2.15) Proposition. Let § be a full subcategory of supp X. Then the

full subcategory of X consisting of those objects whose support lies

in 8 is regular {(and exact when X is}.

Proof,. Trivial.
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3. Diagqrams

(3.1} Let I be an (index) category and D: I —X be a functor. Then
we will often say that the functor D, or for emphasis, the pair (I,D),

is a diagram in X.

{3.2) 1f (I,D) is a diagram in X and X is an object, let (D,X) denote
the set colim(Di,X}), the colimit being taken over i ¢ I. Then an
element of (D,X) is represented by an object i ¢« I together with a
map £: Di——X. We may denote this (i,f} and its class by 1i,fr.

Then Hi,fll = ¥j,g0 if £: Pi—>X and gt Dj —»X are the same in the
colimit. In the special case when I is filtered (the only type of
diagram we will have - in fact they will all be directed sekts), this

means that there is a k ¢ I and a: k —»i, f: k—>j in I such that

Dk .——_.»E(—x_}Di

D@ £

commutes. When I is not filtered, take the equivalence relation

generated by that relation.

{3.3) More generally, if {I,D) and {J,E) are diagrams, we define (D,E)
as lim(D,Ej}, the limit taken over j ¢« J. In effect, an element of
{D,E} is represgented by choosing for each j « J a ¢j ¢« I and a map
£fj+ Dj —> Ej such that for a: jl-—)jz in J, :Iaji, Ea.fjlu =

= #0j,,£j,0 in (D,Ej,). Then two families (o,{fj}) and (r,{gi}) re-
present the same element of (D,E) if for each j ¢ J, 0oj,fj1 =

= I17j,gjl as maps of D —2>Ej. The composition of two such families is

obvious and gives a category. Diag X, of diagrams in X.
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(3.4) Proposition. If {I,D) and (J,E) are two diagrams, then (D,E) =

= lim, «:olimi

jeg 1 {Di,Ej}

€I

Proof. This is just a shorthand form of the above discussion.

(3.5) If X &« X, we let X also denote the diagram (I,D} where I has
exactly one object i and one map and Di = X. Then this embedding is
obviously full and faithful. In fact, it can be easily seen that

Diag X is just (ﬁ,_S_)oP and that this embedding is the Yoneda embedding.
However, this fact is not needed here, as we will work directly with

diagrams. On account of this, we will call such a diagram either re-

presentable or the diagram represented by X.

(3.6) From now on, all diagrams will be over partially ordered sets, in
fact, over inverse directed sets. In terms of functor categories, thigs
means that we are restricting our attention to the category of finite-
limit-preserving functors. If, for i,j ¢ I there is a map 3 —>i, i.e.
if j £ i, we use (i,j) to denote it; and then, of course, P(i,j):

Dj =——3Di is the corresponding map in the diagram.
(3.7) Recall that every f: X——3Y can be factored in the form

X h »X x supp x —2 5y,

We will say that f is special if h is —.

(3.8) Propogition: Special morphisms are stable under composition

and pullbacks.

Proof. Let X—>Y¥ and Y -———3>2 be special. Then X—¥supp X x Y and
¥Y—supp ¥ x 2 give supp X x Y—3supp X X supp ¥ x Z = supp X x 2.
This, together with I. (2.8), gives the first result. As for the

gecond, if X—Y is special and we form a pullback
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X—-gupp X x Y = ¢ ¥t ——y*

. l

X—®supp X x ¥ ——> ¥

then supp X x ¥ x  Y' = gupp X x Y*‘.

(3.9) Given a diagram (I,D), we define a new diagram (ES.SS) for any

= {ijsupp Di 2 8} and Dgi = Di x §. We see

s %

latter denotes the full subcategory of all objects whose support is S.

85 ¢« Supp X by letting ES

that Ds can be thought of as being a functor I , where the

5

(3.10) Given a diagram {(I,D) we say it is P-diagram if it satisfies:
P1} Ig is an inf semilattice for all S e Supp X.
P2} For any 1 € I and any special morphism f: X—3Di, there iz a
j £ i with p{i,j) = f (and of course Dj = X).
The diagram (I,D) is called an A-diagram if it satisfiess

Aly = P1).

A2) For any i < j, the interval (i,j] = {kii < k € j} is finite.

A3) For any i < j, the natural map Di Mim(D| (i,31) is

special.

(3.11} It should be noted that these definitions are not isomorphism
invariant and should be supplemented by saying that a diagram iso-
morphic to one of the above type is of that type also. It would be
useful to discover, purely in terms of the functors represented, what

these definitions mean.

(3.12) Proposition. Let (I,D) he a P- diagram (resp. A-diagram}

in X.
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IThen (;S,Ds) is a P-diagram (resp., A-diagram) in Xg
proof. The condition P1) = Al) is evidently designed to be inherited

in this way. If £: x-———aDsi is special, supp X = 8 clearly is equi-
valent to X—»D.i. There must exist j < i with b(i,j) = £f. We have

supp Dj = 8, so j € I_, and B_ 3

s g} = Dj. Thus P2} is inherited. If (I,D}

is an A-diagram, {;S,DS) satisfies At as above and A2 is clear. Then
Di—1lim Dj (i,j] being special implies that
Di ——supp DL x lim Pj (i,d],

and if supp Di 2 S,

8 x Di—-3% 8§ x supp Di x lim D| {i,]]

§ x lim p] {i,3]

Lim Dg| (1,31,

since supp Dk 2 8 for all k > i and S x - is an exact functor.

{3.13) Proposition. Let (I,D) be an A-diagram. Then D(j,i) is special

for i < j. Also Ds(j.iJ is —— for all 1 <« § such that supp Di> S.

Proof. Since the interval (i,j] is finite, there is a finite chain
i = iO <l < i o= j such that each (ir’1r+1] has only one

element, namely i , and then A3 implies that Dir———-}Dir+1 is

r+i
special. Then D{(j,i), being the composite of these, is special also.
The last statement is obvious, since a special morphism between two

objects of the same support is —3»,

——

(3.14) Proposition. Let (E.D) be a P-diagram. Then for any § ¢ Supp X,
(DS!-) H }_{"—>§

is exact.

Proof. Since ES ig inversge directed, it evidently preserves finite

limits. If £f: X —»Y, then supp X = gupp Y. Let Ii,gl: Ds-——ﬁY he a
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map. Since the pullback of
X
Dt —L— ¥

comes equipped with a ———a»DSi, it is represented in the diagram, so

there is a commutative diagram
. h
B
Dsj X

D (1,3) J
g

Dsi ——C— Y.

Then Hj,ht: D,—3X is a map such that (DS,fJuj,hu = ﬂj.g.Ds(i,j)u =

= #i,gl, which implies that (Ds.f) is onto.

(3.15) Proposition. Let (I,D) be a P-diagram. For each 1 ¢ I,S,

Ki, Dsi!: DS————bnsi is an epimorphism.

Proof. As pointed out in (3.13), every map in the diagram DS is —.
If £f,9: Di—>X are distinct, then for all j < i, D(i,3)f # p(i,]).g.
Evidently every diagram is the limit of representable diagrams and an

inverse limit of monomorphisms is a menomorphism.
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4. The FLubkin completion process.

(4.1) In this section we show how to “complete® a given diagram to a
P-diagram. This construction was firgt described by Lubkin in his
original proof of the abelian category imbedding, [Lu]. As a matter of
fact, Lubkin obgserved then that there was nothing inherently abelian
in his proof. Lubkin even stated & non-abalian embedding theorem,
although baged on the notion of ordinary, rather than regular, epi-

morphisms.

{4.2) Let (I,D)} be a diagram, io ¢ I and f: x-—;nio be a map in X.

We describe a new diagram Lub(;,D,io,f} = (1*,D') as follows. Let

I* be a partially ordered set disjoint from and order isomorphic to

fi ¢ 1}i < 10}, by a map {e—i*. Let I' denote I v I*, in which each
component has its own order and moreover i* < j if and only if i € j.
In particular, i* <« i, and the order is generated by that relation
together with the ordere in I and E*. We define D' by D'I; =ID,

D'i; = X, D'(io,i;} = £, and for i ¢ i, D'i* is defined so that the

diagram
DY (1%, i%)
DYi* y X =D'1
D' (i,i*) £
v
bi D(i_,0 Di,

is a pullback. D' is defined on maps i* ——91; and i*-—=—3i as shown.
For i €3 € 10, D*{j*,i*) is uniquely induced by a pullback and
D'(j,i*) is defined as D'(j,j*). D'(j*.i*} = D(j,i).D'(i,i*). This
last equality is a consequence of the definition of Df(j*,i*} as a

map into a pullback.

{4.3) Let (I,D) and (I',D') be diagrams. We say that (I',D') is a

Lubkin-extension of (I.D) if there ie some :i.o « I and f: X—>3Di
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with (1',D') = Lub(I,D,i ,f). In particular, this means that I < I

and D'|I = D.

{4.4) Let n be an ordinal number. A sequence {{Em.Dm)Im £ n} of

diagrams is called a Lubkin-sequence if for each m, (I .,.D ..} is

a Lubkin-extension of {Em’Dm) and if for each limit ordinal m, Em =

= U I1;:Dl1 =D.
p<m -p m =p P

(4.5) Let (I.D) be a diagram. If n is an ordinal number and {fm|m < n}

is a sequence of morphisms fm: Xﬁw——?Dim. we define a Lubkin-sequence

by letting (I ,D) = (I,D}, and for each m, (I . ,.D .,) =

= Lub(;m,Dm.im.fm), while for each limit ordinalm, I = Pgm Ep'

(4.6) Let (I,D) be a diagram. Let n, be an ordinal such that there is

a 1-1 correspondence m h——efm between the ordinals m « n and the
set of all special morphisms whose codomain is a Di for i ¢ I. Then
applying the above construction, we get a diagram (;n ,Dn }. This

1 1
diagram has the property that given i ¢ I and £: X—>Di special,

there is some j « En such that j < i and f: X—Di =
1

=D (i,3): Dn j -—>Di, Now let n, be an ordinal such that there is
1 1
a 1-1 correspondence mb—f between all the ordinals n,< m <n
and the set of all special morphisms whose domain is a D i,i ¢ I .
1 1

Extend the Lubkin-sequence {(gm,Dm}|m < ni} to one defined for m £ n

2

2

by applying the process of (4.5) beginning with (In D ). Then we may
1 1

continue in this way with ordinals Nyefy,ee. - Lot n = sup{nili e wl}.

By letting En = mgn ;m, Dntzm = Dm' we construct a Lubkin sequence

ﬂgm,Dm}lm % n} with the property that for all special f: X—>Di,

i e In’ there is a j < i in I such that £: X-—Di = D({i,j}: Dj —Di.
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The diagram (;n,Dn) will be called a Lubkin completion of (I,D}.

