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1 Introduction: What is AdS/CFT?

This course is about AdS/CFT: a surprising “correspondence” between

Theories of quantum gravity

in d+ 1 dimensions
←→

Non-gravitational QFTs

on the d-dimensional boundary.

In its most basic but also precise examples, the correspondence is between quantum gravities
on a specific background, anti-de-Sitter space, and conformal QFTs.

There are various indications that there should be such a correspondence. Let us mention
three basic arguments.

• One argument comes from considering the large N behavior of certain QFTs. This
suggests the appearance of strings, whose low energy limit is a gravitational theory.

• Another argument comes from the holographic principle. The Bekenstein bound states
that the maximal entropy in a region of space is

Smax =
A

4GN

,

as otherwise one could lower the entropy by forming a black hole and this would violate
the second law of thermodynamics.1 This suggests that the physics can be described
by a theory living on the boundary.

• A third argument is that quantum gravity does not have local gauge-invariant operators
(only approximate ones), thus the observables should be at the boundary of spacetime.

Notice that if such a correspondence is true, it should necessarily relate regimes in which
at least one of the two sides is strongly coupled. If both were weakly coupled, we could “see”
whether the theory has almost-free gauge bosons and/or gravitons (much in the same way
as we measure photons and, in principle, gravitons).

Indeed, AdS/CFT is one of the finest achievements of string theory in the last decade:
one can use holography to investigate strongly-coupled quantum field theories. One crucial
aspect of the correspondence is the possibility of computing quantum effects in a strongly-
coupled field theory using a classical gravitational theory. This has deep consequences that
go far beyond string theory.

Originally introduced to study the quantum behaviour of scale invariant theories, the cor-
respondence has been extended to non-conformal theories, where it gives an explanation for
confinement and chiral symmetry breaking. It has also been used to study non-equilibrium
phenomena in strongly coupled plasmas, and applied to condensed matter systems.

1The Bekenstein bound [Bek81] is S ≤ 2πrE, where r is the size of the system and E its energy. For
given radius, the maximal possible amount of energy that can fit into a sphere is the mass of a Schwarzschild
black hole, and rd−3

s ∼ GNE. For the maximal value of the energy, the bound is given by the area of the
horizon.
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2 Large N limits

Certain classes of theories simplify when we take a large number of fields, or a large gauge
group, or large central charges.

2.1 Vector theories

Vector theories are characterized by having fields that transform as vectors of an SO(N)
symmetry.

The 2d O(N) model consists of N real fields ni, with i = 1, . . . , N , transforming in the
fundamental representation of O(N), with the classical constraint that ~n2 = 1. In other
words, this is a NLSM with target SN−1 and Lagrangian

S =
1

2g2
0

∫
d2x (∂~n)2 with ~n2 = 1 . (2.1)

To understand the large N limit, we introduce a Lagrange multiplier field λ that enforces
the constraint:

S =
1

2g2
0

∫
d2x

[
(∂~n)2 + λ(~n2 − 1)

]
. (2.2)

Since now the fields ni have linear target and appear quadratically, they can be integrated
out exactly (the Gaussian path-integral can be performed exactly):∫

Dni e
− 1

2g20
niOni

=
c

√
detON

= c e−
N
2

log detO with O = −∂2
x + λ(x) . (2.3)

Thus the effective action for λ is

S =
N

2

[
log det(−∂2 + λ)− 1

g2
0N

∫
d2xλ

]
. (2.4)

We see two things. 1) In the large N limit, the theory becomes semiclassical (large action).
2) At large N , the effective coupling is g2

0N (called the ’t Hooft coupling) and we should
keep it fixed as N →∞.

Since the theory is semiclassical, we can compute the VEV2 of λ in the saddle-point
approximation ∂S/∂λ = 0. Use

∂

∂λ
log detO =

1

detO
detO TrO−1∂O

∂λ
= TrO−1∂O

∂λ
. (2.5)

The saddle-point equation becomes

1 = Ng2
0

∫
d2p

(2π)2

1

p2 + λ
=
Ng2

0

4π
log
(
p2 + λ

)∣∣∣cut-off

0
(2.6)

2Here we just compute the VEV, so we assume that λ is constant.
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We find the VEV of λ:

λ =
Λ2

e
4π

Ng20 − 1
' Λ2e

− 4π

Ng20(Λ) (2.7)

in terms of the renormalized running coupling3 g0(Λ) (the last approximation is good for
Ng2

0(Λ) � 1). In particular, we see that the theory is asymptotically free: imposing inde-
pendence on the cut-off Λ we get

Ng2
0(Λ) =

4π

log
(
1 + Λ2

λ

) . (2.8)

Notice however that, at least in this approximation, Ng2
0 does not diverge at any finite energy

scale.

Going back to the action (2.2), the VEV for λ gives a positive mass to ni. Thus the
theory is gapped, the VEV for ni is zero and the symmetry O(N) is unbroken. Indeed in
two dimensions one cannot break continuous symmetries spontaneously.4

In many respects, this theory is similar to 4d QCD: it is asymptotically free; it has a mass
gap; it has a largeN expansion in which the mass gap persists and the gap is non-perturbative
in g2

0N .

Addendum. We can consider the version with potential:

S[ϕ] = −1

2

∫
ddx
(
∂µ~ϕ · ∂µ~ϕ+m2~ϕ · ~ϕ− λ

2n
(~ϕ · ~ϕ)2

)
, (2.9)

where ~ϕ is a real vector with n components. We integrate-in the field σ:

S[ϕ, σ] = −1

2

∫
ddx
(
∂µ~ϕ · ∂µ~ϕ+m2~ϕ · ~ϕ+ σ ~ϕ · ~ϕ+

n

2λ
σ2
)
. (2.10)

Now ~ϕ can be integrated out exactly, and we have n copies of the same system:

S[σ] = −n
2

[ ∫
ddx

σ2

2λ
+ Tr log(−∂2 +m2 + σ)

]
. (2.11)

2.2 4d YM at large N

Yang-Mills in 4d has no dimensionless coupling: the gauge coupling is classically marginal
but quantum mechanically it is dimensionally transmuted into ΛQCD which is a mass scale.

3This g0(Λ) is the curvature of the target of the NLSM: if we canonically normalize ~n, then ~n2 = 1/g2
0 .

Thus what we have found is the running of the curvature.
4In dimension d > 2 the result is different. The coupling is dimensionful and 1/g0 ≡ R with dimension

mass
d−2
2 is the radius of SN−1. The saddle-point equation becomes 1 ' Ng2

0Λd−2, implying that (Ng2
0)−

1
d−2

is actually the cutoff of the theory, and compatible with λ = 0. Below the cutoff the theory is an IR free

NLSM (field oscillations are of order E
d−2
2 � R) in agreement with symmetry breaking, while above the

cutoff the effective theory is not valid.
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Thus, there is no small parameter to expand on to understand the physics at energies around
ΛQCD. However, if we consider gauge group SU(N), we can play with the parameter N and
take the limit N →∞.

How do we scale g as we send N →∞? In an asymptotically free theory, it is natural to
keep ΛQCD fixed. The one-loop beta function is

∂g

∂ log µ
= −11

3
N

g3

16π2
+O(g5) . (2.12)

In order to have the leading terms of the same order, we should keep fixed the ’t Hooft
coupling

λ = g2N . (2.13)

Then
∂λ

∂ log µ
= −22

3

λ2

16π2
+O

(
λ3
)
. (2.14)

Again, we are led to the ’t Hooft limit.

The same computation is true if we add matter fields in the adjoint representation, at
least as long as it is asymptotically free.

2.3 Matrix theories

Matrix theories are characterized by having fields that transform in the adjoint representation
of, say, U(N). This could be a pure U(N) gauge theory, or with the addition of fields in the
adjoint representation.

Consider a theory with a matter field which is a Hermitian matrix M . The Lagrangian is,
schematically,

L =
1

g2
Tr
[
(∂M)2 + V (M)

]
=

1

g2
Tr
[
(∂M)2 + c2M

2 + c3M
3 + . . .

]
. (2.15)

This action is U(N) invariant, as M → UMU †.

This could come from a YM theory: in this case M is the gauge boson and in canonical
normalization one would write

F ∼ ∂A+ gA2 ⇒ L ∼ (∂A)2 + g ∂AA2 + g2A4 . (2.16)

Then redefine A = M/g. It could also be a theory with matter fields (fermions and/or
bosons) in the adjoint, as long as the interactions have the correct scaling with g.

We ask what is the large N limit. Naively,

1

g2
=
N

λ
(2.17)
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so one might conclude that for N →∞ with λ fixed the theory is classical, but this is tricky
because also the number of components diverges.

To draw Feynman diagrams, we employ a double-line notation to keep track of the matrix
indices:

i

j

l

k

For a theory of U(N) or SU(N) matrices, the propagators are5

〈M i
jM

k
l 〉U(N) ∝ δilδ

k
j , 〈M i

jM
k
l 〉SU(N) ∝ δilδ

k
j −

1

N
δijδ

k
l (2.18)

respectively. Since for SU(N) the second term is subleading, we can safely neglect it a
leading order.

Thus given a diagram, each propagator gives a factor g2 and each vertex a factor 1/g2.
Each closed line represents a sum over matrix indices, therefore gives a factor of N . Thus,
each diagram contributes with

(g2)# Prop − # VertN# Closed lines . (2.19)

We can transform a diagram into a two-dimensional surface, completing the closed lines with
non-intersecting faces. E.g.:

We have
# Prop → # Edges , # Closed lines → # Faces . (2.20)

Since the double-lines are oriented, the resulting surface is oriented. Consider first the case
of connected vacuum diagrams. The resulting surface is a compact, closed, oriented surface.
We can write

N# Faces - # Edges + # Vert(g2N)α = N2−2h(g2N)α , α = # Edges - # Vert , (2.21)

where h is the genus of the 2d surface. Thus, in a large N limit in which N → ∞ with
λ = g2N fixed (’t Hooft limit), planar diagrams dominate while higher-genus diagrams are
suppressed. The theory is not classical! But still it simplifies.

5The second one is derived imposing that the propagator annihilates M i
j = δij .
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Notice that α ≥ 0: for instance, if all vertices are k-valent, then

# Edges =
k ·# Vert

2
≥ # Vert . (2.22)

The sum of all connected vacuum planar diagrams gives

F0 = N2 f(0)(g
2N) ,

while the full partition function is

logZ = F =
∞∑
h=0

N2−2h f(h)(g
2N) . (2.23)

One may worry that the planar graphs give a diverging contribution to the free energy.
However notice that N2 is precisely the order of the Lagrangian (the tree level contribution).

As the ’t Hooft coupling λ = g2N becomes large, a large number of planar diagrams
contribute and they become dense on the sphere. So we could think that they describe a
discretized version of the worldsheet of some string theory. This argument is valid for any
matrix theory, but it does not tell us what the worldsheet theory is. The argument tells
us that we can expect a large N matrix theory to behave as a string theory, which in turn
includes gravity. Moreover 1

N
plays the role of the string coupling gs (which weights genera),

thus at large N we might expect string loop corrections to be negligible.

Now consider correlation functions. Consider the so-called “single-trace operators”:6

gauge-invariant operators that cannot be written as products of other gauge-invariant oper-
ators:

O = TrP (M) . (2.24)

To compute correlation function, we simply add them to the Lagrangian:

L → L+
∑
j

ηjOj , (2.25)

so

L =
N

λ
Tr
[
(∂M)2 + V (M) +

ληj
N
Pj(M)

]
. (2.26)

If we keep η/N fixed, we have the same large N scaling as before, thus the new partition
function is dominated by planar diagrams and

Z = eN
2f(λ,

ηj
N )+O(1) . (2.27)

6For multi-trace operators, the connected 2-point function in general scales with some positive power of
N . Therefore the operators have to be normalized dividing by some powers of N , and then the correlators
are suppressed.
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To compute correlation functions, we take derivatives with respect to ηj, thus

〈Oj〉 =
1

Z

∂Z

∂ηj
= N fj +O(1/N)

〈OjOk〉 =
1

Z

∂2Z

∂ηj∂ηk
= N2fjfk + fjk +O(1/N2) = 〈Oj〉 〈Ok〉+O(1)

(2.28)

etc. . . where fj = ∂f/∂xj etc. . . We see that the dominant contribution comes from discon-
nected diagrams (1-point functions).

If we look at connected diagrams instead, we find

〈Oj1 . . .Ojn〉c =
∂nF

∂ηj1 . . . ∂ηjn
= N2−nfj1...jn . (2.29)

Restricting to connected diagrams, the operators are correctly normalized (2-point functions
are of order 1) and the 3-point function goes like 1/N . Thus, we can interpret the operators
Oj as vertex operator insertions on the string worldsheet, if 1

N
is the string coupling gs.

The argument generalizes in many ways.

If we add matter in the fundamental representation of U(N), we have propagators with a
single line. This gives rise to diagrams with boundaries. This suggests that at large N one
gets a string theory with open strings (and D-branes).

For SO(N) and USp(N) gauge group, the adjoint representation can be represented by
the product of two fundamental representations, and the fundamental is real. So there is a
double-line notation with no arrows, leading to non-orientable surfaces. This suggests that
one could get non-orientable strings.

2.4 Extra dimension

The previous arguments suggest that certain gauge theories at large N should behave as
string theories. One might think that from a D-dimensional gauge theory one gets a D-
dimensional string theory on flat space, but perturbative string theory is consistent quantum
mechanically only for D = 26 (or D = 10 for the superstring).

The reason is that we start with the Polyakov action

S ∼ 1

4π

∫
d2σ
√
η ηab∂aX∂bX . (2.30)

This action is classically invariant under Weyl rescaling

ηab → η̂ab = eφηab . (2.31)

However this is not so quantum mechanically. After introducing the ghosts b, c to fix the
gauge under diffeomorphisms, we are left with 2d CFT with central charge c = D − 26.7

7The bc system with weights (λ, 0) and (1 − λ, 0) has c = −3(2λ − 1)2 + 1. To fix diffeomorphisms one
needs λ = 2.

9



Thus there is a conformal anomaly

T aa = − c

12
R(2) =

26−D
12

R(2) . (2.32)

The critical string lives in a number of dimensions (here D = 26) such that there is no
conformal anomaly.

The non-critical string lives in a smaller number of dimensions. Since Weyl invariance is
broken, in general a cosmological constant is produced by renormalization. Under a variation
δηab = δφ ηab the variation of the action is

δS =

∫
d2σ
√
η δηab

(
Tab + const

)
=

26−D
12

∫
d2σ
√
η δφ (R(2) + µ) . (2.33)

We should integrate this variation for finite φ. Using

R̂(2) = e−φ
[
R(2) −�φ

]
,

√
η̂ = eφ

√
η , (2.34)

we get

Seff(eφηab)− Seff(ηab) =
26−D

48π

∫
d2σ
√
η
(1

2
(∇φ)2 +R(2)φ+ µeφ

)
(2.35)

This is called the Liouville action.

String theory in D < 26 is called “non-critical” string theory. We do not know how
to quantize non-critical strings in general. But the message of this computation is that,
quantum mechanically, the theory depends on the conformal factor, and the path-integral
over φ is like adding a new dimension. We see the emergence of a new dimension.

What is the geometry of the resulting space? Again, it cannot be flat (unless D = 25).
It should have D-dimensional Poincaré symmetry. Let us take D = 4 for simplicity. The
metric should be

ds2 = w(z)2
(
dx2

3,1 + dz2
)
. (2.36)

Now, suppose we are dealing with a scale-invariant QFT, i.e. invariant under

x→ λx . (2.37)

Since string theory has a scale, the string tension, the only way that it is invariant under
the rescaling of the target is that the rescaling is an isometry: z → λz and w = R/z. We
are led to a spacetime

ds2 = R2
dx2

3,1 + dz2

z2
(2.38)

which is called anti-de-Sitter. This space has negative curvature, and indeed it is the most
symmetric space with negative curvature. It is the analytic continuation of the Euclidean
hyperbolic space.

These arguments suggest that the large N limit of certain D-dimensional QFTs with scale
invariance, could be described by strings moving in AdSD+1 spacetime.
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3 Conformal symmetry

Let us review some basic facts about CFTs. More details can be found in Section 2 of
[AGM+00], Section 1 of [Gin88], and Section 2 of [Min98].

It is widely believed8 (see [DKST15, DFK+16]) that unitary interacting scale-invariant
theories are also invariant under the full conformal group, which is a simple group including
scale invariance and Poincaré invariance. The change in the action due to a change in the
metric is

δS =

∫
ddx
√
g T µνδgµν . (3.1)

Under an infinitesimal coordinate transformation xµ → xµ + ζµ(x), the metric changes by

δgµν = ∇µζν +∇νζµ . (3.2)

If ζµ generates an isometry, then the metric is left invariant: δgµν = 0 and ζµ is called a
Killing vector. The infinitesimal scale transformation

xµ → (1 + δλ)xµ (3.3)

gives δgµν = 2δλ gµν . A sufficient condition to have scale invariance is9

T µµ = 0 . (3.4)

Then the action is also invariant under coordinate transformations such that δgµν = h(x) gµν
with arbitrary h. Coordinate transformations of this type are called conformal transforma-
tions.

The conformal algebra of Minkowski space in d Lorentzian dimensions is given by the
following infinitesimal transformations and their generators:

δxµ = aµ Pµ translations
ωµνxν Mµν (ωµν = −ωνµ) Lorentz rotations
λxµ D dilations

bµx2 − 2xµ(bx) Kµ special conformal .

(3.5)

The generators are constructed (by the standard Noether procedure) from currents, and all
currents are constructed with the stress tensor:

Jconf
µ = Tµν δx

ν , Qconf =

∫
dd−1x Jconf

0 . (3.6)

In particular Pµ is conserved because ∂µTµν = 0, Mµν because additionally T[µν] = 0, D
because T µµ = 0, and then also conservation of Kµ follows.

8An interesting counterexample is given by free Maxwell theory in d 6= 4 [ESNR11].
9A necessary condition is that the integral of the trace is zero.
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The finite form of special conformal transformations is

xµ → xµ + bµx2

1 + 2xνbν + b2x2
. (3.7)

In the conformal group there is also a discrete element, the inversion:10

xµ → xµ

x2
. (3.8)

The conformal generators satisfy the algebra

[Mµν , D] = 0 [D,Pµ] = −iPµ
[Mµν , Pρ] = −2i ηρ[µPν] [D,Kµ] = iKµ

[Mµν , Kρ] = −2i ηρ[µKν] [Pµ, Kν ] = 2iMµν − 2iηµνD

[Mµν ,Mρσ] = −2i ηρ[µMν]σ − 2i ρσ[µMρ|ν]

(3.9)

and the other ones vanishing. This algebra is isomorphic to the algebra of SO(d, 2).11 We
can put it in the standard form, with signature (−,+, . . . ,+,−), with the generators Jab
given by

Jµν = Mµν , Jµd =
Kµ − Pµ

2
, Jµ,d+1 =

Kµ + Pµ
2

, Jd,d+1 = D . (3.10)

If we decompose
SO(d, 2)→ SO(d− 1, 1)× SO(1, 1) (3.11)

then Mµν generates SO(d− 1, 1) (Lorentz group) and D generates SO(1, 1) ∼= R.

A special conformal transformation with parameter bµ maps the point xµ = −bµ/b2 to
infinity (alternatively, the inversion maps the origin to infinity). This suggests that the
conformal group acts more nicely if we compactify the space adding the point at infinity,
namely taking Sd−1×R. Indeed the maximal compact subgroup of SO(d, 2) is SO(d)×SO(2),
and a covering of it (or its algebra)12 acts in the obvious way on Sd−1 × R. The vacuum of
a CFT is invariant under all generators.

It is often useful to study the CFT in Euclidean signature on Rd. The Euclidean conformal
group is SO(d + 1, 1). In this case the compactification of Rd with the point at infinity is
Sd, acted upon by the maximal compact subgroup SO(d+ 1).

If the trace of the stress tensor is zero, then the theory is also invariant under Weyl
transformations

gµν → eφ(x)gµν (3.12)

10The composition of inversion, translations, inversion gives special conformal transformations. Then the
commutator of Kµ and Pµ gives D, after removing Mµν . Thus the conformal group can be generated by
adding the inversion to the Poincaré group.

11Thus the conformal group is some covering of SO(d, 2). Adding the inversion, one gets some covering of
O(d, 2).

12The relevant covering of SO(2) is R, with the same algebra, and it acts on R by translations.
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for arbitrary φ: these are not only coordinate transformations, but rather changes of the
manifold (the curvature invariants change). In the quantum theory this symmetry has a
(calculable) anomaly.

3.1 Representations, primary fields

To construct representations of the conformal group SO(d, 2) in Rd−1,1 we can decompose
into representations of

SO(d− 1, 1)× SO(1, 1) .

The first factor is the Lorentz group, while the second one is dilations D

xµ → λxµ . (3.13)

D has eigenvalues −i∆, and fields or operators which are eigenfunctions transform as

φ(x)→ λ∆ φ(λx) . (3.14)

These are called quasi-primary fields. The operators Pµ (i.e. derivatives) raise the eigenvalue
of D, while Kµ lower it. In unitary field theories there is a lower bound on the dimension of
a field, depending on its Lorentz representation, called unitarity bound (see below).

Thus unitary representations are “lowest weight representations”. We start with the op-
erators with the lowest dimension, annihilated by Kµ (at x = 0), and in some Lorentz
representation. These are called primary operators :

primary: [Kµ,Φ(0)] = 0 . (3.15)

The representation is infinite-dimensional, and all other operators are constructed with the
action of Pµ: they are called descendants. The action of the conformal group is

[Pµ,Φ(x)] = i∂µΦ(x)

[Mµν ,Φ(x)] =
[
i(xµ∂ν − xν∂µ) + Σµν

]
Φ(x)

[D,Φ(x)] = i
[
xµ∂µ −∆

]
Φ(x)

[Kµ,Φ(x)] =
[
i(x2∂µ − 2xµx

ν∂ν + 2xµ∆)− 2xνΣµν

]
Φ(x) .

(3.16)

where Σµν are the matrices of a finite-dimensional representation of the Lorentz group, acting
on the components of Φ.

Another possibility is to go in radial quantization on Sd−1 × R, and then decompose into
representations of

SO(d)× SO(2) .

In this case the generator of SO(2) is J0,d+1 = (K0 +P0)/2 and is called “conformal energy”.
This decomposition looks like the analytic continuation of the previous one.
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3.2 Unitarity bounds

The conformal group in Lorentzian signature is SO(d, 2), and in a unitary theory the gener-
ators are Hermitian:

M †
µν = Mµν , P †µ = Pµ , K†µ = Kµ , D† = D . (3.17)

The representation in terms of fields was given before. We are after unitary representations
in Lorentzian signature, however it is useful to work in radial quantization, therefore we
rotate to Euclidean signature and the conformal algebra is so(d + 1, 1). The generators Jab
were defined in (3.10). To obtain so(d+ 1, 1), set

M ′
µν = Jµν , D′ = iJ−1,0 , P ′µ = Jµ,−1 + iJµ,0 , K ′µ = Jµ,−1 − iJµ,0 . (3.18)

These generators satisfy

M ′†
µν = M ′

µν , P ′†µ = K ′µ , K ′†µ = P ′µ , D′† = −D′ . (3.19)

These relations can be understood as follows. In radial quantization, the spacelike foliation
is in terms of Sd−1, and it is preserved by M ′

µν which is then Hermitian. It is not preserved
by P ′µ, which is not Hermitian. In Euclidean time D′ is anti-Hermitian. Thus, we construct
representations of so(d+ 1, 1) such that they are unitary in Lorentzian signature.

Consider the state |Φ〉 corresponding to Φ(0):∣∣P ′µ|Φ〉∣∣2 ≥ 0 and = 0 for P ′µ|Φ〉 = 0 . (3.20)

This implies ∑
µ

〈Φ|K ′µP ′µ|Φ〉 = 2〈Φ|∆− iM ′µ
µ︸︷︷︸

=0

|Φ〉 . (3.21)

We obtain that ∆ ≥ 0, and ∆ = 0 if and only if DµΦ = 0, i.e., if Φ is the identity operator.

More generally, 〈Φ|K ′µP ′ν |Φ〉 must be a semi-positive-definite matrix. One can prove that:

• Spinor: ∆ ≥ d−1
2

and ∆ = d−1
2

if and only if 6∂Ψ = 0 (free fermion field).

• Vector: ∆ ≥ d− 1 and ∆ = d− 1 if and only if ∂µJµ = 0 (conserved current).

• Spin 2: ∆ ≥ d and ∆ = d if and only if ∂µTµν = 0 (conserved stress tensor).

For a scalar operator, it is useful to go one further level up:∣∣P ′µP ′µ|Φ〉∣∣2 ≥ 0 ⇒ ∆
(

∆− d− 2

2

)
≥ 0 . (3.22)

Thus:

• Scalar: ∆ ≥ d−2
2

and ∆ = d−2
2

if and only if ∂2Φ = 0 (free scalar field).
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Any Poincaré-invariant local quantum field theory has a symmetric conserved stress tensor
Tµν .

13 In a CFT, the dimension of Tµν is fixed to be ∆ = d. Similarly, whenever there are
continuous global symmetries, there are conserved currents Jµ with dimension ∆ = d − 1.
The scaling dimensions of the other operators are not fixed by conformal symmetry, and
receive quantum corrections. For unitary theories, unitarity bounds say that:

• For scalar fields:

scalar ∆ ≥ d− 2

2
(3.23)

and there is equality if and only if the field is free.

