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1 Introdution

1.1 Bakground

This paper onerns a variant of the intuitionisti fragment of Girard's linear logi [Gir87℄.

As is well-known, linear logi does not ontain the strutural rules of weakening and

ontration, but these are reintrodued in a ontrolled way via a unary operator, written

! and pronouned `of ourse', `bang' or `shriek'. The sequent alulus rules for ! are the

following:

!� ` A

Promotion

!� `!A

�; A ` B

Derelition

�; !A ` B

�; !A; !A ` B

Contration

�; !A ` B

� ` B

Weakening

�; !A ` B

The rules above allow ordinary intuitionisti logi to be interpreted within intuition-

isiti linear logi via (for example) the so-alled `Girard translation'. In [BBHdP92,

BBHdP93b, BBHdP93a℄, Benton, Bierman, Hyland and de Paiva formulated a natural

dedution presentation of the multipliative/exponential fragment of ILL, together with

a term alulus (extending the propositions as types analogy to linear logi) and a at-

egorial model (a linear ategory). In that work, the multipliative (i.e. 
,�Æ) part of

the logi is modelled in a symmetri monoidal losed ategory (SMCC). That muh is

standard and well-understood. The ! modality is then modelled by a monoidal omonad

on the SMCC whih is required to satisfy ertain extra (and non-trivial) onditions. These

extra onditions are suÆient to ensure that the ategory of oalgebras for the omonad

ontains a full subategory whih is artesian losed and thus models the interpretation

of IL in ILL.

Whilst the view that linear logi is primary and that ordinary logi is merely a part of

linear logi is appealing (partiularly if one takes seriously the laims of linear logi to be

\the logi behind logi"), it is not neessarily always the best way of seeing the situation.

This paper tries to present a more symmetri view of the relationship between IL and

ILL, starting from a model-theoreti perspetive, and it seems worth trying to give some

motivation for why this might be worth doing.

1.2 Motivation

1.2.1 Funtional Programming

From a pratial point of view, there are a number of reasons why the standard linear

term alulus (LTC) of [BBHdP92℄ might be onsidered unsuitable as the basis of a linear

funtional programming language. Firstly, linear funtional programming is verbose and

unnatural { whilst the linear term alulus might well be a useful intermediate language

for a ompiler, it is not very appropriate as a language for everyday programming. If

linearity is to be made visible to the programmer at all, it appears preferable to have some

extension of a traditional non-linear language in whih one ould write the oasional

linear funtion in order to deal with input/output, in-plae update or whatever.

A seond, more fundamental, problem is that, despite onsiderable researh e�ort, the

preise way in whih a linear language an help with what we have deliberately referred

to rather vaguely as `input/output, in-plae update or whatever' is still not lear. Most

published proposals for using linear types to ontrol or desribe intensional features of
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funtional programs are either unonvining or use type systems whih are only loosely

inspired by linear logi. Systems in the last ategory an, pragmatially, be extremely

suessful; the most obvious example being the language CLEAN. The type system of

CLEAN [BS93℄ inorporates a `uniqueness' operator for (roughly) making non-linear types

linear. This is in some sense dual to the ! of linear logi, whih allows linear types to be

treated non-linearly. Unique types in CLEAN are used to add destrutive updates and

I/O to the language in a lean (referentially transparent) way.

One (urrently somewhat speulative) aim of the work desribed here is to provide

a sound mathematial and logial basis for a type system like that of CLEAN. We are

motivated and enouraged not only by the similarities between CLEAN and the alulus

to be presented here (the LNL term alulus), but also by the fat that other researhers

looking at pratial implementations of linear languages have ome up with systems whih

inlude aspets of the LNL term alulus. For example, Linoln and Mithell's linear

variant [LM92℄ of Fairbairn andWray's `three instrutionmahine' [FW87℄ divides memory

into two spaes orresponding to linear and non-linear objets. Similarly, Wadler's `ative

and passive' type system [Wad92℄ separates linear from non-linear types in an interesting

way. It should also be mentioned that some of Wadler's earliest attempts to de�ne a linear

type system for a funtional language agged linear types as the exeption, rather than

the rule [Wad90℄, although he later reverted to `belling the at' by annotating non-linear

types.

Jaobs [Ja93℄ has independently desribed how a sequent alulus inspired by CLEAN's

uniqueness types may be interpreted using the linear ategories of [BBHdP92℄ under some

extra simplifying assumptions whih are suÆient to make the whole Eilenberg-Moore

ategory of oalgebras be artesian losed. Jaobs's logi turns out to be essentially the

same as LNL logi, and we will disuss his work further in Setion 3.1.7.

The logi desribed here is, in a fairly strong sense, equivalent to ordinary ILL. How

then ould suh a system possibly lead to a better linear programming language? The

�rst answer is that we re�ne ILL: there are distint LNL terms whih orrespond to the

same LTC term. The seond answer is that logial systems whih are denotationally

equivalent may still have very di�erent dynami (proof-theoreti) behaviours. However,

suh speulations should only be viewed as motivation for studying the logi. We do

not yet have any formal results onerning, for example, the memory graphs of programs

written in a language based on the LNL term alulus.