(4.7) Proposition. Let (I.D} be a diagram in which I is an inf

semllattice for each & & Supp X. Then a Lubkin completion of it is

a P-diagram.

Proof. Pl) is an inductive property, so it suffices to consider a
single Lubkin extension. Let {I,D) satisfy P1) and (I',D*) =

= Lub(I,D,i ,f). Let 1 A j denote the inf of two elements of I. If

s
i< io and i « ES' then io € ES also and supp Di* = supp Di n supp X,
where X is the domain of f. If supp X is not 2 8, then Eé = Ig- If

supp X 2 8, then supp Di* 2 § if and only if supp Di > §. Now if

g 1€ i,

i* A j = (i A 3)* and is in i when i; is. If also j < io’ i* A j* =

i,j € ES’ iA]ce Eé. being the same as in ES' If 3, « I

(i A j})* a=s well. As for P2), this is what the Lubkin completion is
all about. Supposing that i ¢ En and f: X—3Di 1is special, then

ie En for some r ¢ @ and £ = fm for some ordinal m such that
r

n,<m<n

" pei® THED f is represented in the diagram {;m.Dm) and there-

after.

(4.8) Proposition. Suppose (I,D) is an A~diagram. Then any Lubkin

extension of it is an A-diagram.

Proof, Let (I',D') = Lub(E,D,io,f}. We have just seen that Al) = P1)
is preserved by Lubkin extension. As for A2), if i,j ¢ I, (i,3] is
the same in I and I*, If i,j € I, i < io’ {i* 4] = (i*,{jai)*)uli,]]
and the first term is order isomeorphic to (i,3 A i}. If j « iO also,
{(i*,j*] is order isomorphic to (i,j]l. To show A3) is satisfied, we

consider the cases,.
Case 1. i < j in I. This follows directly from the fact that D*|I = D.

Case 2. i* < j*, This case is a simple application of the fact that
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i1imits commute with limits to show that

D'i* —— »lim D'} (i*,3*]

| L

Di =e—ee—> lim D[ {i,])
is a pullback. Then since the bottom arrow is special, so is the top.

Case 3. i* <j but i =4 A j. In this case, (i*,j] = [i,3] and

so 1lim D'| (i*,j] = Di. Then since £ is special, so ia D'i*——3Di.

Case 4. i*¥ <« j and i < io A j. I claim that in this case Di* is
the limit under consideration. To see this let jo =3 A io’ and
suppose we are given g(k}): ¥ ~»Dk for each k ¢ [i,j] and g(k*):
¥ ——>Dk* for each k ¢ (i*,j;], which constitute a ccherent family.

Then D'(jo,j;}.g(j;) = D! (jo,i).g(i} , so that szince
D':i.*-—--—-»D'jg

|

Di ~——— Dj_

is a pullback, there is a unique g: Y—D*'i* such that D'{i,i¥*).g =

= g{i} and D'(j%.,i*).g = g(j;). If X ¢« [i,3j], then g(k) = D(k,i).g{i),
gso that D'(k,i*}.g = D(k,i}.D'{i,i*).g = D(k,i}.g(i) = g(k}. If

k* ¢ {i,j;], then to show that D'{k*,i*).g = g{k*}), we use the fact

that

Dk* —-—-—)D'j;

|

Pk ——— Dj_

is a pullback. We have D'(j;,k*).D'{k*,i*) .g = D'(j;,i*) g = g(j;) =

= DU(j%.k") .g(k*) and D' (k,k*).D'(k*,i*).g = D' (k,i%) .g =
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= D(k,i).D*(i,i*}).g = D{k,i).g{i)} = g{k}) = D*{k,k*).g{k*)}.

(4.9) Corollary. A Lubkin completion of an A-diagram is simultanecus-

ly an A- and P-diagram.
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5. The embedding.

(5.1) We are now ready to describe the embedding.The functor X(1,-)
is represented by the diagram Doz ;o———ég in which Eo has one
object and Do at that object is the terminal object 1. This is evi-
dently an A-diagram and we let (I,D) be a Lubkin completion of it.
We let C be the category whose objects are the non-empty subobjects
of 1, and whose morphisms are defined by

¢(s,,8,) = (Dy ,Dg ):

1 2
that is, morphisms {as defined in {3.3)) between the diagrams
). Thie is equivalent to natural transformations

(Ig »Dg ) and (I, ,Dg

St %5 2 53

between the functors represented by the diagrams. Composition in C is
just the composition of natural transformations. Hote that g(sl.sz)-
= ¢ unless S1 £ 82, which means that there is a functor

C —Supp X. We define U: X —>(cP,5) by (UX)S = (Dg,X), the
mapping described in (3.2). Composition of natural transformations
(recall that this is really natural transformations between (X,-)

and {DS,-)) makes this functorial in X and {contravariantly) in C.
Since limits and colimits in functor categories are computed element-

wise, it follows that U is exact as long as (U-)8 is for each S. That

functor is (DS,-).

(5.2) Propeosition., U is exact.

Proof. See (3.14).

(5.3) Proposition. Let E: g-——?gs be a P-diagram and F: K —>X, be

an A-diagram. Let ko ¢ K and
njo,fn

E -w——-_—aFkO

be a map. Then it extends to a map E-~—>F. This means that there is

a map E-——>F such that



F —AF
iJD,EJON J/ l Iko,Fkoll
Ejo : F‘ko

commutes, since always f.ujo,Ejou = njo.fl.

Note that we use the name of an object to denote also its

identity map.

Proof. First we observe that F (like any diagram based on an inverse
directed set) is isomorphic to the diagram gotten by truncating F
above kos That is, replacing K by {k|k 2 ko} and restricting P.

This new diagram, moreover, satisfies the conditions for being an
A-diagram itself (not merely being isomorphic to one). Thus we may
suppose that ko is terminal in K. Next we observe that E = ES re-
presents an exact functor of X—>S5. This means that the § diagram
(K,F) defined by fk = (E,Fk) is an A-diagram in §, since exact
functors preserve the properties defining an A-diagram, finite limits
as well as reqular epimorphisms (which are what special maps reduce
to in X.). Since (E,F) = lim(E,Fk), then (E,F) = lim Pk , taken over
k ¢ K. Hence this proposition is reduced to the following special case

(when E = 1 and X = S}.

(5.4) proposition. Let (K,F) be an A-diagram in § and k ¢ K

be terminal. Then lim F-——+Fk° is onto.

Proof. We choose a point of Fko which we will denote by P(ko>' We
consider families (L,p(L)) in which L is a full subset of K that is,
a subset with the restricted order) and p(L) = {p(l)|1 ¢ L} is a
point of lim F/L subject to the following conditions.

a} ko € L.

b) p(ko) is the already given point.

c) Forkel_(,lgl_..,l-ckgkeg.



This family is partially ordered
in the obvious way: (L ,p(L ) < (L ,p(L 1}y if L, <L, and

p(gz)|§1 = p(gi). This set is inductive; the only thing non-trivial
is showing that a union of a nested family has a point of the limit.
But the test of whether a point of {FY{¥ ¢ L} is a point of the
inverse limit involves only two indices at a time, and in an inductive
union the satisfaction of such a test is inherited. Hence there is &
maximal {L,p(L}) among the family. We need only show that K = L.
If not, there is X ¢ K, k £ L: Since the interval {k.kol is finite
and ko ¢ L, there must be some k £ L for which {k,ko] ¢ L. But since
Fk —lim F| {k,k ]
is onto and {p(X)]Z « {k,kol} is an element of that inverse limit,
there is a p(k} ¢ Fk such that for all k' ¢ (k,kol, i.e. all k' >k,
P{k*,x)p(k} = p(k*'). By condition ¢) above, no element of L precedes
k, so that in fact p(L) v {p{k)} is a point of lim F|L v {k}.
Clearly the conditjions a),b), and ¢) above are satisfied and we have

constructed a proper extension of (L,p{L)}}, which ig a contradiction.

{5.5) Now for an object X ¢ X with support S. Let (I,D) be the dia-
gram c¢onstructed in {5.1). Since X—>1 factorg as X —»S»—31,
there is some i0 € I with Dio =X. Let J = {i ¢ Esli < io}. Let

= D|J. Evidently (J,E) < (I5,Dg), and (J,E) is easily seen to be
both an A- and a P-diagram. Let F: J—>X be the functor whose value
at i ¢ J is the kernel pair of E(i_ ,i) =D{(i ,i). Since Di and Di

have the same support, this amounts to saying that

o, E(i_,i)
Fi—d;"—;}s:i——-—c’—»h"io =X
1
da’i

is exact.

(5.6) pPropogition. The diagram (g,F} ig an A-diagram.
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Proof. Al) and A2) are cbvious. Let k < j ¢ J. Since limits commute

with limits,
lim Fj (k,31 = Lim(E x 4 B} (3,k} = lim Ej(3,k] xy 1im E| {3,k].

Since BEj—lim B} (j,k], the result Ej x x B3 —»Lin(E x E}| (3,k]

follows from I.{Z2.2).

{5.7) Proposition. The diagram

do i X

F‘_‘__-_*E'————g——“——#x
d1

is a coequalizer.

Proof. Since every diagram is a limit of objects of X, it is sufficient
to show this for maps into them. Suppose 1j,99: E——Y ia a map co-

© 1
equalizing 4~ and 4., This means that lj,g.dol = ij,g.ds’l. and since

¥i,Fit .
F 13—’3—>Fj is an epimorphism (see (3.15)), it follows that g.d"=
g.d" . But

. doj E(io_,j)
Fj—_——=% BEj — X
1,
dj
g
Y

is a coequalizer and hence there is induced f: X——Y with
f.E(io,j) = g. Since E(io,j} iz a map in the diagram, it represents

the map uio,xuz E —>X. Unigueness of f follows from (3.15).

(5.8) Proposition. Let G: K-—»X be any diagram and F the diagram
constructed in (5.5). Given twe distinct maps F—=2G, there is a

map E-—>F with E—F 3G also distinct.

Proof. It is sufficient, as above, to consider the case when G is an
object of X, say G = Y. Let the two maps ke Fi,fHy F—>Y and

¥j,gt: F—3Y. By choosing k 2 i,j we may suppose that i = j.



E(i_,i).d%
. . () . :
Since Fi » X, there is some X ¢ J such that EX = Fi.

Since F is an A-diagram {see {5.6)), the map E¥—>PFi can be ex-

tended to a map E——F, giving a commutative diagram

E —F
Bl ——— Fi
and E—El an epimorphism. Since Pi—=3Y are distinct, so are

E—3>»E¥ —3Fi—>Y¥, and then E——>F _—3}Y.

\_(5.9) Proposition. U is full and faithfull.