• For vector operators Oµ: ∆ ≥ d − 1 and there is equality if and only if ∂µOµ = 0.
Similarly, for spin-2 symmetric operators Oµν : ∆ ≥ d and there is equality if and only
if ∂µOµν = 0.

3.3 OPE and correlation functions

Conformal symmetry strongly constrains correlation functions. The 2-point functions are
completely fixed, up to a rescaling (redefinition of the operators). The 2-point functions of
primary operators with different dimension vanish. For primary scalar fields of dimension
∆:

〈Φi(x)Φj(y)〉 =
δij

|x− y|2∆
(3.24)

where the operators have been normalized and diagonalized, and similarly for higher spin.
The 2-point functions of descendants are obtained by taking derivatives. In particular for
two fields in the same conformal family:

〈φi(x)φj(y)〉 =
cij

|x− y|∆i+∆j
, (3.25)

with ∆i −∆j ∈ Z.

The 3-point functions of primary operators Φi, Φj, Φk are completely determined by
“structure constants” Cijk. For scalar primary fields, normalized to have canonical 2-point
function:

〈Φi(x1)Φj(x2)Φk(x3)〉 =
Cijk

|x1 − x2|∆1+∆2−∆3|x2 − x3|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2
, (3.26)

and similarly for higher spin. The 3-point functions involving descendants are obtained by
taking derivatives.

Higher point functions are functions of the conformal invariants constructed out of the xi,
not determined by the conformal symmetry alone. For instance, out of 4 points one constructs

13Invariance under translations and locality give, by Noether theorem, a conserved local stress tensor.
Then invariance under Lorentz rotations assures that it can be improved to a symmetric tensor.
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one complex “cross ratio”,14 and with more points more invariants (whose number depends
on the number of points and the number of dimensions).

It turns out that the correlation functions of local operators in a CFT are all completely
fixed, once we know the spectrum of primaries and their 3-point functions. This is for two
reasons.

• The 3-point functions involving descendants are fixed by the 3-point functions of pri-
maries: just act with derivatives.

• Correlators can be decomposed using the OPE.

The operator product expansion (OPE) is a general property of local QFTs, but it is partic-
ularly powerful in CFTs. It claims that the product of two operators at nearby points can
be rewritten as a series of operators at one point only:

Oi(x)Oj(y) =
∑
k

ckij(x− y)Ok(y) (3.27)

and conformal symmetry fixes

ckij(x− y) =
ckij

|x− y|∆i+∆j−∆k
. (3.28)

Notice that the sum includes descendants and higher-spin operators! This is an operator
equation, valid inside any correlation function. In CFTs, the series that one obtains for
correlation functions are convergent until the circle around y hits another operator.

The coefficients of the OPE algebra are fixed by the 3-point functions of primaries.

〈Φi(x)Φj(y)Φk(z)〉 = 〈Φi(x)
∑
`

c`jk
|y − z|∆j+∆k−∆`

φ`(z)〉

=
∑
`

c`jk
|y − z|∆j+∆k−∆`

ci`
|x− z|∆i+∆`

(3.29)

The only operators with non-vanishing 2-point function with Φi are Φi and its descendants,
i.e. φ` must be in the conformal family of Φi. Then ∆` = ∆i + integer and cii = 1 for the
primary. Then, for y → z:

〈Φi(x)Φj(y)Φk(z)〉 =
cijk

|x− z|2∆i |y − z|∆j+∆k−∆i
+O

( |y − z|
|x− y|

)
. (3.30)

14One way to construct the cross ratio is the following. Take 3 points: they lie on a plane. By a conformal
transformation they can be placed at 0, 1, ∞. Now the fourth point defines a plane (which can be rotated
to a canonical position), and the position z of the fourth point on that plane is the ratio.
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On the other hand we can expand the 3-point function of primaries for y → z:

Cijk
|x− y|∆i+∆j−∆k |x− z|∆i+∆k−∆j |y − z|∆j+∆k−∆i

=
Cijk

|x− z|2∆i |y − z|∆j+∆k−∆i
+O

( |y − z|
|x− y|

)
.

(3.31)
It follows that the coefficients for primaries in the OPE are the same (with normalized
operators) as the 3-point functions. All other coefficients can be fixed as well.

Another property of CFTs is the state-operator correspondence:

states on Sd−1 = local operators on Rd . (3.32)

The correspondence is established using radial quantization: one regards time as the distance
from the origin, and space as the spheres Sd−1 around the origin. By a Weyl transformation

ds2 = dr2 + r2dΩ2
d−1 Rd → Sd−1 × R ds2 = dτ 2 + dΩ2

d−1 (3.33)

dividing by r2 and setting r = eτ . A rescaling of r corresponds to a shift in τ , and since
the Hamiltonian generates time translations, the dimension of the operator in Rd equals the
energy of the state on Sd−1:

∆ = Ecylinder . (3.34)

With no insertions, the state created on Sd−1 is the conformal vacuum |0〉. Given an
operator O, the corresponding state |O〉 is the one created on Sd−1 around O(0):

|O〉 = O(0)|0〉 . (3.35)

As a functional Ψ
(
φ(ω)

)
of field configurations on Sd−1, it is given by the path-integral on

the ball with O at the origin and boundary conditions φ(ω) on the boundary:

Ψ
(
φ(ω)

)
=

∫
Φ=φ on Sd−1

DΦO(0) e−S[Φ] . (3.36)

On the contrary, if we think of a state as a functional of field configurations, as we shrink
the ball to zero size using conformal invariance we obtain a local operator. In fact, we have
defined a local operator if we know how to compute its correlation functions. To compute
the path-integral with insertions of O, we cut small balls around the insertion points and we
define their contribution to the path-integral as Ψ

(
φ(ω)

)
, where φ(ω) is the field configuration

on the boundary of the ball.

3.4 Superconformal algebras

The bosonic Poincaré algebra is extended, by the addition of fermionic generators, into
superalgebras. If we also add conformal generators, we obtain superconformal algebras.
They only exist in some dimensions — d ≤ 6 — and for some number of supersymmetries
(classified by Nahm [Nah78], see also [Min98] and [VP99]). They are constrained by the
following requirements:
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• it contains both the conformal algebra so(d, 2) and the Poincaré supersymmetry su-
peralgebra;

• the fermionic generators are in the spinor representation of so(d, 2).

These requirement are quite restrictive.

We can think of a superalgebra as being generated by matrices T that act on a superspace
X :

TX =

(
A B
C D

)(
x
θ

)
. (3.37)

The superspace is Z2 graded by the fermion number, and so are the homeomorphisms. Thus
A,D are bosonic, while B,C are fermionic and anticommute. The structure of a superalgebra
is

[Tb, Tb] = Tb , [Tb, Tf ] = Tf , {Tf , Tf} = Tb . (3.38)

Let us look at superconformal algebras.

In addition to the conformal generators Pµ, Mµν , D, Kµ and the supersymmetry generators
Qα, there are:

• generators Sα of “conformal supersymmetries”, as many as the Q’s, arising from the
commutators of K with Q;

• R-symmetry generators forming a Lie algebra, in the anti-commutator of Q and S.

Both types of supercharges are constructed out of the supersymmetry current Sµα. More
specifically the currents for Qα and Sα are

Sµα and γραβS
β
µxρ (3.39)

respectively. Conservation follows from ∂µSµα = γµαβS
β
µ = 0. The second quantity is called

“gamma trace”.

The superconformal algebra is, schematically:

[D,Q] = − i
2
Q [D,S] =

i

2
S [K,Q] ' S [P, S] ' Q

{Q,Q} ' P {S, S} ' K {Q,S} 'M +D +R .
(3.40)

In particular the R-symmetry is part of the superconformal algebra, not just an outer auto-
morphism as for supersymmetry, and in particular it must be there.

In a generic superalgebra that contains so(d, 2), the fermionic generators are in the vector
representation. The requirement that they are in the spinor representation is quite restrictive
in d ≥ 3, leading the following short list:

d = 3 : osp(N|4) ⊃ so(N )× sp(4) ' so(N )× so(3, 2)

d = 4 : su(2, 2|N ) ⊃ su(2, 2)× u(N ) ' so(4, 2)× u(N ) N 6= 4

psu(2, 2|4) ⊃ su(2, 2)× su(4) ' so(4, 2)× su(4) N = 4

d = 5 : f(4) ⊃ so(5, 2)× su(2) N = 1

d = 6 : osp(6, 2|N ) ⊃ so(6, 2)× sp(2N )

(3.41)
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For free field theories with no gravity, the maximal number of supersymmetries is 16. It is
believed to be the same for interacting theories. In the case of SCFTs, one can rigorously
prove [CDI19] that the existence of a stress tensor multiplet (containing Tµν , Sµα and Rµ

from which the superconformal charges are constructed) and the requirement that the theory
is not free, limit15

NQ ≤ 16 (3.42)

in d ≥ 3, where NQ is the number of Poincaré supercharges. Therefore, the maximal number
of fermionic generators in a superconformal algebra is 32. Theories with such a superconfor-
mal algebra are known in d = 3, 4, 6.

d = 3 : OSp(8|4) ⊃ SO(8)× Sp(4) ' SO(8)× SO(3, 2)

d = 4 : PSU(2, 2|4) ⊃ SU(2, 2)× SU(4) ' SO(4, 2)× SO(6)

d = 6 : OSp(8∗|4) ⊃ SO∗(8)× USp(4) ' SO(6, 2)× SO(5) .

(3.43)

Primary fields of the superconformal algebras are defined to be annihilated by Kµ and Sα:

superconformal primary : [Kµ,Φ(0)] = [Sα,Φ(0)] = 0 . (3.44)

A superconformal multiplet can include multiple conformal-primaries (primaries of the con-
formal group alone), obtained by acting with Qα. There can also be special representations,
called chiral primary operators, which are annihilated also by some of the Q’s:

chiral primary : [K,Φ] = [S,Φ] = [Q′,Φ] = 0 (3.45)

where ′ reminds us that it is just some, not all, Q’s. These representations are shorter:
contain less conformal-primaries. A special property is that their dimension is fixed by the
R-symmetry representation (with no quantum corrections). This follows from vanishing of
some {Q,S} anticommutators.

Example: 4d N = 1 superconformal theories. The R-symmetry is U(1). A chiral field
which is a primary is also a chiral primary. Then

∆ =
3

2
R . (3.46)

15From the same requirement, one also excludes su(2, 2|4) as a superconformal algebra in d = 4, allowing
psu(2, 2|4) instead.
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4 Anti-de-Sitter space

Let us describe the space AdS and its conformal structure. AdS is a space with negative
curvature, and the effect of the negative curvature is to create a “conformal boundary”.
To give the idea, take the Euclidean case. To compactify Rd it is enough to add a “point
at infinity”, indeed Euclidean CFTs are naturally defined on Sd. Instead, the (d + 1)-
dimensional hyperbolic space (the Euclidean version of AdS) is conformally equivalent to a
disk Dd+1, which has a boundary Sd.

4.1 Conformal structures and Penrose diagrams

A very convenient way to understand the conformal and causal structure of a given spacetime,
is to use Penrose diagrams. One performs a Weyl transformation of spacetime such that the
transformed spacetime is “compact” (finite): the Penrose diagram is a diagram of the latter.
A Weyl transformation preserves the signature and angles, in particular light-rays (light-
like geodesics) remain at 45◦, and time-like and space-like directions remain such. Thus a
Penrose diagram correctly reproduces the causal structure of spacetime.16

Let us start with flat Minkowski spacetime, in particular R1,1:

ds2 = −dt2 + dx2 with −∞ < t, x < +∞ . (4.1)

The “diagram” of this spacetime is non-compact. Perform a change of coordinates:

t± x = tan
τ ± θ

2
with |τ ± θ| < π . (4.2)

Then we can “compactify” the space with a Weyl transformation:

ds2 = −dt2 + dx2 =
−dτ 2 + dθ2

4 cos2 τ+θ
2

cos2 τ−θ
2

Weyl−−→ −dτ 2 + dθ2 . (4.3)

16For a conformal theory, the Penrose diagram is a faithful representation of spacetime because the theory
is invariant under Weyl transformations. For a non-conformal theory, instead, it is a distorted representation
since distances are changed.
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θ

τ

π

π

−π

−π

t const

x const

The new coordinates (τ, θ) are well-defined at the asymptotic regions of spacetime, thus the
conformal compactification can be used to give a definition of asymptotic flatness :

A spacetime is “asymptotically flat” if it has the same boundary structure
as flat spacetime after conformal compactification.

The two corners (τ, θ) = (0,±π) correspond to the spatial infinities x = ±∞. By identify-
ing those two points, we can embed the image of R1,1 into the cylinder S1×R. In fact [LM75]
the correlation functions of a 2d CFT on R1,1 can be analytically continued to the whole
cylinder. In other words, a CFT is naturally defined on the entire cylinder S1 × R, while
R1,1 is just a patch of it.

The case of a general flat Minkowski space Rd−1,1 is similar. The metric is

ds2 = −dt2 + dr2 + r2dΩ2
d−2 =

−dτ 2 + dθ2 + sin2 θ dΩ2
d−2

4 cos2 τ+θ
2

cos2 τ−θ
2

(4.4)

with the change of coordinates

t± r = tan
τ ± θ

2
. (4.5)
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After removing the denominator by a Weyl transformation, we get half of the Penrose dia-
gram we had before:

θ

τ

π

π

0

−π

t const

r const

with 0 ≤ θ ≤ π. Each point represents a whole sphere Sd−2 of radius sin θ, which shrinks at
θ = 0, π. Thus (θ, Sd−2) combine into Sd−1. This patch can be embedded into Sd−1 × R.

Thus, the conformal “compactification” of Rd−1,1 is a wedge, which is naturally embedded
into Sd−1 × R.

4.2 AdS

Anti-de-Sitter is the most symmetric Lorentzian space with (constant) negative curvature.
It is a solution of Einstein equations with negative cosmological constant:

S =
1

16πGN

∫
dd+1x

√
g
(
R+ Λ

)
(take Λ > 0) (4.6)

leads to the Einstein equation

Rµν −
R
2
gµν =

Λ

2
gµν ⇒ R = −d+ 1

d− 1
Λ . (4.7)

As a metric space, AdSd+1 can be described by embedding an hyperboloid into Rd,2:

−X2
−1 −X2

0 +X2
1 + . . .+X2

d = −R2 in Rd,2 . (4.8)

Both the ambient space and the equation have SO(d, 2) isometry, thus the resulting space
has that isometry too. The metric is the one induced by

ds2 = −dX2
−1 − dX2

0 + dX2
1 + . . .+ dX2

d . (4.9)

We can solve the equation (parametrize the solutions) by

X−1 = R cosh ρ sin τ , X0 = R cosh ρ cos τ , Xi = R sinh ρΩi with
∑

Ω2
i = 1 .

(4.10)
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The induced metric is

ds2 = R2
(
− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2

d−1

)
. (4.11)

Although the ambient space had two “time directions”, the embedded AdS has one and it
is a standard Lorentzian spacetime.

What we have written is AdS in global coordinates (τ, ρ,Ωi), where ρ ≥ 0. However τ ∈ S1,
and thus it seems that there are closed time-like curves (which violates causality). To solve
the problem, we “unfold” τ :17 we take the universal covering space with τ ∈ R. This is what
we call global AdS.

To draw the Penrose diagram of AdS we redefine sinh ρ = tan θ with θ ∈ [0, π
2
):

ds2 =
R2

cos2 θ

(
− dτ 2 + dθ2 + sin2 θ dΩ2

d−1

)
. (4.12)

After removing the denominator, we have the ball Bd ×R (more precisely, the metric is the
one of the hemisphere times R). This space has a boundary: Sd−1 × R.

A spacetime is “asymptotically AdS” if it has the same boundary structure
as AdS after conformal compactification.

Notice that the boundary of conformally compactified AdSd+1 is equal to the conformal
compactification of Rd−1,1.

There is another useful parametrization of AdSd+1:

Xµ=0,...,d−1 =
R

z
xµ , X−1 =

R

2z

(
1 + |xµ|2 + z2

)
, Xd =

R

2z

(
1− |xµ|2 − z2

)
. (4.13)

In these coordinates the metric is

ds2 = R2 dz
2 + d~x2

z2
(4.14)

where ~x = (x0, xi). These are called Poincaré coordinates and only cover a portion of AdS.

17It is possible to unfold τ from S1 to R because, in this metric, the circle S1 never shrinks. Otherwise,
unfolding would introduce singularities at points where S1 shrank.

The fundamental group of SO+(p, q) (the connected component containing the identity) is the product
π1

(
SO(p)

)
× π1

(
SO(q)

)
. In particular SO(d, 2) has a covering extension by Z, which acts on the unfolded

manifold. Such a covering extension has no finite-dimensional faithful representations, and so it cannot be
represented as a matrix group. The case of SO(1, 2) ∼= SL(2,R)/Z2 is discussed in details in [Raw12].
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In AdS2:

θ = −π/2 θ = π/2

z = 0
z =∞

The boundary of the Poincaré patch is Rd−1,1.

The boundary of the Poincaré patch is at z = 0. At z = ∞ there is an horizon, because
the Killing vector ∂t has zero norm. It is not a singularity of the metric, and in fact the
patch can be embedded into the global coordinates where there is no horizon. In a loose
sense, it is an horizon because signals cannot come back (this is obvious from the Penrose
diagram in global coordinates), indeed it is called an “apparent horizon”.

The isometry of AdSd+1 is SO(d, 2), but it is not manifest in the metric description.

• In global coordinates, SO(d)× SO(2) is manifest. The universal cover of SO(2) is the
Killing vector ∂τ , which is the Hamiltonian on Sd−1 in field theory.

• In the Poincaré patch, SO(d−1, 1)×SO(1, 1) is manifest. The first one is the Lorentz
group of the boundary, while SO(1, 1) is dilations on the boundary and it is realized
as xµ → λxµ, z → λz.
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5 4d N = 4 SYM and strings on AdS5 × S5

We have argued that d-dimensional matrix QFTs at large N should/could be described by a
string theory (theory of gravity) in d+ 1 dimensions. In order to find examples, it is natural
to start with cases with maximal symmetry.

• On the QFT side, we consider conformal theories (the conformal group is larger than
Poincaré). We have argued that this should correspond to strings in AdSd+1.

Indeed the conformal group is SO(d, 2), which is also the isometry group of AdSd+1.

• On the QFT side, we consider supersymmetric theories. They have larger symmetry,
and quantum effects are more under control. Supersymmetry is particularly crucial to
have control on the string theory side.

Thus we are led to SCFTs.

• We should start with the maximal possible number of supercharges, which is 32. The-
ories are known only in d = 3, 4, 6.

Only in d = 4 the theory has Lagrangian description with fully manifest superconformal
symmetry. Thus we are led to

4d N = 4 SYM.

• The superconformal algebra is

PSU(2, 2|4) ⊃ SO(4, 2)× SO(6) . (5.1)

What could the dual string theory be? The isometry group leads to the space AdS5×S5.
Luckily, the perturbative superstring is consistent precisely in 10 dimensions, and it
turns out that one particular superstring theory — type IIB — has an AdS5 × S5

vacuum solution preserving 32 (all) supercharges.

Indeed

4d N = 4 SYM ↔ type IIB on AdS5 × S5

is the golden (and most studied) example of AdS/CFT.

5.1 4d N = 4 SYM

The theory has a unique multiplet: the N = 4 vector multiplet. In components

VN=4 = (Aµ, λi=1,...,4, φI=1,...,6) (5.2)
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where λi are Weyl spinors and φI are real scalars. The R-symmetry is

R-symmetry: SU(4) ∼= SO(6) .

Then φI = 6 is the fundamental of SO(6) = antisymmetric of SU(4), while λi = 4 is the
fundamental of SU(4) = Weyl spinor of SO(6). In N = 1 notation:

VN=4 = VN=1 plus three chiral Φ1,2,3 in the adjoint. (5.3)

With a vector multiplet we can write a gauge theory: in N = 4 the only parameters are
the group G, the gauge coupling g (if G is simple) and a theta angle θ. The Lagrangian is
schematically of the form

L =
1

g2
Tr

[
−FµνF µν−DµφID

µφI + λ̄iD/λi+
∑
I,J

[φI , φJ ]2 + λ̄iΓIφIλi

]
+θ εµνρσFµνFρσ . (5.4)

In N = 1 notation it is schematically

L =

∫
d4θ
∑
i

Φie
V Φi +

∫
d2θ Tr

[
τWαWα + Φ1[Φ2,Φ3]

]
+ h.c. . (5.5)

There τ is the complexified gauge coupling

τ =
θ

2π
+ i

4π

g2
. (5.6)

The one-loop beta-function is given by18

∂g

∂ log µ
= − g3

16π2

(11

3
c(Adj)− 2

3

∑
c(Weyl)− 1

6

∑
c(scalars)

)
. (5.7)

Here all fields are in the adjoint representation, so

11

3
− 2

3
4− 1

6
6 = 0 .

In fact the beta-function is zero to all orders in perturbation theory as well as non-perturbatively:
the theory is conformal for all values of τ . In other words τ is an exactly marginal deforma-
tion. The superconformal group is PSU(2, 2|4).

The theory enjoys electric magnetic duality [MO77] in which

τ → −1

τ
. (5.8)

Combining this with the invariance under τ → τ + 1 (shift of θ angle by 2π), one gets
S-duality SL(2,Z) acting on τ as on the upper half-plane:19

τ → aτ + b

cτ + d

(
a b
c d

)
∈ SL(2,Z) . (5.9)

The ’t Hooft coupling is λ = g2N .

18Here c is the quadratic Casimir of the representation, defined by TrT aT b = c δab. Notice that c(Adj) is
usually called C2(G).

19The element C = −1 ∈ SL(2,Z) does not act on τ : it corresponds to charge conjugation.
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5.2 Type IIB strings on AdS5 × S5

Perturbative bosonic strings require a spacetime of dimension 26 to be consistent at the
quantum level, however they have a tachyon (instability of the flat spacetime solution).
Superstrings solve the problem. Consistency requires a spacetime of dimension 10, then
there is no tachyon in the spectrum, therefore R9,1 is a consistent vacuum.

As in the bosonic case, the spectrum of the closed superstring around R9,1 contains the
graviton plus other massless fields of spin < 2, and then an infinite tower of massive modes
of masses

m2
n ∼

n

α′
. (5.10)

It turns out that the superstring gives spacetime (target) supersymmetry, thus the spectrum
is organized into supermultiplets. There are two closed superstrings with 32 supercharges:
called type IIA (N = (1, 1) in 10d) and IIB (N = (2, 0)). All massless modes are in one
multiplet: the graviton multiplet (two versions).

At low energies the massive string modes decouple, and one is left with an effective theory
for the graviton multiplet: supergravity. The supergravity EOMs are obtained by requiring
that the worldsheet theory remains conformal, and can be described by a Lagrangian (with
a caveat). This leads to type IIA and IIB supergravity.

Of course, the supergravity approximation is valid as long as we remain “close” to R9,1,
in the perturbative regime and at low energies:

Rs �
1

α′
, E � 1√

α′
, gs � 1 . (5.11)

It turns out that IIB supergravity admits a solution AdS5 × S5. So we focus on type IIB.
The graviton multiplet contains

G =
(
gµν , φ, Bµν , χ, Cµν , Cµνρσ,Ψαµ, ψα

)
. (5.12)

• gµν : the metric.

• φ: the dilaton.

• B: the NS 2-form with field strength H = dB.

• χ: a RR 0-form potential, i.e. an axion, with χ ∼= χ+2π and “field strength” F1 = dχ.

• C2: a RR 2-form potential, with F̃3 = dC2 − χH.

• C4: a RR 4-form potential with F̃5 = dC4 − 1
2
C2 ∧H + 1

2
B ∧ dC2 and self-dual

∗ F̃5 = F̃5 . (5.13)

• Ψµα, ψα: the gravitino and a chiral fermion.
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As understood by Green and Schwarz, the gauge-invariant field strengths are modified be-
cause the gauge transformations are. The modified large gauge transformation of χ is

χ→ χ+ 2π , C2 → C2 +B . (5.14)

In fact this is the element
(

1 1
0 1

)
of SL(2,Z). The modified gauge transformations of B and

C2 are

C2 → C2 + dλ1

C4 → C4 + 1
2
λ1 ∧H

and
B → B + dλ̃1

C4 → C4 − 1
2
λ̃1 ∧ dC2 .

(5.15)

The bosonic action in string frame is

Ss.f.
IIB =

1

2κ2
10

∫
d10x
√
−g
[
e−2φ

(
Rs + 4|∂φ|2 − 1

2
|H|2

)
− 1

2
|F1|2 −

1

2
|F̃3|2 −

1

4
|F̃5|2

]
− 1

4κ2
10

∫
C4 ∧H ∧ dC2

(5.16)

with 2κ2
10 = (2π)7α′4. However one has to supplement the EOMs with ∗F̃5 = F̃5 (not derived

from the action).

To go to Einstein frame redefine

eφ → gs e
φ , gµν → eφ/2gµν . (5.17)

Keeping only the metric and F5, the Einstein frame action is:

SIIB =
1

16πGN

∫
d10x
√
−g
[
Rs −

1

4
|F5|2

]
(5.18)

where (2π2)−3GN = `8
Pl = g2

sα
′4. There is a solution to the EOMs where20

ds2 = R2
(
ds2

AdS5
+ ds2

S5

)
R = (4πgsN)1/4

√
α′ ∼ N1/4`Pl

F5 = (2π`Pl)
4

Vol(S5)
(1 + ∗)N dvolS5 .

