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1. INTRODUCTION 

We consider the following situation: a field k, a commutative k-algebra R 
and a left R-module M. Since R is commutative, M may also be considered as 
an R-R bimodule with the same operation on each side (such modules are 
often termed symmetric). With these assumptions we have the Harrison (co-) 
homology groups Harr,(R, M) (Harr*(R, M)), the Hochschild (co-) homology 
groups Hoch, (R, M) (Hoch*(R, M)) and the symmetric algebra triple (co-) 
homology groups Sym,(R, M) (Sym*(R, M)). (Harrison cohomology is in- 
troduced in [8], homology may be defined similarly; Hochschild cohomology 
is introduced in [9], a good account of the homology and cohomology is 
found in [IO]; general triple homology and cohomology are described in [4] 
and [5], and the symmetric algebra cotriple is described at the beginning 
of Section 3 below.) 

There are obvious natural transformations 

+* = +,(R, M) : Hoch,(R, M)-t Harr,(R, M) 

and I#* = +*(R, M) : Harr*(R, M) + Hoch*(R, M) which will be described 
in detail below. It is the purpose of this paper to prove the following two 
theorems. 

THEOREM 1.1. Suppose k has characteristic zero. Then & is a split 
epimorphism and c$* is a split monomorphism. Moreover the splitting maps are 
also natural. 

* This research has been partially supported by the National Science Foundation 
under contract GP-5478. 

1 These results have been announced to the Am. Math. Sot. Notices 14 (1967), 
Abstract 67T-413. 
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THEOREM 1.2. Suppose k has characteristic zero. Then there are natural 
equivalences 

Syw(R W N Harr,+,(R, W, 
Symn(R, M) N Harrn+l(R, M). 

Moreover, in the coeflcient variable they are natural equivalences of connected 
sequences of functors. 

Theorem 1.1 is easily seen to be false for finite characteristic and a recent 
example of Andre shows that Theorem 1.2 is false there as well (see Section 4 
below). The results of this paper are obtained, essentially, for degrees < 4 by 
direct computations in [2]. 

We use the following notation. A @B, Tor (A, B), Hom(A, B) for 
A ok. B, TorL(A, B), Hom,(A, B) respectively. Afn) denotes A @ **- @ A 
(n factors). 

2. PROOF OF THEOREM 1.1. 

The Hochschild homology of R may be defined by choosing a complex B,R 
of R-R-bimodules and, for any R-R-bimodule M, defining Hoch,(R, M) to be 
the homology H(B,R QROR M). Requiring that M is symmetric is equiv- 
alent to saying that MN R OR M as an R @ R module, with R @ R 
operating on R by multiplication. Thus 

&R ORBR M=(B,R 63~~~4 @R% 

and so we may work with the complex of left R-modules which we will denote 

~YC,R=BPOR~R R. Then Hoch,(R, M) c1 H(C,R @R M). Similarly, 
Hoch*(R, M) ~11 H(HOmR(c,R, M)). 

The Harrison homology is defined by forming a subcomplex Sh,R C C,R, 
the subcomplex of shu..es (defined below), and letting Ch,R denote 
C,R/Sh,R. Then Harr,(R, M) N H(Ch,R @a M) and Harr*(R, M) N_ 
H(HomR(Ch,R, M)). Let f* : C,R -+ Ch,R be the projection. Then 
MR,M) =W,ORM) and $*(R, M) = H(Hom,(f, , M)) are the 
natural transformations mentioned above. 

Explicitly these complexes are defined as follows. Let C,R = R @ RcR) 
where R operates on the first factor. If we denote the element 

10 Or1 0 ... @Y,EC,,R by y&l I..., r,l, 
then the boundary a : C,,R + C&R is the R-linear map such that 

ah ,..., ynl = y&z ,...I ynl + c (--l)"[Yl ,**-, yiyi+1,***, ynl 

+ (-l>nr&,,**-3 y,-II. 
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In what follows we use the natural equivalence C,,R OR C,R N C,,,R 
to identify [rr ,..., r,J @ [r,,, ,..., yn+J with [rl ,..., Y, , Y,+~ ,..., Ye,,]. Then 
we define maps s~,+~ : C,R -+ C,R by requiring that they be R-linear, 
s,,, = s,,, = C,R (that is, the identity map; we will consistently identify 
the identity map of an object in a category with the object itself), and 

These are the so-called shqj’le-products (see [7]). Intuitively, sisnei is the 
alternating sum of all permutations of ti cards obtained by shuffling i of them 
with n - i of them. We also observe that if C,R is made into a left module 
over the symmetric group S, by letting wl[rl ,..., Y,J = [r,, ,..., Y,,], then 
s+-~ may be thought of as multiplication by a well defined element of the 
rational group algebra Q(S,) (recall that R is an algebra over a field of 
characteristic zero). 