Proof. Suppose X—iﬂ' and Uf = Uy, If Z———>X is the
9

equalizer, this implies that Ue is an isomorphism. If S = gupp X,
(UZ)S = (UX)S and (UX)S # @ inmplies that (UZ)S # # and that
S £ supp 2, while clearly supp %2 £ S. Now choose a vertex i ¢ ;S
with Di = X. By the isomorphism, the element I£,Xt ¢ (UX)S must
come from (UZ)S and be represented by some 1j,hl. By choosing

k =i A j and observing that Dg—>Dk is epi {see (3.15)), we

have a commutative diagram

h.D{j,k)

Dk

2
D(ilk) a
v ——
- > X

Di

from which we see that e is —3). Since e is also an equalizer,

this implies that e is an —=-—» and that f = g.

Now suppose that ¢: UX——0UY¥ 1is a natural transformation of
functors. Taking S = supp X, we see that ¢5: (UX)8 —— (UY)S, and

since (UX)S A @, (UY)S # P and 5 < supp Y. If s: X —»8 is the
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map (there is only one), then (¢,Us)s UX—>UY x US = U(Y x 8) is
alao natural. If we show that ({,Us) = U(f,s),f: X—>Y¥, then
{9,Us) = (UE,Us): UX——0UY < Us and o = pz.(¢,Us) = pi.{Uf,Us} =
= Uf. Hence it iz sufficient to consider the case that supp ¥ = 8 as
well, Let (J,E) and {(J,F) be the diagrams constructed in (5.5)
above. Then (UX)S = (F,X) and (U¥})s = (F,Y}). Let 4 denote uio,xuz

E—> X. Then by {5.7),

F d :5‘ E d X
dl

iz a coequalizer. Now the map d represents an element, also denoted 4,
of UX, and is transformed into an element ¢(d}): E—>Y. 1If

9(d) .a° # ¢(d).d1 as mapg F—=Y, there would exist, by (5.8), a
map g: E—>F such that w(d}.do.g # p(d).di.g. But the statement
that ¢ is natural means that for any map $-—>§ 1in C, that is to
say, any natural transformation u: E-—>E, and for any h: E—3X,
+(h.u) = p(h).u. But do.g and di.g are maps E-——3E, and so

we have (d).d°.g = ¢(d.a%.q) = y(d.dt.q) = ¢(a).d’.g, which is a
contradiction. Thus $(d).d° = ¢(d).d1, and by the property of equal=-
izerg, there is induced a map £: X—>Y with £.4 = ¢(d). Now

suppose g: E—>X represents some other element of (UX)S. Since E

is an A- and P-diagram, e: E —=>X can be extended to v: E—E
such that d.v = e. Then ple} = ¢{d.v) = ¢ld).v = £f.4d.v = £.e, Hence

¢ = Uf. This completes the proof.

(5.10) Proposition. For each object X of X, UX is a regular quotient

of a representable functor.

Proof, Let S8 = supp X. Choose an index 1 ¢ ig with Dsi =X and

let d = ni,xXx: DS————>X. By (5.3), we have for any P-diagram E,
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(E,DS)'———+)(E,X). In particular, this holds for E = DS" and so

(DS' !DS) E— {DS' lx} 3

or

c(5*,8) —» (UK 8,
which means that C(5',-) maps onto UX, or that UX is a regular quotient
of E(S‘ 9-) -

With this we have completed the procf of (1.6} as well as of

all the other results stated in section 1.

{5.11) Remark. It seems worthwhile to make two additional remarks

about this embedding. First, as a colimit of a directed set of re-
presentable functors, it does more than merely preserve the finite
limits that exist. Rather it will preserve the finite limits in any
reasonable finite limit completion of the category, e.g. that described
in I.(4.5). The second is that as a conseguence of the fact that
Ds——*igbsi for each i, the functor commutes with intersections of any
family of subobjects of an object which have an intersection. This
property is apparently a completely accidental consequence of the

construction and it is not known what, if any, use it might have.

(5.12) If V is an exact closed category with exact direct limits and
a faithful underlying functor, then by interpreting the 5 valued
functor as taking values in V, we get a V-valued exact (not full) em-
bedding which reflects isomorphisme. If V is the form §“-, where U is
a commutative triple of finite rank, this is satisfied and one may
even see directly that the full embedding lifts to a full exact em-

bedding into a V-valued functor category.
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6. Diagram chasing.

{6.1) When one has an embedding thecrem of this sort, the obvious
thing to do with it is to chase diagrams. In the abelian cases this
was usually cited as one of the main applications. In fact, however,
in the abelian case, most of the diagrams can be chased almost as
easily in the original abelian category. In fact most of the diagrams
to be chased seem to involve, one way or another, the shake lemma.

{I am loosely using the term "diagram-chasing" to include “"diagram
£illing” as well.} As seen in the next two chapters, the non-abelian
case offers diagrams of both greater variety and greater difficulty.
This seems to be largely because exact sequenceg involve kernel pairs,

rather than kernels; coequalizers, rather than cokernels.

(6.2) One further point, equally valid in the abelian and non-abelian

casge, should be mentioned here. The embedding theorem is valid for

small (or locally presentable} regular categories. There are three

possible ways around this difficulty for large categories, of which at

least two work and one is set-theoretically unassailable. Taking that

one first, any diagram, any set of objects, can be extended to a full

regular (resp. exact) subcategory by a more - or - less evident process.

Given a set of objects, make a full subcategory. Add to this this

a) the kernel pair of any map,

b} the regular image of any map (equivalent to the coequalizer of its
kernel pair), and

¢) the pullback of any pair of maps like

S~
7

Each of the processes adds a set of objects whose number is (roughly)



the set of maps of the given subcategory.Now iterate this countably
many times and take the union. The result will evidently be a full,
small, regular {resp. exact) subcategory. If the original category
had finite limits we could obviously modify this to give finite limits

to this subcategory.

(6,3) A second possibility is to relate everything to Grothendieck
universes. If a category is large in one universe, it is small in the
next and can be embedded in a functor category there. Or it can first
be embedded into a locally presentable category. If 8 is the first
universe (which may as well be identified with its category of sets)
and S* is an enlargement, the embedding of X into all S-continvous
functors of §°p-——§§* ig evidently S-~continuous and the functor
category is locally presentable, since X is embedded as generators,

each of rank € to the carxdinal of § as an object of 5*.

(6.4) The final way is more speculative but would be the most satis-
factory (or, anyway, the most satisfying) if it worked. It is possible
that every regular category X possesses a class of exact functors

U; X—>S, U ¢ U, with the following property. Every class

{¢UjU ¢ U} of maps UX —*Y_,uy for which each natural transform-

ation ot U—>U' gives a commutative diagram
UX—LU——’-)UX'

aX aXx?

1
380" ——L——> Uyt

implies the existence of a unigue £f: X——>Y such that U = Uf for

all U ¢ U. Since a class U is a collectively full and faithful family,

a diagram can be chased by applying every such U. "Every" is, in this
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context, the same as "any" and can be supposed for purposes of

verification to be just one. It is not known whether such a class U

always exists.

{(6.5) Whichever strategem is adopted doesn't change the fact that
certain types of diagram chasing in regular categories can he carried
out in functor categories. Strict diagram chasing (that is, not in-
volving £illing~in, but only commutativity) can be carried cut in §,
since the evaluating functors (g°p,§)—~———}§ given by evaluativy

at the objectsof C form a family of exact functors which are collective-

ly faithful. In fact more is true.

(6.6} Propesjtion. The evaluation functors {9°p,§}~———>§ for C « C
ollectively are faithful, exact,reflect isomorphisms and reflect

quivalence ralations,

Proof. That they are faithful is clear, since equality of natural
transformations is defined that way. The evaluations preserve all
limits and colimits (limits and colimits are calculated "pointwise"),
s0 exactness is also clear. For similar reasons they reflect isomor-
phisms (collectively). Finally suppose F ——>Gx G is such that FC

is an equivalence relation on GC for all € € C. First, FC>—>(GxG)C =
= GC x GC implies that F>—G x G. Next, the coequalizer FI3G--—H
is computed pointwise so that FC ——3GC —-—HC is a coequalizer for
each ¢ € C. But the kernel pair of GC —> HC is just FC, which
means that F =3 G is a kernel pair, a fortiori an equivalence re-

lation.

(6.7) Corollary. Let X ke a small (or locally presentable) regular
category. Then there is a family of exact functors Ui: X—5,

i € I, which collectively sre faithful, reflect isomorphisms. and
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reflect equivalence relations. If, in addition, X is exact, then these
—d°
Ui. preserve the coequalizer of any pair of maps x___; ¥ such that

d
the image of (Uido,Uidi): Uix-————>UiY b UiY is an eguivalence re-

lation for each i « I.

Proof, If U: g-———é(goP,g) is full, faithful, and exact, we let I he
the objecta of C and Ui be U followed by evaluation at the corresponding
object, Then every thing but the last statement is clear. Te¢ see that,
suppose da° and d1 are as above. Then we can factor (do,di) as
X—»Z»>—>Y x ¥. By the proposition and the given conditions, UZ is

an equivalence relation on ¥, If the diagram
2 T 3Y —> ¥
is a coequalizer, it is exact. Then for each i € I,
Uix ey UiZ
and
Uz 30, Y ——> 0, ¥
is a coegualizer, which implies that
U, X —33 U, Y —>U.Y'

is a coequalizer.

{6.8) Mgtatheorem. Let X be a regular category. Then any small dia-
gram chasing argument valid in § is valid in X, provided the data of
tthe diagram involve only finite inverse limits and coequalizers of
right exact sequences; if, moreover, the category is exact, these

data may also include coegualizers of pairs of maps which, in 8, can

be shown to have as image an equivalence relation.

{6.9) Given the somewhat vague statement of this metatheorem, it is

hardly susceptible of being proved. To apply it, it is necessary only



to verify that the type of diagram to be chased is by its nature sus-
ceptible of being proved by applying a family of reflexively exact

functors which also reflect egquivalence relations.

(6.120) Exampls. Suppose X ig a regular category and we are given a

commutative diagram

Y“ _____+ xl
fll

in which both columns are exact and the sguare

]
Y _..f._._...}xt

v

—_—
Y T Y

1 .
iz a pullback (which is equivalent to the sguare with 31 and & bheing
a pullback). Then the square

Y‘———J;*""9X

is also a pullback.

Proof. Even in the category of sets this is woderately difficult to
prove. In an arbitrary regular category it follows from the meta-

theorem. I am indebted to Anders Kock for suggesting this example. It
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arises in the theory of elementary toposes and also in descent theory.
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Chapter IV, @Groups and Representations

1. Prelimjnarjeg.

(1.1) Throughout this chapter and the next, X denotes a fixed exact
category. From I(5.11} both GpX and AbX, the categories of groups and
abelian groups in X, respectively, form exact categories. The latter,

in particular, is abelian,

{1.2) Let G ¢ GpX, and us 1 —»G, i: G —>»G, and m: G x G —>G
be the unit, inverse, and multiplication maps, respectively. A pair
{X,a) where X &« X and a; @ x X —3X is called a left representa-

tion of G or a left G-object if the following diagrams commutes

Exexx —SX2q8 .5 yx X —S— 1 x X

l u x X
m & X &

G = X

l a
GXx X y X X R

A morphism f: X ——3X' is a morphism of G-objects (X,a) ——=(X',a")

provided

G x X % G X X!

