
JOURNAL OF ALGEBRA 5, 222-231 (1967) 

Shukla Cohomology and Triples* 

MICHAEL BARR 

Department of Mathematics, The University of Illinois, Urbana, Illinois 

Communicated by Saunders MacLane 

Received December 27, 1965 

1. INTRODUCTION 

The purpose of this paper is to compare the cohomology theory of 
associative K-algebras given by Shukla [7j with the cotriple cohomology 
induced by the free associative K-algebra triple on the category of sets. If 
the respective cohomology groups are denoted by Hn(/l, M) and @(A, M) 
for a K-algebra rl and a cl-bimodule M, then we will show 

THEOREM 1.1. There is a natural family of isomorphisms 

M Der(rl, M), 
AntA, M) - jHn+l(A, M), 

?t = 0, 
n > 0. 

Thus the comparison ends in a manner fully as satisfactory as in [I] and 
[2]. The proof uses essentially the same method of acyclic models as was 
used in those papers. A standard (i.e., functorial) complex for each theory 
is constructed and the hypotheses of the theorem of acyclic models of [2] 
are shown to be satisfied, from which chain equivalence of these complexes 
follows. Here the standard complexes are not generally acyclic. Thus, chain 
equivalence as modules is required, in contrast to the previous situations 
in which it would have sufficed to show that a certain complex was merely 
acyclic. 

The following notations will be used throughout. K denotes a com- 
mutative ring with unit, A is a fixed unitary K-algebra and M is a fixed 
A-bimodule. A @ without subscript denotes OK and if A is any K-module 
we let Afn) denote an nth tensor power of A over K. If B is the free R-module 
on the base X, for some ring R, we will let (x) denote the basis element 
corresponding to an x E X. We let (Alg -K, ~4) denote the category whose 
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objects are morphisms r J& A of K-algebras (always unit-preserving) and 
whose morphisms are commutative triangles A -5 r s r’ -5 A where p is 
a map of K-algebras. The elements of this category will be called algebras 
and morphisms oser A. If UA denotes the underlying set of A, we let 
(9, UA) denote the category of sets and functions over UA in the same way. 
Then there is an obvious underlying functor, which we also denote by 
U : (Alg -K, A) -+ (9, VA), taking I’L A to the underlying set of I’ 
mapped by the function underlying y. U has a left adjoint, 

F : (9, UA) + (Alg -K, A), 
which can be described by saying that if X A UA is an object over UA, 
FX is the polynomial ring over K in noncommuting variables [xl, one for 
each x E X. F[ : FX --+ A is the unique K-algebra morphism for which 
FQx] = lx. 

2. COHOMOLOGY AND ACYCLIC MODFU 

If F and U are as above, let OL : 1 + UF and /3 : FU --+ 1 be the adjointness 
morphisms. Then it is known that G = (FU, /3, FaU) is a cotriple on 
(Alg -K, A) (see [q and [.S]). If T : (Alg -K, A) ---f ~4 is a functor to an 
Abelian category and G = FU, the left-derived functors L,,T with respect to 
G are the homology groups of the complex 

. . . --+ TGn+l+ . ..+TG3-+TG=--+TG-+O 

whose boundary is C (-l)i TG$tlG*-i : TGn+l -+ TG*. If T is contravariant, 
we get right-derived functors R,,T in the analogous way. To define cohomol- 
ogy with coefficients in the A-bimodule M, we take TM : (Alg -K, A) + dd, 
the category of Abelian groups, to be the contravariant functor whose value 
on an object rL A (which will by abuse of notation simply be denoted 
by r) is 

DW, M) = {f : r -+ M If(xlxa) = ‘YX, -.f% 
P 

f ’ 1 - &. 

This is a group using addition in M and is called the group of derivations 
(or crossed homomorphisms) of r to M. Then @(r, M) = R,,TM17 

Der(Z’, -) is represented, as a functor on the category of A-bimodules, 
bythemodule Jr=cokerg,whereg,:AOrOrOA~AOrOA 
is defined by 

qJ(Z @ x @ x’ @ 1’) = Zy(x) @ x’ @ I’ - I @ xx’ @ I’ + z @ x @ y(x’) z 

for Z, 1’ E A, x, x’ E r (see [3]). Hence as a standard complex for computing 
the cohomology given above we may use the complex of functors Q = {Q,,] 
where QJ = JG n+lr with boundary as above. In Section 3 we will construct 
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a standard complex E for computing the modified Shukla cohomology (as 
appears in Theorem 1.1). To show that these are equivalent we use the 
theorem of acyclic models which appears in dual form in [2]. The form 
we shall use states 

