Theory X and Geometric Representation Theory III

David Ben-Zvi Notes by Qiaochu Yuan

December 10, 2014

If Z is an n-dimensional TFT, we should think of $Z(S^{n-1})$ (where S^{n-1} has a particular Hochschild cohomology framing) as the space of local operators. One reason is that in any n-manifold M we can cut out a small ball at a point; the result turns the manifold into a cobordism with source S^{n-1} , and so the resulting linear functional on $Z(S^{n-1})$ can be evaluated on an element of $Z(S^{n-1})$ to produce a number, which we interpret as (more or less) an expectation value

$$\langle O_x \rangle = \int_{F(M)} O_x(\varphi) e^{iS(\varphi)} D\varphi.$$
 (1)

A reason to call these operators is that they can be inserted into any cobordism $N_1 \to N_2$, which induces a linear map $Z(N_1) \to Z(N_2)$, to produce a cobordism $N_1 \sqcup S^{n-1} \to N_2$, or a family of linear maps

$$Z(N_1) \otimes Z(S^{n-1}) \to Z(N_2) \tag{2}$$

depending linearly on $Z(S^{n-1})$.

Moreover, if P is a codimension-2 manifold, then inserting S^{n-1} into an identity cobordism shows that $Z(S^{n-1})$ naturally acts by endomorphisms on $\mathrm{id}_{Z(P)}$, and so forth. In fact the entire theory is acted on by $Z(S^{n-1})$ in this way.

1 E_n -algebras

To justify this statement we want to think of $Z(S^{n-1})$ as an algebra. In fact it is an E_n -algebra. When n=2 this says that $Z(S^1)$, where S^1 is thought of as an annulus, has an operation for every pairs of pants, or equivalently for every pair of disks cut out of a disk. In general this says that $Z(S^{n-1})$ has an operation for every pair of n-disks cut out of an n-disk. The configuration space of such pairs itself has the homotopy type of S^{n-1} , so if we were working in chain complexes, then passing to homology we get a map

$$H_{\bullet}(S^{n-1}) \otimes Z(S^{n-1}) \to Z(S^{n-1}).$$
 (3)

So this gives us two operations, one coming from $H_0(S^{n-1})$ in degree 0, and one coming from $H^{n-1}(S^{n-1})$ in (cohomological) degree 1-n. These operations satisfy relations telling us that $Z(S^{n-1})$ is a graded commutative algebra $(n \ge 2)$ with a Poisson bracket of degree 1-n. When n=2 this is a Gerstenhaber algebra.

In general $Z(S^{n-1})$ has an action of a certain topological operad E_n whose homology is a variant of the Poisson operad P_n . Kontsevich formality asserts that chains on E_n is quasi-isomorphic to P_n .

Q: is this for a framed TFT?

A: right. For an oriented TFT we have more structure because we can rotate the sphere; we get n-disk algebras, and in particular when n = 2 we get BV algebras.

In particular, inserting local operators turns $Z(N^{n-1})$ into a module over $Z(S^{n-1})$ as an E_n -algebra.

As before, let $M_Z = \operatorname{Spec} Z(S^{n-1})$ be the moduli of vacua. Then the entire field theory lives over M_Z in a suitable sense. But what is this thing? Here is a silly definition.

Definition The category of affine E_n -schemes is the opposite of the category of E_n -algebras.

A better but more suspicious thing to say is that, by formality, $Z(S^{n-1})$ is in particular a commutative differential graded algebra, hence M_Z is a (derived) affine scheme. The Poisson bracket equips M_Z with the structure of a (derived) Poisson scheme. We will really only keep track of the parity of the degree; in particular, when n is odd we'll think of M_Z as a Poisson scheme. The claim is that this explains the appearance of Poisson brackets in Costello's talk yesterday.

Q: can we localize by inverting an element of $Z(S^{n-1})$?

A: these things are mildly noncommutative so we should be careful. We should think harder and use factorization homology.