X 5 XY
commutes,

Note that all these products exist, since, for example,

G x X —3X%

G ——»l
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is a pullback.

The left G-objectsand their morphisms evidently form a category Lo(G)
which has an evident underlying functor LQ(G) —— X. Turning avery
thing around, we can define the category PRO(G} of right G-objects
and their morphisms., Finally, we say that a 3-tuple (X,a,a'} where
(X,a) ¢ Lo(G) and (X,a') ¢ RO(G) is a 2-sided G-object if

e = ¥
GxXXG—GA—a—-—I}Gxx

A x G r X

commutes. The category of these objects and morphism which are
simultanecusly in 10O(G)} and RQ{(G) 4is called BO(G). It is clear
that one could define G°F and show that LQ(GOP) is the same as

RO(G) and LO(G x 6°P) is the same as BO(G).

{1.3) Iheorem. Let X be a regular category (resp. exact). Then LO(G)
is regular (resp. exact) and the functor LO(G) —>X is a reflexive-

ly exact functor.

Procf. That it reflects isomorphisms is trivial. Now consider an
exact seguence
o

=2 x -9 oy

d1

in which ({X',a') and (X,a) are left G-objects and do, di are G-
morphisms.,
Then the top row of

G x X' T/ 76 x X

> G ox XM

al a

X' ———3 %

I

~
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is still exact and hence a" is induced as indicated. From here the

proof proceeds exactly as in I.(5.11).

(1.4) Corollary. RO(G) and BQ{(G) and their underlying functors to

X enjoy the same properties.

Proof. This can be either proved the same way or made to follow as a

corollary via the remark preceding (1.3).

{1.5) Theorem: Let U: X ——>Y be exact. Then there is induced, for

each G ¢ X an exact functor

Lo(e) ——>10o(UG)

such that
Lo(G) ——— LO(UG)
v v
X > 3
commutes

Proof. Recall that according to I.(5.11), UG will be a group cbject
in ¥. That U takes G-objects to UG-objects follows easily from the
fact that U preserves products, The exactness is a consequence of the
reflexive exactness of LO(UG)—>X.

E.ti) Corcllary. RO(G) and BO(3) enjoy the same properties.

{1.7) Lemma: Suppose (X,a,a') is an object of BO(G) and s:

G X X —%X x G is the map which interchanges the factors. Then the

t
immage of G x X (a,a’.s) »X x X is an equivalence relation on

X. That is, if X' is defined as the coegqualizer in the diagram

G x X —/—2——3} X— X',

at,s

then this sequence is right exact.
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Proof. If X is small, choose U: X—>5 which is reflexively exact
and reflects equivalence relationa. Then UG is an ordinary group
and X is a 2~sided UG-object. Thus it suffices to consider the case
of ordinary groups operating on ordinary sets by a 2-sided operation.
S0 we have G x X ~——> X x X by a map taking (g,x} —— (gx,xq)

and we want to show the image is an equivalence relation on X. It is
reflexive as {1,x)+—=(x,x) and symmetric as (g-i,gxg)i-—}{xg,gx) .
If {gx,xg) and {(g'x',x'g') satisfy xg = gtxt, (gg',x'g-i) —
_ (gg'x'g-l,x'g') = (gxgg-i,x'g‘) = {gx,x'g'), and so the image
is transitive. When X is large, use an appropriate modification {cf.

I1T.(6.4)).



2. Tensor products.

(2.1} Proposition. Let G be a group in X, (X,a) e LO(G} and X'¢ X.

Then (X x X', a x X') ¢ LO(G) also.

Proof. Trivial.

3

{2.2) Of course X! x X = X x X', so that X' x X ¢ Lg{G}. If
{X*',at)q RO(G), X' x X has the structure of a left G-object from X

and of a right G-object from X7,

‘ (2.3) Proposition. X' x X with this structure is an object of BO{G).

Proof. Trivial.

{2.4) Definition. Let X ¢ LO(G), X' ¢ RO{G). We define X' ® g X as the

coequalizer in the diagram

L ]
x' x ¢ x x—22K sy x e 33t ® X,
——— G
Xxa

Note that thouah X' x X is a left and right G-object, it is most
convenient to put G in the middle, It follows from {1.7)} that the
sequence is right exact and thus remains right exact (in particular

a coequalizer) when any right exact functor is applied.

‘ (2.5} Brgpgsition. - @ e is a functer RO(G) % LO{G)—> X.

Proof. If (x,a}—f—ﬂY,b} is a map of left G-~ohjects, the diagram

]
Xt xGxXM—;X'XJ{——}X'Q X

G
X'xa :
1
X' x G Ix f X* x| £ i
i
R s
a'xy
X'XGXY“‘_'_'”"';X'XY'—'-—}X'®GY
X'xb

commutes, whence X' ® £ is induced from the coegualizer.
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(2.6} Propositjon. Suppose X' & Q(HxGOP) {This means that it is a
left H, right G,bi-ohiect) and X € LO(G}. Then X' @ G X) has the

natural structure of a left H object.

Pproof. The top row of

— ]
Hx X' x6xX_—"—3Hx X' xX )HX(IX @GX)
I
b x G|lx X b x X I
i
v ¥
X' x 6 x X —————%x! x X ———3X' @ o X
is still a coequalizer. Here b: H x X* ——X' is, of course, the

H'-structure map and the commutativity of one the squares at the left
is exactly the fact of X' being a bi-object. The induced map

Hx(X'" @ X) —> X' ® X is easily shown to be a structure map, using,
for example,that

HxHxX" X X—3H x Hx{X*"® _ X}).

G
{2.7) 1t is clear that G with its left and right multiplication maps
belongs to BO(G). If f: H——>G is a morphism of group objects,
there is an obvious functor f*: LO(G)——> LO(H), in which

(X,a) —— {X,a.{fxX}). There is also included a functor £,2 LO(H) —>
——>1L0(G} which takes a H-chject X to G @ g X evidently a G-object

from the above remark.

‘ {2.8) Theorem. The functor £, —{ £*,

Proof. The inner adjunction is the map X MG XX 3G & o X
in which X t y I U .6 4is the terminal map of X followed by the

unit of G. The outer adiunction is induced by
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GXHXX'__:GXJ(—_)GQHX
-
-
rd
a -~
-
P
&

That the first is H linear, the second exists and is G-linear, and the
two satisfy the laws of an adjunction may be easily verified by

applying the metatheorem.

P—t——

(2.9} Corollarv. For any G, the underlying functor BO(G) —~—2X has a

left adjoint, X+——3> G x X.

Proof. Apply the above to G —1. It is evident that G ® 1 X =G x X.

(2.10) Theorem. Let X e LO(GxH’P), ¥ « Lo(8xk’F), 2z ¢ LO(K ® L°F),

Then there is a canonical map

X®, Y0, Z2—>XQ ¥ @y 2)
such that the diagram
=¥ = 2
(X® Y)@ Z—>X® ZJ

comnutes (see the proof for the definition of these vertical maps),

and that map is an isomorphisem.

N

Proof. The vertical maps in the diagram are gotten by letting t(X,¥)

denote the canonical projection X x Y >X ® H Y. Then the one map
is £t(X @ H ¥,2).t(X,¥YY ® 2 and the other is similar, One way of
proving this is to first prove it in § (trivial). Then use the meta-

theorem to show that in the diagram
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XxY¥xKx2 XX« Y x4

R

(x@HY)GKZ

the vertical arrow coequalizes the two maps on the left. Since the
row ia a right exact, it is a coegqualizer, and there is induced
Xx (Y@, 2 —(X®, Y)® 2 with the appropriate property. an-

other uge of the metatheorem shows that in the diagram

XKxHEX(Y @ 20 T3 X x(Y Q@ 2} ——2X @ (Y ® o 2)

-~
-~
rd
-~

(XGBY)QKZ

the vertical arrow again coequalizes the two arrows on the left and
the required map is the one induced. That it is an isomorphism may be

readily verified by a third use of the embedding.

(2.11) Theorem: If X ¢ LO(G}, G @ 4 X = Gy and if Y ¢ RO(G),

~

Y@GG Y.

Proof. Theze can be derived either directly from adjointness or from

arguments similar to (but simpler than) the above.

(2.12) Theorem: The asscciativity and unit of the previcus two

theorems are jointly coherent.

Proocf. Prove it in § and use the metatheorem.

{2.13) corollary. If g: K~—>H, f;: H —>G, then (f.g}, = £,.9,.

Proof. From the previous theorems we have for X e LO{K), £,{g.,X)

=6 ® {H6.X ;(GGHH)®KX:G®KX- (fg}, (X) .
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(2.14) Remark. Later on, when G is commutative (and then LC(G) and
RQ(G) are equivalent to the same full subcategory of BO(G), namely
the subcategory of symmetric objects), there will be a commutativity
isomorphism as well, which by the same reasoning will be jointly co-

herent with the above.
{2.15) Proposition. Let Ur X —=2Y¥ be an aexact functor, G ¢ X,
X, ¢ RO(G), and X, ¢ Lo{@). Then
UlXy & g Xp) = UX) B yg VX,
Proof. Exact functors preserve both products and right exact sequences.
Apply U to

X, x @ x X, "X, x X, —3X, ® o X,.
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3. Pringcipal objects.

(3.1) DPefinition. Let @ be a group in X. A left G-object X will be
called a principal left G-object if
a) X —ap1.

(a,pz)
b} G x X m——Sus X x X is an isomorphism. Here a; G x X —>X is
the structure while Pyt G x X——X is the second coordinate pro-

jection. We let PLO(G) denote the full subcategory of these objects.

(3.2) The definition is, in view of IIX(2,11), exactly the same as
Chase's [Ch] which goes back, in turn, to Beck [Be]. Much of the pre-
liminary material in this section is special cases of resultsproved
by Chase, His proofs, however, were generally much more complicated

becaunse he had no metatheorem available.

l(3.3) Proposition. Let U: X —> Y be exact. Then U{PLO(G}} ¢ RLO(UG).

Proof. U preserves —», finite produtts, and (like any functor) iso-

morphisms.

(3.4) Proposition. Let G be a group (in §). Then PLO(G) consists {up

o~

to isomorphism) of the single object &, and the morphisms, all 5

consist of the right multiplications by the elements of G.

Proof. Let X € PLO(G). Condition i) of (3.1) says that X ¥ &.
Condition ii) says that the map G x X —=X x X, which takes

(g,x) —>{gx,x}) for g ¢ @ and x ¢ X, is an isomorphism. This
amounts to saying that if x is held fixed, there is for each x' € X a
unique solution in G to gx = x', In other words, if x ¢ X is fixed,
the mapping G —>»X by gr——3gx is an isomorphism., The rest of the
proposition is trivial.