1.2.2 Logi

From a more logial point of view, there has reently been muh interest in Girard's system

LU [Gir93℄ and related systems in whih the (multi)sets of formulae ouring in sequents

are split into di�erent zones. Formulae in some zones are treated lassially, whilst those

in other zones are treated linearly.

Intuitionisti logis inspired by LU have been proposed by Plotkin [Plo93℄ and Wadler

[Wad93℄. It is desirable to study the proof and model theory of suh systems diretly,

rather than treating them as syntati sugar for, for example, ordinary linear logi (if only

to verify that it is possible to treat them as suh syntati sugar). The logi of this paper

should turn out to be equivalent to a subsystem of LU, though there are some super�ial

di�erenes of presentation suh as the fat that LNL logi has no zones { the formulae

themselves are either linear or onventional.

1

1

Though we, perhaps unwisely, abuse notation by writing a semiolon between formulae of di�erent
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1.2.3 Semantis

From the ategorial perspetive, it seems natural to explore the more symmetri situation

where one starts from an SMCC and a CCC with (adjoint) funtors between them, rather

than an SMCC with suÆient extra struture to ensure the existene of suh a CCC.

This is partiularly true in the light of the fat that the de�nition of a linear ategory in

[BBHdP92℄ was arrived at mostly from the proof theory of linear logi, but also (and this

was something of a `hidden agenda') from a desire to have enough struture to be able

to derive an appropriate CCC from the model.

2

It is also fair to say that the de�nition

of a linear ategory is surprisingly ompliated, so looking for simpler models, or simpler

presentations of the same models, is a good idea. Pratt has also suggested that the

omonad modelling ! might be less fundamental than the adjuntions from whih it arises

[Pra92℄.

1.3 Overview

The initial motivation for the present work omes from the ategorial piture skethed

in the previous setion, and it is this whih is explored �rst in Setion 2. One the

de�nition has been made a little more preise, we shall show that suh a situation leads

to a omonad on the linear part of the model whih automatially satis�es all the extra

onditions required of a linear ategory, and thus gives a sound model of ILL inluding

the ! operator. Furthermore, the onverse holds { every linear ategory gives rise to suh

a pair of ategories. Thus we have an alternative, simpler, de�nition of what onstitutes

a model for ILL. This an be seen as giving a purely ategory-theoreti reonstrution of

!, in that a linear ategory (a model for ILL with !) is exatly what one obtains if one

attempts diretly to model an interpretation of IL in ILL without the !.

Another interesting feature of the model is that it gives rise to a strong monad on the

CCC part. Thus one obtains a model not just of the lambda alulus, but of Moggi's

omputational lambda alulus [Mog89, Mog91℄. This may shed further light on the

`monads versus omonads' debate whih has oasionally arisen in programming language

theory. As we shall see, however, not all strong monads arise in this way, so the onnetion

is not quite as neat as one might hope.

Setion 3 then looks at the logi and term alulus whih are assoiated with our new

notion of model. After a brief desription of two unsatisfatory versions of the logi, we

formulate a sequent alulus presentation whih satis�es ut-elimination and then give

an equivalent natural dedution system. This then gives, by the Curry-Howard orre-

spondene, an interesting term alulus whih ombines the usual simply-typed lambda

alulus with a linear lambda alulus. We also onsider translations in both diretions

between this new term alulus and the linear alulus introdued in [BBHdP92℄.

This paper is fairly self-ontained and assumes only a basi knowledge of ategory

theory (up to, say, adjuntions), some familiarity with linear logi and an understanding

of typed lambda alulus and the Curry-Howard orrespondene. A nodding aquaintane

with previous work on the linear term alulus and ategorial models of ILL is also

desirable.

kinds.

2

This is not to say that there is anything in the model whih is not justi�able in terms of the proof

theory (given a proper proof-theoreti aount of �-rules), but merely that, given that a translation of IL

proofs into ILL proofs exists, any orret model for ILL must be able to reet the translation semantially.
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This is a preliminary report, and doubtless ontains errors and omissions. It ertainly

leaves plenty of obvious questions unanswered. Comments, questions and suggestions for

improvement are welome.
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2 The Categorial Piture

Our aim is to present a logi/terms/ategories orrespondene, similar to that between

intuitionisti logi, simply-typed lambda alulus and artesian losed ategories, in whih

the ategorial vertex of the triangle onsists of (essentially) the following:

1. a artesian losed ategory (C; 1;�;!);

2. a symmetri monoidal losed ategory (L; I;
;�Æ) and

3. a pair of funtors G : L ! C and F : C ! L between them with F a G (i.e. F is the

left adjoint to G).

Intuitively, the requirement that the two funtors be adjoint should be understood as

saying that there is an interpretation of IL (the CCC) into ILL (the SMCC).

We will, however, need our ategorial model to satisfy some extra onditions before

we an have any hope of it modelling a logi or term alulus. It is neessary for the

two funtors and the unit and ounit of the adjuntion to behave well with respet to

the monoidal strutures of the two ategories. The reason for this is that we have to

handle ontexts orretly, and the multiategorial struture implied by the omma in a

ontext will be represented by the appropriate tensor produt. The need for suh extra

struture also arises in, for example, models of the omputational lambda alulus (the

monad must be strong) and linear ategories (the omonad must be symmetri monoidal).

