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If Z is an n-dimensional TFT, we should think of Z(Sn−1) (where Sn−1 has a particular
Hochschild cohomology framing) as the space of local operators. One reason is that in any
n-manifold M we can cut out a small ball at a point; the result turns the manifold into
a cobordism with source Sn−1, and so the resulting linear functional on Z(Sn−1) can be
evaluated on an element of Z(Sn−1) to produce a number, which we interpret as (more or
less) an expectation value

〈Ox〉 =

∫
F (M)

Ox(ϕ)eiS(ϕ)Dϕ. (1)

A reason to call these operators is that they can be inserted into any cobordism N1 → N2,
which induces a linear map Z(N1)→ Z(N2), to produce a cobordism N1 t Sn−1 → N2, or a
family of linear maps

Z(N1)⊗ Z(Sn−1)→ Z(N2) (2)

depending linearly on Z(Sn−1).
Moreover, if P is a codimension-2 manifold, then inserting Sn−1 into an identity cobor-

dism shows that Z(Sn−1) naturally acts by endomorphisms on idZ(P ), and so forth. In fact
the entire theory is acted on by Z(Sn−1) in this way.

1 En-algebras

To justify this statement we want to think of Z(Sn−1) as an algebra. In fact it is an En-
algebra. When n = 2 this says that Z(S1), where S1 is thought of as an annulus, has an
operation for every pairs of pants, or equivalently for every pair of disks cut out of a disk.
In general this says that Z(Sn−1) has an operation for every pair of n-disks cut out of an
n-disk. The configuration space of such pairs itself has the homotopy type of Sn−1, so if we
were working in chain complexes, then passing to homology we get a map

H•(S
n−1)⊗ Z(Sn−1)→ Z(Sn−1). (3)

So this gives us two operations, one coming from H0(S
n−1) in degree 0, and one coming

from Hn−1(Sn−1) in (cohomological) degree 1− n. These operations satisfy relations telling
us that Z(Sn−1) is a graded commutative algebra (n ≥ 2) with a Poisson bracket of degree
1− n. When n = 2 this is a Gerstenhaber algebra.

In general Z(Sn−1) has an action of a certain topological operad En whose homology
is a variant of the Poisson operad Pn. Kontsevich formality asserts that chains on En is
quasi-isomorphic to Pn.

Q: is this for a framed TFT?
A: right. For an oriented TFT we have more structure because we can rotate the sphere;

we get n-disk algebras, and in particular when n = 2 we get BV algebras.
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In particular, inserting local operators turns Z(Nn−1) into a module over Z(Sn−1) as an
En-algebra.

As before, let MZ = SpecZ(Sn−1) be the moduli of vacua. Then the entire field theory
lives over MZ in a suitable sense. But what is this thing? Here is a silly definition.

Definition The category of affine En-schemes is the opposite of the category of En-algebras.

A better but more suspicious thing to say is that, by formality, Z(Sn−1) is in particular a
commutative differential graded algebra, hence MZ is a (derived) affine scheme. The Poisson
bracket equips MZ with the structure of a (derived) Poisson scheme. We will really only keep
track of the parity of the degree; in particular, when n is odd we’ll think of MZ as a Poisson
scheme. The claim is that this explains the appearance of Poisson brackets in Costello’s talk
yesterday.

Q: can we localize by inverting an element of Z(Sn−1)?
A: these things are mildly noncommutative so we should be careful. We should think

harder and use factorization homology.

2 The B-model

Let M be a variety. We want to study the 2d sigma model of maps into M . The fields on a
manifold X will be locally constant maps X →M , denoted [X,M ]. This is a derived algebro-
geometric object, and Z(X) will be a linearization of this. We already saw an example of
this where M was a stack pt /G and [X,M ] was principal G-bundles on X. We will take the
linearization so that

Z(pt) = Coh(M) (4)

is the dg category of coherent sheaves on M . The result is always 1-dualizable. It is 2-
dualizable iff M is smooth and proper (e.g. projective). It is orientable if M is Calabi-Yau.

Now F (S1) is the loop space LM = [S1,M ] in some derived sense. What is this? We
should think of S1 combinatorially as two dots and two arrows. The two dots give us two
points in M , so we start with M ×M . The two arrows equate the two copies of M twice; we
can think of this as M×M×MM , or as the self-intersection of the diagonal ∆ : M →M×M .
The claim is that

F (S1) = [S1,M ] = LM = TM [−1] (5)

is the shifted tangent bundle of M , and the space of functions on it is

Z(S1) = HH•(Coh(M)) = O(LM) = Γ(OM ⊗L
OM⊗OM

OM) = Ω•(M) = H•,•(M) (6)
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is differential forms, and this is a version of the Hochschild-Kostant-Rosenberg theorem.
With the Hochschild cohomology framing,

Z(S1) = HH•(Coh(M)) = Γ(Λ•(T )) (7)

is polyvector fields, and this is another version of the Hochschild-Kostant-Rosenberg
theorem. This is a commutative dga, but it also has a bracket, the Schouten-Nijenhius
bracket, which gives it its E2-algebra structure; this is a version of the Deligne conjecture.

If we have an oriented TFT, so M is Calabi-Yau, then we can evaluate Z on a 2-sphere,
and we get

Z(S2) = vol(M). (8)

We also have that Z(T 2) is the dimension of Z(S1), or

Z(T 2) = χ(⊕Hp,q) (9)

This is a consistency check on some claims about reductions of Theory X: X[S2×T 2×Σ]
should be the volume of LocG(Σ), and we can get this from reducing X[Σ× T 2] (geometric
Langlands B-model on HitchG(Σ)) on S2 or from reducing S2×T 2 (Yang-Mills-Higgs) on Σ.

Now, as the free loop space, Z(S1) = LM = [S1,M ] admits an action of S1. How should
we interpret this? Homologically it looks like an action of the group algebra of chains

C•(S
1)⊗O(LM)→ O(LM). (10)

Passing to homology, this gives an odd vector field on LM , or a derivation on differential
forms. There is an obvious candidate, which is the de Rham differential. Taking (derived /
homotopy) invariants of this vector field will give us

Z(S1)S1 = HC−(M) = Γ(BS1, Z(S1)). (11)

Here HC− denotes negative cyclic homology. The third description of taking invariants
tells us that we get extra structure, namely an action of cochains C•(BS1) ∼= C[ε] where
|ε| = 2. Setting ε = 0 gives Z(S1), whereas setting ε = 1 gives de Rham cohomology. But
setting ε = 1 makes no sense because ε has mass, or more formally because it has a nontrivial
grading. We really have a family over the line, where at 0 we get differential forms and at
nonzero values we get de Rham cohomology.

From here what we can do is to invert ε. This has the effect of only letting us recover de
Rham cohomology with its Z2-grading. This is periodic cyclic homology HP (M).

Q: in what sense is ε a mass parameter?
A: most simply, it has a nonzero grading. The mass parameters that appear in the

other talks can be interpreted in terms of equivariant cohomologies as above, where we were
doing S1-equivariant cohomology, and in particular taking various limits in ε correspond to
equivariant localization and so forth.
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