E3-5) Proposition. PLO(G) is a groupoid (that is every map is-"—3).

Proof. If X-—3X' is a map in PLO(G) choose an embedding and
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apply the last proposition.

{3.6) Proposition X € PLO{G) is isomorphic to G if and only if

there is a map 1——X in X. In fact, PLO(G) (6,X) = X(1,X}.

Proof. PLO(G) ¢ LO(G) 1is full and faithful. Hence this follows from
adjointness:

LO(G) {G,X) = LO(G) (G x 1,X} = X(1,X).

{3.7) Theprem: Let U: X —— g range over a family of exact embeddings

which collectively reflect isomorphisms. Them PLO(G) consists of

those X for which UX ¥ UG aa UG-objects.

—

Proof. If UX = UG, then the cancnical map (Ua,pz) : UG x UX—UX x UX
is an isomorphism, which means that U(a,pz) t Ul x X)—>U{X x X)) is
also, and finally that (a,pz) 1 6 x X—aX x X is. On the other hand,

by (3.3) and (3.4), X € PLO(G) implies UX = ua.

{3.8) Theorem: Let £f:1 H—>G be a morphism of groups. Then

£, (PLO{A}} ¢ BPLO(G).

= ; = =4
Proof. For any exact U: X—>8, U(G @ - X) UG ® vH UX = UG ® vH UH
£ UG. Note that £, is not in general exact, so that {3.3) does not

apply here.

pre——.

{3.9) Proposition. Suppose f: H—%G ig the trivial map,

n

G.

H—=1 —> G. Then for X ¢ PLO{H), £f,(X)

.

Proof. It is sufficient to show that there is a G-morphism of f,(X)—a.
In the diagram

G xHxX =36 x X=X
-~
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the vertical map coegualizes the two maps on the left (the structure
G x H—> G, is in this case just the projection) and induces

X—>5G, evidently a G-morphism.
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4. Structure pf groups.

(4.1) In this section we derive a few results about the relation
retwsen kernels and kernel pairs. We continue to let X denote an exact

category.

{4.2) We know from I.({5.11) that the underlying functor from G6p X —X
is exact and hence preserves limits and regular epimorphisms. Since
the category is alsc pointed, the notions of normal monomorphisms and
epimorphisms also arise. It is evident that a normal epimorphism is
always regular, but in general {e.g. in pointed sets) the converse is

not always true. Here we will show that it is.

[E£.3) Proposgition. Gp X has finite products.

Proof. The terminal map G-—1 of any group is ——», being split by
the unit. Then the pullback

G x H-—9»G

|

w
H ———31

exists.
{4.4) Propositign. Gp X has finite limits.

Proof. It is necessary only to show that equalizers exist. During this
argument we will denote the compesition of morphisms by a dot, as f.g,
while the multiplication of two morphisms to some group will be de-
noted simply by juxtaposition, as fg. The inverse, under the group
law, will be denoted £ .. This latter is particularly ambiguous but
none of the mapsarising in the proof will be isomorphisms {except
accidently) and? the inverse in the category will not be used. Of
course neither f-1 nor fg will generally be morphisms of Gp X when £

and g are. Now suppose we are given two maps f,g: G ——>H. We lat
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: 1—3G, 1 —>H denote interchangeably the unit morphisms. In

particular f.u = u, g.u = u and fg"i.u = {f.0) (g-i.u} = (f,u) (g-u}-i) =

= uuhi = uu = u, If X is the image of fg-iz G-——H, this shows that

us 1—>H factors through X via fg

. Now let K be the pullback in the
diagram

K ———— 1

h l v

G » X - H

Once this pullback exists, it follows that

G-——Eg————QH is also a pullback.

Now K is a group, and in particutar h: Kr——>G is a subgroup, if
and only if (X,K)>——ix4gl——%(x,6) is a subgroup for each X. Applying

(Xx,-), we still get a pullback in §

(X, K} ———— (x,1) = 1

{xX.G) > (X,H)

(x, £ (x,8) "t

and {X,K} really is the egualizer of the two group homomorphisms (X,£)

and (X,g), and hance is a subgroup.

[E}.S) Propogition. Every ragular epimorphism is normal.

Proof. We use the same conventions as in the proof akove. The under-
lying functor Gp X ———3X preserves finite inverse limits.It pre-
serves, in perticular, kernels, since the kernel of a map is the

equalizer of that map and the trivial map. As in (3.9}, we let u also



denote this trivial map between any two groups. Now suppose that
e Y AL
a

is a coeqgualizer and H g »>G is the kernel of f. We want to show

that £ is the cokernel of h, and it clearly suffices to show that for
any h: 6 —3K, h.g = u implies h.e = h.d. But g is also the equalizer
Of £ and u as mape in X. Now £.de” > = (£.d) (f.e” 1) = (£.d) (f.e) 1 =
=(£.d) (£.a) "1 = u. Hence there is map k: G'—>H such that g.k = ae~?.
Now for any h: G——K with h.g =u, u = h.g.k = h.dehl = (ag above)
(h.d) (h.e)_i, and on multiplying this by u, which is the unit of (G,K),

we have h.e = h.d, which completes the proof.
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Chapter V. Cohomology.

1. Definitions.

{1.1) 1In this chapter we will define cohomclogy sets of X with co-
efficients in a group in X. Only #° and H1 will be defined here. There
are several suggestions for higher sets; these are being investigated
currently. The "cohomology sets" are covariant functors of the co-
efficients. What they are contravariant functors of is suggested by
the classical examples (cf. section 4). If X is exact, so is (X,X)
for any X € X by I.{(5.4)3; and if X——= X' is a map, there is in-
duced (X,X') —5 (X,X) by pulling back, provided the pullbacks
exist. Even if they don't, they do for all Y——»X', and that is all
the cohomology is concerned with. If G is a group in {X,X}, it also
is in (X,X'), and there is induced H.(X',G)—>H (X,8), i = 0,1.

In the discussion below, the X is suppressed and we write Hi(G).
which should actually be Hi(i,G). {X is terminal in {X,X) and the

cohomology of X is the cohomology of that terminal object.)

(1.2} Throughout this chapter we will keep certain notational con-
ventions. In addition to X being exact, we suppose that it has a
terminal object 1 and that ¢t: X ——1 denotes the terminal map of
every object. Bach group comes eguipped with its multiplication nm,
its inverse i, and its unit u. For any object X and group G, we will

also use u: X ——3G to denote the composite X - - 1 = > G.

The maps dencted t form a right ideal with respect to all the objects
and those denoted by u form a left ideal with respect to groups and
group homomorphisms, In addition, for this sgection we fix an exact
sequance of groups and group homomorphisms

L]
1 u - Gt £ 5 G f y G t




{1.3} The cohomology will be relative to an underlying functor U:
P4

it seems desirable to develope the relative theory without those

5> ¥. Although the functor U and the category Y are usually exact,

assumptions. Accordingly we will suppose only that U preserves finite
limits, The absclute, or unrelativized, theory may be recovered by
letting U be an exact functor to a category (C,S) where C is discrete,
for in that category every epimorphism splits and every principal G-
object is isomorphic to G, The desirability of considering such a

relative theory was pointed out by Jon Beck.

(1.4) Defjpition. Let G be a group in X and X ¢ PLO(G). We say that X

is split by a functor U if UX = UG as a UG object.

(1.5) Proposition. With U,X and G as above, X is split by U if and

only if there is a morphism 1 ——3UX.

Proof, Of course in the case in which ¥ is exact, this follows from
Iv.(3.6). But we have not supposed that. In any event, (1,UG) # &,

80 one direction is trivial. To go the other way, let H = UG and

Y = UX, and suppose there is a map g: 1-——Y. Now H is & group, Y is
an H object, and H x Y =243 Y x Y, This implies that the representable

functor (-,H) 1is & group, (-,Y) is an H-object, and
(-nH) x {-;Y)‘Lb(-,Y’ x (‘,Y).

bject
Then for any Y' such that (¥',Y) #g, (¥',¥Y) is a principal {y',a).
This implies that (¥'!',G)~—=2»(¥Y',Y) by the map that, associates to

a fixed foz Y¥'——a¥Y and to an arbitrary map g: Y'—3G, the map

{g,£ )
Yt ———2 56 x Y —Y,

the second map being the structure. If we take for fO the composite




this defines a natural (-,G) equivalence (-,G} —=L—(-,¥) which

must be induced by a G equivalence G -—"2oY.

(1.6) Definjtion, We know that PLO(G) 1is a groupoid (IV.{(3.5)}).
In addition, there is a distinguished component in PLO(G), the one
containing G. We define %G to be the set of automorphiems of G,
and given U: X -—Y¥, we define Hi(U,G} to be the set - or maybe
class - of all components of PLO(G) split by U. That means those
components containing a representative split by U. Since the distin-
guished component is clearly split by U, this may be considered as a

pointed set - or class - with the distinguished component as base point.

In the case that the functor U is exact and takes values in S, whence
every X € PLO(G) splits,the resultant set Hl(U,G) is simply the set
of connected components of PLO(G) and is denoted Hi(G). This is

the "absolute” cohomology.

——rm—

{1.7) Proposition. Let f: G'~—G be a group homomorphism. Then if

X € PLO(G') is ¥ split, so is £,(X) « pPLO(G).

Proof. There is a map X—>f, (X) (essentially the front adjunction)

and a map 1—UX gives cne 1-—3 UX —Uf, (X).

(1.8) Theorem (Beck). Suppose X is exact and U: X —Y is a
tripleable underlying functor. Then for G ¢ Gp X, HE (G} and
Ii1 (U,8} are the zeroth and first (non-abelian) triple cohomology

seta of the ocbject 1 with coefficients in G.

The proof is rather long and is given in [Be)., If F is left
adjoint to U and the front and back adjunctions are given by n:Y - UF

and €: FU—X, then the triple aets are computed from the complex

1 ~—> Z(FU1,6) == X(FUFU1,6) =3 X(FUFUFUL,G),
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the arrows induced by such things ag eFU and FUe and similar maps
at the next stage, The fact, standard in tripleable categoriaes, that
FueX eX

FUFUX -_ FIX
UFeX

> X

is a coequalizer, implies easily, if X is taken asg 1, that the zeroth

cohomology is X(1,6}.

.

{1.9) Ccorocllary. Suppose U: X-—>§ is tripleable. Then U is exact
jand the zeroth and first triple cchomology of the object 1 with co-

efficients in a group object G are aexactly #°(e) ana HI(G).

Proof. The exactness of U in this case iz well-known {in fact is the
direct ancestor of the definition of exactness used in this paper)

and the rest then follows from the preceding theorem.
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2. The exact sequence.

(2.1) If U; X—-3¥ is a finite limit preserving functor and

t
1 ¥ Gt f?G f)G" >1

is an exact sequence in Gp X, we say that it is a U-split exact
sequence if Uf' is a split epimorphism. Thus

]
1—3 et —2s pg SEL, per —s1

is a split exact sequence.