Sh,R is defined as the Cl:: Im s~,+~ . That the Sh,R form a subcomplex 
will follow readily from Proposition 2.2. Theorem 1.1 will easily follow if we 
can find, for each n > 2, natural transformations e, : C,R ---f Sh,R which are 
the identity on Sh,R and such that ae,, = e,-,a, for then fn : C,R ---f Ch,R 
has a natural splitting by chain maps. (Only n 3 2 is necessary, for Sh,R = 0, 
7t = 0,l). In fact the e, will be multiplication by a suitable element of Q(S,), 
from which naturality, at least in the technical sense, is automatic. 

The alternating representation sgn : S, -+ Q, defined as usual by 
sgn rr = +l or -1 according as r is or is not in the alternating subgroup, 
extends to an algebra homomorphism which we will also denote by 
sgn : Q(S,) + Q. We let en E Q(S,) be l/n! C (sgn ,)v. Then for any 
u E Q(S,), UC,, = sgn u * Q . 

PROPOSITION 2.1. For any chain [Y, ,..., m,J, &Jr, ,..., r,] = 0. If u E Q(S,) 
is such that a& ,..., Y,] =OforallR, thenu =sgnu*.z,. 

Proof. In the computation of n!&,[r, ,..., r,J the term Y~~[Y~~ ,..., r,,,] 
appears with coefficient sgn rr in the first term of the boundary of rr-l[rr ,..., Y,J 
and with coefficient sgn Z- * sgn T( --I)” in the last term of the boundary of 
(m)-l[rl ,..., Y,] where r is the cycle (12...n). But sgn r = (-1)*-l, so they 
cancel. Similarly the term [Y,, ,..., rTir,(,+,) ,..., r,,,J appears with coefficient 
(- 1)” sgn rr in the boundary of ,-l[r r , . . . , Y,J and with coefficient ( - l)i+lsgn n 
in the boundary of (ii + 1)~r[r, ,..., YJ. Moreover, it is clear that for 
“general” R, say if R is the polynomial algebra k[r, ,..., ml, this is the only 
possible cancellation. Thus if au = 0, then for each 71 E S, and each 1 < i < n 
the coefficient of v and rr(i i + 1) in u must have the same magnitude but 
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opposite sign. This suffices to guarantee that u is a multiple of e, and clearly 
that multiple is sgn u. 

PROPOSITION 2.2. 

Proof. We may consider C,R as a simplicial module by defining 
w-1 ,***, rml = 5k2 , . . . . ml, aY.5 ,..., r,l = ml& ,..., r,-,] and P[rl ,..., r,J = 
[rl ,..., ririfl ,..., r,3 for 0 < i < n. Also define si[rI ,..., r,] = [rl ,..., ri , 1, 
Y~+~ ,..., YJ. Define [rl ,..., r,J x [r; ,,.., rk] = [YET; ,..., r,&]. Then with these 
definitions, ail the considerations of [7], p. 64 fl apply and the result follows 
from Theorem 5.2 of that paper. 

PROPOSITION 2.3. For any 1 < i < n, 

W, ,..., r,+,l = WI ,..., ri+J 0 Pif2 ,..., r,+,l 

+ (--lY[r, ,..., ril 0 a[ri+l ,..., yn+J. 
Proof. Trivial. 
Now we define s, = CFz: si,n--i . On the basis of the last two propositions, 

together with the fact that 8 : C,R -+ C,,R is zero, it is now easily proved that 

PROPOSITION 2.4. as, = s,-,a for n 3 1, (sr = so = 0). 

PROPOSITION 2.5. For each n > 2 there is an e, E Q(S,J with the following 
properties: 

(i) e, is a polynomial in s, without constant term; 

(ii) sgn e, = 1; 

(iii) ae, = e,-,a; 

(iv) en2 = e, ; 

(v) emsi,n-i = s~,+~ for 1 < i < n - 1. 

Remark. (i) and (v) together imply that the principal right ideal e,Q(SJ = 
C s~,+-~Q(S,,). But then Sh,R = e,C,R, and since e,” = e, , we have 
C,R = e&R + (1 - e,) C,,R, from which Ch,R N (1 - e,) C,R. Then 
(iii) implies that these form subcomplexes and Theorem 1.1 is proved. 