(5.19)

Dirac quantization condition imposes

1

(2π`Pl)4

∫
S5

F5 = N ∈ Z .

∫
S5

F5 = (4π2α′)2gsN . (5.20)

We can understand the scaling of R as the condition that the two terms in the action compete:

Rs ∼
1

R2
, |F5|2 =

1

5!
(gµν)5(Fµνρστ )

2 ∼ R−10N2`8
Pl . (5.21)

IIB supergravity is invariant under SL(2,R) transformations of21

τ =
χ

2π
+ i

4π

gseφ
. (5.22)

In the full string theory, the invariance is broken to SL(2,Z) by instanton effects.22

20The volume of S5 is π3.
21Then (H,F3) transform as a doublet, while F5 is a singlet.
22D(-1) string instantons have an action that depends on χ.
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5.3 The correspondence

We can give a physical proof of the correspondence [Mal99].

String theory contains solitonic objects called “D-branes”. They are boundary conditions
for open strings. A flat Dp-brane is an Rp,1 submanifold of spacetime where open strings
can end. These objects exist also in the superstring, and preserve 16 out of 32 supercharges:
1
2

BPS. For a single stack of N parallel flat Dp-branes, the system can be perturbatively
quantized and the spectrum can be computed.

Consider a stack of N D3-branes in type IIB string theory on flat space. They span R3,1.
The perturbative excitations are closed strings and open strings. Let us study the physics
at energies

E � 1/
√
α′ . (5.23)

Then only the massless modes can be excited.

• The closed strings give type IIB supergravity in 10d. We have analyzed this sector
above.

• The open strings give modes localized on the branes R3,1.

As in the case of bosonic Dp-branes, the massless open-string spectrum contains a
gauge field in (p+1)-dimensions. A single brane give an Abelian U(1) gauge field,
while N branes give a U(N) gauge field.

Besides, there are as many scalar fields as the directions orthogonal to the brane. Such
fields describe transverse oscillations of the brane. For N branes, they transform in
the adjoint representation of U(N). Thus, D3-branes carry 6 real scalars.

The actions describing the dynamics of the worldvolume fields and their coupling to
the bulk fields are the Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) actons. For a
single Dp-brane in Einstein frame they are, schematically:

SDBI+WZ = −
∫

Dp

dp+1ξ e(p−3)φ/4
√
− det

(
ĝ + e−φ/2F

)
+

∫
Dp

eF ∧
∑
q

Cq . (5.24)

Here F = 2πα′F + B while ĝ is the induced metric and Cq are the RR potentials (q
even in IIB and odd in IIA). Expanding the determinant we find23

det
(
ĝ + e−φ/2F

)
= det ĝ · det

(
1 + e−φ/2ĝ−1F

)
= det ĝ ·

[
1 +

1

2
e−φFabFab +O(F4)

]
.

23We use the expansion of det(1 +M) = exp log det(1 +M) = exp Tr log(1 +M):

det(1 +M) = 1 + TrM +
(TrM)2 − TrM2

2
+

(TrM)3 − 3(TrM)(TrM2) + 2 TrM3

6
+ . . . (5.25)
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Here a, b, . . . are worldvolume indices. Expanding the square root we find

√
. . . =

√
− det ĝ

(
1 +

1

4
e−φFabFab +O(F4)

)
.

Thus, at quadratic order, DBI reproduces the Maxwell kinetic term.24 Expanding the
second term (WZ) we find∫

Dp

(
Cp+1 + F ∧ Cp−1 +

1

2
F ∧ F ∧ Cp−3 + . . .

)
.

Thus this term reproduces the electric coupling to the potential Cp+1, a theta term
where Cp−3 plays the role of the theta angle, as well as other terms.

For N > 1, the exact non-Abelian form of the DBI action is not known. However at
two-derivative level its form is fixed by symmetries and supersymmetry.

The D3-branes break half of the 32 Poincaré supercharges of IIB supergravity: the only
4d two-derivative gauge theory with 16 Poincaré supercharges is N = 4 SYM. Besides the
gauge field and 6 real scalars, it contains 4 Weyl fermions. The gauge coupling is equal to
the axiodilaton:

θ

2π
+ i

4π

g2
YM

= τYM = τ =
χ

2π
+ i

4π

gs
. (5.26)

In particular
g2

YM = gs . (5.27)

Put more precisely, the low-energy effective action is

S = Sbulk + Sbrane + Sint . (5.28)

Sbulk is IIB supergravity + higher-derivative corrections. Sbrane is 4d N = 4 SYM + higher
derivative corrections (such as α′2 TrF 4 that come from DBI). Sint is the interaction, for
instance coming from the induced metric on the brane.

As we consider processes at lower and lower energies E, the SU(N) gauge interactions on
the branes remain constant, because N = 4 SYM is conformal (but higher-derivative cor-
rections become irrelevant). The U(1) part is decoupled and free. Gravitational interactions
are IR free, because the dimensionless coupling is

ĜN = E8GN . (5.29)

Thus at very low energies the 10d gravitational theory decouples from the 4d interacting
SCFT and becomes free.

Suppose we have a large number N of D3-branes. From the field theory point of view
the effective coupling (that truly controls the strength of the interactions) is the ’t Hooft
coupling

gsN = g2
YMN = λ . (5.30)

24Expanding the first term in terms of the scalar fields, we reproduce their standard kinetic term (¶).
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If we increase the ’t Hooft coupling, the same picture is valid, but the 4d QFT is strongly
coupled.

From the gravitational point of view, instead, the picture changes. The coupling of the
branes to gravity is controlled by the same

gsN .

Indeed disk string amplitudes are of order gs.

For gsN � 1 (but still gs � 1) the backreaction of the D3-branes on the geometry cannot
be neglected (the geometry is curved outside the Compton wavelength of the branes). Since
D3-branes are electric-magnetic sources for F5, the solution is

ds2 =
1

f 1/2
ds2

3,1 + f 1/2
(
dr2 + r2dΩ2

5

)
F5 = (1 + ∗) dvol3,1 ∧ df−1

f = 1 +
R4

r4
R4 = 4πgsNα

′2 .

(5.31)

Because of the warp factor, there is a redshift from the “throat” around r = 0 to an observer
at infinity. There are two types of low energy excitations. We can have excitations of very
low energy away from r = 0, or we can have excitations that have arbitrary energy around
r = 0 — but have very low energy from infinity. In the IR these two types are decoupled:
excitations inside the throat cannot escape because of the redshift (gravitational potential);
excitations at infinity have vanishing cross-section on the brane (the cross section scales as
σ ∼ ω3R8).25

If we zoom on r = 0, the metric becomes

ds2 ∼ r2

R2
ds2

3,1 +R2dr
2

r2
+R2dΩ2

5 = R2

(
ds2

3,1 + dz2

z2
+ dΩ2

5

)
(5.32)

where we have redefined r/R = R/z. We recognize AdS5 × S5.

Since one of the two systems is free gravity in both cases, we are led to identify the two
interacting systems:26

4d N = 4 SYM ↔ IIB string theory on AdS5 × S5.

We can approximate IIB string theory by IIB supergravity as long as

Rs ∼
1

R2
∼ 1

(gsN)1/2α′
� 1

α′
, gs = g2

YM � 1 . (5.33)

25The cross-section computation is summarized in Section 1.3.3 of [AGM+00]. The result, for this partic-
ular type of black branes, is that the cross section for `-wave at ω → 0 is σ`abs ∼ ω3+4`R8+4`. The result is
specific to this black brane, for instance the s-wave cross section of Schwarzschild for ω � TH approaches
the horizon area.

26The U(1) lives at the boundary, and is described by a topological theory of the B-field. See page 58
of [AGM+00].
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This corresponds to27

N � 1 , λ = g2
YMN � 1 . (5.34)

Thus, the large N limit of the QFT at large ’t Hooft coupling λ is described by classical
gravity! α′ corrections, i.e. higher derivative corrections to supergravity coming from inte-
grating out the massive string modes, correspond to λ−1/2 corrections. String corrections in
gs correspond to 1/N corrections.

α′ corrections ↔ λ−1/2 corrections , gs corrections ↔ 1

N
corrections . (5.35)

On the field theory side we should also have a free decoupled U(1). This lives somehow
at the boundary between AdS and the bulk. Indeed IIB supergravity on AdS5 × S5 has a
topological sector

S5 =

∫
C2 ∧ dB2 (5.36)

whose dynamical dof’s are at the boundary of AdS5, and include a free Abelian gauge field.
This is called the singleton sector.

27More precisely, one takes N → ∞ keeping λ fixed, possibly large. This assures that R, and thus the
geometry, is fixed in the limit.
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6 The holographic dictionary

In what sense the CFT is equivalent to the gravitational theory in AdS? The two look
completely different, they even have different dimension.

Let us focus on the Euclidean case, where Euclidean AdS = hyperbolic plane. Moreover
focus on the Poincaré patch of AdSd+1 (upper half-plane)

ds2 = R2d~x
2 + dz2

z2
, (6.1)

whose boundary is Rd. One could equally well consider global AdS (the ball, whose boundary
is Sd).

Since AdS has a boundary, to define the gravitational theory we need to specify boundary
conditions for the fields φ(~x, z). On the other hand, in a CFT important observables are the
correlation functions of local operators O(~x), whose generating functional is constructed out
of sources. It is then natural to identify

Zbulk

[
φ(~x, z)

∣∣
z=0

= φ0(~x)
]

=
〈
e
∫
ddxφ0(~x)O(~x)

〉
CFT

. (6.2)

On the LHS is the partition function of string theory, function of the boundary conditions
φ0(~x) at the boundary z = 0. On the RHS is the generating functional of correlators in the
CFT, functional of the sources φ0(~x). This identification requires a correspondence

field in the bulk ↔ operator in the boundary CFT . (6.3)

A field that is the derivative of another field corresponds to a descendant in the CFT, thus
we will only describe primary operators.

The partition function of string theory is a very complicated (and unknown) object.28

When gravity is weakly coupled, we can approximate by the classical action:

Zbulk ' e−N
2Sclass[φ]+O(α′) +O(gs) (6.4)

Then the partition function is dominanted by the saddle points, i.e. the classical solutions
to the EOMs.

Thus, in the classical limit the correspondence states that:

The classical gravity action is the generating functional
of connected correlators in the CFT.

The classical EOMs are second order: we impose Dirichelet boundary conditions on the
boundary, and regularity at the horizon (in the Euclidean version). This fixes the classical
solutions.

28The quantity logZbulk can be interpreted as a string theory S-matrix element of the state φ0.
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Consider a scalar field φ of mass m2 in AdSd+1. Its action is

S = N2

∫
ddx dz

√
g
[1

2
∇Mφ∇Mφ+

1

2
m2φ2 +O(φ3)

]
. (6.5)

Let us first consider small quadratic fluctuations, i.e. we neglect the interactions and only
study the linearized EOMs.

0 = −∇M∇Mφ+m2φ = − 1
√
g
∂M
(√

g gMN∂Nφ
)

+m2φ . (6.6)

We go to Fourier space for the momentum on Rd, ηµν∂µ∂ν = −p2. Then

0 = zd+1∂z
(
z1−d∂zφ

)
− p2z2φ−m2R2φ . (6.7)

There are two independent solutions. They can be written exactly in terms of Bessel func-
tions.29 Let us see the asymptotic behavior at the boundary, z ∼ 0. The term with momen-
tum can be neglected, and the solutions are power-law:

φ ∼ zα± α± =
d

2
±
√
d2

4
+m2R2 . (6.8)

The solution with α− dominates as z → 0, and the solution with α+ always decays (while
the one with α− could diverge).

Let us assume, for now, that we impose the boundary condition on the dominant solution.
We should then impose

φ(x, z)
∣∣
z=ε

= εα− φren
0 (x) . (6.9)

We impose the boundary condition at z = ε, then send ε→ 0 in such a way that the solution
in the bulk has finite limit. φren

0 is called the “renormalized” boundary condition.

If we perform a rescaling of coordinates in the boundary theory, which is the AdS isometry

x→ λx , z → λz , (6.10)

the bulk field φ remains invariant30 but φren
0 has to rescale31 with dimension α−. Since we

identify it with the source, we conclude that the corresponding boundary operator O has
dimension

∆ = d− α− = α+ . (6.11)

Thus we associate a bulk scalar field of squared mass m2 to a boundary operator of dimension
∆.

29The two solutions are φ = c1z
d/2Ia(pz) + c2z

d/2Ka(pz) with a = 12
√
d2 + 4m2R2.

30φ remains invariant because it is a scalar, but of course it has to be evaluated at the new location.
31The cutoff position gets rescaled to λz = ε, that is z = ε/λ. It follows that φren

0 (x)→ λα−φren
0 (λx).
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One still gets a real acceptable dimension if m2R2 is negative with

− d2

4
≤ m2R2 . (6.12)

In fact particles in AdS can have negative mass squared and be stable. The bound is called
Breitenlohner-Freedman bound. It is due to the fact that a wave-function has to decay
at infinity, therefore it always has some kinetic contribution that can overwhelm a small
negative potential energy.

For

− d2

4
≤ m2R2 ≤ −d

2

4
+ 1 (6.13)

also α− would be an acceptable dimension (above the scalar unitarity bound ∆ ≥ d
2
− 1).

Indeed in this range one could impose the boundary condition on the other mode, φ ∼ zα+ . In
this range, double quantization is possible. Notice that this is the only way to get operators
of dimension < d

2
.

The picture that we get is:

m2R2

∆

d
2

d

d
2
− 1

−d2

4
−d2

4
+ 1

−d2

4
≤ m2R2 < 0 ∆ < d relevant

(
− d2

4
≤ m2R2 ≤ −d2

4
+ 1 double quantization

)
m2R2 = 0 ∆ = d marginal
0 < m2R2 ∆ > d irrelevant

The field ↔ operator map (holographic dictionary) is not given a priori. In many cases
it can be determined based on the mass/dimension, the spin, and some other quantum
numbers. Some operators are easy to determine. The boundary value of the bulk metric
gMN is the boundary metric gµν , which is the source for the stress tensor Tµν . Thus

gMN ↔ Tµν . (6.14)

An analysis of gravitational waves in AdSd+1 shows that the dual operator has dimension d.

Suppose we have a gauge field AM in the bulk. The dual operator must be a vector Jµ,
coupled to the source as ∫

ddxAµJ
µ .
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The bulk theory must be invariant under gauge transformations, δAM = DMλ, thus (in the
absence of anomalies32) the boundary coupling should be invariant as well:

0 = δ

∫
ddxAµJ

µ = −
∫
ddxλDµJ

µ . (6.15)

Thus Jµ should be a conserved current in the boundary theory. From the wave equation in
AdS, one obtains that Jµ has dimension d− 1. (¶) Thus

bulk gauge symmetry ↔ boundary global symmetry

AM ↔ Jµ .
(6.16)

The value of the dilaton at infinity is the string coupling gs = g2
YM, thus

e−φ∞ =
1

gs
=

1

g2
YM

. (6.17)

By taking a small variation:
φ ↔ TrFµνF

µν . (6.18)

Indeed on AdS5×S5 the dilaton is massless, and TrFµνF
µν is a marginal operator of dimen-

sion 4.

We could go on and discover that gravitinos correspond to supersymmetry currents Sαµ,
Abelian p-form potentials correspond to Abelian higher-form symmetries [GKSW15]. And
study the mass/dimension formula for arbitrary spin.

6.1 Correlation functions

Connected correlation functions are computed by derivatives of the classical on-shell action,
and this can be done with a diagrammatic expansion. Since we use the supergravity effective
action, only tree-level diagrams should be used.

6.1.1 Two-point functions

To compute two-point functions, only the part of the action quadratic in the relevant field
perturbation is needed. This action is

S(2) =

∫
ddx dz

√
g
[
∇Mφ∇Mφ+m2φ2

]
, (6.19)

32In fact, the bulk theory should only be invariant under gauge transformations that vanish at infinity.
Under gauge transformations that are non-trivial at infinity, the effective action can have an anomalous
variation which is constrained, by the Wess-Zumino consistency conditions, to be a local functionals of the
field strengths. This reproduces global ’t Hooft anomalies on the boundary. Another argument is that the
dimension of Jµ is fixed.
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and the EOM is (
�−m2

)
φ = 0 . (6.20)

Its solution is the propagator, and the solutions with fixed boundary conditions are called
bulk-to-boundary propagator. We start by considering the propagator in momentum space,
because it is more convenient to compute 2-point functions, but will use the one in position
space for higher-point correlators.

A complete set of solutions to the linearized EOM is

φ(~x, z) = ei~p·~x Z(pz) (6.21)

where p = |~p| (and we assumed p 6= 0). The equation is the same as before, but redefine
u = pz: [

ud+1∂u
(
u1−d∂u

)
− u2 −m2R2

]
Z(u) = 0 . (6.22)

The two solutions are expressed in terms of Bessel functions:33

Z(u) = c1 u
d/2 I∆− d

2
(u) + c2 u

d/2K∆− d
2
(u) (6.26)

where, as before, ∆ = d
2

+
√

d2

4
+m2R2.

We should also impose regularity in the interior of AdS (from which we get a single
solution). The second solution K is selected, because the other one I is exponentially
diverging in the interior of AdS (u→ +∞) and it does not lead to finite-action configurations.

Imposing the boundary condition

φ(~x, ε) = εd−∆ φ0(~x) = εd−∆ ei~p·~x , (6.27)

we get the bulk-to-boundary propagator:

φ(~x, z) ≡ K~p(~x, z) = εd−∆
zd/2K∆− d

2
(pz)

εd/2K∆− d
2
(pε)

ei~p·~x . (6.28)

33The Bessel function Iα(u) can be defined by a series expansion:

Iα(u) =

∞∑
m=0

1

m! Γ(m+ α+ 1)

(u
2

)2m+α

. (6.23)

The Bessel function Kα(u) can be defined by Kα(u) = π
2
I−α(u)−Iα(u)

sin(απ) for α 6∈ Z, and by a limit otherwise.

They have the following asymptotic behavior. At the boundary u→ 0:

Iα(u) ∼ 1

Γ(α+ 1)

(u
2

)α
, Kα(u) ∼

{
− log

(
u
2

)
− γ α = 0 ,

Γ(α)
2

(
2
u

)α
α > 0 .

(6.24)

At the horizon u→ +∞:

Iα(u) ∼ eu√
2πu

, Kα(u) ∼
√

π

2u
e−u . (6.25)
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At this point we should compute the on-shell classical action evaluated on these configu-
rations. To do that, we rewrite the contribution as a total derivative:

S =

∫
ddx

∫ ∞
ε

dz
√
g

[
1

2
φ
(
−� +m2

)
φ+

1

2
∇M(φ∂Mφ)

]
. (6.29)

The first term is zero on the classical solutions, while the fields can be taken to vanish at
infinity in ~x:

=
1

2

∫
ddx
[√

g gzzφ∂zφ
]∞
ε
. (6.30)

We expand the fields into their basis:

φ(~x, z) =

∫
ddp λ~p e

i~p·~x K̃p(z) . (6.31)

where K̃ is the function of z (stripped of ei~p·~x). The integral over ddx gives (2π)dδd(~p + ~q).
Thus

=
1

2

∫
ddp ddq λ~p λ~q (2π)dδd(~p+ ~q)F (6.32)

with

F = −
(
R

z

)d−1

K̃p∂zK̃p

∣∣∣
z=ε

. (6.33)

The connected 2-point function is

〈O(~p)O(~q)〉 =
∂2S

(2)
on-shell

∂λ~p ∂λ~q

∣∣∣
λ~p=λ~q=0

= (2π)dδd(~p− ~q)F (6.34)

We should expand F for ε→ 0. To do that, we use that for u→ 0 (and for generic α ∈ R)
we have

Kα(u) = #u−α
(
1 + . . .+ #u2α + . . .

)
, (6.35)

where . . . represent the Taylor expansion in u. Working out how this propagates to F we
find

F = analytic + # p2∆−d + subleading . (6.36)

The analytic terms are integer powers (possibly including a constant) of p2, and they diverge
in ε. Terms analytic in p2 become contact terms once Fourier transformed to position space:
they can usually be removed by local counter-terms (we will say more about this) and can
be neglected. The physical pieces are the non-analytic terms (that do not vanish as ε→ 0).
Indeed, in the second term above, the powers of ε cancel exactly (while “subleading” means
terms that vanish as ε→ 0). Therefore

〈O(~p)O(~q)〉 = analytic + # δd(~p− ~q)
(
~p
)2∆−d

+ subleading . (6.37)
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Performing a Fourier transform (and discarding contact terms)34 we get

〈O(~x)O(~y)〉 =
#

|~x− ~y|2∆
. (6.41)

We see that, indeed, O behaves as an operator of dimension ∆.

The case of ∆ ∈ Z is more subtle: the Bessel function Kα(u) behaves as u−α(1 + · · · +
u2α log u+ . . . ), so those are the non-analytic terms. The Fourier transform again gives the
power-law behavior.35

6.1.2 Higher-point functions

In order to compute higher-point functions, it turns out that it is easier to work with the
propagator in position space (because it leaves conformal invariance manifest).

For simplicity, we consider a set of fields φi with mass mi interacting with a local La-
grangian LAdS. We impose boundary conditions

φi(~x, z) → zd−∆iφ0,i(~x) for z → 0 (6.43)

with m2
i = ∆i(d − ∆i). The CFT connected generating function is the on-shell action

evaluated on the classical solutions with prescribed boundary conditions (and regular in the
interior). A connected n-point function is

〈O1 . . .On〉c =
∂nS

∂φ0,1 . . . ∂φ0,n

∣∣∣
φ0,i=0

. (6.44)

34We have to perform the Fourier transforms

Iβ(~x) =

∫
ddp ei~p·~x |p|β . (6.38)

If β = 0, then I0 = (2π)dδd(~x). If β is a positive even integer (i.e. we take an analytic piece in ~p2), then Iβ
can be written as a derivative

I2n(~x) = (−�)nI0 = (2π)d(−�)nδd(~x) for n ∈ Z≥0 (6.39)

and thus it is a contact term. If β is real or complex, instead, this is not possible and indeed we get a
power-law, as can be inferred from a scaling argument. The complete result is

Iβ(~x) =
2β+dπd/2Γ

(
β+d

2

)
Γ
(
− β

2

) 1

|x|β+d
for β 6∈ 2Z≥0 . (6.40)

35We want to compute the Fourier transforms
∫
ddp ei~p·~x p2n log |p|. We first consider the case n = 0. A

scaling argument fixes the behavior |x|−d up to a contact term. The contact term is −(2π)d log |x|µ δd(~x).
Since, as a distribution, this has to be multiplied by functions that vanish at zero, we neglect the contact
term. We find ∫

ddp ei~p·~x log |p| = −2d−1πd/2Γ
(
d
2

) 1

|x|d
. (6.42)

Other values of n are obtained by acting with (−�)n, and give a behavior |x|−d−2n.
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Since on-shell fields vanish with sources turned off, only terms in the action with at most n
fields can contribute.

To study 1- and 2-point functions we only need the quadratic action.

To construct a classical solution with given boundary conditions, we need a Green function—
the bulk-to-boundary propagator:

φ(~x, z) =

∫
ddy K∆(~x− ~y, z)φ0(~y) (6.45)

which satisfies(
−� +m2

)
K∆ = 0 , K∆ → zd−∆δ(~x− ~y) for z → 0 . (6.46)

To find the solution we notice that
z∆

is a solution to the Klein-Gordon equation. If we regard z =∞ as the point that compactifies
the boundary of AdS from Rd to Sd, we can think of that solution as the one with a δ-function
at the point at infinity on Sd (at all other points it vanishes). Then we move that point to
(~x = 0, z = 0) by an isometry of AdS:

z → z

z2 + ~x2
, ~x→ ~x

z2 + ~x2
. (6.47)

We obtain

K∆(~x, z) = c

(
z

z2 + ~x2

)∆

(6.48)

where one fixes the normalization.36

Now, a solution behaves at the boundary as

φ(~x, z)→ φ0(x)
(
zd−∆ + . . .

)
+ φ1(x)

(
z∆ + . . .

)
(6.50)

where . . . are a series expansion in z and depend on x as well. In particular, expanding K:

φ1(x) = c

∫
ddy

φ0(y)

(~x− ~y)2∆
(6.51)

36Let us check that we reproduce the correct boundary condition:∫
dxK(x, z)φ0(x) = c zd−∆

∫
dx

z2∆−d

(z2 + x2)∆
φ0(x) = c zd−∆

∫
dy

φ0(yz)

(1 + y2)∆

z→0−−−→ c

(∫
dy

1

(1 + y2)∆

)
zd−∆φ0(0) .

(6.49)

One finds c =
( ∫

ddy (1 + y2)−∆
)−1

= Γ(∆)

πd/2Γ(∆− d2 )
.
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is a non-local functional of φ0. Thus regularity, which is a local condition at the horizon,
appears as a non-local relation at the boundary. As before, we compute the on-shell action
reducing to a boundary term:

S =
1

2

∫
ddx

φ∂zφ

zd−1

∣∣∣
boundary

(6.52)

Inserting φ we find many diverging terms, such as φ2
0(x) or other local functions of φ0(x)

(we will see holographic renormalization). Those are contact terms that can be removed by
local counter-terms. The leading non-diverging term, which is also non-local, is

S ∼
∫
ddxφ0(x)φ1(x) ∼

∫
ddx ddy

φ0(x)φ0(y)

|x− y|2∆
. (6.53)

We infer the 1-point function:

〈O(x)〉 =
δS

δφ0(x)

∣∣∣
φ0=0

= φ1(x)
∣∣∣
φ0=0

. (6.54)

In AdS this is zero, because with no source also φ1 = 0. This matches the fact that in CFTs
the 1-point functions vanish (because are dimensionful).

