
The real numbers in
homotopy type theory

Andrej Bauer
University of Ljubljana

Computability and Complexity in Analysis
Faro, Portugal

June 2016

1 / 19

1. Thank you for the invitation.
2. I gave an invited talk at CCA in Hagen, I think it was in 2008,

where I spoke about real numbers. Today I am speaking about
real numbers again. You know what to expect the next time.

In homotopy type theory there is an
inductive construction of real numbers.

2 / 19

1. The plan of my talk is to explain a construction of real numbers
in homotopy type theory. There is a book, the HoTT book,
which explains everything. Chapter 11 is about real numbers.

2. This construction is inductive. It gives us induction and recursion
principle for real numbers.

3. Even if you do not care so much for type theory or homotopy
type theory, I hope the talk will be interesting because the
essential ideas should carry over to other settings, including
computable mathematics, although this needs to be properly
verified.

4. In addition, the construction is general and applies to other
interesting mathematical objects.

https://homotopytypetheory.org/book/

Dedekind completeness:

Every cut determines a real.

Cauchy completeness:

Every Cauchy sequence has a limit.

3 / 19

1. There are many ways to construct the real numbers, which can
broadly be divided into two classes, according to what kind of
completeness we impose on reals.

2. In those mathematical settings where the axiom of countable
choice is valid, the difference is inessential as we can show that
the two constructions yield the same object (up to a unique
isomorphism).

3. Such settings include traditional mathematics, Bishop’s
constructive mathematics, realizability models (and thus TTE).

4. In (homotopy) type theory, or constructive mathematics without
countable choice, the difference matters.

5. In addition, the two notions of completeness lead to different
ways of computing with the real numbers. (My talk at CCA
2008 was about computation with Dedekind reals.)

6. The HoTT reals are a Cauchy-style construction.

Construction of Cauchy reals RC

I Cauchy approximation a : Q+ → Q:

∀δ, ε ∈ Q+ . |aδ − aε| < δ + ε.

I Cauchy(Q) :≡ {a : Q+ → Q | a is C. approx.}.
I Coincidence relation a ≈ b:

a ≈ b ⇐⇒ ∀δ, η ∈ Q+ . |aδ − bε| < δ + ε.

I Cauchy reals:

RC :≡ Cauchy(Q)/≈.

4 / 19

1. In order to understand what needs to be done, let us take a look
at how Cauchy reals are constructed. Let Q+ be the set of
positive rational numbers.

2. We shall use a variant that uses Cauchy approximations instead
of sequences. A Cauchy approximation is a map from positive
rational numbers which gives for every ε > 0 an
ε-approximation of the limit. Of course, we have to say this
without mentioning the limit (which is not there).

3. We complete Q as a metric space by taking Cauchy
approximations, quotiented by the coincidence relation ≈.
Intuitively “a ≈ b” means that Cauchy approximations a and b
converge to the same limit, but of course we must say this again
without mentioning the limit.

Is RC Cauchy complete?

I given a Cauchy sequence (xk)k of reals,
I every xi is represented by a Cauchy approximation ai,
I limk xk is represented by a Cauchy approximation

constructed from the ai’s.

We used countable choice to get from xi to ai!

5 / 19

1. Now, how do we know that RC is Cauchy complete? It turns out
that the natural way of proving completeness uses countable
choice! The root cause of this is the fact that taking the limit of a
Cauchy sequence is an infinitary operation.

2. Can we avoid the use of countable choice?

Is RC Cauchy complete?

I given a Cauchy sequence (xk)k of reals,
I every xi is represented by a Cauchy approximation ai,
I limk xk is represented by a Cauchy approximation

constructed from the ai’s.

We used countable choice to get from xi to ai!

5 / 19

1. Now, how do we know that RC is Cauchy complete? It turns out
that the natural way of proving completeness uses countable
choice! The root cause of this is the fact that taking the limit of a
Cauchy sequence is an infinitary operation.