Proof of Proposition 2.5. Let us denote the binomial coefficient corre- 
sponding to n things taken i at a time by qnei . Then it follows easily from 
the inductive definitions of Si,,-i and c,.,~-* that sgn S~,,_i = ci,n-i . Thus 
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sgns, =2~-2 #O. Let es =es = 1/2s,. Having found e*,...,e,,-, 
satisfying the above conditions, suppose e,-, = p(s,-r) (where p is the 
polynomial assumed by (i) to exist). Then define 

en = P&J + (1 -PM s&gn sn . 

It is easily seen that e, satisfies (i) and (ii). Also we have 

ae, = p(h) a 4 (l/sgn sJ(l - P(%-I)> hd 

= e,,a + (l/sgn s&l - e,-r) fne13 

= en-,8 + (lbgn s,)(s,-, - en-lsn-l) a 

= e,-,a. 

Then ae,s = ei-,a = e,-,a = ae, , so that, by Proposition 2.1, en2 - e,, = 
(sp en2 - sgn e,h = 0. Finally, for any chain [I~ ,..., Y,], we have 

aensi,,-i[r, ,..., rm] = e,-,asi.n&l ,..., r,l 

= en-,si-,,,-,(a[rl ,..., ~~1 0 [P~+~ ,..., rnlJ 

+ (-1)’ eN-&,,-i-l([rl 9---t Yil 0 a[yi+l ,--, YJ 

= si-l,n-l(a[yl ,..., ril 0 [ri+~ ,-., lnl) 
+ (-1)’ Si,n-i-l([yl 7aa.~ yil 0 @itI 9-9 rd 

= aSi,,-i[Y, ,..., YJ. 
Thus by Proposition 2.1, e,sd,,-i - Si,n-i = (sgn e, * sgn Si,,-d - sgn s~,,&~ = 0. 

We note that (ii) implies 

(1 - e&s, = 0. 

3. PROOF OF THEOREM 1.2. 

We begin with a brief exposition of the triple cohomology. Let U denote 
the underlying functor from k-algebras to k-modules. It haa a left adjoint F 
which is most easily described by saying that if V is a k-module, FV is the 
tensor algebra k + V + Vc2) + *.a + L’(n) + *.a module its commutator 
ideal. Then if a : 1 + UF and l : FU + 1 are the adjointness morphisms, 
G = (G, l , FaU) is a cotriple on the category of commutative k-algebras known 
as the symmetric algebra cotriple. 

The (co-) homology groups are described as follows. Given a : S--f R 
where S is any commutative k-algebra, we define an R-module Diff S as 
R @ S (made into an R-module by multiplication on the first factor) modulo 



HOMOLOGY AND TRIPLES 319 

the submodule generated by { t x ss’ -m(s) 0s’ - ru(s’) @ s ) Y E R, s, s’ E S}. 0 
Diff S is characterized by the formula HomR(Diff S, M) N Der(S, M) where 
the latter stands for the group of K-linear derivations of S to M, where M is 
made into an S-module via u. Then the homology groups Sym,(R, M) 
are the homology of . ..~DiffGn+lRORM~...--+DiffG2RORM--t 
Diff GR OR M -+ 0 where Gn+lR -+ R is any appropriate composite of E’S and 
d : Diff Gn+lR OR M -+ Diff G”R @JR M is z (- 1)” Diff G%Gn-iR OR M. 
Similarly the cohomology groups are defined as the homology of 

0 -+ Homa(Diff GR, M) -+ Hom,(Diff GaR, M) --f **. 

-+ HomR(Diff Gn+lR, M) -+ ... 

where the coboundary is induced by the analogous alternating sum. We note 
that the second complex could also be written as 

0 -+ Der(GR, M) -+ Der(G2R, M) --+ **s --t Der(Gn+lR, M) + **. . 

It is shown in [3] that this (co-) homology is the same as that obtained for 
the free (polynomial) algebra cotriple when K is a field. 

The proof of Theorem 1.2 is based on a method first employed by M. Andre 
(see [I], pp. 64, which is reminiscent of acyclic models. The latter method 
will not work in this case unless the acyclicity asserted in the next proposition 
can be given by a natural contracting homotopy. 

PROPOSITION 3.1. Let R = k[Xj be the algebra of polynomials over a set X. 
Then for any R-module M, HarP(R, M) = 0 = Harr,(R, M) for n > 1, 
Harrl(R, M) N Der(R, M) N Mx, and Harr,(R, M) N Diff X OR M N_ 
X * M, the latter denoting a direct sum of X copies of the module M. 