THEOREM 2.1. Suppose that H,(E) M H,,(Q) and that there are natural 
transformations of E, -f E,G and Qn + QnG for n > 0 such that 

E,, + E,,G - E,@ E,, and Qn + QnG *+@ -Q,, are the respective identities and 
that both augmented complexes EG --t H,,(EG) + 0 and QG + H,,(QG) -+ 0 
are contractible by natural transformations. Then there are natural trans- 
formations f : E ---f Q and g : Q + E, and natural homotopies fg N 1, and 
d - 1E. 

For Q,, -+ QmG we may take JF&G” for n > 0. It is easily seen that 
H,(Q) m J so that we may take s- i : H,(QG) -+ QoG to be JFcxU and 
s,, : QnG --F Qn+lG to be JFor UG n+l for n 3 0. Using the naturality of (Y, 
this is easily checked to be a contraction. To complete the proof of 
Theorem 1.1 it is necessary to define E and show it has similar properties 
(see Section 3). 

3. THE COHOMOLOGY GROUPS OF SHUKLA 

These are described in detail in [7l, but we give here a brief description 
which is suitable for our purposes. Given r + II we will describe a standard 
complex Sf for computing Shukla’s cohomology H(P, M) with coefficients 
in the Il-bimodule 44. After adjusting this complex at the bottom we will 
be in a position to apply acyclic models and compare this with Qr described 
above. 

We begin by letting V-,r = N-J’ = r. If Vir is defined to be the free 
K-module generated by the underlying set of Ni-,r, we have a natural 
epimorphism ei : V,r-t Nielr whose kernel we define to be NJ. It is 
shown in [7j how the terms of l/r of non-negative degree form a dif- 
ferentit graded algebra in which the differential d is the composite 
vir -- N,-,r -& V,-,r and such that eO : V,r -+ r induces a map 
e : Iry + l’ of such algebras (where r has trivial differential and grading). 
For example, the multiplication in V,r is the unique K-linear product for 
which (x) (y) = (xy), X, y E r. Also, the composite ye makes Vr into an 
algebra over (1, from which it follows that E is a map over d. We now form 
the /l-bimodule Sr = &0 S,,r where SJ = (1 @ ( Vr)cn) @ L’L If this 
is given suitable differential and grading, it is clear from the discussion 
between Theorems 2 and 3 ([7J, p. 178) that H(Hom,-,(Sr, M)) is the 
Shukla cohomology of r with coefficients in the Lbimodule M. The 
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differential comes from the usual one for the bar resolution of a differential 
graded algebra as described in [6], p. 306. That is, a = aS = al + a” where, 
if exp(m) = (-1)” for an integer m, 1, I’ E A, vi ,..., V~ E VF, then 

n-1 

i=l 

8 dvi 8 a*- @ vn @ I’. 

Similarly, we grade it by setting 

We let ET denote the complex consisting of those terms of SF of strictly 
positive degree, grading reduced by 1 and differential aE = -Zi’, except, 
of course, in (new) degree zero where the differential now is zero. It is clear 
that, for n > 0, H*(Hom,,(EF, M)) is just the (n + 1) st Shukla cohomol- 
ogy group of P with coefficients in the A-bimodule M. We can now extend 
E in the obvious way on morphisms over A so that it becomes a complex 
of functors E = {En}, E,, : (Alg -K, A) + A-bimodules. It is this complex 
that we will show is naturally equivalent to Q. 

PROPOSITION 3.1. H&ET) m Jrso that 

HO(Hom,-,(Er, M)) w Der(Z’, M). 

Proof. We know that E,r = A @ V,r @ A. If 

T:A @r@.A+cokerg, = Jr 

is the projection, then clearly n( 1 @ e. @ 1) : E,I’ -+ Jr is an epimorphism. 
It is immediate that (1 @ co @ 1) a” = 0, while it is a direct computation 
that (1 @ co @ 1) a’(Z @ v @ v’ @ I’) = p(Z @ l ov @ cow’ @ I’) so that 
~(1 @ co @ 1) a’ = m(l @ co @ 1) a = 0. Thus Im 8 C ker n(l @ co @ 1). 
The proposition is proved if we show the reverse inclusion. So suppose 
w~ker~(l~~o~l).Then(l~~o@l)w~kern=Imp,andso 
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If u = C Zi @ (xi) @ (xi) @ Zi’ then it can be directly calculated that 
(1 @ c0 @ 1) aU = (1 @ E,, @ 1) a’u = (1 @ q, @ 1) w so that 

(1 0 Es @ l)(w - au) = 0. 