2. Can we avoid the use of countable choice?

Completion of completion of . . .

I Let M :≡ Cauchy(M)/≈.
I Iterate the process of metric completion?

Q ⊆ Q ⊆ Q ⊆ Q ⊆ · · ·

⊆ Q(ω) ⊆ Q(ω+1) ⊆ · · ·

I The Cauchy completion of Q is the least Cauchy
complete subfield of the Dedekind reals RD.

I . . . but this presupposes we have RD.

6 / 19

1. Let us write M for the metric completion of a metric space M,
i.e., M is the space of Cauchy approximations in M, quotiented
by a coincidence relation ≈.

2. Since RC, which is just Q, does not seem to be complete, we
could do one more step, and another one, and so on. We would
not be done after ω steps and we would have to iterate into
transfinite ordinals. This is quite nasty, as constructively the
ordinals are not behaved nicely.

3. A second attempt might use the fact that the Dedekind reals RD
are Cauchy complete, because every Cauchy sequence
determines a Dedekind cut. So, we could get RC as the least
Cauchy-complete subfield of RD. However, this presupposes
that we have RD!

4. Fred Richman has a nice construction of metric completions
without countable choice. He uses powersets, and so his
construction is not available in type theory either.

Completion of completion of . . .

I Let M :≡ Cauchy(M)/≈.
I Iterate the process of metric completion?

Q ⊆ Q ⊆ Q ⊆ Q ⊆ · · · ⊆ Q(ω) ⊆ Q(ω+1) ⊆ · · ·

I The Cauchy completion of Q is the least Cauchy
complete subfield of the Dedekind reals RD.

I . . . but this presupposes we have RD.

6 / 19

1. Let us write M for the metric completion of a metric space M,
i.e., M is the space of Cauchy approximations in M, quotiented
by a coincidence relation ≈.

2. Since RC, which is just Q, does not seem to be complete, we
could do one more step, and another one, and so on. We would
not be done after ω steps and we would have to iterate into
transfinite ordinals. This is quite nasty, as constructively the
ordinals are not behaved nicely.

3. A second attempt might use the fact that the Dedekind reals RD
are Cauchy complete, because every Cauchy sequence
determines a Dedekind cut. So, we could get RC as the least
Cauchy-complete subfield of RD. However, this presupposes
that we have RD!

4. Fred Richman has a nice construction of metric completions
without countable choice. He uses powersets, and so his
construction is not available in type theory either.

Completion of completion of . . .

I Let M :≡ Cauchy(M)/≈.
I Iterate the process of metric completion?

Q ⊆ Q ⊆ Q ⊆ Q ⊆ · · · ⊆ Q(ω) ⊆ Q(ω+1) ⊆ · · ·

I The Cauchy completion of Q is the least Cauchy
complete subfield of the Dedekind reals RD.

I . . . but this presupposes we have RD.

6 / 19

1. Let us write M for the metric completion of a metric space M,
i.e., M is the space of Cauchy approximations in M, quotiented
by a coincidence relation ≈.

2. Since RC, which is just Q, does not seem to be complete, we
could do one more step, and another one, and so on. We would
not be done after ω steps and we would have to iterate into
transfinite ordinals. This is quite nasty, as constructively the
ordinals are not behaved nicely.

3. A second attempt might use the fact that the Dedekind reals RD
are Cauchy complete, because every Cauchy sequence
determines a Dedekind cut. So, we could get RC as the least
Cauchy-complete subfield of RD. However, this presupposes
that we have RD!

4. Fred Richman has a nice construction of metric completions
without countable choice. He uses powersets, and so his
construction is not available in type theory either.

The inductive type Tree(A)

Constructors:
I leaf : A→ Tree(A)

I tree : Tree(A)× Tree(A)→ Tree(A)

Induction principle:

indTree(A) :
∏

P:A→Type(
∏

a:A P(leaf(a)))→
(
∏

x,y:Tree(A) P(x)× P(y)→ P(tree(x, y)))→∏
z:Tree(A) P(z)

7 / 19

1. To explain how we are going to overcome the difficulties, we
have to make an excursion into the topic of inductive
definitions. A prototypical inductive definition is that of
(non-empty) finite binary trees over a set A.