—
(2.2) Theorem. Let U: X——> Y preserve finite limits and

126" —> G —> 6" —1
be a U-split exact sequence. Then there is a natural map 3

l‘:lc’(.%"——--=>-l-Ij“(U.G'}l such that the resulting sequence

1 —> %t — B°6 —8%"

u'(v,6%Y) —> 8" (U,6) —>B* (U,G")

is exact, the last four terms being exact as a sequence of pointed

sets.

e

Proof. One can easily show that 1 —)»G' —5> G —= G" being an exact
sequence in Gp X 1is equivalent to

1 5{-,G*) > {=,8) = (~,G")

being an exact sequence of group valued functors on X (cf. I.(5.10)).

In particular, asvaluated at 1, we get

1—=(1,G') >(1,8) >(1,G6")

is exact, which givea the exactness of half of the sequence, The next
step is to give the connecting map. Suppose d: 1—3G" is given
(we identify (1,G") with Aut G"}. Let X be the pullback in the dia-

gram
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»1L

G —G" .

Since @-—>G" is a U~split epimorphism and U preserves pullback,
X-——>»1 1is alsgo a U-split epimorphism. A map

ar G x X —>X
ia defined by t.a =t and g.a = (f.pii (g.pz) . Recall that t denctes
everybodyt's terminal map, Py and p, are coordinate projections, and
¢.2 is to be the product in the group X(G' x X,G) of (f.pi) and
(q.pz) We see that a is well defined from
£'.(f.p ) {q.p,) = (£'.£.p,) (£'.q.p,) = (u.p,) {d.t.p,) = u(d.t) = d.¢.
Here we use the fact that £' is a homomorphism of group okjects, To
see that this gives X the structure of a a principal G-object —
evidently U-split — it asuffices to consider the situation in 5. There
d picks out a point of G" and X is the inverse image of that point,
operated on by left translation by G'. It is evidently isomorphic to
G' in that case and so, in general, is a principal G'-object whose

class we denote by &(d},

(2.3) Propogition. The seguence

1% >0G" sH (U,G')

is exact.

Proof. Refering to the definition of b6{d) above, we see that 1f 4
lifts to a map 1—>G, this gives a splitting of X—>1 by the

pullback property. The converse is trivial.
(2.4) Proposition. The sequence

HDG n

> (u,6) —— HH (U, 6)

is exact.



Proof. If d: 1

»>G" is given, and X is a principal G'-object
g

representing 4{(d), X comes equipped with a map X %G, easily seen
to be G'-linear. From the adjointness

Homy , (X,G)-—-—g—bHomG{G ® g1 X,6)
X ——G and sco they are isomorphic.
9

we see that there is amap G &® Gt

Conversely, if they are isomorphic, there is a map X

>G. Considerx

the diagram

' x X /23 x —>1

Py
q

'
G -———E—}G" .

P

Since {a,p2}: G! x X »X x X and X —»1, the top row is a
coequalizer. The facts that £'.f = u and ¢ is a G'-linear morphism
imply that f'.g.a = f.'.q.p2 (e.g., use the metatheorem) and hence
a map d: 1—3G" is induced making the square commute. If &(d) is
represented by an X' ¢ PO(G'}, the properties of pullback give a map

X ——X', easily seen to be a Gemorphism and hence an isomorphism.

(2.5) Proposition. The seguence

Hi{U,G') —_— H1(U,G) —)H1(U,G"}

is exact.

Proof. The composite map is f£,.£', = (f'.f), = u,, which is trivial
by IV(3.9). To go the other way, suppose that G" & G X = G". The
front adjunction gives a map X—»G" @ G X and we see from the

commutative diagram
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G XX ———————H Gt x X

L —— '
X G@GX

that X —®»G!' @ e X Then we may pull this back along any
1—3c' ® G X to obtain

X' ——> 1

X———» 6" ®, X .

The map G! x X*—>6G x X >X gives X' the structure of a G!

object. Applying U, we get a -pullback sguare

Xt —1

ug ——> UG".

Since UG ——> UG" is a split epimorphism, so is UX'—>1. Similarly,
we may use the metatheorem to see that X' € PLO(G'). Finally, the
map X'—X, easily seen to be a G'-morphism, gives a G-isomorphism

G ® Xt ——X. This completes the proof of (1.2},

Gt
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3. Abelian groups.

{3.1) In this section we consider the special case of the theorem (2.2)
in which G is abelian. To emphasize this fact, we use A instead of G
throughout this section to denote an abelian group object of X. ab X
denotes the category of abelian group objectsz of X and morphisms of
groups. The first observation we have is an immediate consequence of

I.(3.11) and 1.5.11).

‘(3.2} Theorem: Let X be an exact category. Then Ab X is abelian.

(3.3) when A is abelian LO(A) can be embedded as a full subcategory
of BO(A) as the subcategory of symmetric objects. Namely, given an
a: A x X—X making X into a left A~object, X becomes a right A-

object, indeed a 2-sided A~object, via the composite
X X A—>A x X ———aX,

in which the first morphism is the switching isomorphism. Via thig
embedding we may consider the tensor product as defining a functor

- @ - r Lo(a) x 1o(a)—— BO(2).

{3.4) Proposition. The image of the isomorphism above is contained

in LO(a).

Proof. In sets, a symmetric 2-sided A-object X satisfies ax = xa. In
X® A Y, we have a{x @ y) max @y =xa @y =X Qaysx Qyva =
(x ® yla, given that both X and ¥ are symmetric. Now use the meta-

theorem.

(3.5) Proposgition. The image of - ® - restricted to PLO(A) x PLO(A)

is contained in PLO{A).

Proof, Using IV.(2,11), IV.(2.15) and IV,(3.7}, we have, for X,

Y ¢ PLO(A), and for exact U: X —>§,



Uixe ,Y) =X @, WWSUAQ, UasuUa,
whence by again applying IV.(3.7) X @ A Y ¢ PLO(A).

(3.6) Proposgition. The fungtor - & AT Lo(a) x Lo(a) — LO(A) is

associative.commutative, and unitary up to jointly coherent iso-

morphism.
Proof. Prove it in § and use the metatheorem.
(3.7) Cergllary. The set Hi(A) is an abelian monoid, the product

being induced by - & A~

{3.8) Theorem. H1 (4} is an abelian group with respect to the tensor

product.

Proof. We need only show that there are inverses., Let X ¢ LO(G) have
structure map a: A x X—> X and i: A—>A be the inverse map of

A, a homomorphism since A is commutative. Let x* denocte X with structure
map

i xX

A XX SA x X —2 X,

An application of the embedding shows that it is principal. Let b:

X X Xw—3A e the composite

(3:92)_1 Pl
I x X ——md ) x X —————il

from which (a,p2)-1 (b.pz) . Now consider

#
xXAxx*———";Xxx* »X @ . X

. . #*
which makes sense since X and X are the same object of X. In sets,



106

A = X, and we may suppose A = X. In that case, a: A x A—— A is
addition and we may easily check that b: A x A-——A 1is subtraction,
Py~ Pye Then b coequalizes the two maps X x A x x* to X x x*. Then
there is induced a map X & a X#——') A, easily seen to be an A-
morphism, hence an isomorphism. The metatheorem allows us to pull this

argument back to X.

[——

(3.9) Pproposition. If Us X——X preserves finite limits, Hi{U,AJ

is a subgroup of HI(A).

Proof. If UX, and UX, are split, then we have a map 1-—UX, x UX, =

U(xi x xz) -_— U(ZK:l ® 5 Xz) » the latter being this image under U of

. . H# o~
the natural projection xi x x2 >xl ® A xz. If X® A X = A, then

X and X’ are isomorphic in X, so UX splits if and only if U(x*) does,

Finally, the trivial class, that of A, splits already in X.

(3.10) Theorgm: Let U: X-—>Y preserve finite limits and

o] > At > B > A" >0 be a U-split exact sequence in Ab X.

Then the sequence of {2.2) is an exact seguence of abelian groups.

-

Proof. 00— (') —s H°(a)—>E°(a") is ébviously exact in Ab. For
gt B~5B', the induced map Hi(U,B}-——}»Hl{U,Bi) is given by

X——>B' © , X. Using (3.6), we have (B' ® , X,;} ® p,(B' ® , X,)

B

= (' ®_X) ®,L,

so that the induced map Hl{U.B) —}Hi {(U,B'") is an abelian group

2
(B' ® p X;} @ p X, = B' ® 5(X; @ g X))

* =
B'}) ® g X,} =
homomorphism. In particular

wl(u,at) —> BN (U,a) —>E (U,A")

is an exact seguence of abelian groupsg. Thus we need only show that
the connecting homomorphism 61 H (a") —> Hi (U,a'} is additive. That

is, given
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X1 > 1 Xz > 1
9 9 92

hd v .

B — A" A __._...’ A"

pullback squares, we must show that there is a pullback square

xi @ A Xz >1

d1+ d2

A —» A"

As in the proof of (1.10), it is sufficient merely to exhibit a

commutative square of that gort. Consider the diagram

> X X

» —
X, x A x X2 ;Xi x X2 1 & A %

1

s
T,

3
A

Y

where m is the addition. By applying the metatheorem we see that the
vertical map coequalizes the given maps and induces X, ® ., xz—-—-aa.
Anothéer application of the embedding (or a simple direct argument
based on the facts that m induces the addition in (-,A) and that
A—>3A" is a homomorphism} shows that

X1 @ xz——n

A =—m> A"

commutes.
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4, Extensions.

{4.1) Consider an exact category X and a fixed object X. Then ¥ = (X,X)
is also exact by I.(5.4)}. This category also has a terminal object,

X ——X, by the identity map. A map Y —»H»X will be called an ex-
tension of X. If ¢ is a group of ¥, we say that G is an X-group. A
principal G-object is a Y —-»X on which G operates principally. It
iz in particular an extenszion and will be called 2 singular extension
with kernel G, & —»X itself will be called the split extension
with kernel 6. Note that the unit law shows up in this case as a map

X ——G which splits @ —®X, so that this really is a split epi-
morphism. In particular, a U-split extension is one which really splits

when U is applied.

{4.2) Suppose X is the category Gp of groups and X € X is a fixed
group. Then an X-group G ig a G=—-—#»X whose group law considered as
amap G X % G—>G is a homomorphism of groups. Since G-——%»X is
aplit, ¢ is a semi~direct product X x M where M ig the kernel of
G—>X, G x _ G is X x M x M and it iz a moment's calculation to

X

see that M must be abelian and that G cperates on M as a G-module.
(4.3) 1If
0 M —3 G —X —=1
and
Qe IM— Y —3 X = 1
are (still in the category of groups) two singular extensions of X

with kernel M, the upper being split, then we can form the pullbacks

|

>

(1} Q —>M —as - ¥
.
Y

(2) 0—> M—G %, Y—25Y —>31
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(3) O —DM —Y x ¥

>Y ——l

(4) 0 3 M > Y 3y X —31.