But the exactness of VII’--% VJ 5 r + 0 implies the same about 
(1@ VJ@A~A@ VJ’@~~/l@I’@~+Osothere 
isat~/l@V1.F@~suchthat(l@~~l)t=~”t=~t=w-~auwhich 
completes the proof. 

THEOREM 3.2. There are natural transformations 0, : E, + E,,G for 
n > 0 such that E&2 * 0, is the identity transformation of E,, . 

The proof of Theorem 3.2 is based on 

PROPOSITION 3.3. Let Q and &?’ be in (Alg -K, A) and f : UQ -+ UC?. 
Then we can define functions Ni*f : UNJ2 + UN,Q’ for i >, -1, where we 
use U to denote the underlying set functor for K-modules as well. This con- 
struction is not functora’al, but if V*f = { V,*f) where Vi*f : Vim + V&2 
denotes the unique K-linear map extending NE j, then three conditions are 
satisfied: (i) NZ j = f; (ii) V*Up, = V~I for C+I a morphism of (Alg -K, A); 
and (iii) if f : USZ -+ UQ’ and f’ : Usz’ -+ Us2” are such that either f = Up, 
orf’ = Ucp’, then Ni*f’ * Ni*f = Ni*(f’ * f). 

Proof of Proposition 3.3. We let Nzlf = f and haying defined Ni*f for 
i < n, let xi E N&2, ai E K be such that C ai E N,,Q which is the 
same as saying that C aixi = 0. We define 

N,*f (C ai = C a,<Nl-_,fx,) - (c aiN,*-lfxd) + ((0, 

which is immediately seen to be in N,,*Q’. When NL j is linear, the last 
two terms cancel so that N,*f is also linear. It is clear by induction that if 
f = Up, then the K-linear extension of N,*_,f is V,,CJX Also if we assume 
that Nz-j’ * Nz-,Uv = Nn-r(f’ . Up) then 

KY - N,*uv (c ai<xd) 

= N,Y’ (C a,<Nn*_, %xi)) 

= C a,W,*_,f * N*-l UP,> - (C a,Nn*_,f’ * N,*_, UPi) + (0) 

= C ai<Nzdl(f’ * UT) xi) - (x aiN,*_,(f’ * Uq) xi) + (0) 

= Nn*(f’ - uy) (c a&J). 
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On the other hand iff’ = UT’, then 

Proof of Theorem 3.2. Let fr = &Jr : Ur + UGI: This is just the 
map x -+ [x] mentioned in Section 1. Then V*f, : VT-+ VGr is a map of 
graded K-modules. Moreover, 

v*upr . v*f, = v*(upr . da-) = v*(i,) = v*u(i,) = v(i,) = 1,. 
Also V*f, is natural in r, for if q~ : r -+ 0 is a map in (Alg -K, A), 

VG, . V*f, = V*UGp, . V*f, = V*( UFUp, . &Jr) 

= v*(ffuQ * Uqo) = v*f* * VqJ. 

Then we have ( V*fr)tn) : (Vr)tn) ---f (VGr)cn) which is natural in I’ and 
K-linear and so we can take 1 @ ( V*fr)fn) @ 1 : S,r --t S,Gr which is now 
A-bilinear. Since these maps preserve degrees they define 0J : E,r --+ E,GI’ 
which is a value of a well defined 8, : E,, -+ E,,G which is readily seen to 
have the property that E,$ * 0, = 1. 

THEOREM 3.4. The complex EG L JG + 0 has a natural contraction. 
That is, there are maps s...~ : JG + E,G and si : E,G -+ E,,G for i > 0 such 
thutps~l=l,s~,g,+~s,=lunds,~,~+~s~=lfori>O. 