However this is important: the normalizable mode at infinity is the VEV of the operator
(indeed it scales with z∆). Thus the two modes are the source and the VEV of O. This is
important in non-conformal examples.

Then the 2-point function is

〈O(x)O(y)〉 =
δ2S

δφ0(x) δφ0(y)

∣∣∣
φ0=0

=
1

|x− y|2∆
. (6.55)

We have reproduced the 2-point functions in another way.

We have been sloppy with eliminating divergences. In fact, it turns out that this sloppy way
to compute the 2-point function gives the wrong normalization (while the one in momentum
space is correct). We will see how to perform holographic renormalization properly. Higher-
point functions turn out correct.

To compute higher-point functions, we need interaction terms in the Lagrangian. Suppose

S =

∫
ddx dz

√
g
(1

2

∑
i

(∂φi)
2 +

m2
i

2
φ2
i +

n∑
k=3

λi1...ikφi1 . . . φik

)
. (6.56)

We are taking canonical kinetic terms, no higher-derivative interactions, no interactions with
gauge fields and the metric. All those details can be incorporated (with effort).

Now the EOMs are non-linear, but can be solved perturbatively. Suppose we have(
−� +m2

)
φ = λφk−1 . (6.57)
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At order λ0 the solution is given by the bulk-to-boundary propagator:

φ(0)(~x, z) =

∫
ddy K(~x− ~y, z)φ0(~y) . (6.58)

At order λ1 the solution is given by the standard bulk-to-bulk propagator:

φ(1)(~x, z) = λ

∫
ddx′ dz′G(~x− ~x′, z, z′)

[
φ(0)(~x′, z′)

]k−1
, (6.59)

where G is the Green function in the bulk (with trivial boundary conditions):(
−�(~x,z) +m2

)
G(~x, z, z′) =

1
√
g
δ(~x, z) . (6.60)

(This Green function vanishes at the boundary.) The explicit expressions can be found in
[hep-th/0201253] eqn. (6.12) [DF02]. Then we substitute again φ(1) to get φ(2) at order λ2,
and so on.

Since all φ(j) are functions of φ0, to compute an n-point function we can stop the procedure
once we have n instances of φ0. The perturbative expansion ends. The resulting expansion,

φ(~x, z) =
∑
j=0

φ(j)(~x, z) (6.61)

where φ(j) is of order λj, should be plugged into to action, in order to obtain an expansion
of the on-shell action. Then, taking derivatives with respect to φ0, we get a finite expansion
of correlations functions. We can set up a graphical Feynman representation, called Witten
diagrams :

These are tree-level diagrams, so they are finite in number. The diagrams are tree-level
because we are solving classical EOMs.37

For 3-point functions, we only have one graph with a cubic vertex and 3 bulk-to-boundary
propagators:

〈O1(~xi)O2(~x2)O3(~x3)〉 = −λ
∫
dd+1x

√
g K∆1(x; ~x1)K∆2(x; ~x2)K∆3(x; ~x3)

=
Aλ

|~x1 − ~x2|∆1+∆2−∆3|~x1 − ~x3|∆1+∆3−∆2|~x2 − ~x3|∆2+∆3−∆1
.

(6.62)

37Loop diagrams correspond to quantum effects in the bulk, and produce contributions that are suppressed
by powers of 1/N2. We neglect quantum corrections here, but they have been studied in the literature.
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The dependence on ~xi is eventually fixed by conformal invariance. But to compute A one
really needs to do the integral.

The computation of higher-point functions is much more complicated, for two reasons:

• There are various graphs that one has to compute.

• Some of the graphs involve standard bulk-to-bulk propagators, which however involve
supergravity fields with spin, in general.

We will not look at those.38

6.2 Anomalies

Anomalies are an important test of AdS/CFT. ’t Hooft anomalies are 1-loop exact, therefore
they can be computed at strong coupling and directly compared with the gravity result.

An anomaly is the phenomenon for which a Lagrangian theory has a classical symmetry,
but at the quantum level this symmetry might be spoiled.39 Perturbative anomalies of
continuous symmetries only exist in even dimensions.

There are many types of continuous anomalies:

• Gauge anomalies: a gauge symmetry is lost in the quantum theory, therefore the theory
is inconsistent (it is not unitary).
(In 4d: gauge-gauge-gauge triangle diagram.)

• Gauge-global (or Adler-Bell-Jackiw, ABJ) anomalies: a global symmetry is lost in
the quantum theory. Ward identities are not respected, and there are no physical
consequences of the symmetry. Simply the symmetry is not there.
(In 4d: global-gauge-gauge triangle diagram.)

• ’t Hooft anomalies: the global symmetry is there, correlation functions at separated
points are symmetric and Ward identities are respected. However it might not be
possible to choose the contact terms to be symmetric. These anomalies more easily
appear when turning on a background for the global symmetry: then the current is no
longer conserved.
(In 4d: global-global-global triangle diagram.)

Global symmetries with an ’t Hooft anomaly cannot be consistently coupled to dynam-
ical gauge fields.

38There has been some recent development, see for instance [RZ17,RZ18].
39It can be understood in various ways. One is that, to regularize the theory, one has to break the

symmetry with the regulator, and the symmetry is not recovered as the regulator is removed. Another one
is that the path-integral measure is not invariant.
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• (¶) Is there a missing case?

In 4d, the non-Abelian anomaly can be expressed as the operator equation

(DµJ
µ)a =

i

384π2
Dabc εµνρσ

(
F a
µνF

b
ρσ + . . .

)
(6.63)

which states the non-conservation of the current, in a background. This is the consistent
anomaly, in which Jµ is defined as the variation of a generating functional with respect to
its source Aµ, and which satisfies the Wess-Zumino consistency conditions. Here

Dabc = 2 Trfermions Ta{Tb, Tc} (6.64)

where the trace is over right-moving Weyl fermions. The dots stand for non-covariant terms:
the consistent anomaly is not covariant (and, because of the anomaly, the current does not
transform covariantly, see the clear exposition in [BZ84]). The Wess-Zumino consistency
conditions follow from requiring that current correlators are reproduced by a generating
functional Z[A]. Then the anomaly

A(A) = δλ
(
− logZ[A]

)
(6.65)

should furnish a representation of the gauge algebra:

[δλ1 , δλ2 ]
(
− logZ[A]

)
= δ[λ1,λ2]

(
− logZ[A]

)
. (6.66)

Solutions are expressed with the descent formalism (a nice review is [Bil08]). One starts in
d+ 2 dimensions with a characteristic class (both closed and gauge invariant). Here

α
(0)
6 = TrF ∧ F ∧ F . (6.67)

Then one applies descent:

α
(0)
6 = dα

(0)
5 , α

(0)
5 = CS5

δλα
(0)
5 = dα

(1)
4 , α

(1)
4 = Tr

[
λA(A)

]
.

(6.68)

One finds

α
(0)
5 = Tr

(
AdAdA+ 3

2
A3dA+ 3

5
A5
)
, α

(1)
4 = Tr

[
λ d
(
AdA+ 1

2
A3
)]

. (6.69)

Let us remark that one can always (see [BZ84]) redefine the current by a local function of A
and its derivatives,

Jµ → J̃µ = Jµ +X(A, dA) , (6.70)

such that the new current J̃µ transforms covariantly and has a covariant anomaly equation.40

This is called the covariant anomaly. The correlations functions of the covariant current

40Importantly, the consistent and covariant anomalies have different coefficient (in 4d there is a relative
factor of 3). Therefore, when doing perturbative computations, it is very important to determine which
current one is looking at.
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cannot be obtained from a generating functional, and so the covariant current is not natural
in AdS/CFT.

Let us focus on the example of 4d N = 4 SYM ↔ IIB on AdS5 × S5.
In N = 4 SYM the symmetry we look at is the R-symmetry SU(4)R, and the fermions are
the gaugini in the adjoint of the gauge group and 4 (fundamental) of SU(4)R. Therefore

Dabc = (N2 − 1)dabc , dabc = 2 Trfund Ta{Tb, Tc} . (6.71)

How does this show up in AdS5?

We should first compactify IIB on S5, and obtain an effective 5d supergravity theory. This
includes 5d N = 8 maximal SO(6) gauged supergravity. It has SU(4) ∼= SO(6) gauge fields
Aaµ, coupled to the currents:

∫
d4xAaµJ

µ
a .

There is a 5d Chern-Simons term:

SCS
5 =

iN2

96π2

∫
AdS5

d5x
√
g
(
dabc εµνρστAaµ∂νA

b
ρ∂σA

c
τ + . . .

)
. (6.72)

where . . . contain more A and less ∂. The full expression is the one written above. Usually
a CS term leads to a gauge-invariant action because its variation is a total derivative, but
with a boundary this might not be true. We perform

Aaµ → Aaµ + (Dµλ)a . (6.73)

The variation of the CS term is

δSCS
5 = − iN2

384π2

∫
∂AdS5

d4x dabc εµνρσλa
(
F b
µνF

c
ρσ + . . .

)
. (6.74)

The dots represent the extra terms, obtained above through descent.

If we compare with the boundary description:

δS =

∫
d4x (Dµλ)aJµa = −

∫
d4xλa(DµJ

µ)a , (6.75)

it reproduces the anomaly (at leading order in N). In fact, AdS/CFT explicitly realizes
anomaly inflow. We conclude that

’t Hooft anomalies are described by CS terms in the bulk.

Indeed, perturbative anomalies of continuous symmetries only exist in even dimensions and
(standard) Chern-Simons terms only exist in odd dimensions.

Another type of anomaly is the conformal anomaly. To describe it, we first need holo-
graphic renormalization.
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7 Holographic renormalization

A good review is by K. Skenderis [hep-th/0209067] [Ske02].

In QFT there are UV divergences that need to be removed to obtain sensible finite answers.
This is renormalization. One could expect that the same problem arises in gravity doing
AdS/CFT, and we saw that it is the case. Our way to deal with them was simply to discard
divergences, but this is sloppy (since one might lose finite contributions). The correct way to
do that (in QFT too) is to subtract divergences by means of local covariant counter-terms.

Let us start with some considerations about the metric.

Consider Euclidean AdS in global coordinates:

ds2 =
L2

cos2 θ

(
dt2 + dθ2 + sin2 θ dΩ2

d−1

)
(7.1)

where 0 ≤ θ < π
2
. The metric has a second-order pole at θ = π

2
, where there is the boundary.

Because of the pole, the bulk metric does not directly define a boundary metric. It defines
a conformal structure.

Choose a function z(x) which is positive inside AdS but has a first-order zero at the
boundary. Then multiply the AdS metric by z2(x) and evaluate at the boundary: this gives
a metric.

g(0) = z2(x) gAdS(x)
∣∣
θ=π

2

. (7.2)

Such a metric is only defined up to conformal transformations. An equally good choice would
be

z′(x) = ew(x)z(x) (7.3)

which leads to the conformally transformed metric

g′(0) = e2wg(0) . (7.4)

Thus an asymptotically AdS metric only gives a boundary metric up to conformal transfor-
mations.

It has been proven in [FG85] that it is always possible to bring an asymptotically-AdS
metric to the Fefferman-Graham form

ds2 =
1

z2

(
dz2 + gij(x, z)

)
gij(x, z) smooth at z → 0 . (7.5)

We can expand the metric near the boundary:

gij(x, z) = g(0)ij + z g(1)ij + z2g(2)ij + . . . (7.6)

If we fix g(0), then some of the g(k) with k > 0 are fixed by Einstein equations. In pure
gravity odd powers of z vanish up to zd, so let us use

ρ = z2 . (7.7)
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Then we can write

ds2 = Gµνdx
µdxν =

dρ2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj

g(x, ρ) = g(0) + . . .+ ρd/2g(d) + ρd/2 log ρ h(d) + . . . .

(7.8)

The term ρd/2 log ρ only appears for d even (only in that case the two Taylor expansions
would otherwise overlap).

Einstein’s equations can be solved order by order in ρ. The equations fix g(2), . . . , g(d−2),
h(d) (present only for d even) as well as part of g(d) in terms of g(0). In particular the equations
fix the divergence and the trace of g(d). Those terms are fixed algebraically in terms of g(0)

and its derivatives, with no need to solve any differential equation. In other words, they are
local functions of g(d). All these terms are part of the non-normalizable mode, and g(0) is the
source for the boundary stress tensor.

The other components are free (and fixed by regularity in the interior).41 In other words,
the other components of g(d) are non-local functions of g(0). The mode g(d) is the normalizable
mode, corresponding to the VEV of the stress tensor.

Thus, the divergence and trace of the stress tensor are fixed local functions of the boundary
metric: this the conformal anomaly.

We will not reproduce this difficult computation, which can be found in [hep-th/0002230]
[dHSS01], and instead explain the general idea and show the example of a massive scalar.

7.1 Holographic renormalization method

Asymptotic solution. The first step is to construct the bulk solution for given (arbitrary)
boundary conditions. One can use the diagrammatic method that we discussed (Witten
diagrams).

Suppressing spacetime and internal indices, let the fields be F(x, ρ). Near the boundary
there is an asymptotic expansion

F(x, ρ) = ρm
(
f(0)(x) + ρ f(2)(x) + . . .+ ρ`

(
f(2`)(x) + log ρ f̃(2`)(x) + . . .

))
. (7.9)

The two asymptotic solutions have behavior ρm and ρm+`. Here (contrary to before) we
assume ` ∈ Z≥0, then we get the logarithmic term.

Here:

• f(0) is the source for the dual operator, and it is fixed (it is the boundary condition).

• the EOMs fix f(2), . . . , f(2`−2), f̃(2`) algebraically in terms of f(0) and its derivatives
(local functions of f(0)).

41This is strictly speaking true with no matter. With matter this is still true if the fields correspond
to marginal or relevant operators. Fields corresponding to irrelevant operators (large mass) should have
infinitesimal sources in order not to destroy AdS.
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f(2`) is not fixed, because it is an independent solution. It is fixed by regularity in the
interior.

Regularization. We evaluate the on-shell action on the asymptotic solution. To regular-
ize, we cut the intergrals at ρ = ε. By doing the integrals, we get a finite number of boundary
terms that diverge as ε→ 0:

Sreg[f(0); ε] =

∫
ρ=ε

ddx
√
g(0)

(
ε−νa(0) + ε−ν+1a(2) + . . .+ log ε a(2ν) +O(ε0)

)
. (7.10)

Here a(2k) are local functionals of f(0), and do not depend on f(2`) (which is not fixed by the
boundary conditions).

Counterterms. One defines a covariant action of the fields F(x, ε) (and their derivatives)
and the induced metric γij = gij(x, ε)/ε, in such a way that it reproduces the divergent
terms:

Sct[F(x, ε); ε] = −divergent terms of Sreg[f(0); ε] (7.11)

In practice one has to invert the asymptotic expansion and find a formula for

f(0) = f(0)

(
F(x, ε), ε

)
(7.12)

then plug in a(2k)(f(0)) and in Sreg.

For instance, in the case of a massive scalar field:

Φ(x, ρ) = ρ
d−∆

2

(
φ(0)(x) + ρ φ(2)(x) + ρ2 φ(4)(x) + . . .

)
. (7.13)

Solving the EOMs in AdS, order by order in ρ, one finds

φ(2)(x) =
1

2(2∆− d− 2)
�0φ(0) , φ(4)(x) =

1

4(2∆− d− 4)
�0φ(2) , . . . (7.14)

where �0 = ηij∂i∂j. Using �γ = ε�0, up to second order we find

φ(2) = ε−
d−∆

2
−1
( �γΦ(x, ε)

2(2∆− d− 2)
+O(ε)

)
φ(0) = ε−

d−∆
2

[
Φ(x, ε)− �γΦ(x, ε)

2(2∆− d− 2)
+O(ε)

]
.

(7.15)

These terms can be used to construct the counterterm action.

Subtracted action. We define a subtracted action

Ssub

[
F(x, ε), ε

]
= Sreg[f(0); ε] + Sct

[
F(x, ε); ε

]
. (7.16)

This has a finite limit as ε→ 0.
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Exact 1-point functions. The 1-point function of the operator OF is the presence of
source is defined as

〈OF〉 = lim
ε→0

(
1

εd/2−m
√
γ

δSsub

δF(x, ε)

)
≡ 1
√
g(0)

δSren

δf(0)

. (7.17)

We can schematically write it as in the last expression, but we should really take the variation
first and the limit after.

The limit gives
〈OF〉 ∼ f(2`) + C(f(0)) . (7.18)

The coefficient in front of f(2`) depends on the theory, but it is scheme independent (scheme =
choice of couterterms). C(f(0)) is a local function of f(0), so it gives contact terms. Its exact
form is scheme dependent (and usually can be removed by suitable finite counterterms).

From here one can already check Ward identities.

For instance, applying the procedure to the metric one finds the 1-point function of the
stress tensor:

〈Tij〉 ∼ g(d)ij + C(g(0)ij) . (7.19)

As we discussed, g(d) is partially fixed by the EOMs: the divergence and the trace (with
sources) are fixed. Setting the sources to zero, we get that Tij is conserved and we reproduce
the holographic Weyl anomaly (T ii is function of g(0)).

n-point functions. We need the exact (as opposed to asymptotic) solutions to the EOMs
with prescribed boundary conditions. Regularity in the interior fixes f(2`) as a non-local
function of f(0).

In general the exact solution cannot be found. But to compute an n-point function we
only need a perturbative expression of f(2`) to order n− 1 in f(0). This is done with Witten
diagrams.

Finally〈
O(x1) . . .O(xn)

〉
=

1√
g(0)(x1) . . . g(0)(xn)

δnSren

δf(0)(x1) . . . δf(0)(xn)

∣∣∣
f(0)=0

=
1√

g(0)(x2) . . . g(0)(xn)

δ〈O(x1)〉
δf(0)(x2) . . . δf(0)(xn)

∣∣∣
f(0)=0

.

(7.20)

In other words, once we have the 1-point function with sources, we use that one to compute
higher-point functions.

An explicit example of all these steps with a massive scalar in AdS is given in [Ske02].
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7.2 The Weyl anomaly

We can apply the previous procedure to the metric and the stress tensor.

CFTs have a Weyl anomaly: conformal invariance is broken when the theory is coupled
to an external metric:

〈T µµ 〉 6= 0 if gµν 6= 0 . (7.21)

In odd dimension there is no Weyl anomaly. In even dimension one can prove that the only
expression which is a local invariant of the metric, with the correct dimension, and that
cannot be removed by local counterterms is

〈T µµ 〉 = #E(d) + # I(d) (7.22)

where E(d) is the d-dimensional Euler density42 and I(d) is a conformal (Weyl) invariant. The
space of conformal invariants of dimension d increases with dimension.

In d = 2 there are no conformal invariants of the correct dimension, and we only have the
Euler density. Indeed:

T µµ = − c

12
R (7.23)

where c is the central charge.

In d = 4 there is one conformal invariant (of correct dimension):

T µµ = −aE4 − c I4 (7.24)

with

E4 =
1

16π2

(
R2
µνρσ − 4R2

µν +R2
)

I4 = − 1

16π2

(
R2
µνρσ − 2R2

µν +
1

3
R2
)

= − 1

16π2
W2

µνρσ

(7.25)

and W is the Weyl tensor (traceless part of the Riemann tensor). Then a, c are called 4d
central charges. They can be computed in free field theory: they are function of the number
of vectors, spinors and scalars. However they receive quantum corrections and are very hard
to determine at strong coupling.

Holographically we can compute them. If we take Einstein gravity

S =

∫
d5x
√
g
(
R+ Λ

)
, (7.26)

the computation is done in [HS98] (try to read it!). One does find the structure above, with

a = c ∼ R3 ∼ Λ−3/2 . (7.27)

Thus, theories with a weakly-coupled holographic dual have a = c at leading order.

One can generate a 6= c with higher-derivative corrections, but in order to stay within
weakly-coupled gravity the deviation has to be small.

42The Euler density, up to normalization, is: E(2n) = 1
2nRi1j1k1l1 . . .Rinjnknlnε

i1j1...injnεk1l1...knln . Its
integral on a compact manifold gives the Euler characteristic of that manifold, which is a topological invariant.
In fact δE/δg is a total derivative.

For instance in d = 2, the Euler number is χ = 1
4π

∫
d2x
√
gR =

∫
d2x
√
g 1

8πRµνρσε
µνερσ.
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SUSY. In SCFTs the R-symmetry current is in the same supermultiplet as the stress
tensor (supercurrent multiplet):

S :
(
Tµν , J

R
µ , Sµα, S̃µα

)
. (7.28)

The divergence of the R-symmetry current (anomaly) is in the same multiplet as the trace
of the stress tensor:

A :
(
T µµ , ∂

µJRµ , γ
µSµα, γ

µS̃µα
)
. (7.29)

Thus, in superconformal theories (in even dimension) there is a relation between R-symmetry
’t Hooft anomalies and conformal anomalies.

For instance in 2d N = 2:

c = 3 Trfermions γ3R
2 , ∂µJRµ = #

(
Tr γ3R

2
)
Fµνε

µν . (7.30)

The ’t Hooft anomaly comes from a 1-loop diagram with two sides.
In 4d N = 1:

a =
9

32
TrR3 − 3

32
TrR , c =

9

32
TrR3 − 5

32
TrR (7.31)

and
∂µJRµ = #

(
TrR3

)
FµνFρσε

µνρσ + #
(
TrR

)
TrRµνRρσε

µνρσ . (7.32)

Since ’t Hooft anomalies are 1-loop exact, it follows that conformal anomalies can also be
determined exactly. Even at strong coupling.

The conformal anomalies a = c from IIB supergravity on AdS5 × S5 has been computed,
and they match (at leading order N2) the ones in field theory (computable at strong cou-
pling).
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8 Wilson loops

In gauge theories, a natural observable is the Wilson loop, defined for every closed contour
C in spacetime and representation R of the gauge group:

WR(C) = TrR Pei
∫
C A

a
µT

adxµ . (8.1)

T a are the generators in representation R.

Path-ordered exponential. For an Abelian gauge field, the open Wilson line (where the
contour C is taken to be open) is simply constructed as

Wq = exp
{
iq

∫
C
Aµdx

µ
}

= exp
{
iq

∫ 1

0

dτ Aτ (τ)
}
. (8.2)

Here q is the charge parametrizing representations of U(1), τ ∈ [0, 1] is a coordinate along
the path, xµ(τ) is the path and

Aτ = Aµ
dxµ

dτ
(8.3)

is the gauge field tangent to the path. Under a gauge transformation Aµ → Aµ + ∂µλ we
have

eiq
∫ 1
0 Aτdτ → eiq

∫ 1
0 Aτdτ+iq

∫ 1
0 ∂τλ dτ = eiqλ(1)e−iqλ(0)Wq (8.4)

where we have integrated by parts. We see that, even though we made a gauge transformation
λ(x) at all points in spacetime, only the endpoints of the Wilson line transform, one as a
particle of charge q and the other one as of charge −q.

The non-Abelian case is more complicated. Under a gauge transformation U = eiλ we
have

Aµ → U(Aµ + i∂µ)U−1 ⇒ δAµ = Dµλ = ∂µλ− i[Aµ, λ] . (8.5)

If we define the Wilson line as the exponential of the integral, then it will have a complicated
gauge transformation (and it will not be usable to construct gauge invariants). Instead we
should use the path-ordered exponential:

W = Pei
∫ 1
0 dτ Aτ = 1 +

∞∑
n=1

in

n!

∫ 1

0

dτ1· · ·
∫ 1

0

dτn P
[
Aτ (τ1) . . . Aτ (τn)

]
= 1 +

∞∑
n=1

in
∫ 1

0

dτ1

∫ τ1

0

dτ2· · ·
∫ τn−1

0

dτnAτ (τ1) . . . Aτ (τn) .

(8.6)

Here P orders the operators from the last one to the first one (the operator with smallest
τ is the first one to act). We can then reduce to a fundamental domain (second line) and
multiply by the number n! of permutations.
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Let us define as In the quantity in the summation:
∑

n In. We compute its (infinitesimal)
gauge variation:

δIn = in
n∑
j=1

∫ 1

0

dτ1· · ·
∫ τn−1

0

dτnAτ (τ1) . . .
(
∂τλ− i[Aτ , λ]

)
(τj) . . . Aτ (τn) . (8.7)

This gives two types of terms. The commutator gives

δI [ , ]
n = in−1

n∑
j=1

∫ 1

0

dτ1· · ·
∫ τn−1

0

dτnAτ (τ1) . . . [Aτ , λ](τj) . . . Aτ (τn) . (8.8)

The derivative gives

δI∂n = in
n∑
j=1

∫ 1

0

dτ1Aτ (τ1)· · ·
∫ τj−1

0

dτj ∂τλ(τj)

∫ τj

0

dτj+1Aτ (τj+1)· · ·
∫ τn−1

0

dτnAτ (τn) .

(8.9)
We perform the integral in dτj by parts. We get:

δI∂n = −in
n−1∑
j=1

∫ 1

0

dτ1Aτ (τ1)· · ·
∫ τj−1

0

dτj λ(τj)Aτ (τj)

∫ τj

0

dτj+2Aτ (τj+2) . . .