The extra onditions whih we shall impose are not ad ho, but are just what is required

to ensure oherene.

3

Although the present paper gives all the de�nitions and proofs in an

elementary form, it should be noted that morally we should regard everything as taking

plae in the 2-ategory of symmetri monoidal ategories, in whih ontext the extra

monoidal onditions arise more naturally. Indeed, this view is an instane of a general

priniple onerning the ategorial modelling of programming languages expressed by

Moggi in [Mog91℄

4

when studying a omplex language the 2-ategory Cat of small ategories,

funtors and natural transformations may not be adequate; however, one may

replae Cat with a di�erent 2-ategory, whose objets apture better some

fundamental struture of the language, while less fundamental struture an

be modelled by 2-ategorial onepts.

De�nition 1 A monoidal ategory is a ategory M equipped with a bifuntor 
 : M�

M!M, and objet I of M, and natural isomorphisms

�

X;Y;Z

: (X 
 Y )
 Z ! X 
 (Y 
 Z)

l

X

: I 
X ! X

r

X

: X 
 I ! X

3

As has beome traditional, however, we shall say very little about this important issue...

4

Thanks to Ian Stark for bringing this quote to my attention.
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whih satisfy the following pair of oherene diagrams:

W 
 (X 
 (Y 
 Z))

(W 
X)
 (Y 
 Z)

((W 
X)
 Y )
 Z

W 
 ((X 
 Y )
 Z)

(W 
 (X 
 Y ))
 Z

?

�

?

�

?

�

-

�
 1

�

1
 �

(X 
 I)
 Y

X 
 Y

X 
 (I 
 Y )

-

�

�

�

�

�

�

�R

r 
 1

�

�

�

�

�

�	

1
 l

and for whih l

I

= r

I

.

De�nition 2 A symmetri monoidal ategory (SMC) is a monoidal ategory (M;
; I; �; l; r)

together with a natural transformation �

X;Y

: X 
 Y ! Y 
 X satisfying the following

three oherene onditions:

(Y 
X)
 Z Y 
 (X 
 Z) Y 
 (Z 
X)

(X 
 Y )
 Z X 
 (Y 
 Z) (Y 
 Z)
X

-

�

-

�

?

� 
 1

?

�

-

�

-

1
 �

Y 
X

X 
 Y

X 
 Y

?

�

-

�

Z

Z

Z

Z

Z

Z

Z

Z~

1

I 
X X 
 I

X

-

�

J

J

J

J

J

Ĵ

l

















�

r

Note that every artesian ategory (i.e. with �nite produts) is an SMC.

De�nition 3 A symmetri monoidal losed ategory (SMCC) is a symmetri monoidal

ategory (M;
; I; �; l; r; �) suh for eah B 2 M

0

the funtor � 
 B : M ! M has a

(spei�ed) right adjoint. Thus there is for every A;C 2 M

0

an objet (B �ÆC) and a

natural bijetion

M(A
B;C)

�

=

M(A;B �ÆC)
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Symmetri monoidal losed ategories are also sometimes alled autonomous ategories.

De�nition 4 A artesian losed ategory (CCC) is an SMCC for whih the tensor produt

is artesian.

Whilst one might wish to onsider funtors between SMCs whih preserve the struture

on the nose or up to natural isomorphism, we shall take the lass of funtors between SMCs

to be those preserving the struture up to a omparsion. We thus make the following

de�nitions.

De�nition 5 Given monoidal ategories (M;
; I; �; l; r) and (M

0

;


0

; I

0

; �

0

; l

0

; r

0

), a monoidal

funtor F : M ! M

0

is a funtor from M to M

0

equipped with a map m

I

: I

0

! F (I)

in M

0

and a natural transformation m

X;Y

: F (X)


0

F (Y )! F (X 
 Y ) whih satisfy the

following oherene onditions:

F ((X 
 Y )
 Z)

F (X 
 Y )


0

F (Z)

(F (X)


0

F (Y ))


0

F (Z)

F (X 
 (Y 
 Z))

F (X)


0

F (Y 
 Z)

F (X)


0

(F (Y )


0

F (Z))

-

�

0

?

m


0

1

?

m

-

F (�)

?

1


0

m

?

m

F (I)


0

F (X)

I

0




0

F (X)

F (I 
X)

F (X)

-

l

0

?

m


0

1

-

m

6

F (l)

F (X)


0

F (I)

F (X)


0

I

0

F (X 
 I)

F (X)

-

r

0

?

