
THE ADAMS SPECTRAL SEQUENCE FOR tmf

MARK BEHRENS

The Adams-Novikov spectral sequence is the easiest way to compute tmf∗, and
that is how most people do the computation. However, sometimes you want the
classical Adams spectral sequence. That is what is contained in these notes.

1. p = 3

The homology of tmf as a comodule over the Steenrod algebra is given by

H∗(tmf) = F3[b4, ξ
3
1 − b4ξ1, ξ2, ξ3, . . .] ⊗ E[τ3, τ4, . . .]

where |b4| = 8. Define a Hopf algebroid (B, Γ) by

B = E[b4]

Γ = B[ξ1] ⊗ E[τ0, τ1, τ2]/(ξ3
1 − b4ξ1)

This is actually a Hopf algebra, because ηL = ηR. The coproduct formulas are just
as in the Steenrod algebra. A change of rings theorem implies

ExtA(F3, H∗(tmf)) = ExtΓ(B, B).

We will compute the polynomial part of the latter with the May spectral sequence.
Then we will proceed with a sequence of Bockstein spectral sequences. Let Γ(2)
denote the subalgebra

B[ξ1]/(ξ3
1 − b1ξ1)

The E1 term of the May spectral sequence for H∗(Γ(2)) is given by

B[b0] ⊗ E[h0].

Here the bifiltrations (s, t) are given by

|h0| = (1, 4)

|b0| = (2, 12)

There are no differentials, and we have H∗(Γ(2)). Since we had the relation ξ3 =
b4ξ1 in Γ, we shall define

h1 := h0b4

in H∗(Γ(2)). Observe that it is the image of the element h1 = [ξ3
1 ] in H∗(A).

Letting Γ(1) = Γ(2) ⊗ E[τ2], since τ2 is primitive modulo (τ0, τ1), we have

H∗(Γ(1)) = H∗(Γ(2)) ⊗ P [v2]

with |v2| = (1, 17). For Γ(0)Γ(1) ⊗ E[τ1], we have a v1-BSS

H∗(Γ(1)) ⊗ P [v1] ⇒ H∗(Γ(0)).

The main differential is
d1(v2) = v1h1
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which follows immediately from the coproduct formula for τ2. It follows that

d1(v
i
2) = ±h1v1v

i−1
2 = ±h0b4v1v

i−1
2 for i 6≡ 0 (mod 3).

There is no room for any more differentials. The v1 BSS with differentials is dis-
played below as a module over P [b0].
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Next we compute the v0-BSS. The v0 BSS breaks up into patterns of two types.
The first pattern (pattern 1) arises from the elements in Ext(tmf ∧ V (0)) in

P [v0, b0] ⊗ E[h0]{v
k
2}

or those in
P [v0, b0] ⊗ E[h0]{b4v

k−1
2 }

for a fixed k ≡ 0 (mod 3) The second pattern (pattern 2) arises from the elements
of Ext(tmf ∧ V (0)) in

P [b0, v0] ⊗ E[h0]/(v0h0){b4v
k−1
2 } ⊕ P [b0, v0]{v

k
2h0}

for k ≡ 1, 2 (mod 3).
The basic differential is given by

(1.1) d1(v1) = v0h0.

The fundamental observation is that in the v0-BSS, v3
1 is a permanent cycle. This

is because after the differential d1(b4v1) = v0b4h0, there are no remaining targets
for a Bockstein differential supported by v3

1 . Thus, on v1 multiples, any pattern of
differentials is periodic on v3

1 . We shall henceforth refer to v3
1 as c6, since that is

what it detects in homotopy.
Let us first consider pattern 1, based at vk

2 be
4 for e = 0, 1 and k ∼= −e (mod p).

There is no target for a Bockstein differential supported by vk
2 b4, so it must be a

permanent cycle in the BSS. There are differentials

d1(v
i
1 · v

k
2 be

4) = ±vi−1
1 v0h0v

k
2 be

4
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for i = 1, 2 which follow from 1.1 and these are then propagated by multiplication
by b0, and c4.

Turning our attention to those elements of the form vi
1h0v

k
2 be

4, the only such ele-
ments which can support Bockstein differentials are those for which i ≡ 2 (mod 3).
This is because for i 6≡ 2 (mod 3) these elements were targets of Bockstein differ-
entials. There is no room for a d1. In the E2 term we can use the Massey product
to obtain

d2v
2
1h0 = ±d〈v1, v0h0, h0〉

= ±〈v0h0, v0h0, h0〉

= ±v2
0〈h0, h0, h0〉

= ±v2
0b0.

Therefore
d2v

2
1h0 · v

k
2 be

4 = ±v2
0b0 · v

k
2 be

4.

This differential is then propagated by c6 and b0 multiplication.
The result of these differentials on pattern 1 is displayed below. The top chart

displays the Bockstein differentials, and the bottom chart displays the result after
the differentials are taken. In the top chart, multiplication by h0 is given by solid
lines, as are multiplications by v0 and Bockstein differentials. The solid circles
indicate that the element supports an infinite v0 tower, i.e. it is not the target of
a Bockstein differential. The Toda bracket 〈h0, h0,−〉 is indicated with a dashed
line. Multiplication by b0 may be implicitly read off from the composition of h0

multiplication and 〈h0, h0,−〉. In the first chart, the v1-towers are indicated with
dotted lines.
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A similar analysis yields the Bockstein differentials on pattern 2. The result is
displayed below (here b0 multiplication is indicated with solid lines).
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The results of our analysis can be summarized in the following two charts. This
is effectively a summary of the ASS E2-term. In these charts, circles represent a
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polynomial algebra P [c6], squares represent a polynomial algebra P [b0] and circles
and squares represent a P [c6, b0].

Pattern 1 Pattern 2

v2^k b4^e b4 v2^k

b4 v2^k v1^2
v2^(k+1) v1 h0

For instance, the E2-term begins in the following manner.

b41 v2 b4 v2^2 b4

We now determine Adams differentials. We will first determine Adams d2’s. This
will leave a pattern that is essentially the Adams-Novikov E2 term. The remaining
differentials are then well known.

The primary differential that we need to consider is

(1.2) d2b4 = v1h0.

This differential can be deduced from the fact that in the ASS for the sphere

d2h1 = v0b0.

The Hurewicz image of h1 is b4h0, so the differential 1.2 must occur. Alternatively,
one can use the formula for ηR(b4) in the elliptic curve Hopf algebroid.

The differential 1.2 propagates to give all of the rest of the d2’s in the ASS. This
pattern below is periodic on v3

2 . The notation is the same as before.
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What is left is the E3-term, which is isomorphic to the ANSS. It is displayed

below. All of the v0 towers are periodic on c6. The labels ci
4 and ∆j are ANSS

names. Most of the multiplicative extensions are not seen in the ASS.
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All of the differentials, modulo the different filtrations, are exactly as those in
the ANSS. Namely, they are those differentials generated by

d4(∆) = h0b
2
0

d3(∆
2) = h0b

2
0∆

d6(∆
2h0) = b5

0

d3(∆
4) = ∆3h0b

2
0

d4(∆
5) = ∆4h0b

2
0

d6(∆
5h0) = ∆3b5

0

These differentials are propagated by b0 multiplication. The whole spectral se-
quence is periodic on the permanent cycle ∆3 = v9

2 .


