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Axiomatic approaches to Lorentzian QFT:
Algebraic QFT vs Factorization Algebras

Categorical equivalence — naive approach

Open problem: upgrade to higher categorical equivalence
(& motivation)

Categorical equivalence revisited — stacky approach
(& how it simplifies the open problem)

Towards a higher categorical equivalence
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Axiomatic Lorentzian QFT

Algebraic QFT (Haag-Kastler, Brunetti-Fredenhagen-Verch, ...)
e assigns observables to spacetimes,
e encodes pushforward along spacetime embeddings,

e captures multiplication of observables.

Factorization algebra (Costello-Gwilliam, ...)
e assigns observables to spacetimes,
e encodes pushforward along spacetime embeddings,

e captures time-ordered products.

Are these approaches comparable? How?
Key: causality and determinism!
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Lorentzian geometry

The category Loc consists of
obj: spacetimes
oriented and time-oriented globally hyperbolic Lorentzian
manifolds of fixed dimension m > 2
mor: causal embeddings
orientation and time-orientation preserving isometric embeddings

with causally convex open image
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Lorentzian geometry
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Lorentzian geometry

Causally disjoint pair
(f1M1—>N)J_(f2M2—>N)
of causal embeddings
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Lorentzian geometry

Causally disjoint pair
(f1M1—>N)J_(f2M2—>N)
of causal embeddings

In((M)) U fa(Ma) =0

Time ordered n-tuple f : M — N

of causal embeddings

I (M) U f(M;) =D V) > i

Cauchy embedding f : M = N

f(M) contains a Cauchy surface ¥
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Algebraic quantum field theory (AQFT)

An AQFT A is a functor A : Loc — Alg! such that the diagram

A(My) © A(Mp) ——EXE) 4y A(N)
A(ﬁ)®A(f2){ (causality) hﬁf’
A(N) @ A(N) _ A(N)

commutes for all causally disjoint pairs
(ﬂ:M1—>N)J_(f21M2—>N).

!Category of monoids in a (nice) symmetric monoidal category T.



Algebraic quantum field theory (AQFT)

An AQFT A is a functor A : Loc — Alg! such that the diagram

A(f)®A(f2)

A(Mr) @ A(Ms) A(N) @ A(N)
A(ﬁ)®A(f2)‘ (causality) ‘HX,P
A(N) @ A(N) o A(N)

commutes for all causally disjoint pairs
(ﬂ:M1—>N)J_(f21M2—>N).

An AQFT A is Cauchy constant, or satisfies the time-slice axiom, if
A(f) : A(M) = A(N) is an isomorphism (determinism) whenever
f: M = Nis a Cauchy embedding.

!Category of monoids in a (nice) symmetric monoidal category T.
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fulfilling unitality, associativity and permutation equivariance.

Time-orderability = existence of a time-ordering permutation.
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® an object (M) € T for each spacetime M € Loc and

e a time-ordered product
F(f): FM) :=Q,; F(M;) — N (causality)

for each time-orderable? tuple f : M — N,

fulfilling unitality, associativity and permutation equivariance.

A tPFA F is Cauchy constant, or satisfies the time-slice axiom, if
F(f): F(M) = F(N) is an isomorphism (determinism) whenever
f: M = Nis a Cauchy embedding.

Time-orderability = existence of a time-ordering permutation.



Categorical equivalence [B—Perin-Schenkel]

AQFTC: = tPFAC:
|

{AQFTs & nat. transf.}*" {tPFAs & multinat. transf.}*"

C = Cauchy constant
= additive

means that observables are exhausted by those supported
in relatively compact causally convex opens (rccco) U C M:
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Categorical equivalence — naive approach

AQFT — tPFA straightforward
tPFAC ! AQFT tricky, but explicit

Key: time-ordered products determine spacetime-wise multiplications
via Cauchy constancy

F(e )Xf(’ Fltgyt—)

pm = F(M) © F(M) LF(My) © F(M.)
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Open problem: higher categorical equivalence?

Motivation:
e gauge fields have non-trivial stabilizer groups

~> higher homotopy groups
e Batalin-Vilkovisky formalism ~~ derived critical loci

Goal: equivalence between the oo-cat. of AQFTs and that of tPFAs,

both valued in cochain complexes and satisfying a homotopy-relaxed
version of Cauchy constancy

Issues:

e lack of a structural construction of the ordinary equivalence
e oo-categorical counterpart of additivity



Revisiting the AQFT-vs-tPFA equivalence

Step 1. Replace the additivity property with structure

obj: spacetimes
Loc'* := < mor: causal embeddings that are Cauchy
or have relatively compact image



Revisiting the AQFT-vs-tPFA equivalence

Replace the with

obj: spacetimes
Loc' := ¢ mor: causal embeddings that

Nothing gets lost:

full
AQFT C AQFT" := {AQFTs on Loc“}

full
tPFA"! C tPFA™ := {tPFAs on Loc‘}
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Step 2: Reduce the global equivalence problem to a family of
spacetime-wise equivalence problems.
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for all M



Revisiting the AQFT-vs-tPFA equivalence

Step 2: Reduce the global equivalence problem to a family of
spacetime-wise equivalence problems.