1


0

m

-

m

6

F (r)

De�nition 6 If M and M

0

above are symmetri monoidal, then F is a symmetri

monoidal funtor if it is monoidal and in addition satis�es the following oherene ondi-

tion:

F (X 
 Y )

F (X)


0

F (Y )

F (Y 
X)

F (Y )


0

F (X)

?

m

-

�

0

?

m

-

F (�)

In the de�nition of a symmetri monoidal funtor, one of the oherene diagrams for

l and r is redundant, as it follows from the other and the diagram for �. Note also that
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the identity funtor is (symmetri) monoidal and that (symmetri) monoidal funtors

an be omposed in an obvious way { if (F;m) : M ! M

0

and (G;n) : M

0

! M

00

then their omposite is given by the usual omposition of funtors together with the

omparison natural transformation p

X;Y

: GFX 


00

GFY ! GF (X 
 Y ) where p

X;Y

=

G(m

X;Y

) Æ n

FX;FY

(and similarly for the nullary version). It is then routine to hek

that (GF; p) is indeed a (symmetri) monoidal funtor, and that (symmetri) monoidal

ategories and (symmetri) monoidal funtors form a ategory.

De�nition 7 If (F;m) and (G;n) are monoidal funtors from an MC M to an MC M

0

,

then a monoidal natural transformation from (F;m) to (G;n) is a natural transformation

f

X

from F to G whih is ompatible with the omparison maps in the sense that the

following two diagrams ommute:

G(X)


0

G(Y )

F (X) 


0

F (Y )

G(X 
 Y )

F (X 
 Y )

-

m

?

f

X




0

f

Y

?

f

X
Y

-

n

I

0

F (I) G(I)

-

f

I

J

J

J

J

J

J℄

m

















�

n

De�nition 8 If M and M

0

are (symmetri) monoidal ategories then a (symmetri)

monoidal adjuntion between them is an ordinary adjuntion in whih both of the funtors

are (symmetri) monoidal funtors and both the unit and the ounit of the adjuntion are

monoidal natural transformations (with respet to the natural monoidal struture on the

two omposite funtors, as de�ned above).

Having made the basi de�nitions, we are now in a position to de�ne more preisely

the ategorial model skethed earlier.

De�nition 9 A linear/non-linear model (LNL model) onsists of

1. a artesian losed ategory (C; 1;�;!);

2. a symmetri monoidal losed ategory (L; I;
;�Æ) and

3. a pair of symmetri monoidal funtors (G;n) : L ! C and (F;m) : C ! L between

them whih form a symmetri monoidal adjuntion with F a G.

We shall usually use A;B;C to range over objets of L and X;Y;Z for objets of

C. Spelling the de�nition out in a bit more detail, this means that we have a pair of



2.1 An Isomorphism 13

natural transformations � : 1

C

�

!GF and " : FG

�

!1

L

whih satisfy the triangle laws for an

adjuntion:

GA GFGA

GA

-

�

GA

Z

Z

Z

Z

Z

Z

Z

Z~

1

GA

?

G"

A

FX FGFX

FX

-

F�

X

Z

Z

Z

Z

Z

Z

Z

Z~

1

FX

?

"

FX

That � and " are monoidal natural transformations means that the following four

diagrams ommute:

GF (X � Y )

X � Y

G(FX 
 FY )

GFX �GFY

-

�

X

� �

Y

?

�

X�Y

?

n

FX;FY

�

G(m

X;Y

)

A
B

FGA
 FGB F (GA�GB)

FG(A
B)

?

"

A


 "

B

-

m

GA;GB

?

F (n

A;B

)

�

"

A
B

1

1

GF (1)

-

�

1

J

J

J

J

J

J
℄

1

















�

G(m) Æ n

FG(I)

I

I

-

"

I

J

J

J

J

J

J℄

F (n) Æm


















�

1

2.1 An Isomorphism

An important onsequene of the de�nition of an LNL model is that as well as the natural

transformations

m

X;Y

: FX 
 FY ! F (X � Y )

n

A;B

: GA�GB ! G(A
B)

and their nullary versions, the maps

m : I ! F1

n : 1! GI

we have a family of maps

p

X;Y

: F (X � Y )! FX 
 FY

given by the transpose of n

FX;FY

Æ �

X

� �

Y

:

F (X � Y ) F (GFX �GFY ) FG(FX 
 FY )

FX 
 FY

-

F (�

X

� �

Y

)

-

F (n

FX;FY

)

?

"

FX
FY
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and a map p : F1! I given by

F1 FGI I

-

Fn

-

"

I

It is straightforward to hek that the p

X;Y

are the omponents of a natural transformation.

We do not, however, get a olletion of maps in the other possible diretion, viz. from

G(A
B) to GA�GB.

Proposition 1 In an LNL model (in fat for any monoidal adjuntion), the maps m

X;Y

are the omponents of a natural isomorphism with inverses p

X;Y

and, furthermore, the

map m is an isomorphism with inverse p:

F (X)
 F (Y )

�

=

F (X � Y )

I

�

=

F (1)

Proof. We shall just prove the �rst of the isomorphisms above as the seond is very

similar. Firstly, we need to show that m

X;Y

Æ p

X;Y

= 1

F (X�Y )

:

F (X � Y )

F (GFX �GFY )

FGF (X � Y )

FG(FX 
 FY )

F (X � Y )

FX 
 FY

6

F (�

X

� �

Y

)

-

1

�

�

�

�

�

�

�

�

�

�

�

�

�*

F (�

X�Y

)

-

F (n

FX;FY

)

?