Proof of Theorem 3.4 

The proof essentially consists of two parts. The first consists in showing 
that if Dr is the standard Hochschild complex and v : S ---f D is the natural 
transformation induced by E : V -+ 1 then there is a p : DG + SG such that 
vG * p = 1 and p * vG N 1 by a natural homotopy h. The second is that if 
C is the complex of functors related to D in the same way that E is related 
to S, then CG -+ JG -+ 0 has a natural contraction t. Then it is easily seen 
that h + vG * t - p is a contraction of EG --t JG + 0. 
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Define the standard Hochschild complex DI’ = {DJ) by setting 
DJ = II @ P) @ II for n > 0 with differential 

+(-l)“z~x,~~~~~x,,~yx,I for I, 1’ E A, X( E r, 

Then ET : VI’ -+ I’ induces 1 @ (Er)(n) @ 1 : SJ + DJ which defines 
vr:Sr+rsuchthatvr.a’=a.vrandvr.a”=O. 

Note that (Gr, V,Gr) w (UP, UV,Gr), the first being Horn taken in 
(Alg -K, A), th e second in (9, UA) so that there is a unique morphism 
Gr -+ V,Gr in (Alg -K, A) such that [x] + ([xl), x E r. This map 
followed by the inclusion of V,Gr into VGT is called ar and clearly c can 
be extended on morphisms to be a natural transformation of G to VG which 
is a morphism over fl of differential graded K-algebras. In order to construct 
h we need 

LEMMA 3.5. Suppose P”X is the free K-module on a basis X, PX is the 
j+ee K-module on the set underlying P”X and P’X is the ffee K-module on the 
set {p” E P”X 1 p” # (x> for any x E X}. IffX : PX + P”X is the K-morphism 
such that fX<p”) = p” for p” E P”X and eX : P’X -+ PX is the K-morphism 
such that 

then 
ex (c a&i)) = (c a&i>) - C a&i>, 

is exact. 

Remark 3.6. The point of this lemma is that there is a functorial choice 
for ker f. That is, if g : X --+ Y is a function then there are obvious vertical 
maps making the following diagram commute, 

O-P’XeX-PX --fL P”X+0 

1 
P’1 1Pf 1PV 

o--t PlYsr, PY-=+ P”Y-0. 

In fact, take P”f(x) = (fx), Pf(p”) = (P”f(p”)) and P’f(p”) = <Pnf(p”)). 

Proof of Lemma 3.5. Clearly eX * fX = 0, eX is 1 - 1 and fX is onto. 
Suppose, therefore, that C a,<p;) + C bj((x*> E ker fX where a, , b, E K, 
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for each i, p: E P” but not of the form (x) for x E X, and xj E X. Also suppose 
that among the 3*, are all of the variables appearing in any of the p; . Then if 
PI = C Cij(Xj), Cij E K, t f 11 i o ows that bj = - C aicij . Then we have 

PROPOSITION 3.7. There is a natural homotopy k : 1 - u . aG such that 
k*o=Oundk2=0. 

Proof. This is equivalent to the asser$sn that there is a natural con- 
tracting homotopy k in the complex VG L G-+Osuchthatk2 =Oand 
k-, = U. If X-J’ is the set of monomials [xi] *.* [A+] in Gr, for xi ,..., xb E I’ 
then it is clear that X-J is a free K-basis for Gl? Also, as K-modules 
PX-,r m vaG.F and P’X-,r w N,GI: Hence there is a natural basis XJ 
for NsGr as constructed above. We take k,r : VOGr + VIGr to be the 
composite of the map of VOGr + NaGr such that VOGr + N,,Gr 5 V,Gr 
is 1 - or * e,,Gr and the unique K-linear map NsGI’ + VIGr which takes 
x -+ (x) when x is an element of the canonical basis of N,GP constructed 
in (3.5). Now continue this way inductively to construct k,r. It is clear that 
k,k-, = kg = 0 and it will be similarly true that k,k,-, = 0 as claimed. 

Next observe that the complex S,Gr with differential a” is also the tensor 
product A @ (VGr)@) @ A as complexes (thinking of A as having trivial 
differential and grading). Thus a repeated application of [6, Theorem V, 9.1, 
p. 1641 gives a natural homotopy 

h,r: i N (1 0 (x)(n) 0 1) a (1 0 tEoGr)(n) 0 1). 