2. First we have constructors, which can be used to construct trees.
3. Then there is the induction principle. It unifies both the usual

induction principle for proving properties of trees, and a
recursion principle for defining functions by recursion on trees.

4. As a logical principle it reads as shown here.

The inductive type Tree(A)

Constructors:
I leaf : A→ Tree(A)

I tree : Tree(A)× Tree(A)→ Tree(A)

Induction principle:

indTree(A) :
∏

P:A→Type(
∏

a:A P(leaf(a)))→
(
∏

x,y:Tree(A) P(x)× P(y)→ P(tree(x, y)))→∏
z:Tree(A) P(z)

7 / 19

1. To explain how we are going to overcome the difficulties, we
have to make an excursion into the topic of inductive
definitions. A prototypical inductive definition is that of
(non-empty) finite binary trees over a set A.

2. First we have constructors, which can be used to construct trees.
3. Then there is the induction principle. It unifies both the usual

induction principle for proving properties of trees, and a
recursion principle for defining functions by recursion on trees.

4. As a logical principle it reads as shown here.

The inductive type Tree(A)

Constructors:
I leaf : A→ Tree(A)

I tree : Tree(A)× Tree(A)→ Tree(A)

Induction principle:
I if P is a property of trees such that:

I for all a ∈ A, P(leaf(a))
I for all x, y ∈ Tree(A),

if P(x) and P(y) then P(tree(x, y))

I then P(z) for all z ∈ Tree(A).

7 / 19

1. To explain how we are going to overcome the difficulties, we
have to make an excursion into the topic of inductive
definitions. A prototypical inductive definition is that of
(non-empty) finite binary trees over a set A.

2. First we have constructors, which can be used to construct trees.
3. Then there is the induction principle. It unifies both the usual

induction principle for proving properties of trees, and a
recursion principle for defining functions by recursion on trees.

4. As a logical principle it reads as shown here.

Recursion principle for Tree(A)

Given
I a type B
I a map ` : A→ B
I a map τ : Tree(A)× Tree(A)× B× B→ B

there is r : A→ B such that

r(leaf(a)) = `(a)
r(tree(x, y)) = τ(x, y, r(x), r(y))

8 / 19

1. The recursion principle is obtained by taking P(x) = B for a
fixed type B, as shown.

2. You should recognize here the usual folding operation on trees.
The equations are called computation rules. Of course, there are
analogous computation rules for the full induction principle.

3. Henceforth we shall only look at recursion principles, because
they are simpler. But keep in mind that in type theory inductive
definitions have a general inductive principle, of which the
recursion principle is a special case.

Finite sets Fin(A)

Constructors:
I {−} : A→ Fin(A)

I ∪ : Fin(A)× Fin(A)→ Fin(A)

Equations:
I x ∪ x = x,
I x ∪ y = y ∪ x,
I (x ∪ y) ∪ z = x ∪ (y ∪ z).

for all x, y, z ∈ Fin(A).

9 / 19

1. The inductive types are very useful as a programming device,
but in mathematics we need inductive definitions with equations.
To draw a parallel with finite trees, let us consider the
(non-empty) finite subsets of a given set A, expressed as an
inductive type with equations.

2. First we have two constructors, for forming singleton subsets
and binary unions. They correspond respectively to the leaves
and the composite trees from the previous example.

3. The unions satisfy equations: idempotency, commutativity and
associativity.

4. The usual way to deal with the equations is to quotient by the
equivalence relation generated by them. But this leads to
problems with axiom of choice as soon as the constructors are
infinitary, like the limit of a Cauchy sequence. We need to do
something else.