Proof. The idea of the proof is to show that H,(Ch,R) N- Diff R N X . R 
and H,(Ch,R) = 0 for 12 > 1. The first is a simple exercise and is left to 
the reader. Each Ch,,R is R-projective, being a retract of an R-free module, 
and 8 : Ch,R --+ Ch,R is zero, so that ignoring Ch,R the rest of this complex 
will merely be a projective resolution of a projective module and thus be 
contractible. 

Since @ commutes with colimits, e, , being idempotent, commutes with 
all limits and colimits, and homology commutes with directed colimits, then 
the functor H(Ch*R) commutes with directed colimits (i.e., direct limits). 
Each k[X] is the colimit of k[X,J w h ere X, varies over all finits subsets 
X, C X, which forms a directed system. Thus it suffices to prove this proposi- 
tion far X finite. 

Let X# be a set isomorphic to and disjoint from X by an isomorphism 
which associates to each x E X an element denoted by x# E X#, and let 
R# = k[X#l. It is clear that R @ R II R @ R#, and we will identify them. 
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NowletX’={x’=l@x#--@IER@R~/xEX}~~~R’=~[X’]. 
It is clear that R @ R# = R @ R’. Here we are thinking of an “internal 
tensor product” analogous to internal direct sum. But R’ operates trivially 
on R, that is via the augmentation R’ + k. Hence R N R @ k as an R @ R’- 
module, R operating on the first factor, R’ on the second. Then according to 
Theorem X.3.1 of [6], 

TorRmR’(R, R) N To?@“(R ok, R @ k) 

N To$(R, R) @ Tor”‘(k, k) N R 0 TorR(k, k). 

But 

TorRmR’(k, k) N Tor R@R(k, k) N Hoch,(R, R) = HC,R. 

Thus HC,R and hence HCh,R consist of R-projective modules. 
At this point we need 

PROPOSITION 3.2. Let P be an R-projective (OY, in fact, any submodule of a 
free) R-module such that P @R k = 0. Then P = 0. 

Proof. Let M be the ideal of R generated by X. Then 0 + M -+ R + k -+ 0 
is exact and so is P @R M-t P @R R -+ P @R k --f 0. If the last term is 
zero, then P @R M+ P by right multiplication is onto. But then PM’ = P 
for all i. Now M” consists of all polynomials of which every terms has total 
degree at least i. Clearly fl Mi = 0, from which it is clear that if F is free, 
nFMi=O.Th enifPCF,P=nPMiCnFMi=O. 

From this it follows that it suffices to show H,(Ch*R) @R k = 0 for 
II > 1. Since Ch,R and H(Ch,R) consist of R-projectives, Theorem V. 10.1 
of [la] implies that H,(Ch,R) @R k N H,(Ch,R OR k). We call a cycle 
y E C,R & k alternating if y = cny. 

PROPOSITION 3.3. If R = k[x] as above, every cycle in C,R @R k is 
homologous to an alternating cycle. 

Proof. Let X = {x1 ,..., Q}. To compute H,(R, k) we first observe, by 
the same argument used in the beginning of the proof of proposition 3.1, 
that Hoch,(R, k) N Tor R@R(R, k) N TorR(R, k) @ ToP(k, k) N Tofl(k, k). 
It is well known (see [IO] p. 205, for example) that ToreR(k, k) is a k-space of 
dimension c~,~+ . We shall show that there is a subspace of C,,R @R k consist- 
ing entirely of alternating cycles, having dimension c,,,+, and independent 
modulo boundaries. It will follow that it contributes a subspace of H,(R, k) 
of exactly that dimension which, since k is a field, must be the whole thing. 

For each set of integers 1 < i1 < *a* < i,, < d, of which there are exactly 
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c,,,, , consider the chain e,[xil ,..., xi@]. These are all cycles, since &,, = 0, 
and they are clearly linearly independent. To show that they are independent 
modulo boundaries, we first observe that C,,,R & k has a k basis consisting 
of chains [p, , . . . , p,,,] where pi is a monomial. If any pi = 1, then it is directly 
verified that every term of its boundary has the same property except two 
which cancel. If no pi = 1, then every term of the boundary contains an entry 
of degree at least two (except the first and last, which, however, are zero 
because the coefficients are in k). Thus no boundary can have only entries of 
degree one. 