2 The B-model

Let M be a variety. We want to study the 2d sigma model of maps into M. The fields on a manifold X will be locally constant maps $X \to M$, denoted [X, M]. This is a derived algebrogeometric object, and Z(X) will be a linearization of this. We already saw an example of this where M was a stack pt /G and [X, M] was principal G-bundles on X. We will take the linearization so that

$$Z(\mathrm{pt}) = \mathrm{Coh}(M) \tag{4}$$

is the dg category of coherent sheaves on M. The result is always 1-dualizable. It is 2-dualizable iff M is smooth and proper (e.g. projective). It is orientable if M is Calabi-Yau.

Now $F(S^1)$ is the loop space $LM = [S^1, M]$ in some derived sense. What is this? We should think of S^1 combinatorially as two dots and two arrows. The two dots give us two points in M, so we start with $M \times M$. The two arrows equate the two copies of M twice; we can think of this as $M \times_{M \times M} M$, or as the self-intersection of the diagonal $\Delta : M \to M \times M$. The claim is that

$$F(S^1) = [S^1, M] = LM = T_M[-1]$$
(5)

is the shifted tangent bundle of M, and the space of functions on it is

$$Z(S^1) = HH_{\bullet}(\operatorname{Coh}(M)) = O(LM) = \Gamma(O_M \otimes_{O_M \otimes O_M}^L O_M) = \Omega^{\bullet}(M) = H^{\bullet, \bullet}(M)$$
 (6)

is differential forms, and this is a version of the Hochschild-Kostant-Rosenberg theorem. With the Hochschild cohomology framing,

$$Z(S^{1}) = HH^{\bullet}(Coh(M)) = \Gamma(\Lambda^{\bullet}(T))$$
(7)

is polyvector fields, and this is another version of the Hochschild-Kostant-Rosenberg theorem. This is a commutative dga, but it also has a bracket, the Schouten-Nijenhius bracket, which gives it its E_2 -algebra structure; this is a version of the Deligne conjecture.

If we have an oriented TFT, so M is Calabi-Yau, then we can evaluate Z on a 2-sphere, and we get

$$Z(S^2) = \operatorname{vol}(M). \tag{8}$$

We also have that $Z(T^2)$ is the dimension of $Z(S^1)$, or

$$Z(T^2) = \chi(\oplus H^{p,q}) \tag{9}$$

This is a consistency check on some claims about reductions of Theory X: $X[S^2 \times T^2 \times \Sigma]$ should be the volume of $Loc_G(\Sigma)$, and we can get this from reducing $X[\Sigma \times T^2]$ (geometric Langlands B-model on $Hitch_G(\Sigma)$) on S^2 or from reducing $S^2 \times T^2$ (Yang-Mills-Higgs) on Σ .

Now, as the free loop space, $Z(S^1) = LM = [S^1, M]$ admits an action of S^1 . How should we interpret this? Homologically it looks like an action of the group algebra of chains

$$C_{\bullet}(S^1) \otimes O(LM) \to O(LM).$$
 (10)

Passing to homology, this gives an odd vector field on LM, or a derivation on differential forms. There is an obvious candidate, which is the de Rham differential. Taking (derived / homotopy) invariants of this vector field will give us

$$Z(S^{1})^{S_{1}} = HC_{-}(M) = \Gamma(BS^{1}, Z(S^{1})).$$
(11)

Here HC_{-} denotes negative cyclic homology. The third description of taking invariants tells us that we get extra structure, namely an action of cochains $C^{\bullet}(BS^{1}) \cong \mathbb{C}[\varepsilon]$ where $|\varepsilon| = 2$. Setting $\varepsilon = 0$ gives $Z(S^{1})$, whereas setting $\varepsilon = 1$ gives de Rham cohomology. But setting $\varepsilon = 1$ makes no sense because ε has mass, or more formally because it has a nontrivial grading. We really have a family over the line, where at 0 we get differential forms and at nonzero values we get de Rham cohomology.

From here what we can do is to invert ε . This has the effect of only letting us recover de Rham cohomology with its \mathbb{Z}_2 -grading. This is periodic cyclic homology HP(M).

Q: in what sense is ε a mass parameter?

A: most simply, it has a nonzero grading. The mass parameters that appear in the other talks can be interpreted in terms of equivariant cohomologies as above, where we were doing S^1 -equivariant cohomology, and in particular taking various limits in ε correspond to equivariant localization and so forth.