Finite sets Fin(A) as a HIT

Constructors:
I {−} : A→ Fin(A)

I ∪ : Fin(A)× Fin(A)→ Fin(A)

Path constructors:
I idem :

∏
x:Fin(A) Id(x ∪ x, x),

I comm :
∏

x,y:Fin(A) Id(x ∪ y, y ∪ x),
I assoc :

∏
x,y,z:Fin(A) Id((x ∪ y) ∪ z, x ∪ (y ∪ z)).

for all x, y, z ∈ Fin(A).

10 / 19

1. We shall use a higher inductive type. This is an inductive type in
which the desired equalities are expressed as path constructors.

2. We can explain this at an intuitive level as follows. A set has
elements, while a type has not only elements but also paths
connecting them. This is the homotopy-theoretic understanding
of types. And so, if we want to make two elements equal, we
just put in a path.

3. All that is needed to complete the definition is a suitable
induction principle. Let us look at the derived recursion
principle that corresponds to initiality of Fin(A).

Recursion principle for Fin(A)

Given
I a type B,
I s : A→ B,
I u : B× B→ B,
I α :

∏
x:B, Id(u(x, x), x)

I β :
∏

x,y:B, Id(u(x, y),u(y, x))
I γ :

∏
x,y,z:B, Id(u(x,u(y, z)),u(u(x, y), z))

Then there is a map r : Fin(A)→ B such that

r({a}) = s(a), r(x ∪ y) = u(r(x), r(y)).

11 / 19

1. The premises say that (B,u) is a semilattice “up to path
equality”, as witnessed by α, β, and γ. The map s explains how
to map the generators into B.

2. We are still lacking uniqueness of r, as well as the fact that it is a
homomorphism. These are obtained from suitable computation
rules for r, which we omit here. See the HoTT book,
Section 6.11, for details.

Truncation of paths

Truncation:
I trunc :

∏
x,y:Fin(A)

∏
p,q:Id(x,y) Id(p, q)

12 / 19

1. There is at this point a further technical issue which we should
mention.

2. When we introduce new paths between elements, they can be
composed and inverted, so we actually get many more paths. It
can happen that we have too many new paths that create
homotopically non-trivial phenomena.

3. In order to get the usual behavior of initial algebras, we have to
trivialize the higher homotopical structure. This is done by
putting in even more paths: for any two parallel paths p and q
there is a (two-dimensional) path between them. Luckily, we do
not have to put in even more higher-dimensional paths after
that.

4. Henceforth all our constructions will implicitly include the
truncation and we shall not mention it again.

RC as a higher inductive-inductive type

I Constructors:
I rational points
I limit points

I Path constructor
I Truncation
I Induction principle
I Auxiliary relation x ∼ε y (“x and y are ε-close”).

13 / 19

1. We are ready to define the Cauchy reals as a higher inductive
type. Let us summarize how this is going to work.

2. There are two kinds of constructors for creating reals, one for
rational points and another for limit points.

3. There is a path constructor for any two reals which are ε-close
for all ε : Q+.

4. There is also the truncation of paths, and the induction
principle, but we are not going to look at those.

5. In order to explain what it means for x and y to be ε-close we
need an auxiliary proximity relation x ∼ε y. We cannot define
this as |x− y| < ε because we do not yet have any arithmetic and
order. Instead, we define ∼ε inductively and simultaneously
with RC.

6. This is known as a higher-inductive-inductive type. The HoTT
book contains other examples, for instance models of
Zermelo-Fraenkel set theory.

Point and path constructors in RC

I Point constructors:
I rational points: for every q ∈ Q there is rat(q) : RC
I limit points: for every x : Q+ → RC such that∏

δ,ε:Q+
xδ ∼δ+ε xε

there is lim(x) : RC (x is a Cauchy approximation).
I Path constructor: for all u, v : RC such that∏

ε:Q+
u ∼ε v

there is a path eq(u, v) : Id(u, v).