Both sequences (2) and {3) split, the first because (1) ig split and
the second by the diagonal ¥ —3¥ x % Y. It is a familiar fact in
extension theory (and reappears as IV.(3.6) in this formulation)} that
any two split sequences are equivalent, which means that

(a,p,)
G x ¥ ——-———g——#Y X ¥ is an eguivalence. It can be seen directly

X X
{e.g. nse the metatheorem) that a determines an actiocn, evidently
principal, of G on Y. Note,of course, that fibred product over X is

precisely cartesian product in Y.

{4.4) Considering the same diagram, we see that (a,pz)e G x y Y ——a

¥ x x Y gives that G x %

the same kernel M, which implies that ¢ and Y are extensions of X

Y and Y x X Y are extensions of Y with

with the same kernel M, the first being split. Hence we have shown:

—

(4.5) Theorem. Let X be a group, M an X-module, G the split extension
of X with kernel M. Then singular extensiocns of X with kernel M are
equivalent to principal G-objects in (Gp.X). Equivalent extensions

correspond to isomorphic objects of PLO(G).

Proof. We have shown everything but the last, but that is obvious.

——

(4.6) Proposition. Let M,X,G be as above. Then

Der (X,6) = (Gp,X) (X —>X,6 —>X).

S

Proof. Note that the last is Y(1,G6) = HO(G). The proof is easy and

also well-known. See the remark in the middle of p.255 of [4].

{4.7) Thus we have identified #°(G) with HO(X,M) = DPer({X,M) and
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H1(G) with Hi(x,M}, the usual group of singular extensions of {2.2)
corresponds, as far as it goes, with the usual one. It is alsc evident
that the identical analysis would work for any of the standard
equational categories; associative, commutative, Lie, Jordan rings or
algebras,etc. In each of those categories, as well as any equational
category in which there is a group law among the operations, each

group object must be abelian.

{4.8) In all these categories of algebras we might consider a relative
cohomology, relative to some suitable functor. In the common examples
this functor is algebraie, i.e. induced by a map of triples, and hence
exact. The most common is the underlying functor from a category of
K-algebraa of some type to K-modules, In that case the relative co-
homology classifies, in dimension one, those singular extensions
which are split as K-modules. The Hochschild cohomology of associative
algebras is of this form, while the corresponding absolute cohomology
wag given by shukla. See [BB] for some of the details and further

referances,

{(4.9) The Baer sum of singular extensions is defined in the following

N
/

2

way. Given

O —3» M

’/’///)ﬂY
\AY

two extensions with the same kernel, we first form Y1 X x Yz and
then observe that there are two embeddings MY, x . Y,. When
these are rendered equal {or coequalized), the result is the Baer sum.

We may indicate the process as

MY, x 4 Y,—Y¥, XY,,
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where Yl)kYz ig the Baer sum. In our generality, the embeddings

M——2Y, are replaced by actions G x Yi—‘) Yi’ i = 1,2, The fibred
product Y1 X o Y2
Thus it seems more or less likely and is trivial to prove that the

is simply the product in the category (gp,X}.

ahove sequence corresponds to our definition of the product in Hi (G}

(G commutative) given by the following diagram being a coequalizer:

—_—
Y xGsz____,Y sz-——>Yi®

1 1 G YI2'

This proves:

{4.10} Theorem: The equivalence batween H'(G) and Hi{x.H} given
by {3.5) takes the tensor product multiplication in the first to the

Bagr sum in the second. Analogous results heold in the relative case,
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Appendix: Giraud's theorem.

(A.1) After the completion of the five preceding chapters, I received
from Ira Wolf a sketch of his proof of the Giraud theorem character-
izing toposes. As I read it I realized that exact categories made a
very convenient setting for the.procf. This appendix presents a proof
given along these lines. The procf is actually much closer to the one
published by Verdier [Ve] than to Wolf's. It differs from the former
in that it treats the question entirely in terms of Grothendieck
topologies (in the sense of Artin) and that it involves neither a

change ofuniverse nor any essential use of an illegitimate category.

(A.2}) The following terminology will be used throughout.
Let C be a category, C an object, F: goP——e»g a functoxr, A family of

maps to C, {C}-——»C}. is called a sieéve (or a sieve on C). A sieve

is called an F-gieve if every C; x c Cj exists and

FC

c.l

—
>l'lFCi______>1IF(Ci xc 4

is an equalizer. It is called a universal F-sieve if for C'——¢C,

>C'} is an P-sieve. It is

C c i

evident that if it is a universal F-sieve, then {C' x

avery C' x Ci exists and {C' x_. C
c €g—¢'}
will be universal also. If C" is an obiject of £, a sieve is called a
{universal}C"-sieve if it is a {universal) (-,C")-sieve. It is called
2 regular epimorphic gieve if it is a C"-sieve for every object C" of
€ {this is an evident generalization of ——»} and a universal
regular epimorphic sieve if it is a universal C"-gieve for every C"

of C. These last two notions will be abbreviated r.e.s. and u.r.e.s.

regpectively.

(A.3) Proposition. Let {ci————ac}, and for each i, {Ciju——aci} be

universal F-sieves. Then {Cij———ﬁc} is one also.
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Proof. It is sufficient to show it is an P-sieve, since pullback
commutes with composition. In order to do this we need the following

lemma.

{A.4) Lemma. Let the diagram

o
d s
— g 5
X P — — 3%

[

Y

commute (that is, with do,eo,fO and with di,el,fi), g be a monomorphism

=]

and e he the equalizer of e  and ei. Then & is the egualizer of a°

and d* if and only if f is the egualizer of £ ana fi.
Proof. Chaae the diagram.

(A.5) Mow we return to the proof of (1.3). Apply the lemma with

XO=FC’ YO- f?ci)

= w I
Zo T iR PO x g Gy ¥y = 5 5 By

F{Cij x c, Ciz). z, (c,

Hi
1,3,%,2 FlC5 % o Cpg)-

I i
Y T i

The maps e and d are equalizers by assumption and we need only define

h and show g is a monomorphism. The former is easily done by product

1 i,j.k
Now {Cif—*——éci} is a2 universal F-sieve, so thagsﬁulling back along

projections. As for the latter, we define Z, = I F(cij X o Ck).

the projection {Ci X o Ckmh——>ci} we find that
C,—==n, X

LTI IR, i %¢ Sl
i
l?(ci *x e Ck))—-—)j F(cij X @ ck) or that

iz an F-gieve. This implies at least that
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I 1§
ik F(c X o ck}>-~-—)i’j’k f'(cij X o ck) ,

which is Z—52,- Similarly, {Ck-—)ck} is a universal F-sieve,

1
and by pulling it back along Cij e Ck-———avck we see that
{cij c Sxi— S i3 X ¢ ck} is an F-sieve too. Thus

F(C.. x _ C )>——-—>‘1F(c

i3 C 'k Ck}:)

and by taking products over i,j,k we find Zf—) Zz.

(A.6) Propogitjon. If {Ci——)» C}, and for each {Cij—}Ci} are

hi.r.e.s, then so is {cij———)c}.

(A.7) From the previous proposition it is clear that the class of all
u.r.e.s. in a category € forms a topology, called the canonical
topology. Any topology less fine than the canonical topology is

called a standard topology.

{A.8) Another consequence of this proposition is that the usual
assumption in a Grothendieck topology that the composition of covers is
a cover (I.(4.1).b) is unnecessary. In fact, it is an easy corollary
that given an arbitrary collection of sieves, the sheaves for the
coarsest topology it generates are exactly those F for which every one

of the given sieves is a universal F-sieve.

(a.9) Propomzition. Let € have pullbacks., Then a topology on C is a
standard topology if and only if every representable functer is a

sheaf.

The proof is very easy and is omitted.

(A.10) Let E be a category. E is called a topos if
a) E has finite limita.

b} E has disjoint universal sums.,

¢) E is exact.



d) E has a set of generators.

The precise meanings of these follow. a} is clear. b} means
that for every family {Ei} of obiects there is a sum j]_Ei; that the

square

is a pullback where

B, if i =3

O, the initial object, when i # j;

and that given E,~E&—E', E' x . lE, = QliE* x g Bj) by the

i
natural map. By interpreting this condition when i ¢ ¢, we see that

EY x g 0 =0 for any Ef——E and if E'—/>0, that

E' S B' x o © < 0. This implies that O is empty and will henceforth be

dencted by @#. ¢} is used in the sense of thisg paper and d) in the
sense of II.(1.3); that is, there is a set T of objects such that for
any E»——E' not an isomorphism there is a G ¢ T and a map G —E?

which does not factor through E,

(A.11} Theorenm {@Giraud}. Let E be a category. Then the following are
egquivalent.
a) There is a small category C with finite limits such that E =
= 5{Q°p.§_} for the canonical topology on C.
b} There is a small category C such that E = E{QOP,Q) , sheaves for
some topology on C.

c) There is a small category C and a full embedding It g-——-—y(g"p.g)

which has an exact left adjoint.
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d) E is a topos.
e) E = E(EOP,Q) s(canonical topology) and has a set of generators.

(2.12) It is obvious that a) =5 b). That b}=bc) is found in [Ar]

and since the setting of exact categories in no way improves his preoof,
we omit it. The only thing to note in this co‘nnection is that if
P»—F where P,F: _QOP-—-)Q and F is a sheaf (in some topology}),
then the sheaf P* associated to P is the subfunctor of F gotten by
adding to PC every point in FC N IIE‘Ci where {Ci-———)C} is a cover
in the topology. This obvicusly works even when C is large and the
associated sheaf functor may not exist. The P* so constructed can
easily be seen to have the required universal mapping property:

(p*,F} = {P,F) when F is a sheaf.

pl—— .

(4.13) Proposition. Condition ¢)=—) condition d}.

I

Proof. Suppose I: g-—;»(g"p,g) is a full embedding with left adjoint

J. Then sums (as well as other colimits) are computed in E by
.!,LEi = J_U_IEi. We leave to the reader the easy task of showing that
(QOP,_S_) is itself a toposg. In what follows we automatically identily

the composite JI with the identity functor on E. Then for a family

{Ei} of objects of E.

HIE,

- .
IEj .ILIE1

is a pullback. If we apply J and recall that J preserves initial

objects, we get thet

_
644 E,

|

Ey ———;ﬁ_Ei
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is a\pullback. Similarly, given Ei--—>E and E'——E, we have

t - i
B x pJE, & JIE' x o J(LIE)

uy

J(IE' x IE_;Lna:i) S gtlzer x g IE;)

i

J(LT(EY g B = et x E,).

