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Last time we were discussing the cobordism hypothesis. If O is an object in a symmetric
monoidal (∞, n)-category (C,⊗), there is a list of conditions called k-dualizability, k ≤ n,
which allows us to define

Z(Mk) =

∫
Mk

O (1)

where Z is a putative extended topological field theory with Z(pt) = O. Here Mk is an
n-framed k-manifold, or equivalently k-manifold together with a trivialization of the tangent
bundle of Mk × Rn−k.

If we want to define the TFT on manifolds with less structure, such as an orientation
or a spin structure, we do the following. The cobordism hypothesis equips the space of
n-dualizable objects in C with an action of O(n) (by change of framing), and if G → O(n)
is a topological group mapping to O(n) (for example SO(n) or Spin(n)), then allowing our
TFT to be defined on manifolds with G-structure is equivalent to equipping the object O
with the data of a homotopy fixed point for the induced action of G.

Today’s goal is to define a 2d TFT X[T 2×S2] (dimensional reduction of N = 2 SYM on
T 2, or of N = 4 SYM on S2). This turns out to be a topological version of 2d Yang-Mills.

1 Dijkgraaf-Witten theory

First let’s discuss the theory for a finite group G. There is a resulting 2d TFT ZG describing
G-gauge theory (Dijkgraaf-Witten theory). The fields are

F (M) = BunG(M) (2)

where BunG(M) denotes the groupoid of principalG-bundles onM ; whenM is connected,
this is the action groupoid of G acting by conjugation on homomorphisms π1(M) → G for
a choice of basepoint. To a point we’d like to assign a category

Z(pt) = Vect(F (R2)) = Rep(G). (3)

Equivalently, we can think about the group algebra C[G], as a stand-in for its category
of modules. The fact that this defines a 2d TFT is equivalent to saying that C[G] is finite-
dimensional semisimple, or that Rep(G) is semisimple with finitely many simple objects (this
requires that we are working over C).

But ZG is an oriented field theory: this requires the extra data of SO(2)-fixed point
structure, which in this case turns out to be the extra data of a trace on C[G] making it a
Frobenius algebra.

To a circle we assign the vector space

Z(S1) = Fun(F (S1)) = C
[
G

G

]
(4)
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of functions on isomorphism classes of principal G-bundles on S1, or equivalently of class
functions.

To a connected surface Σ we assign the number

Z(Σ) = |F (Σ)| = |Hom(π1(Σ), G)|
|G|

(5)

of isomorphism classes of principal G-bundles on Σ, but weighted by one over the auto-
morphisms (the groupoid cardinality). More generally there is a push-pull formula describing
what we assign to a surface with boundary.

We can think of the assignment to the circle as follows. In the context of 1d oriented
TFT, we can assign a vector space V to a point with some orientation and another vector
space V ∗ to a point with the opposite orientation. There are two half-circles we can write
down corresponding to an evaluation map

ev : V ⊗ V ∗ → 1 (6)

and a coevaluation map

coev : 1→ V ⊗ V ∗ (7)

realizing V as the dual / adjoint of V ∗. In particular, V is finite-dimensional, and the
circle gets assigned the composition of the coevaluation and the evaluation, which is dimV .

In our case, suppose Z is a 2d oriented TFT with Z(pt) = C = Mod(A). Then we assign
a pair of points the category of (A,A)-bimodules. The coevaluation map is the inclusion of
the identity bimodule AAA, and the evaluation map is the following trace operation

tr(M) = HH0(M) = M ⊗A⊗Aop A (8)

on bimodules; this is an underived form of Hochschild homology. Hence the circle gets
assigned

Z(S1) = tr(idA) = HH0(A) = A⊗A⊗Aop A. (9)

This should be thought of as the dimension, in an appropriate sense, of Mod(A). Explic-
itly, it is the quotient A/[A,A] where [A,A] is the subspace spanned by commutators; the
map A → A/[A,A] is the universal trace on A. This recovers our computation about class
functions earlier.

However, there is another interesting framing to look at. With the blackboard framing
coming from its inclusion into an annulus, Z(S1) has a natural multiplication coming from
the pair of pants (with a suitable framing) which makes Z(S1) a commutative algebra.