+ in
n∑
j=2

∫ 1

0

dτ1Aτ (τ1)· · ·
∫ τj−2

0

dτj−1Aτ (τj−1)λ(τj−1)

∫ τj−1

0

dτj+1Aτ (τj+1) . . .

+ inλ(1)

∫ 1

0

dτ2· · ·
∫ τn−1

0

dτnA(τ2) . . . A(τn)

− in
∫ 1

0

dτ1· · ·
∫ τn−2

0

dτn−1Aτ (τ1) . . . Aτ (τn−1)λ(0) .

(8.10)

The first line comes from moving the derivative. The second line comes from the boundary
term evaluated at the upper bound τj for j > 1. The third line is the case j = 1. For j < n
there is no contribution from the lower bound 0 because an integration follows, however
there is such a contribution for j = n and this is the fourth line. We can put the first and
second line into a commutator, and write

δI∂n = −δI [ , ]
n−1 + i λ(1) In−1 − i In−1 λ(0) . (8.11)

Summing all terms we have

δW = i λ(1)W − iW λ(0) . (8.12)

Once again, the end of the line transforms as a point particle in representation R while the
beginning transforms as a particle in R. If we take a closed loop, starting and ending at x0,
we have

δW = i
[
λ(x0),W

]
⇒ δTrW = 0 . (8.13)

Taking the trace, we have constructed a gauge invariant.
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Physical interpretation. The Wilson loop has this interpretation. We introduce external
massive sources (quarks) in representation R. The loop represents the propagation of a
quark-antiquark pair along the loop C, from creation to annihilation, and it measures the
free energy. For a rectangular Wilson loop in Euclidean space with length L and height T ,
we have

WR(C) ' e−T EI(L) (for large T, L) (8.14)

where EI is the interaction energy of the pair at distance L.

The Wilson loop is a signal for confinement, if it grows as the exponential of the area
inside the loop. In a confining theory the quark-antiquark pair has a binding energy that
grows linearly with distance,

E = mq +mq̄ + EI(L) , EI(L) ∼ τL , (8.15)

since the interaction is given by a confined flux tube of tension τ . Therefore

WR(C) ∼ e−τTL ∼ e−τ A(C) , (8.16)

where A(C) is the area of the worldsheet swept by the flux tube. In this picture, the Wil-
son loop of pure gauge theory captures the confinement of non-dynamical external massive
quarks, entirely due to gauge dynamics.

Wilson loops in AdS/CFT. We can define an analogous quantity in AdS. If we have a
line source on the boundary, we can attach a string. Depending on the specific AdS/CFT
realization, we will have different boundary line operators. The natural action for the string
is the Nambu-Goto action

S =

∫
d2σ
√
ĝ , (8.17)

so this gives the AdS definition of an observable

W (C) = minimal area surface with boundary C . (8.18)

Since the metric diverges at the boundary z = 0,

ds2 =
dx2

µ + dz2

z2
, (8.19)

it is energetically favorable for the string to bend inside AdS.

We can parametrize the string by (τ, σ), and the embedding by X(τ, σ). The (Euclidean)
action is

S =
1

2πα′

∫
dτ dσ

√
det
ab
∂aXM∂bXNgMN(X) . (8.20)

Let us consider a time-invariant configuration of two static sources at distance L. We have

t = τ , x = σ , z = z(σ) = z(x) . (8.21)
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The shape is

x

z

t

Then the action is

S =
T

2πα′

∫ L/2

−L/2
dx

√
1 + (z′)2

z2
. (8.22)

Since the action does not depend explicitly on x, there is a conserved quantity:

δL
δz′

z′ − L = − 1

z2
√

1 + (z′)2
= const . (8.23)

We can evaluate the constant at the turning point, where x = 0 (by symmetry), z = z(0)
and z′ = 0. The constant is −1/z(0)2. We thus find a differential equation

z′ =
dz

dx
= −

√
z(0)4

z4
− 1 . (8.24)

This can be solved (we make a change of variables z(0)/z = y):

x =

∫ z(0)

z(x)

dz√
z(0)4

z4 − 1
= z(0)

∫ z(0)/z(x)

1

dy

y2
√
y4 − 1

. (8.25)

If we go to the boundary, where x = L/2 and z = 0, we find a relation between L and the
turning point:43

L

2
= z(0)

∫ ∞
1

dy

y2
√
y4 − 1

= # z(0) . (8.26)

The on-shell action is

S =
2T

2πα′ z(0)

∫ ∞
1

y2dy√
y4 − 1

. (8.27)

The integral is linearly divergent. This is because the energy includes the two infinitely
massive quarks, E = mq + mq̄ + EI . Their bare contribution is given by two straight lines
at x = ±L/2, which gives a linear divergence. Removing the divergence:

Sreg =
2T

2πα′ z(0)

∫ ∞
1

( y2√
y4 − 1

− 1
)
dy = #

T

α′ L
. (8.28)

43The constant is
√
π Γ
(

3
4

)
/Γ
(

1
4

)
. The constant in (8.28) is

[
4
√
π Γ
(

1
4

)
+ πΓ

(
− 1

4

) ]
/
[√

2 Γ
(

1
4

)3 ]
.
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• The result is consistent with conformal invariance: the potential energy must scale as
1
L

.

We will discuss the different behavior in confining models.

• The further apart are the quarks, the more the string penetrates in the interior of AdS.
The turning point of the string is 1

z(0)
∼ 1

L
.

This is consistent with the interpretation that

1

z
∼ Eprocess (8.29)

is an energy scale, i.e. processes at energy scale E take place at 1
z
∼ E in AdS.
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9 Non-conformal theories and confinement

AdS/CFT applies to non-conformal theories as well, and thus it can describe phenomena like
confinement, mass gap, discrete spectra, symmetry breaking, RG flows, etc. . . This makes it
extremely interesting.

We already know one way to obtain non-conformal theories. We know how to turn on
sources in the CFT, and if the source is for a relevant operator, this will induce an RG flow
to some other fixed point.

If the CFT has a moduli space (usually only for supersymmetric CFTs), then another way
is to turn on a VEV for some operator without sources.

In the description of non-conformal theories, the metric has Poincaré invariance but it is
not AdS:

ds2 = e2A(z)
(
dz2 + dxµdx

µ
)

(9.1)

where e2A(z) is called the warp factor. If at the boundary (z → 0) the metric is asymptotically
AdS, namely

e2A(z) → 1

z2
as z → 0 , (9.2)

and it is everywhere regular, then we can apply the rules of AdS/CFT. The bulk fields are
still associated to primary operators with definite dimension in the far UV, but not in the
complete theory at finite energy scales. They are bound states of the gauge theory (such as
mesons and glueballs). Heavier objects, like baryons, usually appear as solitonic objects like
wrapped branes.

9.1 Confining theories

Let us describe the qualitative features of the gravitational dual to a confining theory.

The warp factor e2A(z) is bounded above zero.

This follows from the Wilson loop. When the quarks are close to each other, the suspended
string is in the asymptotically AdS region and EI ∼ 1/L.

x

z
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When the quarks are further apart, the string is essentially the sum of two vertical pieces
(the masses mq, mq̄ to be subtracted) and an horizontal piece around z0 where e2A(z0) has a
minimum.

For large L : E(L) ' mq +mq̄ + τe2A(z0)L (9.3)

where τ is the tension of the string ⇒ linear confinement.

In a theory with mass gap and discrete spectrum we expect poles in the two-point func-
tions, corresponding to physical states:

〈Oφ(k)Oφ(−k)〉 =
∑
i

Ai
k2 +M2

i

. (9.4)

We are in Euclidean signature, and the poles are at k2 = −M2
i .

Let us consider a minimally-coupled scalar. At quadratic order the EOM is

∂z
(
e(d−1)A(z)∂zφ

)
− e(d−1)A(z)k2φ = e(d+1)A(z)m2φ . (9.5)

At small z the metric is asymptotically AdS, therefore

z → 0 : φ = zd−∆
(
A(k) +O(z)

)
+ z∆

(
B(k) +O(z)

)
(9.6)

with
R2m2 = ∆(∆− d) . (9.7)

In standard quantization, A is the source and B is the VEV. In particular B is always
normalizable. The corrections O(z) are fixed by the EOMs, while regularity in the interior
fixes B as a (non-local) function of A. By normalizing the field with the value of the source:

φk(z) = φ0
k

[
zd−∆

(
1 +O(z)

)
+
B(k)

A(k)
z∆
(
1 +O(z)

)]
. (9.8)

(Here k is boundary momentum.) The two-point function has poles if and only if A(k) = 0:

if there are normalizable and regular solutions to the EOMs (quasi-normal modes).

There cannot be solutions for44 k2 ≥ 0, but there can be for k2 < 0. They correspond to the
bound-states M2

i = −k2.

We have reduced the problem to that of finding normalizable regular solutions to the
EOMs. Let us redefine

φ(xµ, z) = e−
d−1

2
A(z) ψ(z) eikµx

µ

with k2 = −M2 . (9.9)

44Because for k2 ≥ 0 the Euclidean on-shell action is positive definite, while for a normalizable regular
solution the on-shell action, which reduces to a boundary term, vanishes.
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Then the radial equation becomes a Schrödinger-like equation:

− ψ′′ +
(
d− 1

2
A′′ +

(d− 1)2

4
(A′)2 +m2e2A

)
ψ = E ψ E = M2 > 0 . (9.10)

We should find positive-energy solutions in a potential. The boundary conditions follow from
the ones of the original problem. Normalizability∫

√
g|φ|2 =

∫
e2A|ψ|2 z→0∼

∫
|ψ|2

z2
(9.11)

implies that ψ → 0 at the boundary. The conditions at z →∞ are imposed by regularity.

• For AdSd=1, the potential45 ∝ 1
z2 . One gets a continuous spectrum of scattering states

(non-normalizable modes) starting from zero, appropriate for a conformal theory.

• The typical confining solution generates a potential that is constant or diverges for
z → +∞, such as

z

AdS
boundary

interior of
geometry

This gives a discrete spectrum M2
i of glueballs above zero.

9.2 RG flows

Let us study some simple and universal properties of RG flows seen from the point of view
of AdS5. (One could repeat the discussion for AdSd+1.)

Start with a local 5-dimensional gravitational theory

S5 =

∫
d5x
√
−g
[
R
4
− 1

2
Gab∂Mϕa∂

Mϕb − V (ϕ)

]
(9.12)

where Gab is a matrix. We consider a simple model with scalar fields. We study 4d Poincaré
invariant solutions. We write the metric as

ds2 = dy2 + e2Y (y)dxµdx
µ , (9.13)

45The exact expression is Veff(z) =

(
m2 +

d2 − 1

4

)
1

z2
.

59



and everything is a function of y only. We recover AdS5 for Y (y) = y/R. Then redefine
ey/R = R/z:

ds2 = dy2 + e2y/Rdxµdx
µ = R2dz

2 + dxµdx
µ

z2
. (9.14)

Here R is the radius of AdS.

Exercise. Einstein’s equations and the scalar EOM reduce to the following two equations:

3(Y ′)2 − 1

2
Gabϕ

′
aϕ
′
b + V = 0 , Gabϕ

′′
b + 4Y ′Gabϕ

′
b =

∂V

∂ϕa
. (9.15)

Although not needed, one can check that they are reproduced by the effective Lagrangian

L = e4Y

[
3(Y ′)2 − 1

2
Gabϕ

′
aϕ
′
b − V (ϕ)

]
, (9.16)

supplemented by the zero-energy constraint

0 = 3(Y ′)2 − 1

2
Gabϕ

′
aϕ
′
b + V . (9.17)

An obvious solution to the two EOMs above with boundary is obtained at the critical
points of the potential V (ϕ), if the potential at the critical point is negative. We set all
scalar fields to be constant:

∂V

∂ϕa
= 0 , ϕ′a = 0 , (Y ′)2 = −Vcrit

3
. (9.18)

Up to a redefinition y → −y, we can take Y ′ positive such that the boundary is at y = +∞.
Then

Y (y) =
y

R
, with

1

R2
= −Vcrit

3
. (9.19)

We get AdS5 solutions, where the radius R is controlled by the negative critical points of
the potential. From our general discussion, we expect each of them to describe a (different)
CFT at the boundary.

We can construct more interesting solutions.

Start from a critical point of V (ϕ), say at ϕa = 0. The AdS5 vacuum is dual to a CFT.
Expand the action at quadratic order around ϕa = 0, then read off the masses ma, from
which we determine the dimensions via

R2m2
a = ∆a

(
∆a − 4

)
(9.20)

of the dual operators Oa.
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Now we can look for more general solutions with the same asymptotics:

Y (y)→ y

R
, ϕa(y)→ 0 as y → +∞ . (9.21)

Since asymptotically the background is AdS5, the scalars behave as

ϕa(y) ' Aa e
(∆a−4)y +Ba e

−∆ay . (9.22)

We associate
Aa ↔ source for Oa , Ba ↔ VEV for Oa . (9.23)

The new solutions have the following interpretation:

• General solutions with Aa 6= 0 describe a deformation of the CFT by Oa:

LCFT → LCFT +

∫
d4xAaOa . (9.24)

• Special solutions with Aa = 0 describe a different vacuum of the CFT, where

〈Oa〉 ∼ Ba . (9.25)

In both cases, the CFT is deformed and conformal invariance is broken: this triggers a
Renormalization Group (RG) flow, and the gravitational solution is dual to such flow. The
fifth coordinate y is roughly identified with an energy scale in the RG flow, and the profile
of ϕa(y) and Y (y) is the running of the deformation parameters:

UV : y → +∞ , IR : y → −∞ or it can stop before . (9.26)

In general the solutions are singular in the IR.

Particularly interesting is the case that the CFT is perturbed by a relevant operator
Oa, and the RG flow leads to another fixed point. In our supergravity description this
happens when V (ϕ) has another critical point. The gravity description is a kink solution
that interpolates between the two critical points. The asymptotic is:

Y → y

RUV

, ϕa → 0 for y → +∞

Y → y

RIR

, ϕa → ϕIR
a for y → −∞ .

(9.27)

Recall that
Irrelevant operators (∆ > 4) : R2m2 > 0

Marginal operators (∆ = 4) : R2m2 = 0

Relevant operators (∆ < 4) : −4 ≤ R2m2 < 0 .

(9.28)
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To have an RG flow that starts from CFTUV we need a relevant operator: its mass must be
negative, thus V (0) is a maximum. Yet there is no tachyon, because of the BF bound!46 To
hit CFTIR, the deformation must be irrelevant there and V (ϕIR) must be a minimum:

ϕ
V

AdSUV

AdSIR

The search for gravity solutions usually simplifies if supersymmetry is present. If the
potential V can be written in terms of a superpotential W as

V =
1

8
(G−1)ab

∂W

∂ϕa

∂W

∂ϕb
− 1

3
W 2 , (9.29)

then the 2nd order EOMs can be reduced to 1st order BPS equations.

Exercise. Check that the solutions to

ϕ′a =
1

2
(G−1)ab

∂W

∂ϕb
, Y ′ = −1

3
W (9.30)

also solve the EOMs.

Indeed various gauged-supergravity supersymmetric solutions follow from a superpotential
(although not all).

The existence of a holographic dual to an RG flow has striking consequences for CFTs at
strong coupling. For instance, one can easily prove a c-theorem for 4d theories with an AdS
dual.

There are 2 central charges a, c in the 4d superconformal algebra, that control the con-
formal anomalies. It was conjectured by Cardy [Car88] and later proven by Komargodski-
Schwimmer [KS11] that a is always decreasing along (unitary) RG flows from one CFT
to another.47 This has remained as a conjecture for a long time, but it is easy to prove
holographically.

46The vacuum cannot spontaneously decay. It does decay only after the boundary conditions are modified
such that the non-normalizable mode corresponding to the relevant deformation is turned on.

47On the other hand, one can show in counter-examples that any other combination of a and c does not
satisfy such a theorem [Car88]. KS have also constructed a function along the flow which is monotonic and
agrees with a at the end-points. This is usually called a c-function. However, as opposed to Zamolodchikov’s
c-function in 2d, the one of KS in 4d is not such that the RG flow is its gradient flow.
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In AdS: a = c ∼ R3 ∼ Λ−3/2. We can construct a monotonically decreasing c-function

c(y) = #(Y ′)−3 , (9.31)

(here # is positive) which reproduces the central charges at fixed points. Its derivative is

c′(y) = −3 #Y ′′(Y ′)−4 , (9.32)

so the sign is fixed by Y ′′. From the EOMs one gets

Y ′′ = −2

3
Gabϕ

′
aϕ
′
b . (9.33)

Since Gab appears in the kinetic term, such a matrix should be positive definite in a consistent
theory, in order to avoid ghosts. The holographic c-theorem follows.

More generally, without resorting to a specific Lagrangian, the EOMs of 5d gravity coupled
to matter are

1

4

(
RMN −

1

2
gMNR

)
=

1

2
TMN , TMN ≡ −

2
√
g

δ
√
gL

δgMN
(9.34)

where TMN is the 5d stress tensor. Evaluated on the general 4d-Poincaré invariant metric
they imply (check all this!)

3

2
Y ′′ = T 0

0 − T yy . (9.35)

One of the weakest of the classical energy conditions is the “null energy condition”:

ξM ξN TMN ≥ 0 ∀ ξ null vector (9.36)

and it is expected to classically hold in all physically-relevant gravity solutions (for a fluid,
it means p+ ρ ≥ 0).48 On 4d-Poincaré invariant solutions it implies

− T 0
0 + T yy ≥ 0 , (9.37)

and then the c-theorem follows.

48In the context of quantum theories, it is easy to construct counter-examples even in flat space. The
condition that has been proven to be satisfied by all CFTs in flat space is the “averaged null energy condition”
[FLPW16, HKT17], which is integrated along a null direction. Classically, the ANEC is necessary to avoid
time machines and violations of the second law of thermodynamics.
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10 Theories at finite temperature

A simple way to obtain non-conformal theories is to turn on a temperature. This also breaks
supersymmetry. Let us see how theories at finite temperature appear in AdS/CFT.

10.1 From 4d N = 4 SYM to 3d YM

Let us study 4d N = 4 SYM with gauge group SU(N) at finite temperature T . This can be
obtained by first going to Euclidean signature, and then compactifying the Euclidean time
to a circle of length β = 1

T
.

The reason is the following. The path-integral on a “strip” of length β with fixed boundary
conditions Φi,f computes the propagation from an initial state |Φi〉 to a final state |Φf〉:∫ Φf

Φi

Dϕ e−S = 〈Φf |e−βH |Φi〉 (10.1)

because H is the generator of time translations. The path-integral on a circle is obtained by
identifying Φi = Φf and integrating over them. This produces a trace:∫

periodic on S1

Dϕ e−S = Tr e−βH . (10.2)

If we insert operators (and compute correlators) on the cylinder, we compute Tr e−βHO. But
e−βH (up to normalization) is the density matrix of a thermal state, and so we are computing
matrix elements of O in a thermal state.

The fermions have anti-periodic boundary conditions along S1:49

ψ(y) = −ψ(y + β) , ψ =
∑
k∈Z+ 1

2

ψk e
2πiky/β ⇒ m2

ψk
= 4π2 k

2

β2
> 0 . (10.3)

Thus all fermionic modes get a mass at tree level. Conformal invariance is broken by the
compactification (the temperature set a scale, and it also breaks Lorentz) and supersymmetry
is broken by the boundary conditions. Then the scalars get a mass at one-loop (loops below
the fermionic mass are no longer canceled).

For β → 0 all fermionic and scalar modes get a mass and decouple: one is left with pure
YM in three dimensions. From

1

g2
4

∫
d4xF 2

µν =
β

g2
4

∫
d3xF 2

µν ⇒ 1

g2
3

=
β

g2
4

. (10.4)

To have a smooth IR physics, we should send

β → 0 , g4 → 0 with g3 fixed . (10.5)

49That is because non-vanishing correlators have an even number of fermions. If we take one and bring it
all along the circle, it crosses an odd number of fermions and so it changes sign.
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In this limit we obtain a non-supersymmetric and non-conformal YM theory in 3d: it con-
fines, it has a mass gap and a discrete spectrum of massive glueballs.

The model can be studied using a weakly-coupled gravity dual. The starting point is a
system of N Euclidean D3-branes on R3 × S1. In the Lorentzian version they form a black
three-brane: a sort of Schwarzschild black hole that extends along R3 and is charged under
F5. The near-horizon metric is

ds2 = R2

{
dz2

z2
(

1− z4

z4
0

) +
1

z2

[(
1− z4

z4
0

)
dt2 + dx2

1,2,3

]
+ dΩ2

5

}
(10.6)

with R4 = 4πgsNα
′2 (there is also a flux for F5 that we do not write). Lorentz invariance

along the boundary directions is broken by temperature. At the boundary we still have
AdS5 × S5 asymptotically. But at z = z0 the Lorentzian metric has a true horizon. The
Euclidean metric is simply capped at z = z0.

We can expand around z = z0:
z = z0(1− ρ2) . (10.7)

Then expanding around ρ = 0:

ds2 ' R2

{
dρ2 +

4ρ2

z2
0

dt2 +
1

z2
0

dx2
1,2,3 + dΩ2

5

}
. (10.8)

The metric looks like R2 (×R3×S5) in polar coordinates around ρ = 0, but it has a conical
singularity unless t is a periodic variable on a circle of length

β = πz0 ⇒ T =
1

πz0R
. (10.9)

This is a way to compute the temperature of the black hole (or a black brane as here).

This space is simply connected, thus there is a unique possible spin structure, in which
the fermions are antiperiodic on S1. A translation of β along S1 is a standard 2π rotation
in R2 around ρ = 0, and the spin-1

2
wavefunction changes sign under such a rotation.

We see that the black three-brane solution has all correct features to be the gravitational
dual to 4d N = 4 SYM on R3 × S1. Let us see what we can infer.

Confinement. The warp factor attains a minimum at the horizon (for strings along R3):

At z = z0: e2A(z0) =
1

z2
0

. (10.10)

Then the theory has stable strings with tension

τ = e2A(z0)/2πα′ =
π

2

√
4πg2

4N T 2 . (10.11)

The fact that it goes like λ1/2 is a hallmark of strong coupling.
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Glueball spectrum. The masses of bound states can be extracted from the behavior of
correlation functions of gauge-invariant operators at large distances:50

〈O(~x)O(0)〉 ∼
∑
i

Ai
e−Mix

x(d−1)/2
. (10.13)

By a Fourier transform, in momentum space this is

〈O(~k)O(−~k)〉 ∼
∑
i

Ai
k2 +M2

i

. (10.14)

Thus we can extract Mi from the normalizable solutions to the EOMs.

If we consider zero-modes on S5, we can decompose the field into modes with fixed mo-
mentum ~k along R3 and n along S1:

φ(z, t, x) = φ(z) eint/β ei
~k·~x . (10.15)

For simplicity, let us further restrict to zero-modes on S1 as well: n = 0. Then, factoring
out the volumes of S5, R3 and S1, the action

S =

∫
dz dt d3x dΩ5

√
g
(
∂Mφ∂

Mφ+m2φ2
)

(10.16)

becomes

S ∼
∫ z0

0

dz

z5

[
z2
(

1− z4

z4
0

)
(∂zφ)2 + k2z2φ2 +m2φ2

]
. (10.17)

The EOM from this action is

− ∂z
(

1

z3

(
1− z4

z4
0

)
∂zφ

)
+
k2

z3
φ+

m2

z5
φ = 0 . (10.18)

To bring it to the form of a Schrödinger equation, first we change radial coordinate to

τ(z) =

∫ z

0

dy√
1− y4

z4
0

→ dτ =
(

1− z4

z4
0

)− 1
2
dz . (10.19)

Then we redefine the field as

φ = e−A/2ψ with eA(τ) =
1

z3

√
1− z4

z4
0

. (10.20)

This gives the equation

− ψ′′ +
(
A′′

2
+
(A′

2

)2

+
m2

z2

)
ψ = E ψ E = −k2 = M2 (10.21)

where everything is a function of τ .

50The Green’s function of −�G(~x) = δd(~x) is proportional to 1/xd−2. Instead the Green’s function of(
−� +M2

)
G(~x) = δd(~x) is proportional to

1

x(d−2)/2
K d−2

2
(kx) ∼ e−Mx 1

x(d−1)/2
. (10.12)
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Exercise. Study qualitatively the spectrum (for n = 0).
One finds

A′′

2
+
(A′

2

)2

=
15− 18z4/z4

0 − z8/z8
0

4z2
(
1− z4/z4

0

) .

10.2 Thermal phase transitions

The holographic prescription at large N and large (but fixed) g2
YMN involves extremizing the

classical gravity action subject to asymptotic boundary conditions. This is the saddle-point
approximation to the path-integral of gravity.51

There can be more than one saddle point: this is a general feature of boundary value
problems in differential equations. In this case we are supposed to sum

e−Sgravity

over the various classical configurations. The solution that globally minimizes Sgravity dom-
inates the saddle-point approximation. When there are two or more competing solutions,
e.g.

Z = e−S1 + e−S2 + . . . , (10.22)

there can be phase transitions.