AQFT vs tPFA on Loc™ ~ AQFT vs tPFA on Loc™/M
for all M

Benefit: localization O ,c<[C™1] inexplicit, but each localization
Ou[C~1] computed via calculus of fractions == oo-localization.

O\ ocre: colored operad controlling AQFTs on Loc™.

Oy colored operad controlling AQFTs on M.



Haag-Kastler and Costello-Gwilliam 2-functors

v

HK() : (Loc™®)°P —s Cat
M —s {AQFTs on Loc™®/M}()
(f - M — N) — (£ : HKO(N) — HK(O (M)

CG) : (Loc™®)°P —s Cat
M — {tPFAs on Loc™/M}()
(f - M — N) —s (" : CGEYN) — CGO(W))



Haag-Kastler and Costello-Gwilliam 2-functors

v

HK() : (Loc™®)°P —s Cat
M —s {AQFTs on Loc™®/M}()
(f - M — N) — (£ : HKO(N) — HK(O (M)

CG) : (Loc™®)°P —s Cat

M — {tPFAs on Loc™/M}(©)
(f - M — N) —s (" : CGEYN) — CGO(W))

Remark: HK(“) closely related to stacks [B-Grant-Stuart-Schenkel].
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consider the categories of points
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Decomposition and assembly

To link HK and CG to AQFTs and, respectively, tPFAs on Loc™,
consider the categories of points

HKO)(pt) = bilim HK(O 3 ({AM}, (67 Am > f*AN}),
CG(pt) := bilimCG() 3 ({J—“M}, (r: Fu > f*]—"N}),
and the decomposition and functors

dc

(global data) AQFT () ~ HK(®) (pt) (compatible families)

. dc \
(global data) tPFA™(C) ~ CG( )(pt) (compatible families)
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AQFT-vs-tPFA equivalence revisited

The family {AQFTs on Loc*/M}" ~ {tPFAs on Loc*/M}" forms a
2-natural equivalence

2-nat. equiv.
~Y

H KC ~ CGC
(pass to categories of points)

HK" (pt) ~ CG“(pt)
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AQFTI‘C,C tPFArC’C



AQFT-vs-tPFA equivalence revisited

The family {AQFTs on Loc*/M}" ~ {tPFAs on Loc*/M}" forms a
2-natural equivalence

HKC 2—nat.:equiv. e
(pass to categories of points)
HK" (pt) ~ CG“(pt)
AQFT™" S tPFA™

We rediscover the AQFT-vs-tPFA equivalence out of its
spacetime-wise counterpart and the decomposition-assembly
equivalence.



Towards a higher AQFT-vs-tPFA equivalence

T = symm. mon. model category of unbounded cochain complexes
AQFT™
t rc
' HK (M)
CG(M)

End with projective model structures.

3Cauchy morphisms are sent to quasi-isomorphisms, instead of isomorphisms.



Towards a higher AQFT-vs-tPFA equivalence

T = symm. mon. model category of unbounded cochain complexes

AQFT™®
t Irc
Y HK(M)
CG(M)

End with projective model structures.

Homotopy® Cauchy constancy via left Bousfield localization:

L-AQFT™

L tPFA™ (combinatorial and tractable
LHK(M) semimodel categories)
L:CG(M)

(The projective model structures may not be left proper. This leads to existence of
left Bousfield localizations as semimodel categories [Batanin—White].)

3Cauchy morphisms are sent to quasi-isomorphisms, instead of isomorphisms.
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Homotopical decomposition and assembly

HK(pt) (points) (TAw} {6r - Au = £ An})
Sect® HK (right sections) ({AM}, {or: Am — f*AN}>
HK{pt}  (homotopical points) <{AM}, {or: Ay — f*AN}>
and similarly for CG and the left Bousfield localizations £ HK, £~CG [Barwick].

Proposition [B—Carmona—Grant-Stuart—Schenkel in preparation]
Decoupling and assembly are right Quillen equivalences

~G ~Q
de: (Lo)AQFT™ — (L)HK{pt}, S (Le)HK{pt} — (L4)AQFT™

~

de s (Lo)tPFAT —5 (£.)CG{pt},  as: (£2)CG{pt} —> (L. )tPFAT



Towards a higher AQFT-vs-tPFA equivalence

Hypothesis: £-HK(M) = L+CG(M) right Quillen equivalences.