FG(m

X;Y

)

-

"

FX
FY

H

H

H

H

H

H

H

H

H

H

H

H

Hj

"

F (X�Y )

?

m

X;Y

The square on the right ommutes by naturality of ", whilst that on the left ommutes as

it is F applied to the earlier square whih says that � is monoidal. The triangle on the

bottom is one of the triangles for an adjuntion and so the path up the left hand side,

along the top and down the right hand side is equal to that along the bottom, as required.

Seondly, we laim that p

X;Y

Æm

X;Y

= 1

FX
FY

, whih follows from a similar diagram:

FX 
 FY

F (X � Y )

FGFX 
 FGFY

F (GFX �GFY )

FX 
 FY

FG(FX 
 FY )

6

m

X;Y

-

1
 1

�

�

�

�

�

�

�

�

�

�

�

�

�*

F (�

X

)
 F (�

Y

)

-

F (�

X

� �

Y

)

6

m

GFX;GFY

-

F (n

FX;FY

)

H

H

H

H

H

H

H

H

H

H

H

H

Hj

"

FX


 "

FY

?

"

FX
FY
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The square on the left ommutes by naturality of m and that on the right beause " is

monoidal. The triangle on the bottom ommutes by two appliations of one of the triangle

laws for an adjuntion and so the outer path is equal to that along the bottom, whih is

trivially equal to the identity. 2

So F preserves the monoidal struture up to an isomorphism rather than merely up to

a omparison. That is to say, F is a strong funtor. This has a onverse { given a strong

funtor with an adjoint, the adjoint (in fat the whole adjuntion) has a unique monoidal

struture. In our ase, this means that instead of taking n as part of the de�nition of an

LNL model and deriving p, we ould equally well have started with p and de�ned n

A;B

to

be the omposite

G("

A


 "

B

) ÆG(p

GA;GB

) Æ �

GA�GB

This fat will rop up again in Setion 3.1.2.

There is, of ourse, a lot more interesting struture in an LNL model. To begin with,

the adjuntion indues a omonad on L and a monad on C. We disuss eah of these below.

Given one of the ategories and the appropriate monad (triple) or omonad (otriple), the

other ategory and the adjuntion arise as a resolution of the triple (otriple). In ontrast

with some other proposed models of intuitionisti linear logi, we do not assume that this

is initial or terminal in the ategory of all resolutions.

2.2 The Comonad and Comparison with Linear Categories

The omonad on L is (FG; " : FG ! 1; Æ : FG ! FGFG) where " is the ounit of the

adjuntion and Æ is the natural transformation with omponents Æ

A

: FG(A)! FGFG(A)

given by Æ

A

= F (�

G(A)

). Writing ! for FG, we obtain the usual omonad diagrams:

!A

!A !!A !A

Z

Z

Z

Z

Z

Z

Z

Z

Z}

1

6

Æ

A

�

"

!A

�

�

�

�

�

�

�

�

�>

1

-

!("

A

)

!!A !A

!!!A !!A

�

Æ

A

6

Æ

A

�

!(Æ

A

)

6

Æ

!A

Lemma 2 The omonad (!; "; Æ) is symmetri monoidal, i.e. ! is a symmetri monoidal

funtor and " and Æ are monoidal natural transformations.

Proof. Clearly ! is a symmetri monoidal funtor. The monoidal struture is given by a

natural transformation q with omponents q

A;B

:!A
!B !!(A 
 B) and a map q : I !!I

whose de�nitions are

q

A;B

= F (n

A;B

) Æm

GA;GB

q = F (n) Æm

That " is monoidal is part of the de�nition of an LNL model. The ase of Æ requires some

easy heking. 2

In [BBHdP92℄, we de�ned a model of the multipliative/exponential fragment of intu-

itionisti linear logi as follows:
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De�nition 10 A linear ategory is spei�ed by the following data:

1. A symmetri monoidal losed ategory (L;
; I;�Æ).

2. A symmetri monoidal omonad (!; "; Æ; q) on L.

3. Monoidal natural transformations

5

with omponents

e

A

:!A! I

d

A

:!A!!A
!A

suh that

(a) eah (!A; e

A

; d

A

) is a ommutative omonoid,

(b) e

A

and d

A

are oalgebra maps

6

, and

() all oalgebra maps between free oalgebras preserve the omonoid struture.

2.2.1 LNL model Implies Linear Category

Now, any LNL model inludes, by de�nition, part 1 of De�nition 10, and we have just

seen (Lemma 2) that it also satis�es part 2. Furthermore, there are plausible andidates

for e

A

and d

A

:

e

A

def

=p Æ F (�

GA

)

where �

GA

is the unique map from GA to the terminal objet 1 of C, and

d

A

def

=p

GA;GA

Æ F (�

GA

)

where �

GA

is the diagonal map from GA to GA�GA in C. We now embark on showing

that these satisfy all the onditions whih ensure that we have a linear ategory. The

reader who is prepared to take this on trust may prefer to skip straight to Corollary 8.