Let us study an example in AdS5. We take the standard action

S = − 1

16πGN

∫
d5x
√
g
(
R+

12

R2

)
. (10.23)

One can embed the (Euclidean) Schwarzschild black hole in AdS5:

ds2 = f dt2 +
1

f
dr2 + r2dΩ2

3 , f = 1 +
r2

R2
− µ

r2
. (10.24)

Assuming µ > 0, it follows that f has a positive root r2 = r2
+ and a negative root r2 = −r2

−
(with r2

− − r2
+ = R2 > 0):

f =
(r2 − r2

+)(r2 + r2
−)

r2R2
, (10.25)

then the Euclidean solution is defined for r ≥ r+. By the same argument as before,52 the
geometry is smooth at r = r+ iff

t ∼= t+ β with β =
1

T
=

2πR2r+

2r2
+ +R2

. (10.26)

51The path-integral of gravity is ill-defined because gravity is non-renormalizable. However string ampli-
tudes render on-shell quantities well-defined.

52Define r − r+ = ρ2, and use r2
+ + r2

− = 2r2
+ +R2.
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We can think of this as fixing µ = r2
+r

2
− = r2

+(R2 + r2
+) > 0 in terms of the temperature T .

Let us call this space

X2 = Euclidean Schwarzschild BH in AdS5 .

This space has topology D2 × S3, with boundary S1 × S3. The latter is the relevant space
for a QFT on S3 at finite temperature.

This space is simply connected, and so it has a unique spin structure in which the fermions
are anti-periodic in t.

There is another (Euclidean) solution with the same boundary conditions:

ds2 = f dt2 +
1

f
dr2 + r2dΩ2

3 , f = 1 +
r2

R2
. (10.27)

(The same as before, but with µ = 0). In fact this is global AdS5,53 but with compactification
of the Euclidean time:

t ∼= t+ β (10.28)

with any β. This space is called thermal AdS. We call it

X1 = Thermal AdS .

This space has a topology completely different from the previous one: S1 × D4, but with
same boundary S1 × S3.

This space is not simply connected, so it admits two spin structures: periodic or anti-
periodic fermions along S1. With anti-periodic boundary conditions it describes AdS at finite
temperature, i.e. a thermal gas of gravitons in AdS. With periodic boundary conditions,
instead, supersymmetry remains unbroken and the path-integral computes

Tr (−1)F e−βH . . .

which is called a Witten index.

If we impose periodic (supersymmetric) conditions on S1 at the boundary, i.e. we com-
pute Tr (−1)F e−βH in the QFT, only the space X1 is relevant (has the correct boundary
conditions). But if we impose anti-periodic (thermal) conditions, i.e. we study the QFT on

53With the coordinate change r = R tan θ and t = Rτ , one gets

ds2 =
R2

cos2 θ

(
dτ2 + dθ2 + sin2 θ dΩ2

3

)
.

On the other hand, with the coordinate change r = R sinh ρ and t = Rτ , one gets

ds2 = R2
(
cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

3

)
.
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S3 at finite temperature, both X1 and X2 are relevant.54 Both are saddle-point contributions
to the path-integral, and the dominant one is the one with smaller on-shell action.

This problem has been studied by Hawking and Page [HP83] first, as a question in 4d
quantum gravity, and later adapted by Witten [Wit98] to AdS/CFT.

One computes the on-shell actions. Both S[X1] and S[X2] are divergent and should be
regularized, however S[X2]−S[X1] is finite (one sets a cutoff r ≤ R0 and then takes R0 →∞).
One imposes that X1 has the same S1 radius as X2. One finds

S[X2]− S[X1] =
π2r3

+(R2 − r2
+)

4GN(2r2
+ +R2)

(10.29)

This expression changes sign at r+ = R, therefore there is a phase transition between thermal
AdS5 and a large black hole.

• r+ > R , i.e. T >
3

2πR
: large black hole, X2 Confinement

• r+ < R , i.e. T <
3

2πR
: thermal AdS5, X1 Deconfinement

On the boundary, this phase transition is interpreted as a confinement/de-confinement
transition, from the behavior of the Wilson loop. If T is roughly smaller than the scale 1

R

set by the sphere, we don’t see T and the physics is that of a conformal theory. If T is larger
than 1

R
, we do see the temperature, scalars and fermions get massive and we are left with

3d YM on S3 which confines.

54The BH solution has a minimal temperature Tmin =
√

2/πR (attained at 2r2
+ = R2), and for all larger

values of the temperature there are two solutions: the small BH and the large BH. Thus for T < Tmin only
X1 can contribute, while for T > Tmin there are X1, Xsmall

2 and X large
2 . It turns out that Xsmall

2 has larger
action and so is always thermodynamically unfavored [HP83].
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11 Example: the 1
2
-BPS spectrum of N = 4 SYM

We discussed how to compute the spectrum of primary operators using AdS/CFT. Let us
apply it to IIB string theory on AdS5 × S5.

11.1 Field theory side

In general, the dimension of composite operators is renormalized:

∆O = canonical dim. + γO(gYM) , γO =
∂ logZO
∂ log Λ

(11.1)

where γO is the anomalous dimension, ZO is the wavefunction renormalization of O.

Some operators are protected by the (super)conformal algebra and their dimension is not
renormalized. E.g.: conserved currents, and then their superpartners. The multiplets of
conserved currents are a special case of short multiplets : they contain less states than a
generic multiplet, saturate a unitarity bound, and the dimension is fixed by Lorentz and
R-symmetry quantum numbers.

• In N = 4 SYM there are various conserved currents:55 the stress tensor Tµν , the
supersymmetry currents Saµα, the SU(4) R-symmetry currents Jab µ. They all belong to
the same supermultiplet:(

Trφiφj − trace , . . . , Jab µ , S
a
µα , Tµν

)
whose lowest component is a scalar in the 20.56 The dimension of these fields is not
renormalized.

• The other short multiplets of N = 4 SYM are a generalization of the chiral multiplets
in N = 1.

In N = 1 a multiplet is chiral when it is annihilated by half of the Q’s (say Q). The
corresponding superfield depends only on θ (and not on θ̄) therefore it contains less
operators. A chiral multiplet satisfies the unitarity bound

∆ =
3

2
R . (11.2)

In particular ∆ and R can both be renormalized, but their ratio is not.

55The charges Pµ, Mµν , D and Kµ are constructed with Tµν . The supercharges Qaα and Saα are constructed
with Saµα. Conservation of all charges follows from ∂µTµν = T[µν] = Tµµ = 0 and ∂µSµα = γµαβS

β
µ = 0.

56The multiplet contains more scalars, and then the spin 1
2 operators. In particular there are the ∆ = 3

scalars Trλaλb +φ3 in the 10 (which is a symmetric bi-spinor, or an antisymmetric self-dual rank-3 tensor),
and the ∆ = 4 scalar L = TrFµνF

µν + . . . .
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In N = 4 a (single-trace) chiral multiplet has maximal spin 2, and a scalar lowest
component transforming in the symmetric traceless representation of rank k of SO(6).
With Dynkin diagrams:57

Trφ(i1 . . . φik) − traces [0, k, 0] of SU(4) ︸ ︷︷ ︸
k

. . . .

The dimension of the lowest state is fixed to ∆ = k, and since it is related to the
dimension of an SU(4) representation, it cannot be renormalized.

We call these chiral multiplets Ak.

The multiplet A2 corresponds to the supercurrent multiplet. All other single-trace chiral
multiplets of N = 4 SYM are one of the Ak. All single-trace operators not in one of the Ak
are renormalized.

Notice that depending on the gauge group the spectrum changes. For SU(N) we have all
k ≥ 2. Only U(1) can have k = 1 (and that is a free field). For SO(N) we have all even k.

Example. Consider the quadratic operators made from the six scalars of N = 4 SYM:

Trφiφj .

These are automatically symmetric (because of the trace), but fall in two SU(4) representa-
tions:

1
∑

i Trφiφi ∆ = 2 +O(gYM)

20 Trφiφj − δij
6

∑
k Trφkφk ∆ = 2 .

(11.3)

The first one is the lowest component of a long, unprotected multiplet: Konishi multiplet. Its
dimension is renormalized (at one-loop and beyond). The second one is the lowest component
of A2, and its dimension is not renormalized.

We can understand why only symmetric traceless combinations are in N = 4 chiral mul-
tiplets using an N = 1 subalgebra. On the one hand, the symmetric traceless combinations
include, in N = 1 notation, the operators58

Tr Φ(I1 . . .ΦIk) Ii = 1, 2, 3

57For SU(N), the representation [d1, . . . , dN−1] has a Young diagram with dj columns of height j. The
chiral multiplets with lowest component in the [p, k, p] play a role in multi-trace operators.

58When written in N = 1 notation, the symmetric traceless combinations contain more operators. For
instance, they contain the anti-chiral operators Tr Φ(I1 . . .ΦIk) which are protected. They also contain
operators written in terms of both chiral and anti-chiral fields. These, from the point of view of N = 1, do
not look protected, however they are because they sit in the same N = 4 multiplet.
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with indices symmetrized. These are N = 1 chiral. The superpotential of N = 4 SYM

W = Tr Φ1[Φ2,Φ3] (11.4)

fixes their R-charge, and consequently their dimension, to be

R[ΦI ] = 2/3 ⇒ ∆ = k , (11.5)

because ∆ = 3
2
R for chiral primaries.

On the other hand, if we consider the operators Tr ΦI1 . . .ΦIk , only those that are com-
pletely symmetrized are chiral primaries. This is because the EOMs (or the F-term relations)
imply

[ΦI ,ΦJ ] ∼ εIJKD
2ΦK . (11.6)

Therefore, operators that are not completely symmetrized are superconformal descendants,
and not primaries. Now, if we write the symmetrized operators Tr Φ(I1 . . .ΦIk) in terms of real
scalars φi, we discover that they are automatically traceless. Indeed, take for concreteness

Φ1Φ2 = φ1φ3 − φ2φ4 + iφ1φ4 + iφ2φ3

Φ1Φ1 = φ1φ1 − φ2φ2 + 2iφ(1φ2) .
(11.7)

In the first line each operator on the RHS is traceless (it gives zero when contracted with
δij); in the second line, both the real and the imaginary parts are traceless.

11.2 Gravity side

To read off the spectrum from gravity, we need the effective 5d supergravity theory in AdS5,
that follows from the 10d IIB supergravity on AdS5 × S5 from KK reduction.

In the standard KK reduction on S1 of radius R, one expands all fields in Fourier modes
on S1:

φ(xµ, y) =
∑

k
φk(xµ) eiky/R k ∈ Z . (11.8)

Then one plugs into the EOMs:

−�d+1 φ(xµ, y) =
(
−�d − ∂2

y

)
φ(xµ, y) =

∑
k

eiky/R
(
−�d +

k2

R2

)
φk(xµ) . (11.9)

Thus one gets an infinite tower or KK modes, with square masses k2/R2. (One can then
write an action that reproduces the EOMs).

We should do a similar KK reduction on S5. The bosonic massless modes of 10d type IIB
string theory are (

gµν , φ , Bµν , C , Cµν , C
+
µνρσ

)
. (11.10)

We should diagonalize the Laplacian on S5 using spherical harmonics. For a scalar:

φ(x, y) =
∑

I
φI(x)YI(y) (11.11)
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where YI are the eigenfunctions of the scalar Laplacian on S5.
The full reduction has been done in [KRvN85,GM85]. The result is the following.

KK scalars m2R2

−4

−3

−2

−1

0

∆ = 2

∆ = 3

∆ = 4

k = 1 k = 2 k = 3 k = 4 k = 5

20

10

1

50

45 105

gµµ − C4B2, C2Φ, C

We plot only the scalar modes, and for dimensions up to ∆ = 4. For each mode we indicate
the SU(4) representation.59 The mass/dimension is on the vertical axis. Modes in the same
vertical line are scalars in the same supermultiplet A′k. Modes connected by a dashed line
are different KK modes of the same 10d field.

The lowest scalar in each multiplet is in the k-fold symmetric traceless representation of
SO(6), namely

[0, k, 0] with m2 =
k(k − 4)

R2
↔ ∆ = k .

The next scalar is in representation

[2, k − 2, 0] with ∆ = k + 1 .

The next scalar is in representation

[0, k − 2, 0] with ∆ = k + 2 .

The multiplet contains spins up to 2 (because no 10d field has higher spin).

Let us make some remarks:

• In the standard KK reduction the massive modes in each tower are separated from
the massless modes by a gap of order 1/R. Thus one can decouple massive modes by
taking the limit R→ 0.

Due to the curvature, in AdS there is no separation: all KK modes have a mass of the
same order as the zero-modes. In fact, we even have fields with different masses in the
same supermultiplet!

5910 is a self-dual antisymmetric 3-tensor equal to a symmetric 2-spinor, while 20 is the symmetric traceless
2-tensor.
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• Even if we cannot decouple the multiplets A′k with k ≥ 3 by taking the radius of S5

small, we can write an effective action that reproduces the EOMs for A′2. This action
is 5d N = 8 SO(6) maximal gauged supergravity.

A′2 is coupled to A′k≥3, however if we set the latter to zero, they are not sourced by A′2.
In practice, the fields A′k≥3 never appear linearly in the Lagrangian.60 The reduction
to A′2 is called a consistent truncation: every solution of 5d N = 8 gauged SUGRA
can be uplifted to a 10d solution of IIB SUGRA.

11.3 Comparison

There is a perfect match between short multiplets of 4d N = 4 SYM and multiplets in AdS5

upon KK reduction of IIB SUGRA on S5. In both cases, there is one short multiplet Ak of
the superconformal algebra for each k ≥ 2.

The multiplet A′2 contains the graviton, the gravitino and the SO(6) gauge fields: it corre-
sponds to the supercurrent multiplet in FT (gauge symmetries in bulk = global symmetries
at boundary).

The multiplets A′k correspond to the FT multiplets Ak with lowest component

Trφ(i1 . . . φik) − traces .

The scalars in figure are identified as follows:

SU(4) rep operator mult./dim.
20 Trφiφj − trace A2 ∆ = 2
10 Trλaλb + φ3 A2 ∆ = 3

1 Fµν(F
µν + iF̃ µν) A2 ∆ = 4

50 Trφ(iφjφk) − traces A3 ∆ = 3
45 Trλaλbφi + φ4 A3 ∆ = 4

105 Trφ(iφjφkφl) − traces A4 ∆ = 4

In the bulk there are also string modes. In the supergravity approximation their masses
go like

m2 =
∆(∆− 4)

R2
∼ 1

α′
=

√
4πλ

R2
⇒ ∆ ∼ λ1/4 . (11.12)

We thus have the following prediction about N = 4 SYM: at strong coupling, all unprotected
multiplets (and in particular all operators with spin > 2) have divergent dimensions that
go like61 λ1/4. The only operators with finite dimension are those in the protected chiral
multiplets Ak.

60One way for this to happen is if the (classical) gravitational theory has a global symmetry, and the fields
A′k≥3 are charged while A′2 is neutral.

61This is true for operators of fixed length as N → ∞. One could also consider operators whose length
increases with N , like giant gravitons.
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12 A richer example: the conifold

In this lecture we want to study another exact example of AdS/CFT, with only N = 1
supersymmetry. This is a generalization of type IIB on AdS5 × S5, in which the manifold
S5 is substituted by another one, T 1,1, called the “base of the conifold”. The physics is
much richer: anomalies, dimensional transmutation, confinement, chiral symmetry breaking,
domain walls separating inequivalent vacua appear. Good reviews are [Kle00,HKO02].

The starting point of Maldacena’s proof is D3-branes on flat space, namely on

R3,1 × R6 .

We can construct other examples by taking a more general geometry:

R3,1 ×M6 ,

in other words the D3-branes are at a point of M6. In order to have a stable vacuum,
we’d better preserve some supersymmetry: the minimal one is N = 1 in 4d. The condition
for SUSY62 is that on M6 there is a covariantly constant spinor ζ, because the gravitino
variation is

δζΨµ = ∇µζ = 0 . (12.1)

ManifoldsM6 satisfying the condition are very special: they are called Calabi-Yau manifolds.

• They are complex and Kähler: the tensors

Jij = ζ†Γijζ , J ij = gikJkj (12.2)

are a (closed) Kähler form and a (integrable) complex structure.

• The metric is Ricci-flat:63

Rij = 0 . (12.3)

• They have trivial canonical bundle: the complex tensor

Ωijk = ζTΓijkζ (12.4)

is closed and covariantly-constant.

• The holonomy group is reduced from SO(6) to SU(3): a chiral spinor is in the 4 of
SU(4), and it breaks it to SU(3).

62We assume that we do not turn on fluxes, besides the F5 generated by the D3-branes. Then the dilatino
variation automatically vanishes, δλ = 0.

63From [∇i,∇j ]ζ = 0 one gets R kl
ij Γklζ = 0. Then use ΓjΓkl = Γjkl + δjkΓl − δjlΓk and the Bianchi

identity Ri[jkl] = 0 to get RijΓ
jζ = 0, finally use that the gamma matrices are independent.
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In Maldacena’s argument we take a near-horizon limit to the branes, i.e. we focus around
the branes. If the D3-branes sit at a smooth point on M6, the near-horizon leads to the
same AdS5 × S5 as before.

In order to get something new, we should place the D3-branes at a singular point onM6.
Focusing, the singularity looks like a conical singularity :

ds2(M6) = dr2 + r2 ds2(X5) . (12.5)

The SUSY condition for X5 is that it is Sasaki-Einstein (in particular positively curved).

The near-horizon geometry to D3-branes at a CY singularity is

AdS5 ×X5

with N units of 5-form flux on AdS5 and X5.

12.1 Conifold geometry and SCFT

The conifold (a conical Calabi-Yau threefold) is described by one complex equation in four
variables:

z2
1 + z2

2 + z2
3 + z2

4 = 0 . (12.6)

The equation is invariant under rescaling, thus the geometry is a cone. The base is called
T 1,1, which is a coset space:

T 1,1 =
SU(2)× SU(2)

U(1)
(12.7)

and has SU(2)× SU(2)× U(1) isometry. It is obtained by intersecting the equation with

4∑
a=1

|za|2 = 1 , (12.8)

which has SO(4)×U(1) invariance. Since there is a unique Abelian isometry, that is identified
with the superconformal R-symmetry U(1)R.

The Ricci-flat metric on the conifold is known (a rare fact) because of the large isometry.
It follows from the metric on T 1,1:

ds2(T 1,1) =
1

6

2∑
i=1

(
dθ2

i + sin2 θi dϕ
2
i

)
+

1

9

(
dψ −

2∑
i=1

cos θi dϕi

)
. (12.9)

The first term represents S2 × S2, while the second one with ψ ∼= ψ + 4π represents a U(1)
bundle over it. Therefore

T 1,1 = U(1) bundle over S2 × S2 ∼= S2 × S3 . (12.10)
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The fact that the topology is S2 × S3 is a geometric fact.64

After putting N D3-branes at the tip of the conifold and taking the near-horizon limit,
we get the following 10d solution of IIB supergravity:65

ds2 = R2
(
ds2(AdS5) + ds2(X5)

)
R4 = 4πgsNα

′2 Vol(S5)

Vol(X5)

F5 = (4π2α′)2gs
Vol(X5)

(1 + ∗)N dvolX5 .

(12.11)

The dual field theory has been identified by Klebanov and Witten [KW98]. To identify the
dual field theory we use the following argument. In general, the theory on the D3-branes is a
gauge theory with matter fields that parametrize their motion in the orthogonal directions.
Recall that for a single D3-brane on flat space, we have a U(1) theory with three neutral
complex scalars Φ1,2,3 parametrizing the orthogonal C3. For N branes we have a U(N)
theory, the neutral scalars become adjoint, and interactions are fixed by SUSY. The U(1)
and the traces of Φi decouple in the IR.

In the case of the conifold we can rewrite the equation as follows:

Z =
4∑

a=1

iσaza =

(
z4 + iz3 iz1 + z2

iz1 − z2 z4 − iz3

)
, detZ = 0 (12.12)

where σa=1,2,3 are the Pauli matrices and σ4 = −i1. The equation is solved by imposing that
Zij, as a matrix, is the product of two vectors:

Zij = AiBj (12.13)

with unconstrained Ai=1,2, Bj=1,2. If we parametrize the conifold by Ai, Bj there is no
equation, but there is a redundancy:

(Ai, Bj) → (eiθAi, e
−iθBj) (12.14)

which is implemented by a U(1) gauge symmetry. Led by the N = 4 example, we should
expect another decoupled U(1). Indeed we can propose the following theory:

SU(N) SU(N)

W = εijεkl TrAiBkAjBl .

This is a “quiver diagram”: nodes are gauge groups, and arrows are chiral multiplets in the
bifundamental representation: fundamental with respect to the group at the tail, antifunda-
mental under the group at the head.

64Oriented S3 bundles over S2 are topologically parametrized by π1

(
SO(4)

)
= Z2.

65The volume of S5 is π3, the volume of T 1,1 is 16π3/27.
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For a single D3-brane we have a U(1)×U(1) gauge theory with 4 chiral multiplets Ai, Bj,
where Ai have charges (1,−1) while Bj have charges (−1, 1).

For multiple D3-branes the groups are U(N). However one U(1) is decoupled and free,
while the other one becomes free in the IR. We thus have gauge group SU(N) × SU(N).
This theory indeed has SU(2)×SU(2)×U(1)B×U(1)R symmetry, where U(1)B is a baryonic
symmetry that gives charge +1 to Ai and −1 to Bj. Led by the N = 4 example, we should
also expect a superpotential.

Cancelation of the U(1)R anomaly fixes the dimensions of Ai, Bj at the fixed point. We
impose

Tr
fermions

T aSU(N) T
b
SU(N) R = 0 . (12.15)

We use that TrT aT b equalsN for the adjoint representation, and 1
2

for the (anti)fundamental.
Calling RA the R-charge of Ai, Bj:

N +
1

2
(RA − 1)4N = 0 ⇒ RA =

1

2
, ∆ =

3

4
.

The chiral multiplets do not have canonical dimension, thus the fixed point is necessarily
strongly-coupled. There is a unique superpotential which is compatible with the symmetries:

W = εijεkl TrAiBkAjBl = Tr(A1B1A2B2 − A1B2A2B1) . (12.16)

In fact, this superpotential is necessary to give a 2d line of exactly marginal deformations,
as observed in SUGRA.

How does U(1)B appear in supergravity? The internal manifold has topology S2 × S3,
therefore the KK reduction of C4 gives a gauge field in AdS5. This is the bulk gauge field
dual to the baryonic current.

12.2 RG flow to T 1,1

As a nice check, we can reproduce the conifold field theory from an RG flow.

Start with N D3-branes on the orbifold geometry

R3,1 × C2/Z2 × C .

The near-horizon geometry is AdS5×S5/Z2. Since the original geometry is an orbifold of flat
space, the perturbative open string is well-defined and one can compute the spectrum exactly
as one does for flat D3-branes. The theory on the D3-branes has 4d N = 2 supersymmetry
and it is

SU(N) SU(N)

W = Tr

(
Φ

2∑
i=1

AiBi − Φ̃
2∑
i=1

BiAi

)
.
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We can add a relevant deformation:

Wdef =
m

2
Tr
(
Φ2 − Φ̃2

)
. (12.17)

The fields Φ, Φ̃ are massive and can be integrated out. One obtains precisely the conifold
theory.

We can understand that geometrically. The perturbation Wdef is odd under the exchange
of the two gauge groups, and it is odd under Z2. Thus it corresponds to a twisted mode.
Such twisted mode corresponds to a resolution of the orbifold singularity into the conifold.
The full RG flow has been constructed in supergravity.

It is interesting to examine how the central charges change under this RG flow. Recall
that, al leading order in N :

a ' c ' 9

32
Tr

fermions
R3 . (12.18)

In the N = 2 orbifold theory we have

c ' 9

32

(
2N2 + 6

(
− 1

3

)3
)

=
N2

2
. (12.19)

In the N = 1 KW theory we have

c ' 9

32

(
2N2 + 4

(
− 1

2

)3
)

=
27

64
N2 . (12.20)

Therefore
cIR

cUV

=
27

32
. (12.21)

According to the c-theorem, this is smaller than 1.

We can compare with the holographic computation. We have seen that the central charge
is proportional to the Newton constant in AdS5, which is inversely proportional to the radius
of X5:

cIR

cUV

=
Vol(S5/Z2)

Vol(T 1,1)
=

27

32
. (12.22)

12.3 Spectrum of chiral primaries

The analysis of single-trace chiral primaries for the conifold theory is very similar to the one
for N = 4 SYM.

On the gravity side, we should KK reduce IIB supergravity on T 1,1 to get an effective
theory in AdS5. The lowest scalar in each multiplet comes from a mixture of modes of the
warp factor gµµ and C4. The wavefunctions are in the representation(k

2
,
k

2

)
k
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of the isometry group SU(2) × SU(2) × U(1)R — and are neutral under U(1)B. The mass
of the scalars in AdS5 is

m2R2 =
3

4
k(3k − 8) , (12.23)

therefore the dimensions of the dual operators follow from

∆± = 2±
∣∣∣3
2
k − 2

∣∣∣ . (12.24)

For k ≥ 2 there is only one possible quantization, and the dimension must be

∆+ =
3

2
k . (12.25)

However for k = 1 both quantizations are allowed: ∆+ = 5
2
, ∆− = 3

2
. As we will see in a

moment in FT, the one compatible with supersymmetry is the unusual one:

k = 1 : ∆− =
3

2
. (12.26)

Thus we have here an example in which the alternative quantization is chosen: the boundary
conditions fix the subleading mode, as opposed to the leading mode.