Now filter SGr and DGr by letting F”SGr denote J&,, S,Gr and 
FnDGr denote CmQn D,Gr. Suppose we let pr : DGr -+ SGr be the map 
such that pr lDnCr is 1 @ (&)cn) @ 1 followed by S,Gr --% SGr and 
vGr : SGI’--* DGr the map such that vGr Isncr is 1 @ (eGr)(*) @ 1 
followed by D,,Gr& DGr. It is clear that vGr * pr = 1. Let 

phr = i : i -ppr+bGr 

and suppose that natural maps FOhr,..., Fn-lhr have been constructed so that 
phr: 1 N F*pr * FfvGr and that Ffhr IFi-ISGr = F+lhr. Also suppose 
that Fihr * ppr = 0 for i < n. Since EG * k = 0 it can easily be seen that 

481/5/z-7 
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F%Gr * h,J’ = 0. Similarly since k * a = 0 it follows that h,,I’ . Fnpr = 0. 
Now take x EF”SGr and define F”hr(x) by writing x = y + z where 
y EFn-VGr and x E S,GI: Then let 

Fshr(x) = Fn-lhr( y) + h,J’(z) - F”-lhr .a’ . &r(z). 

Then 

a - Phr(x) + Fnhr . a(x) 

= 8 - F’+lhr( y) + 8 . h&z) - a . F”-lhr . 8’ . h,r(x) 

+ F”hr . a(y) + F”hr . a’(z) + Fnhr . a”(z) 

= i3 - F’+lhr( y) + F”-lhr * a(y) + a . h,r(z) 

- (1 - F’J-lh . a - Fn-lpr . F’+Gr) . a’ . h,r(r) 

+ F’+lhr . i?‘(z) + h,r * 8’(s) - Fn-lhr . a’ . h,,r . a+) 

= (a * Fn-lhr + F’+-lhr . i?)(y) + (a . hnr + h,r . i?‘)(z) 

- P-lhr * a’ * a” * h,qz) 

- F*-lpr . F’+lvGr . a’ . h,r(z) + F”-‘hr . al(z) 

- F’+lhr * a’ * (1 - a" * hJ - (1 @ (d)(n) * (EGr)(n) @ l)(z) 

= (1 - F”pr . F%Gr)( y) + (1 - 1 @ (crr)fn) . (EGr)(n) @ l)(z) 

- F”-lhr . a’ . a” . h,,r(z) - F”-lpr . a . F”vGr . h,,r(z) 

+ F’+lhr * a+) - F*-lr * ayz) + F”-lhr * a' * a" * hJ(z) 

+ Fn-lhr . 8’ . Fnpr + F”vGr(z) 

= (1 - Fnpr . F’%Gr)( y + z) + Fn-lhr . F”-lpr .a . FnvGr(z) 

= (1 - F”pr . F%Gr)(x). 

If x E FnDGr, x = y + z where y E FnmlDGr and z E D,,Gr, 

F”hr . Fnpr(x) = Fnhr . F’Zpr( y) + Fnhr . Fnpr( y) 

= F’+lhr . F++lpr( y) + h,r l Fnpr(z) 

- F’+lhr . a’ . h,r . Fnpr(z) = 0. 

Evidently Fnh IFn-~SGr = Fn-lh. From the latter fact it follows that {Fnh} 
converges to a homotopy h : 1 ~pr * vGI’ which is natural in r. This com- 

pletes the first part of the proof of Theorem 3.4. 

Remark 3.8. This proof is essentially just a modification of the proof 
of Theorem 1 [fi with everything made natural. 

Now let C,, be the complex such that CJ = D,+,r for n > 0 and 
aC’ = -aD. It is clear that vG, p and h have restrictions, which for con- 
venience we will still denote by vG, p and h such that vG : EG -+ CG, 
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p : CG -+ EG, VG . p = 1 and h : 1 N p * vG. Now, as noted above, a 
contraction of CG + JG -+ 0 will imply a contraction of EG -+ JG + 0. 
This is done in [I] abstractly but we repeat the proof here for completeness. 
First note that JGT must be naturally isomorphic to the free A-bimodule 
on the underlying set of I’ since both represent Der(Gr, -) on the category 
of A-bimodules (see [J]). Hence we take t-r : JGr-t C,GF to be 
the composite of that isomorphism with the A-bilinear map such that 
(x) + 1 @ (x) @ 1. For n 3 0 define &(l @ u,, @ *a* @ u, @ 1) for 
monomials ua ,..., u, E GI’ by induction on the length of the monomial ua by 

t,(l @ 1 @ u, @ .** @ u, @ 1) = 1 @ 1 @ 1 @ Ur @ ... @ f& @ 1 

and for u0 = [x] ua’, 

and extending this to be A-bilinear. Then it is left as an exercise to show that 
this is a contracting homotopy which completes the proof of Theorem 3.4 
and of Theorem 1 .l as well. 
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