Lemma 3 e

A

and d

A

as de�ned above are the omponents of natural transformations.

Proof. This is obvious as a result of general fats about omposition of, and appliation

of funtors to, natural transformations. For example, we have to hek that for any

f : A! B,

!B

!A

!B
!B

!A
!A

?

!f

?

!f
!f

-

d

A

-

d

B

5

Note that this only makes sense beause the funtorsA 7! I andA 7!!A
!A are themselves (symmetri)

monoidal, but this is easily seen to be true. See the proof of Lemma 4 below for the details.

6

Exatly what this means is spelled out in the proof of Lemma 6.
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whih expands to give

FGB

FGA

F (GB �GB) FGB 
 FGB

F (GA�GA) FGA
 FGA

-

F (�

GB

)

-

p

GB;GB

-

F (�

GA

)

-

p

GA;GA

?

FGf

?

F (Gf �Gf)

?

FGf 
 FGf

The left-hand square ommutes by F applied to naturality of � and the other by naturality

of p. Naturality of e is similar. 2

Lemma 4 e and d are monoidal natural transformations.

Proof. We �rst have to make expliit the symmetri monoidal struture on the funtors

K : A 7! I and D : A 7!!A
!A. For K we require a natural transformation s

A;B

:

K(A)
K(B)! K(A
 B) and a map s : I ! K(I). Clearly we an take s

A;B

= l

I

and

s = 1

I

and then veri�ation of the oherene onditions showing that (K; s) is symmetri

monoidal is trivial.

For D we need a natural transformation with omponents

t

A;B

: (!A
!A) 
 (!B
!B)!!(A
B)
!(A
B)

together with a map t : I !!I
!I. We take t

A;B

to be the omposite

(!A
!A)
 (!B
!B) (!A
!B)
 (!A
!B) !(A
B)
!(A
B)

-

iso

-

q

A;B


 q

A;B

where iso represents a ombination of natural isomorphisms

7

and t to be (q 
 q) Æ l

�1

.

That t

A;B

is natural and that the oherene onditions making D a symmetri monoidal

funtor are satis�ed is trivial.

The lemma is thus the statement that the following four diagrams ommute:

I 
 I

!A
!B !(A
B)

I

-

l

I

-

q

A;B

?

e

A


 e

B

?

e

A
B

!I

I

I

J

J

J

J

J

J℄

q

-

e

I

















�

1

(!A
!A) 
 (!B
!B) !(A
B)
!(A
B)

!A
!B !(A
B)

-

t

A;B

-

q

A;B

?

d

A


 d

B

?

d

A
B

7

There is atually a hoie here, but it doesn't matter whih iso we pik.
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!I

I

!I
!I

J

J

J

J

J

J℄

q

-

d

I

















�

t

We will verify a ouple of these. Firstly, the triangle for e expands and �lls in as follows:

FGI

F1

I

F1 I

?

m

?

F (n)

-

F (�

GI

)

-

p

Z

Z

Z

Z

Z

Z

Z

Z

Z~

F (1)

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z~

1

The triangle ommutes beause it is F applied to a triangle whih ommutes by the

uniqueness of maps into 1. The square ommutes beause F is a funtor and m = p

�1

(Proposition 1).

The square for e expands and �lls in like this (omitting subsripts on natural transfor-

mations):

FG(A
B)

F (GA�GB)

FGA
 FGB

F1

F (1� 1)

F1
 F1

F1
 F1

I 
 F1

I

I

I 
 I

?

m

?

F (n)

-

F (�)
 F (�)

-

F (� � �)

-

F (�)

-

p
 p

?

1

?

m

?

F (l)

�

�

�

�

�

�

��

1
m

�

m
 1









































�

l

?

l

?

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

m

-

p

The top left square ommutes by naturality of m, and the bottom left one by the fat

that 1 is terminal. The triangle at the bottom of the right hand side and the quadrilateral

at the top of the right hand side both ommute beause p = m

�1

. The triangle in the
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middle at the left of the right hand side of the diagram ommutes beause F is a monoidal

funtor, and the remaining quadrilateral by naturality of l.

Filling in the two diagrams for d is left as an exerise in diagram hasing for the reader.

They are rather larger, but fundamentally similar to those for e. 2

Lemma 5 For any A, (!A; e

A

; d

A

) is a ommutative omonoid.

Proof. This requires the following three diagrams to ommute:

!A
 I !A
!A

!A

�

�

�

�

�

�

�

�=

r

�1

?

d

A

�

1

!A


 e

A

!A

!A
!A !A
!A

-

�

J

J

J

J

J

J℄

d

A

















�

d

A

!A
!A (!A
!A)
!A !A
 (!A
!A)

!A !A
!A

-

d

A


 1

-

�

-

d

A

?

d

A

?

1
 d

A

These are all fairly straightforward. For example, the �rst diagram an be expanded and

�lled in as follows:

FGA
 FGA

F (GA�GA)

FGA

F (GA�GA)

FGA
 F1

FGA
 F1

F (GA� 1)

FGA
 I

FGA

-

1

?