14 / 19

1. There are two path constructors, one for rational points and
another for Cauchy approximation. Please note that lim is a
formal symbol here, it does not actually compute anything.
(You don’t think that rat(q) is about rodents, do you?)

2. There is a path constructor which inserts a path from u to v
whenever u and v are ε-close for all ε : Q+.

Auxiliary relation ∼ε

Define inductively:
I for any q, r, ε, if |q− r| < ε then rat(q) ∼ε rat(r)
I for any q, y, ε, δ, if rat(q) ∼ε−δ yδ then rat(q) ∼ε lim(y)
I for any x, r, ε, δ, if xδ ∼ε−δ rat(r) then lim(x) ∼ε rat(r)
I for any x, y, ε, δ, η, if xδ ∼ε−δ−η yη then lim(x) ∼ε lim(y)
I for any u, v, ε, if ζ, ξ : u ∼ε v then Id(ζ, ξ)

(propositional truncation)

15 / 19

1. The auxiliary relation is defined inductively by four clauses, one
for each combination of point constructors.

2. The first clause is the base case: for rational numbers ∼ε actually
corresponds to ε-proximity.

3. The second and third clauses explain when a rational is ε-close
to a limit point.

4. The fourth clause relates two limit points.
5. The last clause is a technicality. It inserts a path between any

two elements of u ∼ε v to make sure that ∼ε is a proposition (has
at most one element).

RC-recursion

To construct a map f : RC → B by recursion:
I for every q : Q construct an element f (rat(q)) : B,
I for every Cauchy approximation x : Q+ → RC,

construct f (x) : B, assuming f (xε) : B has been defined
already for all ε : Q+,

I for all u, v : RC if
∏

ε:Q+
u ∼ε v, a path Id(f (u), f (b)).

16 / 19

1. There are several kind of induction and recursion principles that
can be derived from the general induction principle for RC.
Here is a very simple one, which is not the most useful one.
Please consult the HoTT book for more information.

2. The recursion principle follows a general pattern. For every
point constructor we give the value of the recursive function f ,
assuming f has already been defined on the recursive
arguments.

3. In addition, for every path constructor we need to show that the
function f respects the paths.

Theorem: RC is the initial Cauchy-complete field.

17 / 19

1. To make a long story short, after much fiddling with recursion
and induction we can establish the field structure on RC and
prove that it is indeed the initial Cauchy-complete field.

2. To see the proof, consult HoTT book Theorem 11.3.50.

What about computable mathematics?

I Computable models:
I Truncation make sure there is no higher homotopy.
I Realizability models, and in particular TTE, should

model such truncated types.
I So this would give computability for one part of

HoTT.
I Other examples:

I Sierpinski space Σ
I Borel sets
I . . .

18 / 19

1. In conclusion, let me say a bit about why I think this is useful
for computable analysis.

2. HoTT itself is a model of computability by work on cubical sets
by Bezem et. al. However, the cubical sets are fairly involved
and it may be worthwhile looking for computable models of
fragments of HoTT, and in particular the truncated fragment we
used. And here realizability models should work, TTE is one of
them. I am convinced that if someone’s student worked out the
details, they would discover that RC is the usual admissible
representation of reals.

3. There are perhaps some ideas about implementation in the
construction, but I am not reallly sure.

4. Lastly, the real numbers are just one possible construction. At
the recent TYPES meeting a construction of the Sierpinski
space Σ was given by Altenkirch and Danielsson as a higher
inductive-inductive type. Once you have Σ, you can start doing
topology.

5. There are other examples that nobody has looked at. For
instance, the Borel sets ought to be describable in terms of
infinitary suprema and infima with governeing equations. This
should allows us to do some measure theory, perhaps.

19 / 19

This material is based upon work supported by the Air Force Office
of Scientific Research, Air Force Materiel Command, USAF under
Award No. FA9550-14-1-0096. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the
Air Force Office of Scientific Research, Air Force Materiel Command,
USAF.