Now suppose y is a cycle in Ck,R @z k and n > 1. Then we can write 
y = 8y’ -k l ,y” for y’ E C,+,R @JR k and y” E SLR OR k. Then y = (1 - e,)y = 
(1 - e,) ?$J’ + (1 - e,) boy” = a(1 - e,+,)y’, and so y is a boundary. This 
completes the proof of Proposition 3.1. 

We are now ready to prove Theorem 1.2. We give the proof for cohomology. 
The proof for homology is similar. For any R, the Hochschild complex is 
Hom,(C,R, M) N_ Hom(R fn), M) with suitable coboundary. Let us write 
Hom(R(“), MJ for the subgroup of commutative cochains (those which vanish 
on all shuffles; equivalently those f for which fen = 0). Let E = {Ei*j} 
denote the double complex such that Ei*i = Hom((Gj+rR)(i+l), &.Q , 
i -2 0, j >, 0 with coboundaries 6r : Ei*i - Ei+lgj given by the Harrison 
coboundary formula (the restriction of the Hochschild coboundary; recall 
that each Gj+lR acts on M via the E’S) and Sn : EQ -+ Ei*j+l given by the 
triple coboundary formula. Proposition 3.1 implies that H,E reduces to 
Der(Gj+lR, M) concentrated in bidegree (0, j), and so H&f,E N Sym*(R, M). 
To compute in the other order, we first observe that the k-linear map R -+ GR 
(which is actually the front adjunction) induces natural transformations 
B,R : Hom((GR)ti+l), M)G ---f Hom(Rci+l), M), whose composite with 
Hom((eR)(i+l), M), is the identity. Now with i fixed, this is enough to imply 
the map whose jth component is eiGjR is a contraction of the augmented 
cochain complex 0 - Hom(R(i+l), MJ - Eivo - *e* - Ei*j --t ..* . Thus 
HIrE r. Hom(Rti+l), M)c concentrated in bidegree (i, 0) and HliHIIE N_ 
Harrifl(R, M), which proves theorem 1.2. 

4. AN EXAMPLE IN CHARACTERISTIC p 

We give here a slight modification of the example of Andre mentioned in 
the introduction. We show that if k has characteristic p > 0 then for any 
integer m > 0 the Harrison cohomology groups of the polynomial algebra 
k[x] in dimension n = 2pm are nonzero. 

Let disj denote the number of even permutations in s~,~ less the number of 
odd ones. In fact d,,$ is the value of s(,? under the trivial representation 

48W3-5 
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(the one which takes each n E S, to 1). Upon examination of the inductive 
definition of sa,, , dfSi is easily seen to satisfy the following functional equations: 

i 
di-1.j + 4.+1 9 

di*j = di-,,i - di.j-1 , 
if iis even 
if iis odd; 

di,j = dj#i ; 

4.1 = I ; 
if iis even 
if iis odd. 

PROPOSITION 4.1. d,i,,j = d2i+1,23 = d,<,,-+, = ci,j , and d2i+1,2i+l = 0. 
(Recall that ci,* is the binomial coe$icient corresponding to i + j things taken i 
at a time.) 

Proof. The above functional equations clearly characterize d completely. 
Hence it is simply a matter of showing that these formulas satisfy these equa- 
tions. This is an easy exercise. 

PROPOSITION 4.2. If n =pm for any integer m > 0, then Ci,n-i is divisible 
bypfaranyO<i<n. 

Proof. This is easily shown by counting directly the number of times p 
divides n!, i! and (n - i)!. 

COROLLARY 4.3. If i + j = 2p* for m > 0, then p divides every d,., , 
0 < i < 2pm. 

THEOREM 4.4. If k is afield of characteristic p > 0 and II = 2p”, m > 0, 
then Harrn(k[x], k) # 0. 

Proof. Here k is made into a k[x] module by the map k[x] + k, which 
sends x to 0. Define a cochain f : k[x](fi) --+ k by letting 

and extending linearly. Then f s~,~-~[x ,..., x] = di,n-i f [x ,..., X] = 0, since 
any permutation does not affect f, or, in other words, f represents S,, trivially. 
Then f E Hom(k[x]@), k)C . By using the fact that the coefficients are in k 
it is also readily checked that Sf = 0. On the other hand, for any 

g E Hom(k[xjtn-l), k)c , 

Mx,..., x] = -g[x”, x ,... , x] + g[x, x2, x,.. . , x] + 0.. -g[x ,...) x2] 

= -g sl+*[x2, x ,..., x] = 0. 

This completes the proof. 
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Note that this is also a counter-example for Theorem 1.1, as k[x] is also a 
free associative algebra and its higher Hochschild cohomology groups are all 0. 
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