In the field theory, the single-trace chiral primaries are

O = Tr
(
Ai1Bj1 . . . AikBjk

)
k ≥ 1 .

From the superpotential W = Tr
(
A1B1A2B2−A1B2A2B1

)
one obtains the F-term relations

A[iB|j|Ak] = 0 , B[j A|i|Bl] = 0 (12.27)

antisymmetrized in [ik] and [jl] respectively. It follows that the single-trace chiral primaries
are fully symmetrized in (i1 . . . ik) and (j1 . . . jk) separately, and thus are in representation(
k
2
, k

2

)
of SU(2)2. The R-symmetry of A,B is fixed by the superpotential:

RA =
1

2
(12.28)

and it cannot be renormalized. It follows that

R[O] = k , ∆[O] =
3

2
k . (12.29)

They precisely match the spectrum computed in supergravity.

There is an important difference between the S5 and T 1,1 case. In the S5 case, all modes
in the KK reduction to AdS5 sit in short (and thus protected) multiplets. In this sense, we
are not learning something new about the spectrum. In the case of T 1,1, many of the KK
modes on AdS5 and in long unprotected multiplets. AdS/CFT makes the prediction that
their dimensions remain finite in the large λ limit, and it gives a way to compute spectrum
and correlators.
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12.4 Dibaryons as wrapped D3-branes

No KK mode in AdS5 is charged under U(1)B, because the baryonic current comes from C4

and the SUGRA modes are not charged under C4.

In the field theory, what operators are charged under U(1)B? For instance the “dybaryons”

Bi1...iN = (Ai1)α1
β1
. . . (AiN )αNβN εα1...αN εβ1...βN . (12.30)

This object is, by construction, totally symmetric in (i1 . . . iN), and thus it is in representation(N
2
, 0
)
N
2
,N

of SU(2)2 × U(1)R × U(1)B .

In particular these are N + 1 operators, and are chiral primaries.

There is of course a second dibaryon operator B̃j1...jN constructed out of Bj, in represen-
tation (

0,
N

2

)
N
2
,−N

.

The dimension of these operators is

∆ =
3

4
N , (12.31)

in particular it is large as N →∞. These operators are not described by the KK reduction
of 10d massless string modes. They are also not described by massive perturbative string
modes, since for those the dimension scales as ∆ ∼ λ1/4. They are described by solitonic
string states, in fact D-branes.

Since T 1,1 ∼= S2 × S3, we can wrap a D3-brane on S3 to get a particle in AdS5.

AdS5 S2 S3

A D3-brane is charged under C4, thus the particle is charged under U(1)B. It turns out
that a D3-brane on a minimal-surface S3 is also supersymmetric, thus the particle will be
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described by a chiral field. Such a chiral field, ΦB, is then singled-out to be the bulk field
dual to the dibaryon operator.

A minimal area S3 in T 1,1 is given by

(θ1, ϕ1) = fixed ∀ θ2, ϕ2, ψ .

Its volume is

Vol(S3) =
8

9
π2R3 . (12.32)

Since the D3-brane has a tension, the mass of the particle is

mD3 = Vol(S3)

√
π

κ
κ =

√
8πGN = 8π7/2gsα

′2 . (12.33)

For the precise coefficients see Polchinski’s book or [Kle00]. Finally we find the dimension
of the operator dual to ΦB:

R2m2
D3 =

9

16
N2 , ∆ = 2 +

√
2 +R2m2 =

3

4
N +O(1) . (12.34)

We reproduce the dimension of B, at leading order in N .

Classically, we have one such field ΦB for each value of (θ1, ϕ1). At the quantum level,
we have a moduli space CP1 that we should quantize, in the sense that we should find
wavefunctions on this space. Reducing on S3, we find a point particle on S2 immersed into
N units of magnetic flux (from the reduction of F5). The quantization of this system, more
precisely of the fermionic oscillations, leads to N+1 Landau levels: the vacuum is degenerate
with N + 1 states. Such states form an (N + 1)-dimensional representation of the rotation
group SU(2), i.e. of spin N

2
.

Thus we reproduce the fact that there are N + 1 such operators, transforming in the spin
N
2

representation of the first SU(2).

12.5 Fractional branes and the Klebanov-Tseytlin solution

Another interesting object to introduce is M D5-branes wrapped on S2 of T 1,1. This object
is a domain wall in AdS5, that separates two phases with a different 5d effective theory.

It is not obvious to understand what happens on the other side of the wall, and to make
things simple we use some intuition. We take the baryonic particle coming from a D3-
brane on S3 and follow it as it crosses the wall. When a D3 and M D5’s cross, by “brane-
creation effect” [DFK97] M D1-strings are created between the two. As a result, the dibaryon
operator has M free gauge index (attached to an external heavy quark). For instance

(Ai1)α1
β1
. . . (AiN+M

)
αN+M

βN+M
εα1...αN εβ1...βN+M .

This is possible if the gauge group has become

SU(N)× SU(N +M) .
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There are more refined arguments to draw this conclusion.

The wall is not BPS and is not really stable in AdS5: its energy scales as r4, thus the wall
wants to ”fall inside AdS” towards the horizon at r = 0.

The stable configuration is without the wall (the wall has disappeared behind the horizon),
but with a magnetic flux on S3 of the RR 3-form F3 which is the remnant of its passage.

Another way to think about the system is before taking the near-horizon limit: at the tip
of the conifold we can place N D3-branes, as well as M D5-branes that wrap the vanishing
S2 cycle at the tip and thus “look like 3-branes” — these are called fractional branes.

Thus we are after a supergravity solution with

1

4πα′

∫
S3

F3 = M ,
1

(4πα′)2

∫
T 1,1

?
= N . (12.35)

We are studying a SUSY theory, and we are looking for SUSY ground states. Thus we can
solve the BPS equations {

δΨµα = 0 gravitino

δλα = 0 dilatino .
(12.36)

These equations imply
H3 = gs ∗6 F3 , (12.37)

therefore the solution should have a non-trivial NS 3-form flux H3 as well. The Bianchi
identity for F5 is

dF5 = H3 ∧ F3 6= 0 because F5 = dC4 +B2 ∧ F3 . (12.38)

It follows that the number N defined above is not constant! It is a function of r.

These considerations lead to the following supergravity solution, constructed by Klebanov
and Tseytlin [KT00]. The metric is a “warped product” of R3,1 and the conifold:

ds2
10 = h(r)−1/2dx2

3,1 + h(r)1/2
(
dr2 + r2ds2

T 1,1

)
(12.39)

where we recall

ds2
T 1,1 =

1

6

∑
i=1,2

(
dθ2

i + sin2 θi dϕ
2
i

)
+

1

9

(
dψ −

∑
i=1,2

cos θi dϕi

)2

. (12.40)

To write the fluxes, we introduce two forms proportional to the volume forms on S2 and
S3:66

ω2 =
1

2

(
sin θ1 dθ1 ∧ dϕ1 − sin θ2 dθ2 ∧ dϕ2

)
∝ dvolS2 , ω3 = dψ ∧ ω2 ∝ dvolS3 . (12.41)

66A representative for S2 is θ1 = θ2, ϕ1 = −ϕ2. A representative for S3 is (θ2, ϕ2) = fixed.
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They also satisfy ω2 ∧ ω3 = 54 dvolT 1,1 . Then

F3 = α′
M

2
ω3 , H3 = gsα

′3M

2

dr

r
∧ ω2 . (12.42)

The running 5-form flux is

F5 = (1 + ∗) 27πα′2Neff(r) dvolT 1,1 , Neff(r) = N +
3

2π
gsM

2 log
r

r0

. (12.43)

Finally the warp factor is given by

h(r) =
L4

r4
log

r

rs
for some rs , L2 =

9gsMα′

2
√

2
. (12.44)

This supergravity solution encodes an incredibly rich physics. Let us explore some aspects.
An excellent review on Seiberg duality and the physics of the KW theory is by Strassler
[Str05].

Exact β-function. In 4d supersymmetric N = 1 gauge theories there is an “exact” ex-
pression for the gauge β-function, if we use a holomorphic scheme L = 1

g2 TrFµνF
µν . This

is called the NSVZ beta function [NSVZ83,NSVZ86]:67

βNSVZ

[8π2

g2

]
= 3C2(G)−

∑
chirals

C(R) (1− γ) . (12.46)

If we neglect γ, this is the standard one-loop beta function. Instead

γ =
∂ logZΦ

∂ log µ
∆[Φ] = 1 +

1

2
γΦ (12.47)

is the anomalous dimension of the chiral field Φ. This formula expresses the exact beta
function, as a function of the unknown anomalous dimensions which receive contributions
to all orders.

Applied to the KW theory with gauge group SU(N +M)× SU(N):

∂

∂ log µ

8π2

g2
1

= 3(N +M)− 2N(1− γ)

∂

∂ log µ

8π2

g2
2

= 3N − 2(N +M)(1− γ) .

(12.48)

67The standard one-loop beta function is

β(g) = − g3

16π2

(
11

3
C2(G)− 2

3

∑
Weyl

C(RW)− 1

6

∑
scalarR

C(Rs)

)
. (12.45)

Here C(R) is the Dynkin index, or quadratic Casimir, of the representation R: TrT aT b = C(R) δab. Instead
C2(G) = C(adj) is the dual Coxeter number.
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We need to determine γ. For M = 0 the theory is conformal and ∆[A,B] = 3
4
, then γ = −1

2
.

It follows that γ has an expansion in M
N

. Since the theory is invariant under

M → −M , N → N +M (12.49)

but this changes sign to the first order term, it follows that

γ = −1

2
+O

(
M
N

)2
. (12.50)

We compute

∂
∂ logµ

(
8π2

g2
1

+ 8π2

g2
2

)
= O

(
M · M

N

)
, ∂

∂ log µ

(
8π2

g2
1
− 8π2

g2
2

)
= 6M

(
1 +O

(
M
N

)2
)
. (12.51)

We can compute the same runnings in gravity. The gauge couplings are identified through

8π2

g2
1

+
8π2

g2
2

=
2π

gseφ
,

8π2

g2
1

− 8π2

g2
2

=
2

gseφ

(
1

2πα′

∫
S2

B2 − π (mod 2π)

)
. (12.52)

These formulae can be understood as follow. The sum (or average) of the inverse gauge
couplings is the inverse gauge coupling on a D3-brane; this makes sense if we go on the
Coulomb branch. The sum of the two expressions gives

8π2

g2
1

=
1

2πα′gseφ

∫
S2

B2 .

This is the 4d inverse coupling that one obtains for a D5-brane on a 2-cycle, from the DBI
action

1

gs

∫
R3,1×S2

e−φ
√

det(g +B2 + F2)

when the 2-cycle is vanishing.

In the SUGRA solution the dilaton is constant, eφ = 1, and this reproduces the vanishing
of β1 + β2. To compute β1 − β2, we write

B2 = gsα
′ 3M

2
ω2 log r (12.53)

as a potential for F3, and identify the scale log µ with log r. This reproduces exactly

β1 − β2 = 6M (12.54)

at leading order in N .
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The chiral anomaly. For M 6= 0, U(1)R becomes anomalous.68 Very roughly, the non-
trivial β-function contributes to the trace anomaly 〈T µµ 〉, and by supersymmetry this is
related to the chiral anomaly ∂µJRµ .

In field theory the chiral anomaly is one-loop exact and given by

∂µJRµ =
1

16π2
ARab F a

µνF̃
bµν F̃ µν =

1

2
εµνρσFρσ (12.55)

with the anomaly A following from triangle diagrams:

ARab = Trfermions RT
a T b . (12.56)

The simple computation in the SU(N +M)× SU(N) KW theory gives

∂µJRµ =
M

16π2

(
F a
µνF̃

aµν −Ga
µνG̃

aµν
)
, (12.57)

where F and G are the field strengths for the two groups, respectively.

From Noether’s theorem, if we perform an R-symmetry rotation by eiε and then a “gauge”
transformation ARµ → ARµ + ∂µε for an external gauge field coupled to the R-symmetry, the
action changes by

δS =

∫
d4x JµR δA

R
µ = −

∫
d4x ε ∂µJRµ . (12.58)

Because of the anomaly, this is a shift of the theta angles in the theory, and therefore it is
not a symmetry. The θ-angle terms are

S ⊃
∫
d4x

(
θ1

32π2
F a
µνF̃

aµν +
θ2

32π2
Ga
µνG̃

aµν

)
, (12.59)

thus an R-symmetry rotation induces a shift of the θ-angles

θ1 → θ1 + 2Mε , θ2 → θ2 − 2Mε (12.60)

and it is not a symmetry. However, since θi ∼= θi + 2π, a residual discrete subgroup of U(1)R
remains unbroken:

U(1)R → Z2M .

How does this anomaly appear in supergravity? Although F3 is invariant under U(1)R
rotations, its RR potential C2 cannot be. We can choose, for instance,

F3 = α′
M

2
ω3 ⇒ C2 = α′

M

2
ψ ω2 . (12.61)

68We stress that this is an R-gauge-gauge anomaly that spoils the symmetry, not a ’t Hooft R-R-R anomaly
as we computed in N = 4 SYM.
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Of course C2 is not a gauge invariant (it is a gauge potential), however

1

2πα′

∫
S2

C2 = M ψ (12.62)

is a gauge-invariant (recall δC2 = dλ1), but it is not invariant under shifts of ψ. Such a
gauge invariant is an axion, with period 2π, thus

ψ → ψ +
4π

2M
(12.63)

is a symmetry, and since ψ ∼= ψ + 4π we conclude that there is a residual Z2M discrete
symmetry.

In fact we can see the parallel with FT even better. The axion is the bulk mode dual to
the operator sourced by the difference of the theta angles, while the other RR axion is dual
to the operator sourced by the sum:69

1

πα′

∫
S2

C2 = θ1 − θ2 , C0 ∼ θ1 + θ2 . (12.65)

We see that a shift δψ = 2ε leaves θ1 + θ2 fixed, while shifting

θ1 − θ2 → θ1 − θ2 + 4Mε , (12.66)

as in the FT calculation.

The picture we gave is in 10 dimensions, and the anomaly appears as a spontaneous
breaking in the internal directions: the solution is not invariant. How does that appear
in AdS5? Global symmetries on the boundary are gauge symmetries in the bulk, and of
course a gauge symmetry cannot be anomalous. Indeed, what happens is that, because of
the spontaneous breaking, the gauge field get massive by Higgs mechanism in the bulk. Thus

Anomalous symmetry on the boundary ⇔ Massive vector in the bulk .

The computation can be found in [HKO02]. Since the vector is massive, the dual current
operator gets an anomalous dimension ∆ > 3. AdS/CFT allows to compute such a dimen-
sion:

∆(Jµ) = 2 +
√

1 +m2R2 ' 3 +
(gsM)2

πgsN
. (12.67)

69Notice that these modes are constant in AdS5, consistently with the fact that the dual operators,
F aµν F̃

aµν ±GaµνG̃aµν have dimension 4. The operator map follows from the WZ D-brane action

SWZ =

∫
Dp

e2πα′(F2+B2)
∑

RR
CRR . (12.64)
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Cascading RG flow. The SU(N + M)× SU(N) theory is non-conformal. It has a very
peculiar RG flow, that can be understood in terms of a “cascade” of Seiberg dualities.

We have computed the β-functions (both in FT and SUGRA) at leading order:

∂

∂ log µ

8π2

g2
1

= 3M ,
∂

∂ log µ

8π2

g2
2

= −3M . (12.68)

Thus the gauge group SU(N + M) goes towards strong coupling in the IR, while SU(N)
goes towards weak coupling. At a scale

Λ = µ e
− 1

3M
8π2

g21(µ) (12.69)

the group SU(N +M) is strongly coupled. Since Nc = N +M and Nf = 2N , we can use a

Seiberg-dual description: Ñc = Nf −Nc = N −M . Working out the details (and integrating
out massive fields) we obtain

N −M N

and the conifold superpotential is reproduced. This is the same theory has before, but with

N → N −M .

Now the role of the gauge groups gets exchanged: SU(N) goes towards strong coupling
and SU(N −M) towards weak coupling, until we perform another duality on SU(N) →
SU(N − 2M), and we keep going. In fact this process continues indefinitely in the UV.70

The “running” of the gauge ranks appears in supergravity as the fact that∫
T 1,1

F5 is not constant ,

and in particular

Neff(r) = N +
3

2π
gsM

2 log
r

r0

. (12.70)

The precise coefficients, expressing the “RG distance” between one duality and the next, can
be successfully compared with field theory.71

70This peculiar RG flow is a clever way that the theory has to remain strongly-coupled at all energies,
even though the couplings run and so one would expect them to reach weak coupling at some point (either
UV or IR). This would necessarily make the supergravity approximation break down.

71More precisely, the integer ranks should be compare with the Page charge
∫
T 1,1 dC4, which is integer

and it jumps discontinuously.

88



12.6 Chiral symmetry breaking, confinement, and the Klebanov-
Strassler solution

It is clear that the cascading RG flow can continue indefinitely in the UV, but not in the IR.
In supergravity, there is a naked singularity in the IR (small r) where either Neff(r) or h(r)
become negative. This signals that new physics is needed in the IR.

Luckily, it turns out that the resolution is possible within the supergravity approximation!

Let us first understand the physics (explained in depth in [Str05]). Suppose that towards
the end of the cascade we reach

SU(2M)× SU(M) .

Now SU(2M) goes to strong coupling. However this time Nf = Nc, and there is no Seiberg

duality in this case. Instead, the theory confines, mesons M and baryons B, B̃ become the
fundamental fields, but they are subjected to a quantum deformed constraint

detM−BB̃ = Λ2Nc . (12.71)

The constraint can be imposed by a Lagrange multiplier X in the superpotential. The
mesons are Mji = BjAi. Thus the superpotential is

W = −Tr
(
M11M22 −M12M21

)
+X

(
det

(
M11 M12

M21 M22

)
− BB̃ − Λ4M

)
. (12.72)

Because of the first term, the mesons are massive and can be integrated out. The baryons
get a VEV, BB̃ = −Λ4M , and leave a flat direction. Since the baryons are neutral under
SU(M), we are left with pure SU(M) SYM. This theory has gaugino condensation, chiral
symmetry breaking

Z2M → Z2 ,

M inequivalent vacua and confinement.

Thus, the IR physics we were missing is chiral symmetry breaking. One can include such
an ingredient by substituting the conifold by the deformed conifold :72

z2
1 + z2

2 + z2
3 + z2

4 = ε2 . (12.73)

The parameter ε breaks the R-symmetry, that rotates the variables za, to Z2. The deformed
conifold is still Calabi-Yau. It is not a cone, rather it is a smooth three-fold with a finite-size
S3 at the tip:

figure

The Klebanov-Strassler solution has metric

ds2
10 = h(τ)−1/2dx2

3,1 + h(τ)1/2ds2
6(def conifold) , (12.74)

72A better way to motivate the deformed conifold is to study the moduli space of SU(M + 1)× SU(1).
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3-form flux F3 on S3, H3 along dr ∧ dvolS2 , and it asymptotes the KT solution far from the
tip. However it is everywhere smooth, and according to our discussion on confinement, it
gives confinement of flux tubes with a discrete spectrum of glueballs.
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13 Response functions and AdS/CMT

We will discuss real-time correlators in AdS/CFT, transport coefficients, and how AdS/CFT
can be applied to systems oriented towards condensed matter problems. Good reviews
are [Her09,Har09].

13.1 Spectral functions and transport coefficients

Suppose we have a system described by the (possibly time-dependent) Hamiltonian H̃(t).
We perturb the system by external sources φi(t, x) coupled to a set of operators Oi(t, x).
The Hamiltonian is modified by a term

δH = −
∫
dt dd−1xφi(t, x)Oi(t, x) . (13.1)

Notice that by x we mean the spatial components. Under the assumption that we keep fixed
the states in the far past, we ask what is the effect on the expectation values 〈Oj(t, x)〉.

To answer, it is convenient to do the computation in the Schrödinger picture. The evolution
of states is controlled by the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = H̃(t) |ψ(t)〉 , (13.2)

where we use ˜ for operators in the Schrödinger picture. This is solved by the unitary
time-evolution operator

U(t, t0) = T e
−i

∫ t
t0
H̃(t′) dt′

such that
∂

∂t
U(t, t0) = −i H̃(t)U(t, t0) . (13.3)

The expectation value of an operator O(t, x)i is

〈Oi(t, x)〉 = Tr ρ(t) Õi(t, x) = TrU(t, t0) ρ0 U(t, t0)−1 Õi(t, x) = Tr ρ0Oi(t, x) , (13.4)

where ρ is a density matrix (evolving with i∂tρ = [H̃, ρ]) and ρ0 is the density matrix at the
far-past time t0. Operators in the Heisemberg picture are related to those in the Schrödinger
picture by the unitary transformation

O(t, x) = U(t)−1 Õ(t, x)U(t) . (13.5)

The Heisenberg picture is the one used in QFT.73

73In the Schrödinger picture states evolve with time, while operators Õ do not (but can have an explicit

dependence on time, like H̃). In the Heisenberg picture, instead, states remain constant while operators O
evolve. Things get a bit confusing, though, if the Hamiltonian depends explicitly on time, since H̃(t) 6= H(t)

but the evolution operator is constructed with H̃.
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Now we separate
H̃(t) = H̃0(t) + δH̃(t) .

The evolution operator for H̃ is (as can be checked by computing ∂t)

U(t) = U0 · T exp
{
− i
∫ t

U0(t′)−1 δH̃(t′)U0(t′) dt′
}

= U0 · T e−i
∫ t δH(t′) dt′ , (13.6)

where U0(t, t0) is the time evolution of H̃0. Expanding at first order we find

δ〈Oi(t, x)〉 = −iTr ρ0

∫ t

dt′
[
U0(t)−1 Õi(t, x)U0(t) , δH(t′)

]
= i

∫ t

dt′
∫
dd−1x′

〈[
Oi(t, x) , Oj(t′, x′)

]〉
φj(t

′, x′) .

(13.7)

Notice that time integration is only over t′ < t.

Thus, the causal effect of the perturbation is controlled by the retarded Green’s function

Gij
R(t, x, t′, x′) = i θ(t− t′)

〈[
Oi(t, x) , Oj(t′, x′)

]〉
, (13.8)

where θ is the Heaviside step function. Using translational invariance, in momentum space
we have

Gij
R(ω, k) =

∫
dt dd−1x eiωt−ikx iθ(t)

〈[
Oi(t, x) , Oj(0, 0)

]〉
. (13.9)

Then the causal effect of a perturbation is simply

δ〈Oi(ω, k)〉 = Gij
R(ω, k)φj(ωk) +O(φ2) . (13.10)

Retarded Green’s functions have interesting properties.

• If the operators {Oi} are Hermitian, it easily follows

Gij
R(t, x)∗ = Gij

R(t, x) , Gij
R(ω, k)∗ = Gij

R(−ω,−k) . (13.11)

• If the system is invariant under time reversal, and the operators {Oi} transform as
TOi(t, x)T−1 = εiOi(−t, x) with εi = ±1, then

Gij
R(t, x)∗ = εi εj G

ji
R(t,−x) . (13.12)

This follows because T is an anti-unitary operator:〈[
Oi(t, x),Oj(0, 0)

]〉
=
〈
T
[
Oi(t, x),Oj(0, 0)

]
T−1

〉∗
= −εiεj

〈[
Oj(t,−x),Oi(0, 0)

]〉
.

Combined with Hermiticity of {Oi} one gets

Gij
R(ω, k) = εi εj G

ji
R(ω,−k) . (13.13)

If time reversal is broken, for instance by a magnetic field B, the property is still true
except that one of the two sides is evaluated in the flipped background (e.g. B → −B).
At zero momentum k the relation is called Onsager relation.
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• Retarded Green’s functions are causal, in the sense that a perturbation only affects
later times and so Gij

R(t, x) vanishes for t < 0. Consider

GR(t, k) =

∫
dω e−iωtGR(ω, k) .

For t < 0 we can close the contour in the upper half-plane, and the fact that we get
zero means that GR(ω, k) is analytic (no poles) in the upper half-plane.

From this fact, if moreover GR(ω) vanishes for |ω| → ∞, one obtaines the Kramers-
Kronig relations74

ReGR(ω) = P

∫ ∞
−∞

dω′

π

ImGR(ω)

ω′ − ω
, ImGR(ω) = −P

∫ ∞
−∞

dω′

π

ReGR(ω)

ω′ − ω
.

(13.15)

• Retarded Green’s function satisfy positivity properties. One can show that

− iω
(
Gij
R(ω)−Gji

R(ω)∗
)

is def ≥ 0 . (13.16)

The anti-Hermitian part of the retarded Green’s function is called the spectral function.

If there is a unique operator involved, the spectral function satsfies

ω ImGR(ω) ≥ 0 . (13.17)

Retarded Green’s functions are directly related to transport coefficients. Take the example
of Ohm’s law, which defines the electric conductivity. It states that for an electric field that
is constant in space (k = 0) but oscillating in time with frequency ω, the spatial part of the
charge current response is given by

Ji(ω) = σij(ω)Ej(ω) . (13.18)

(Here ij are spatial indices.) Here σij(ω) is called optical conductivity.

In our language, φi is an external vector potential Aµ while Oi is the conserved current
Jµ. We take a gauge where At = 0, then Ei = −∂tAi. Making a Fourier decomposition
Ai ∼ e−iωt, we have

Ej = iωAj .