F (�)

?

p

-

1
 F (�)

-

1
 p

6

r

-

1

-

F (1� �)

�

�

�

�

�

�

�

�

��

m

6

1

6

m

�

�

�

�

�

�

�*

F (�

1

)

H

H

H

H

H

H

HY

1
m

Taking the regions lokwise from the top, the �rst is a onsequene of obvious fats about

artesian produts (in fat, that they give a ommutative omonoid struture in C). The

seond ommutes beause F is a monoidal funtor. The third and �fth beause p = m

�1

,

and the fourth beause m is a natural transformation.

The other two diagrams ommute by similar reasoning. 2

Lemma 6 e

A

and d

A

are oalgebra morphisms (with respet to the anonial oalgebra

strutures on I,!A and !A
!A, see Setion 2.2.2).
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Proof. We need the following pair of diagrams:

!!A

!A

!I

I

-

e

A

?

Æ

A

-

!e

A

?

q

!A
!A

!A

!!A
!!A !(!A
!A)

!!A

-

Æ

A

?

d

A

-

Æ

A


 Æ

A

-

q

!A;!A

?

!d

A

The seond of these an be dealt with like this:

FGA
 FGAF (GA �GA)FGA

FGFGA 
 FGFGAF (GA�GA)

F (GFGA�GFGA)

FGF (GA �GA)

FG(FGA 
 FGA)

FG(FGA 
 FGA)FGFGA

?

F (�)

-

F (�)

-

p

?

F (�) 
 F (�)

?

m

?

F (n)

?

1

-

FGF (�)

-

FG(p)

�

�

�

�

�

�

�

�

�

�)

FG(m)

?

F (�)

A

A

A

A

A

A

A

A

AU

1

�

�

�

�

�

�

�

�

�R

F (� � �)

�

�

�

�

�

�

�

�

�	

m

The large square on the left ommutes by naturality of �. The two triangles both ommute

beause p = m

�1

. The region on the far right ommutes by naturality of m, and that in

the middle beause � is monoidal.

The other diagram is similar. 2

Lemma 7 Any oalgebra map f : (!A; Æ

A

) ! (!B; Æ

B

) between free oalgebras preserves

the omonoid struture given by e and d.
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Proof. This means that for any suh f , the following pair of diagrams ommute:

I

!A !B

J

J

J

J

J

Ĵ

e

A

















�

e

B

-

f

!B

!A

!B
!B

!A
!B

-

d

B

-

d

A

?

f

?

f 
 f

The seond of these an be expanded out like this:

!B
!B

!(!B
!B)

!!B
!!B

!!B

!B

!A
!A

!(!A
!A)

!!A
!!A

!!A

!A

�

�

�

�

�

�

�

�

��

Æ

?

d

?

q

H

H

H

H

H

H

Hj

"

?

d

H

H

H

H

H

H

H

H

Hj

Æ

?

d

?

q

�

�

�

�

�

�

��

"

?

d

�

f

�

!f

�

!f
!f

�

!(f 
 f)

�

f 
 f

Taking the regions in the middle from the top, the �rst ommutes by assumption (that

f is a oalgebra morphism) and the seond, third and fourth by naturality of d,q and

" respetively. The remaining two regions are both easily seen to ommute, sine they

expand as follows:

FGA
 FGA

F (GA�GA)

FGA

FGFGA

FG(FGA
 FGA)

F (GFGA�GFGA)

FGFGA
 FGFGA

F (GFGA�GFGA)

6

F (�)

?

F (�)

?

p

-

F (�)

�

"

H

H

H

H

H

H

Hj

p

�

�

�

�

�

�

��

m

?

F (n)

?

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

F (� � �)

The triangle on the right ommutes beause p = m

�1

and that on the top left by naturality

of �. The middle region ommutes simply beause it is the de�nition of p. 2
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Taking the previous lemmas together, we have shown

Corollary 8 Any LNL model is a linear ategory. 2

2.2.2 Linear Category Implies LNL model

In this setion we sketh the proof of the onverse to Corollary 8. Whilst this is largely

a matter of realling results whih were proved in [BBHdP92℄ and [Bie94a℄, by doing this

arefully we obtain a slightly better understanding of the situation.

Assume that L is a linear ategory as in De�nition 10. We need to show that this gives

rise to a CCC C and a symmetri monoidal adjuntion between L and C as in De�nition 9.

Reall that the omonad on L gives rise to two ategories of algebras:

� The Eilenberg-Moore ategory L

!

. This has as objets all the !-oalgebras (A; h

A

:

A!!A) and as morphisms all the oalgebra morphisms.

� The (o-)Kleisli ategory L

!

. This is the full subategory of L

!

whih has as objets

all the free !-oalgebras (!A; Æ

A

:!A !!!A). (This is not quite the most ommon

de�nition of L

!

, but the two de�nitions are equivalent.)

Eah of these ategories omes with a pair of adjoint funtors F a G where G : A 7!

(!A; Æ

A

) and F : (A; h

A

) 7! A, thus (note that we are overloading F and G):

L

L

!

L

!