E
Thus E has universal disjoint sums. If

By ~—— ]

|

EO "“‘-—"'—-—))El

is a pullback in E, apply I and factor I?n."‘::.—)':I:E1 to get

1 LY [ B L% [ ]
IED » FE P IE1

A
IE, » F > 3 IE, .
F' iz defined to make the right hand square a pullback, and since the
whole square is a pullback, so is the left hand square, whence
IEc') —»F' as shown. The functor J preserves both —3» and >»——>
{the latter because it preserves finite limits), so we can apply 1
to get

E! - JE't —
o

I

E ———» JF »———— E
o]

1
1
, -
in which both squares are pullbacks, But since Eo—--»Ei, it follows

that JF-—))El, whence J‘F—"-—“'-:-#Ei, and then JF'—"‘L)E;_, which implies

that Bc" ——»E!. Thus the pullback of a regular epimorphism is also a

"
1
regular epimorphism.
—_—
Suppose Ei""_’ Eo is an egquivalence on Eo' It is clear from

1(5.3) that a limit preserving functor preserves eguivalence relations,
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so that there is an exact segquence

1B, —3IE——F
X op . ;
in ({€77,8), and since J is exact,

[

E > JF
>0

£

is an exact sequence as well. Thus E is exact.

Finally, if E»—— E!' ig not an isomorphism, it follows,
since I is full and limit preserving, that IE>—IE' and is not
an isomorphism. This means there is a € ¢ C with IEC »—IE'C not
an isomorphism or, by the Yoneda lemma, a map (-,C)—>IE' which
daes not factor through IE. In view of adjointness, this is the same
ags a map J(-,¢) —=aE' which does not factor through E. Thus the

objects J{-,C}, C ¢ C generate E.

This completes the proof of (A.13}.

{A.14) Now we turn our attention to showing d)==>e). Until that is
finished, E denotes a topos; ${§°P,§_) , the category of sheaves in the
cancnical topology; and R; E — S(QOP.Q) , the embedding as re-

presentable functors.

‘(A.is) Proposition. R is exact.

Proof. The proof of I(4.3) is equally valid for any topology less fine

than the canonical and finer than the regular epimorphism topology.

(A.16) Proposition. Let F be a sheaf. Then F({{E,) = WE, for any

family of objects Ei of E.

proof. First observe that {Ei-——-) g}ieﬁ is a cowver. This is so

since for any E",
= n o wy ——d 1 "

iz an equalizer, while there are no non-trivial E'-——3¢ to pull
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back along. Replacing {-,E") by any sheaf F, we see that P@ = 1.

Now let E =_|LE1. Since E; x , E; = &, E, we have, for any E", that

i E 73 ij

(E,E") ———)H(Ei,E") _——SH(Ei X & Ej,E“]

is an equalizer (all maps being isomorphisms). Hence {Ei-—)E}i‘ﬂ
is an r.e.s. and, using the universality of the sums, it is easily

seen to be a u.r.e.s. Then for any sheaf F,

E.)

—
FE ————» lIE'Ei__,l]F(Ei X g 3

iz an equalizer. Since E; x E, = 6, .E, and FZ = 1, the third term

E 3 ij i
is the same as the second, which implies that FE = lIFEi.

'(A.l?] Proposition. R preserves sums.

Proof. For any P and any {Ei}’ {RJ].EJ._,F} = F(_[I.Ei) = FE, = I{RE, ,F)

= (L re;, 7).

(A.18) Proposjtion. Every map of SIEOP,,&) factors as . ——3. >—.

Proof, Let F'—=F be a map. Let P be the image as a functor. Then
L L L
F' x o P'Z—3F' —HP
is an exact sequence of functors and F' x P F' is a sheaf. Since

P>»— F, P has an associated sheaf P*»——F, which satisfies the

universal mapping property that for F" a sheaf, (P,F") = (P*,F").

From this, we see that P' x F Ft —=%p! 3p* is exact in $(g°p,§}

while P*——F (see {A.12)).

R

(A.19) Proposition. A sieve {Ei——-}E} is a cover in the canonical

topology if and only if '[LEi—-——bE.

Procf. The "only if" is trivial. Suppose lLEi—-)) E. Then
(LE) x o (LE) "33l —E

is exact. The kernel pair is
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_LLEi x Au.E:J.L =1L(1=:i x EJ‘LE

E ) = .'I.L(Ei X

3 EEj)’

g0 that

L, x g Ey) ——3E,—E

is exact, from which

(B,E') —> U(E,;,E*) 3 a(E; x g EjE')

is an equalizer for all E and {Ei—-sﬂ} is an r.e.s. The universali-

ty follows easily from that of sums.

(A.20) Proposition. The set of objects RG, with G ¢ r, is a set of

generators for ?(EOP »8) .

Proof. Suppose F)»——F' iz a monomorphism of sheaves such that

FG —=—F'G for each G ¢ I'. We will show that F —=~5F', Let B be

an object and f£ind JLGi—-—»E with each @G, ¢ I'. Then {Gi—"E}

i
iz a cover and hence we have the commutative diagram
FE 5 IFG, ————% F(G, - ., G,)
i i E 75
o~

F'E —-—)mﬂGi:;uF'(Gi < B Gj) '

whose rows are equalizers, and an easy diagram chase shows FE-"5F'E.

{A.21) Proposition. For any sheaf F, there is a regular epimorphism
RE_ﬂFo

Proof. Since ﬁ(EOP,g) has . ——3. «—23 , factorizations, we can

repeat the argument of II(1.4) to see that

R{ G) =l IULRG —»F.

|
34T (RG,F)

Proposition. Every sheaf is representable.

Froof. Consider the saquence
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F' =——3RE ——F

where RE—3%F and F' is the kernel pair. Again we can find
RE! —»F'.
Now we have E'=—=3%FE x B, which factors E!' —»E"»——E x E, and

gince R is exact,

RE! » RE" ) 3R{E x E),
and by the uniqueness of the factorization, RE" = F. Then
RE* T—_—3 RE is an
equivalence relation and R is a full exact embedding, soc that
E" —3E is one too. Then there is an exact sequence
E* 235 ——E''",
and again, since R is exact, RE'!ft = F,

This completes the proof that d)—=>3e).

{A.22) From now on E will be a category in which every sheaf for the
canonical topology is representable, We suppose that € is a sub-
category of E whiech is closed under subobjects and finite products
and which contaings a set of generators, Note that every sheaf's being
representable implies that E has all limits. Our aim is to show that
E= %(_c_c’p,g) for the cancnical topology on C.

We say that a sieve {Ei——-———)E} is an extremal gsieve if there

is no subobject of E which factors each of the maps.

(A.23) Proposition. A sieve in E is extremal if and only if it is a

cover in the canonical topology.

Proof, The "if" part is easy. For if E'»——3E were a subobject
factoring all the Ei——) E, then the fact that (-,E') is a sheaf
would provide an inverse to the inclusion E'»—3E. To go the other

way, suppose a sieve is extremal. Let P: EOP—)Q be defined by
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PE, = {f: E,~—~——>E|f factors through at least one Ei—-—bE}. Then

1
Py ——{-,E}, and by the remark (A,12) there is a sheaf P¥j}—(~-,E)
associated to P. If P* = (-,E'), then E'>—E factors every

E,—E, so P* = (-,E). Now in the category (%P9,
.-]-L(-’Ei) x PlL(-sEi} ——}_LL(-!Ei)_‘_)P
is exact. Since P> (-,E}, we have
-“-{"'lEi) * P—-U—(-)Ei) !iL(-,EiJ x
Fli-.e) x

so that

(- ;L= Ey)
(~/EJ) ] Fl(-,p, x ES)

-.E’ E

—_

—u-(—)Ei x E }-iL("!Ei) _—“ﬁp

is exact. Let E" be an arbitrary object. Then using the fact

Ej)

(p,(~,E")) = (P*,(-,E")) = (E,E") we hom this sequence into E" and

have that
Eli)

(E,B") ——3 1(E, ,E") “‘““_’;H(Ei x g Es
is an equalizer. Hence {Ei-—-—oﬁ} is an r.e.s. To show the universal-
ity, it is sufficient to ghow that for any E'-—3E, the sheaf agso-
ciated to P!' =P x E {(-,B*) igs (-,BE') itgelf. Thig is easily done
by uging the remark of (A.18) together with the usual proof that the

*
associated sheaf functor is exact.

(h.24) Corollary. The topology induced on € by the inclusion C——E

iz the canonical topology.

Proof. Since C is closed under subobjects, a sieve {Ci~——9'c} is ex-

tremal in ¢ if and only if it ig in E.

(A.25) This implieg that there is a functor I: g-———ﬁ3ﬁ§?9,§). This

* I am indebted to H. Schubert for pointing out an error in my
original proof of this proposition.
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functor is faithful, since C contains a set of generaters of E. If we
can find a J; ss(g"‘-’,g) —> E sguch that JI = identity, it follows
that I is an equivalence. Let F: QOP—) S be a sheaf. We extend it to
a functor F: _E_Dp'—}*g in what by {(A.23) is the only possible way.

For E ¢ E, choose an extremal sieve
{Ci-——-—)E}, c, ¢ C,

which certainly exists, since C contains a set of generators. Now let

FE be defined so that

P ——
FE —»m‘ci_,nﬂ‘(ci X g cj}

ie an equalizer. Note that Ci x & Cj < Ci. x Cj and hence is an
object of € for all i,j. There remain two problems: to show that F
doesn't depend on the choice of an extremal sieve and that it is a

sheaf. First we need:

(A.26) Lemma. Let the diagram

Xy
™
%2
be commutative and the rows and columns be equalizers. Then the

equalizer of a° and d1 is the game as that of e® ana el.

Proof. Chase the diagram.

(A.27) Proposition. F is well defined.

Proof. Let {ci-—> E} and {C]"----—)B} be two extremal gsieves with
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L = =
Cy» ck € C. Apply the above lemma with Yo IIE'Ci.Zo mr(ci X B Cj) s

= | - L] 3
X, = Koy, X, = F(CY x p O,

= 1 - L}
Y, ﬂF(cixEck). %, uF(cixEcj xEck).
Y. =

1 t
F(C, x 5 C x g C4s

]
|

= t 1
5 IIE'(ci X & Cj xp O X g CI) . In all cases the products are taken

over all available setz of indices.

EZB) Proposition. F is a sheaf.

Proof. Let {E i—} E} be an extremal sieve, and for each i, choose
{Cij—b Ei} an extremal sieve. Then {Cij-——bl!:} is an extremal
sieve and can be used to define FE., We now apply (A.4)} with X = FE,

Yo = llFBi. Zo = lIE‘(Ei X B BI ’ Y:I. = l]F(Cij), Yz Ej_ Ci..l.')’
z, = llF(cij X B Cu) . In applying the theorem in this direction, you do

don't actually need g to be » if you know that e®.e = ei Q.

= IIF(Cij %

Thus F is a sheaf, and it is clear that F restricted to € is

F. This completes the proof of Giraud's theorem.
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