74They follow from

GR(z) =

∮
Γ

dζ

2πi

GR(ζ)

ζ − z
for Im z > 0 (13.14)

where Γ is within Im ζ > 0, right above the real axis and then closed in the upper half-plane. Then one
takes the limit z → ω + i0.
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We see that the optical conductivity is related to the current-current correlator:

σij(ω) =
Gij
R(ω, 0)

iω
. (13.19)

By considering correlators of the current and the stress tensor, one can similarly construct a
matrix of transport coefficients that include also the heat conductivity and the thermoelectric
coefficients.

This is good new for AdS/CFT, because two-point functions is precisely one of the things
that we can easily compute with AdS/CFT in strongly-coupled theories.

13.2 Real-time correlators from AdS/CFT

We have learned how to compute generic correlators in Euclidean signature. To compute
transport coefficients we need two-point functions in Lorentz signature. In principle, they
are related by analytic continuation, but if we have a numerical result we don’t really know
how to do the continuation. We should then understand how to directly compute correlators
in real time.

At the boundary there is not much difference. The EOM for a scalar in AdSd+1 gives
asymptotic behavior

Φ(z, t, x) = e−iωt+ikx
(
zd−∆φ0

(
1 +O(z)

)
+ z∆φ1

(
1 +O(z)

))
. (13.20)

We impose Dirichelet boundary conditions for one of the two modes, typically φ0. This
makes φ0 be identified with the source and φ1 with the VEV.

Things are quite different in the interior, i.e. at the horizon. For instance, in AdS the two
exact solutions for time-like kµ (i.e. on-shell, since ω2 > ~k2) are

zd/2K±ν(iqz) , q =

√
ω2 − ~k2 > 0 , ν = ∆− d

2
.

They behave as
e±iqz for z →∞ .

They are both regular at the horizon. This is because there are many different real-time
Green’s functions we can construct in QFT.

To construct retarded Green’s functions we have to choose infalling boundary conditions,
i.e. energy should move towards larger z as time passes, thus falling inside the horizon. It
can be motivated in three ways:

• Such boundary conditions correspond to a causal behavior.

• Such boundary conditions reproduce the correct analytic structure of GR(ω), i.e. no
poles in the upper half-plane.
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• They can be derived from a holographic version of the Schwinger-Keldysh prescription.

Infalling boundary conditions break time reversal. In the example of AdS, we should choose
the solution that behaves like e−iωt+iqz (for ω > 0), that is

e−iωt+ikxzd/2K+ν(iqz) .

More generally, we should

Impose regular boundary conditions at future horizons.

A future horizon is a null surface beyond which events cannot causally propagate back to
the boundary. On a future horizon, regularity requires that modes are infalling.

For a horizon at non-zero temperature located at z = z+, the standard black hole metric
looks like75

ds2 = −f(z) dt2 +
dz2

f(z)
f(z) ' 4πT (z+ − z) (13.21)

and gtt has a simple zero at the horizon. To analyze the modes around the horizon, we can
use Kruskal coordinates

ρ± τ = e
1
2

log(z+−z)±2πTt , (13.22)

which bring the metric to the simple form ds2 = (πT )−1(−dτ 2 + dρ2). The future horizon is
at ρ = τ > 0, the past horizon is at ρ = −τ > 0. The solutions to the massless Klein-Gordon
equation are f+(ρ+ τ) and f−(ρ− τ). Imposing the time dependence Φ ∼ e−iωt we find

f+ = (ρ+ τ)−iω/2πT , f− = (ρ− τ)iω/2πT . (13.23)

The solution f− is singular at the future horizon, while f+ is regular. This singles out f+,
and therefore the infalling mode behaves as

φ(z) ∼ e−
iω

4πT
log(z+−z) . (13.24)

For a zero-temperature horizon located at z = z+, the component gtt has a double zero
and the metric looks like AdS2:

ds2 ' −(z+ − z)2

R2
dt2 +

R2

(z+ − z)2
dz2 . (13.25)

This is mapped to our standard AdS metric by z+ − z = r = R2/ζ. We already saw that
infalling modes behaves as eiωζ (for zero momentum), thus

φ(z) ∼ eiωR
2/(z+−z) . (13.26)

75Go to Euclidean time and perform the coordinate change ρ2 = (z+ − z)/πT . The metric becomes
approximately ds2 ' dρ2 + 4π2T 2dt2, which is smooth R2 if t ∼= t+ T−1.
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We fix the boundary conditions on the future horizon because a space-like surface termi-
nating on a future horizon provides a good Cauchy surface from which to evolve initial data.
A space-like surface ending on a past horizon does not: one would need to specify what is
coming out of the “white hole”.

Furthermore, the presence of a future horizon allows energy to be lost behind the horizon,
which is the holographic manifestation of dissipation.

At this point, the two-point functions are computed in the standard way:

Gφφ
R (ω, k) =

δφ1

δφ0

∣∣∣
ω,k

. (13.27)

13.3 A setup for condensed matter problems

We have studied in some detail the solutions to Einstein gravity with negative cosmological
constant Λ. The simplest solution is

AdSd+1 ,

representing a CFT in its conformal vacuum. A more interesting solution is

Schwarzschild BH in AdSd+1 ,

representing the same CFT but in a thermal ensemble.

To do more, we need to add other fields. It is common in condensed matter systems to
have a U(1) symmetry.

The most common situation is that it is the electromagnetic U(1). Of course that is a
gauge symmetry, while AdS/CFT describes global symmetries on the boundary. However
in many condensed matter systems the photon can be thought of as non-dynamical (in the
low-energy effective theory).

1. The electromagnetic coupling is small.

2. Electromagnetic interactions are usually screened in a charged medium, thus the effec-
tive theory usually does not contain photons.
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Thus, we consider bulk theories with a U(1) gauge field, dual to CFTs with a U(1) global
symmetry.

This allows us to obtain background electric and magnetic fields on the boundary, as well
as to add a chemical potential µ that induces a charge (and particle) density ρ.

For instance, consider the following model in AdS4:

S(4) =
1

2κ2

∫
d4x
√
−g
(
R+

6

L2

)
− 1

4g2

∫
d4x
√
−g FMNF

MN . (13.28)

One obvious solution is AdS4 with radius L. This is dual to the conformally-invariant vacuum
of some 2 + 1 dimensional CFT.

More interesting solutions are the dyonic black membranes, i.e. black holes with temper-
ature, electric and magnetic charges, that span R2,1. The metric takes the familiar form

ds2 = L2

[
dz2

z2f(z)
+

1

z2

(
− f(z) dt2 + dx2 + dy2

)]
(13.29)

with

f(z) = 1 + (h2 + q2)α
z4

z4
h

−
(
1 + (h2 + q2)α

)z3

z3
h

, α =
κ2z2

h

2g2L2
, (13.30)

and there is also a non-trivial electro-magnetic field

A =
h

zh
x dy − q

(
1− z

zh

)
dt . (13.31)

These are closed cousins of the Reissner-Nordström black hole. The boundary is at z = 0
and the metric is asymptotically AdS4, while there is a horizon at z = zh. An integration
constant in A is chosen in such a way that At(zh) = 0, hence AMANg

MN <∞ is regular.

As we learned, regularity of the Euclidean solution at the horizon gives the temperature
(both of the BH and of the CFT):

T =
3− (h2 + q2)α

4πzh
. (13.32)

The boundary value of the spatial components of the field strength give a magnetic field Fxy:

Fxy(z = 0) =
h

zh
. (13.33)

Therefore the magnetic charge of the BH corresponds to a constant magnetic field in the
boundary theory. To extract the charge density, we analyze the asymptotic behavior of the
gauge field:

Aµ = aµ + bµz + . . . (13.34)

The first constant is the source:

at = −q ≡ µ chemical potential µ . (13.35)
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The second constant is, up to a proportionality constant that follows from differentiating
the action, the VEV:

bt = g2 〈J t〉 ≡ g2 ρ = − q

zh
=

µ

zh
charge density ρ . (13.36)

Therefore the electric field of the BH corresponds to a chemical potential, which induces a
charge density in the system.

13.4 The holographic superconductor

We have discussed scalar fields φ in the bulk. They can be dual to relevant operators,
which can be used to trigger RG flows. If these fields are charged — meaning that the dual
operators are charged under the global U(1) symmetry on the boundary — they can become
order parameters for broken symmetries.

This is very interesting because symmetry breaking is at the heart of CM physics (recall
that the Higgs mechanism has been discovered by Anderson, a CM physicist, first).

We consider a simple model in which we add a charged scalar φ to the Einstein-Maxwell
theory discussed before:

Sφ = −
∫
d4x
√
−g
(
|Dφ|2 − 2

|φ|2

L2

)
, D = ∂ − iA . (13.37)

In general we could take a potential V
(
|φ|
)
: we have taken the simplest choice, a mass term.

The mass has been chosen arbitrarily (to do numerics we have to choose one), such that

m2L2 = −2 , ∆+ = 2 , ∆− = 1 . (13.38)

We are in the range of double quantization, therefore this model can describe an order
parameter of dimension 2 or 1. We set

h = 0 (13.39)

for simplicity: no magnetic field. But we do turn on temperature T and chemical potential
µ.

The central observation is that the charge density acts as an effective z-dependent negative
contribution to the mass of the scalar:

meff(z) = m2 + gttA2
t = m2 − q2

L2

z2

f(z)

(
1− z/zh

)2
. (13.40)

When q is large enough, the mass becomes too negative, there is an instability and the
scalar develops a non-trivial profile. However the effective mass vanishes at z = zh and
z = 0, therefore the runaway direction is “stabilized by the curvature”.
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We can make the simplifying assumption

κ2 � g2L2 . (13.41)

This is the weak gravity or probe limit : the gauge and scalar field do not have enough energy
to curve spacetime, and we can study their dynamics on a fixed background. The metric
simplifies to

f(z) = 1− z3

z3
h

. (13.42)

One can write down the EOMs for φ and At, choosing a gauge where φ ∈ R:

z2
(f φ′
z2

)′
=
(m2

z2
− A2

t

f

)
φ , A′′t =

2g2

z2f
φ2At . (13.43)

The boundary conditions at the boundary are

At = µ− g2ρ z + . . . , φ = a z + b z2 + . . . for z → 0 . (13.44)

In the canonical ensemble we keep the density ρ fixed (and let µ be determined dynamically).
If we choose O of dimension ∆ = 2, we insist that there is no source, a = 0. At the horizon
we impose φ <∞ and At = 0 for regularity.

The equations have to be solve numerically. For T larger than a critical value Tc (propor-
tional to ρ1/2) the only solution is76

φ = 0 , At = g2ρ(1− z) . (13.45)

At Tc, φ develops a normal mode: the linearized EOMs have a solution with no source. For
T < Tc, there is a solution of the non-linear equations with non-trivial profile for φ (and it
turns out that this solution has lower free energy):

√
O
Tc

8

T
Tc

The model has a second-order phase transition at Tc. The behavior of the condensate is

〈O〉 ∼ (Tc − T )1/2 (13.46)

with the classical 1
2

mean-field exponent of Landau-Ginzburg theory.

76Here we have set L = 1 and zh = 1. All physical quantities depend on ρ/T 2.
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13.5 Conductivity

To compute the conductivity, we need to study the linearized equations of motion for a
fluctuation of the gauge field in the background of the condensate. The equation is

(
f A′x

)′ − ω2

f
Ax =

2g2

z2
φ2Ax . (13.47)

The boundary conditions near the boundary are

Ax =
Ex
iω

+
g2

α
Jxz + . . . (13.48)

while at the horizon we impose infalling boundary conditions. Finally

σxx(ω) =
Jx

Ex

∣∣∣
ω
. (13.49)

Unfortunately the equations cannot be solved analytically, have to be solved numerically.

For T > Tc the optical conductivity is constant and equal to σxx(ω) = 1/g2. The fact that
it does not depend on ω is an artifact of the probe approximation.

For T � Tc one finds, qualitatively:

ω

σ

1
g2

√
O

For large frequencies, Reσxx approaches the normal-phase value, but at low frequencies there
is a “gap”. This is interpreted as a gap in the Fermi surface, and the fact that to conduce
one needs to break a Cooper pair. Thus the gap is associated to twice the gap in the Fermi
surface. At ω = 0 there is a delta function, characteristic of a superconductor, which is
derived from the 1/ω behavior of the imaginary part and the Kramers-Kronig relations.
This shape is qualitatively similar to the textbook one of BCS superconductors, however the
gap is much larger than in the BCS case.

100



14 Entanglement entropy

A good review is hep-th/0905.0932 by Nishioka, Ryu, Takayanagi [NRT09]. Consider a
quantum mechanical system with many degrees of freedom, such as a spin chain, a lattice
model or a QFT.

In general, we could consider pure states |ψ〉 or mixed states described by density matrices

ρ =
∑
i

|ψi〉〈ψi| with Tr ρ = 1 . (14.1)

Notice that ρ is Hermitian and positive definite, and can be diagonalized in an orthonormal
basis |ψ̃j〉:

ρ =
∑
j

ρj|ψ̃j〉〈ψ̃j| with 0 ≤ ρj ≤ 1 ,
∑

j
ρj = 1 . (14.2)

Here ρj are probabilities. Density matrices can also describe pure states, if

ρ = |ψ〉〈ψ| (14.3)

for some (normalized) state |ψ〉. Expectation values are computed by

〈O〉ρ = Tr ρO . (14.4)

For pure states this reduces to the standard 〈O〉 = 〈ψ|O|ψ〉.
A density matrix is pure if and only if it is a projector,

ρ2 = ρ , (14.5)

and because of the normalization condition this automatically implies that it projects to a
one-dimensional subspace. Alternatively, we can compute the von Neumann entropy:

S = −Tr ρ log ρ . (14.6)

This is ≥ 0, and zero if and only if ρ is a pure state. If S > 0, then eS is a rough measure
of the number of states involved in ρ.77

Put the system at zero temperature. Assuming no ground-state degeneracy, the system is
in its ground state |Ψ〉, which is a pure state. The density matrix is

ρtot = |Ψ〉〈Ψ| . (14.7)

The von Neumann entropy of this state, Stot = −Tr ρtot log ρtot = 0, vanishes because ρtot is
a pure state.

77If ρ is uniformly distributed over n orthogonal states, namely ρ = 1
n

∑n
j=1 |ψ̃j〉〈ψ̃j |, then S = log n.
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Next we divide the system into two subsystems, A and B, in such a way that the total
Hilbert space factorizes into a tensor product:

Htot = HA ⊗HB . (14.8)

For instance, we divide the sites of the spin chain or the lattice model into two groups
(possibly connected), or we divide the space where a local QFT lives into two regions.78 An
observer that only has access to the subsystem A will feel as if the system is described by
the reduced density matrix

ρA = TrB ρtot (14.9)

where the trace is over the subsystem B.

We define the entanglement entropy of the subsystem A as the von Neumann entropy of
its reduced density matrix

SA = −TrA ρA log ρA . (14.10)

This quantity measures how much the systems A and B are entangled in the quantum state
|Ψ〉 (or how much the state is “quantum”).79

Example. Consider two particles of spin 1
2
: each has two states |↑〉 and |↓〉. Suppose they

are in the state
|Ψ〉 = |↑〉A ⊗ |↓〉B .

Then
ρA = |↑〉A〈↑ |A , SA = 0 . (14.11)

In this state the two particles are not entangled: one is clearly | ↑〉A while the other one is
clearly |↓〉B.

Suppose, instead, that they are in the state

|Ψ〉 =
1√
2

(
|↑〉A ⊗ |↓〉B + |↓〉A ⊗ |↑〉B

)
.

This is the state if the two particles are created from the decay of a scalar particle. This
time

ρA =
1

2

(
|↑〉A〈↑ |A + |↓〉A〈↓ |A

)
, SA = log 2 . (14.12)

In this state the two particles are entangled: we cannot determine the state of each one
separately, rather, if one is |↑〉 then the other one is |↓〉 and vice versa. �

We can define the entanglement entropy in arbitrary states, not just the ground state, and
also in mixed states (described by general density matrices). For instance, we can define the

78The case of a QFT is tricky because the Hilbert space does not really factorize [Wit18]. For this discussion
we will assume it does.

79As explained below, this is a good measure of entanglement only if the state is pure in Htot.
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entanglement entropy at finite temperature T = β−1 by using for ρtot the thermal density
matrix

ρthermal =
1

Z
e−βH Z = Tr e−βH (14.13)

where H is the Hamiltonian. When A is the total system, SA(β) is simply the thermal
entropy. Indeed

log ρ = −βH − logZ (14.14)

and so

− Tr ρ log ρ = β Tr ρH + logZ Tr ρ = β〈H〉+ logZ = β
(
〈H〉 − F

)
= S , (14.15)

where Z = e−βF and F = E − TS is the Helmholtz free energy.80

Two important properties of the entanglement entropy are:

• When the density matrix ρtot is pure, then

SA = SB . (14.16)

Exercise. Prove it, for a finite-dimensional Hilbert space.

• Strong subadditivity. Given non-intersecting subsystems A, B and C (not necessarily
covering the whole system):

SA+B+C + SB ≤ SA+B + SB+C

SA + SC ≤ SA+B + SB+C .
(14.17)

These relations are quite non-trivial and we will not prove them.

14.1 Entanglement entropy in QFT

Consider a local QFT on
Rt ×N , (14.18)

where N is a d-dimensional spatial manifold. We define the subregion A as a region A ⊂ N
at fixed time t0. We call B its complement in N .

In a local QFT, let us suppose that the Hilbert space factorizes as a tensor product

Htot = HA ⊗HB . (14.19)

This allows us to define SA as before.

80The Helmholtz free energy corresponds to the thermodynamic ensemble at constant temperature and
volume. This is the correct ensemble for a QFT, in which we are supposed to work at fixed finite volume
and then take the infinite volume limit at the end.
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Such entanglement entropy is usually divergent in a continuum theory, and its definition
requires a UV cutoff Λ = 1

a
(a is a lattice spacing). Then the coefficient in front of the

divergence is proportional to the area of the boundary ∂A:

SA = γ · Area(∂A)

ad−1
+ subleading . (14.20)

This behavior is intuitively understood as the fact that the entanglement between A and
B occurs at the boundary ∂A most strongly. The coefficient γ depends on the theory, but
usually also on the renormalization scheme. This is clear: if you redefine the cutoff a→ λa
then γ → λd−1γ.

The behavior in 2D is different (then d = 1, and the boundary has dimension zero). For
instance in a CFT, the entanglement entropy of an interval of lenght ` in R is [CC04]

SA =
c

3
log

`

a
, (14.21)

where c is the central charge. This time the coefficient in front of the divergent term is
scheme-independent, because if we redefine a → λa we add a constant, but do not change
the coefficient in front of log a.

The form of entanglement entropy in CFTs in generic dimension is

SA = p1

( `
a

)d−1

+ p3

( `
a

)d−3

+ . . .+


pd−2

( `
a

)2

+ c̃ log
`

a
(d+ 1) even

pd−1

( `
a

)
+ pd (d+ 1) odd,

(14.22)

where ` is a typical length scale of A. This can be understood because the various terms
are controlled by local counterterms constructed with the metric and the extrinsic curvature
of the boundary. Most terms are scheme dependent, as one infers by considering redefini-
tions a → λa of the cutoff. However, c̃ and pd are scheme independent and carry physical
information.

For instance, in (3 + 1)D c̃ is proportional to the central charge a — the one involved
in the a-theorem which is monotonic along unitary RG flows. Indeed one can use strong
subadditivity to provide an alternative proof of the a-theorem [CTT17].

In (2 + 1)D one can use
p2 ≡ F (14.23)

to define a “central charge”, which also has been proven to be monotonic along RG flows
[CH12,CHMY15].

Replica trick. To evaluate the entanglement entropy in QFT we use the “replica trick”.
First we evaluate

TrA ρ
n
A , (14.24)
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which is simpler because there is no log. This is called Rényi entropy. Then we analytically
continue from n ∈ N to n ∈ R, and then use

∂

∂n
Tr ρn =

∂

∂n
Tr en log ρ = Tr ρn log ρ (14.25)

to write:

SA = − ∂

∂n
TrA ρ

n
A

∣∣∣
n=1

= − ∂

∂n
log TrA ρ

n
A

∣∣∣
n=1

. (14.26)

The second equality is because TrA ρA = 1.

To compute TrA ρ
n
A we use the path-integral formalism. Let us consider 2D for simplicity,

and takeA to be an interval at t = 0 in Euclidean signature. The ground-state wavefunctional
Ψ is found by integrating from t = −∞:

Ψ
(
φ0(x)

)
=

∫ φ(t=0,x)=φ0(x)

t=−∞
Dφ e−S[φ] . (14.27)

The density matrix ρ = |Ψ〉〈Ψ| has matrix elements

[ρ]φ−,φ+ = Ψ(φ−) Ψ(φ+) . (14.28)

Ψ is obtained by integrating from t = 0 to t = +∞.

To obtain the reduced density matrix ρA we need to integrate over B, namely we set

φ−(x) = φ+(x) ≡ φ0 for x ∈ B (14.29)

and integrate over φ0 on B. We are left with discontinuous boundary conditions along A:

[ρA]φ−,φ+ =
1

Z1

∫ t=+∞

t=−∞
Dφ e−S[φ]

∏
x∈A

δ
(
φ(0−, x)− φ−(x)

)
δ
(
φ(0+, x)− φ+(x)

)
. (14.30)

Here Z1 is the vacuum partition function, necessary to guarantee that TrA ρA = 1.

B BA

φ−

φ+

Now, ρnA is given by n copies of ρA:

[ρA]φ1,−φ1,+ . . . [ρA]φn,−φn,+ .

Multiplication is obtained by gluing the boundary conditions,

φj,+(x) = φj+1,−(x) for x ∈ A , (14.31)

and integrating.
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The trace is given by gluing and integrating the first and last boundary conditions.

Thus TrA ρ
n
A is the path-integral over an n-sheeted Riemann surface Σn, which is an n-fold

covering of R2 branched over ∂A:

TrA ρ
n
A =

1

(Z1)n

∫
Σn

Dφ e−S[φ] ≡ Zn
(Z1)n

. (14.32)

The construction in higher dimensions is the same.

14.2 Holographic entanglement entropy

Given a CFT with holographic dual, how do we compute the entanglement entropy of a
region A?

Let us consider the Poincarè patch of AdSd+2:

ds2 = R2
dz2 + dx2

d,1

z2
. (14.33)

First we choose a cutoff z ≥ a. The region A is at the boundary on Rd, and ∂A is a
(d− 1)-dimensional surface in Rd.

The prescription is that we should find a d-dimensional surface γA in AdSd+2, at fixed
time, that ends on ∂A, is homotopic to A, and has minimal surface. Then

SA =
Area(γA)

4G
(d+2)
N

. (14.34)

This is called the Ryu-Takayanagi formula. This prescription can be derived with a version
of the replica trick in AdSd+2.

Sketch of a derivation. We compute entanglement entropy as the analytically continued
limit of the Renyi entropies. The latter is the partition function on an n-sheeted space Rn,
with deficit angle

δ = 2π(1− n) (14.35)
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along the boundary ∂A. We should find a (d + 2)-dimensional geometry Sn that solves
Einstein equations and asymptotes to Rn at the boundary z → 0. This is a technically
difficult and unsolved problem, so we will use a trick.

We assume that Sn is an n-sheeted covering of AdSd+2, with a deficit angle δ along a
codimension-2 surface γA that asymptotes to the boundary ∂A. The Ricci scalar of the bulk
spacetime has a δ-function along the surface:

R = 4π(1− n) δ(γA) +R0 , (14.36)

where R0 is the curvature of AdSd+2. Then we plug this in the supergravity action

SAdS = − 1

16πGN

∫
dd+2x

√
g (R + Λ) + . . . (14.37)

The missing terms give a contribution that cancels out in the ratio as we send n → 1.
Applying AdS/CFT:

SA = − ∂

∂n
log Tr ρnA

∣∣∣
n=1

= − ∂

∂n

[
(1− n) Area(γA)

4GN

]
n=1

=
Area(γA)

4GN

. (14.38)

Moreover, the action principle in gravity becomes the variational principle for the Area and
selects the minimal-area surface γA.

Holographic proof of strong subadditivity. It is easy to prove with pictures:

A

B

C

SA∪B + SB∪C ≥ SA∪B∪C + SB

A

B

C

SA∪B + SB∪C ≥ SA + SC

In both pictures, the sum of the lengths (in AdS) of the blue lines is greater than that of
the red line, because in both cases one can decompose the blue lines in such a way that they
connect the same pair of points as the red lines, but the red lines are minimal length for
those pairs, while the blue lines are not (they are minimal for different pairs).

Entanglement entropy of interval in 2D CFT. We use the relation between the radius
of AdS3 and the central charge c of the CFT2:

c =
3R

2G
(3)
N

. (14.39)
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Take AdS3 (its Poincarè patch) and an interval of length `. We need the geodesic between
the two points (

− `

2
, a
)

and
( `

2
, a
)
. (14.40)

This is given by the half-circle

(x, z) =
`

2

(
cosu , sinu

)
, ε ≤ u ≤ π − ε , ε =

2a

`
(14.41)

for a→ 0. Then the length is easily computed (ds2 = R2du2/ sin2 u along the curve):

Length(γA) = 2R

∫ π/2

ε

du

sinu
' −2R log

ε

2
= 2R log

`

a
. (14.42)

The the entanglement entropy is

SA =
Length(γA)

4G
(3)
N

=
c

3
log

`

a
, (14.43)

reproducing the field theory result.
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