This yields a 2-natural right Quillen equivalence:

2-nat. right Quillen equiv.

LoHK £.:.CG
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Hypothesis: £-HK(M) = L+CG(M) right Quillen equivalences.

This yields a 2-natural right Quillen equivalence:

2-nat. right Quillen equiv.

LoHK £:.CG

(pass to categories of homotopical points)

LeHK{pt}

L CG{pt}

~@q [B—Carmona—Grant-Stuart—Schenkel]



Towards a higher AQFT-vs-tPFA equivalence

Hypothesis: £-HK(M) = L+CG(M) right Quillen equivalences.

This yields a 2-natural right Quillen equivalence:

2-nat. right Quillen equiv.

LoHK £:.CG

(pass to categories of homotopical points)

L HK{pt} — £CG{pt}

d«l”@ NOJ{d('

LeAQFT™ L tPFA™



Towards a higher AQFT-vs-tPFA equivalence

Hypothesis: £-HK(M) = L+CG(M) right Quillen equivalences.

This yields a 2-natural right Quillen equivalence:

2-nat. right Quillen equiv.

£:HK £.CG
(pass to categories of homotopical points)
£ HK{pt} _ £.CG{pt}
drl"@ NQJ{(I(:
L. AQFT™ — L tPFA™

Assuming spacetime-wise higher AQFT-vs-tPFA equivalences, via the
higher decomposition-assembly equivalence we deduce the desired
higher AQFT-vs-tPFA equivalence.



Towards a higher AQFT-vs-tPFA equivalence

Hypothesis to be checked: for all M € Loc the right Quillen functor
LHK(M) — L-CG(M)

is a right Quillen equivalence.

*The relative operad (O, C) admits a calculus of left fractions, hence
oo-localization can be modeled by ordinary localization.



Towards a higher AQFT-vs-tPFA equivalence

Hypothesis to be checked: for all M € Loc the right Quillen functor
LHK(M) — L-CG(M)
is a right Quillen equivalence.

Proposition [B—Carmona—Grant-Stuart—Schenkel in preparation]
Homotopy Cauchy constancy for AQFTs on Loc™/M can be
strictified®, i.e. there is a right Quillen equivalence

L* : HK(M)© =% £ HK(M)

HK(M)“ = category of cochain complex valued AQFTs on the
localized category (Loc™/M)[C '] with projective model structure.

*The relative operad (O, C) admits a calculus of left fractions, hence
oo-localization can be modeled by ordinary localization.
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Algs. over localization Op[C ] Algs. over homotopical
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operad over M Cauchy embeddings of

tPFA operad over M
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Open problem

c ~Q?7?
HK(M) L:CG(M)
Algs. over localization Op[C 1] Algs. over homotopical
at Cauchy embeddings of AQFT localization LctPy, at
operad over M Cauchy embeddings of

tPFA operad over M

Therefore, it would be sufficient to check that

OI\/I [C,l] localization OM comparison t,PM

(homotopical)
is a homotopical localization of simplicial operads.

Issue: not much is known about homotopical localization of operads.
[Basterra & al]



Attempt to solving the open problem

Pass to categories of operators [Haugseng, Calaque—Carmona] and show

_ localizati comparison
OM[C 1] ocalization OI\/I Py

(homotopical)

exhibits an oco-localization at Cauchy embeddings C* by checking
existing detection criteria, such as [Hinich, "DK localizations
revisited”, Key Lemma 1.3.6].
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Attempt to solving the open problem

Pass to [Haugseng, Calaque—Carmona] and show

N— localization comparison
OM[(, 1] . Om tPy
(homotopical)

exhibits an oco-localization at Cauchy embeddings C* by checking
existing detection criteria, such as [Hinich, "DK localizations
revisited”, Key Lemma 1.3.6].

Issue: hypotheses of existing detection criteria are not fulfilled by the
above functor due to emptiness of some homotopy fibers.

Hope: modified detection criteria (e.g. allowing for empty homotopy
fibers) when the functor already exhibits 1-localization?
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Summary & outlook Thanks!

e Axiomatic approaches to Lorentzian QFT:

o AQFTs focus on multiplying observables,
o tPFAs focus on time-ordered products,

both encode causality and Cauchy constancy (determinism).

AQFT-vs-tPFA equivalence — key: Cauchy constancy.

AQFT-vs-tPFA equivalence revisited — two ingredients:

o decomposition- equivalence,
o spacetime-wise AQFT-vs-tPFA equivalence.

Towards a higher AQFT-vs-tPFA equivalence:

o higher decomposition- equivalence,
o open problem: spacetime-wise higher AQFT-vs-tPFA equivalence.

Solution??7?: refined detection criteria for oo-localizations