Another way to think about this S1 is to think of the trivial cobordism between two
copies of the identity functor Mod(A) → Mod(A), then cut out a small hole. This gives a
natural action of Z(S1) by endomorphisms of idMod(A) which is in fact an equivalence; that
is,
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Z(S1) = End(idMod(A)) = End(AAA) = HH0(A) (10)

where HH0 is underived Hochschild cohomology, or the center of A. Hence we also
recover the center of the group algebra, which is a dual description of class functions.

What is the significance of endomorphisms of the identity? It is a ring over which every-
thing is linear. In this case, one basis we can choose for the space of class functions on G is a
normalized version of the central idempotents projecting to each irreducible representation
of G.

Definition The moduli of vacua of Z is SpecZ(S1).

This is a finite set of points that can be identified with the irreps of G. Hence our field
theory breaks up as a field theory over this space (this can also be described as realizing ZG

as a relative field theory). In particular, Z(pt) = Rep(G) breaks up as a direct sum of copies
of Vect labeled by the irreps of G. Similarly, the invariant attached to a surface breaks up
as a sum

Z(Σ) =
∑
V ∈Ĝ

Z(Σ)V (11)

over the irreps of G. Hence we can refine Z(Σ) from a number to a function on the
moduli of vacua.

2 Yang-Mills theory

Now let G be a compact connected Lie group. We would like to assign Z(pt) = Rep(G),
the unitary representations of G. This is a perfectly fine 1-dualizable category. It won’t be
2-dualizable, e.g. because it has infinitely many simple objects or because Z(S1 × S1) =
dimZ(S1) should be the dimension of the space of class functions, which is infinite. So this
theory won’t make sense on arbitrary 2-manifolds.

But it can make sense as a relative theory. Class functions Z(S1), as a vector space, can
be identified with C[T ]W , or W -invariant functions on a maximal torus. But Z(S1) also has
the sructure of a commutative ring: as a commutative ring, it is more or less a direct sum

Z(S1) =
⊕
V ∈Ĝ

C (12)

of a copy of C for each irrep of G. This corresponds to a convolution structure on C[T ]W .
So the moduli of vacua M = SpecZ(S1) can be identified with the infinite set of irreducible
representations of G, and we can try to break up our field theory over this infinite set.

In particular, Z(pt) = Rep(G) looks like vector bundles over M , Z(S1) looks like func-
tions on M , and Z(S1 × S1) looks like the function with constant value 1 on M . More
generally, Z(Σ) is a well-defined function on M , and then we can ask whether the sum of
this function over M exists.
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So this theory is a 2d TFT in a weaker sense than before: it is defined relative to the
moduli of vacua M . This is the kind of structure we’ll see from Theory X.

Z(Σ) is attempting to be the volume of the moduli space of flat principal G-bundles with
connection on Σ, or equivalently of stable GC-bundles. The infinitudes above come from the
fact that this doesn’t always make sense.

For G complex, X[T 2 × S2] is a version of this theory (Yang-Mills-Higgs theory) which
assigns to Z(pt) the category of algebraic representations of G and which assigns to Z(S1)
a version of class functions

C[G]G ∼= C[T ]W ∼=
⊕
Λ+

C (13)

and Z(Σ) is attempting to be the volume of the Hitchin moduli space HitchG(Σ). This
won’t always make sense, but we can write it as a sum of contributions that make sense.

This presentation of Yang-Mills-Higgs theory predicts some extra symmetries which we
will explain. A fancy name for this category is the spherical Hecke category, and it will
appear when discussing geometric Langlands on S2. There is a subtle SL2(Z) action involving
switching G and its Langlands dual; this comes from some subtleties involving extra data
we’ve neglected to discuss.

Example Let G = SLn(C). Then class functions can be identified with functions on T/W ,
which we can write as Symn−1(C×), or the space of configurations of n − 1 particles living
on C×. The L2 space of this space admits a natural action of Z(S1), which breaks up into
a bunch of commuting generators, so we have written down a quantum integrable system in
some sense. This seems a little silly, but it is possible to realize more complicated quantum
integrable systems basically by this construction, e.g. Calogero-Moser.

In general, we will define the moduli of vacua of a TFT to be the spectrum of local
operators, which for n dimensions will turn out to be SpecZ(Sn−1). When n = 4 this will
be closer to what physicists mean by moduli of vacua.
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