�

�

�

�

�

�

�

�

�

=

F

�

�

�

�

�

�

�

�

�>

G

Z

Z

Z

Z

Z

Z

Z

Z

Z~

G

Z

Z

Z

Z

Z

Z

Z

Z

Z

}

F

6

i

where i : L

!

,! L

!

is the inlusion funtor.

Lemma 9 If L is a linear ategory then L

!

has �nite produts.

Proof. The terminal objet is (I; q : I !!I). The unique map from (A; h

A

) to the

terminal objet is e

A

Æh

A

. The produt of (A; h

A

) and (B; h

B

) is (A
B; q

A;B

Æ(h

A


h

B

)).

Projetions and diagonals are given by the following omposites

�

1

=

A
B A
 !B A
 I A

-

1
 h

B

-

1
 e

B

-

r

�

A

=

A !A !A
!A A
A

-

h

A

-

d

A

-

"

A


 "

A

These are easily heked to satisfy the relevant onditions. 2

In general, there is no reason why the Eilenberg-Moore ategory should be artesian

losed, sine there is no reason why it should have an internal hom for arbitrary pairs
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of oalgebras. There are extra onditions whih are suÆient to ensure that this does

happen, suh as requiring that L

!

have equalisers of oreexive pairs [Bie94a℄ or simply all

equalisers [Ja93℄. Although there are non-trivial examples in whih suh onditions hold,

we shall not onsider them further sine we an �nd an appropriate CCC without them.

Lemma 10 In L

!

, all the free oalgebras are exponentiable. That is, there is an inter-

nal hom into any free oalgebra (!B; Æ

B

). Furthermore, the internal hom is itself a free

oalgebra.

Proof. We laim that

[(A; h

A

); (!B; Æ

B

)℄

def

= (!(A�ÆB); Æ

A�ÆB

)

is an internal hom. This follows from the adjuntion between F and G and from the losed

struture on L, sine for any oalgebra (C; h

C

) there are bijetions:

L

!

((C; h

C

); (!(A �ÆB); Æ

A�ÆB

))

=========================

L(C; A�ÆB)

========================

L(C 
A; B)

======================

L

!

((C 
A; h

C
A

); (!B; Æ

B

))

for any h

C
A

giving C 
 A a oalgebra struture, in partiular that arising from the

produt on L

!

. So an instane of the last line is

L

!

((C; h

C

)� (A; h

A

); (!B; Æ

B

))

as required. 2

Now, notie that in any artesian ategory, if an objet X is exponentiable then so is

[Y;X℄ for any Y , sine we an take [Z; [Y;X℄℄ to be [Z � Y;X℄. Furthermore, the produt

of two exponentiable objets X and Y is exponentiable sine we an take [Z;X � Y ℄ to

be [Z;X℄ � [Z; Y ℄. Taking this together with the previous lemma, we have:

Lemma 11 The full subategory Exp(L

!

) of the Eilenberg-Moore ategory having as ob-

jets the exponentiable oalgebras is artesian losed and ontains the Kleisli ategory L

!

.

2

Note that the Kleisli ategory is not, in general, artesian losed, sine the produt of two

free oalgebras is not neessarily free. We shall onsider a ase in whih this does happen

in Setion 2.2.3. In the general ase, we do have the following, however:

Lemma 12 The full subategory L

�

!

of Exp(L

!

) onsisting of �nite produts of free oal-

gebras is artesian losed. 2
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The situation an be pitured thus:

L

Exp(L

!

)

L

!

L

�

!

L

!

�

�

�

�

�

�

�

�

�

	

F

�

�

�

�

�

�

�

�

��

G

�

�

�

�

�

�

�

�

�R

G

�

�

�

�

�

�

�

�

�

I

F

6

i

6

i

6

i

We laim that either of these two CCCs will give rise to an LNL model.

8

In what follows

we let C stand for either Exp(L

!

) or L

�

!

.

It is easy to see that F and G are still adjoint funtors when regarded as going between

C and L, so it merely remains to show that this is a symmetri monoidal adjuntion.

Lemma 13 The forgetful funtor F : C ! L is symmetri monoidal.

Proof. We need a natural transformation with omponents m

X;Y

: F (X) 
 F (Y ) !

F (X � Y ) and a map m : I ! F (1) satisfying ertain onditions. But if X and Y are

(A; h

A

) and (B; h

B

) respetively, this amounts to m

X;Y

: A
B ! A
B and m : I ! I.

Taking m

X;Y

= 1

A
B

and m = 1

I

is then easily seen to work. 2

Lemma 14 The free funtor G : L ! C is symmetri monoidal.

Proof. We need a natural transformation with omponents n

A;B

: GA�GB ! G(A
B)

and a map n : 1 ! GI satisfying some onditions. Spelling this out a bit, n

A;B

is a

oalgebra map:

n

A;B

: (!A
!B; q

A;B

Æ (Æ

A


 Æ

B

))! (!(A
B); Æ

A
B

)

Now the symmetri monoidal struture on ! gives a map between the underlying objets

of these two oalgebras q

A;B

:!A
!B !!(A
B), and that this is a oalgebra map follows

immediately from the fat that Æ is a monoidal natural transformation. The nullary ase

is similar. That this de�nition of n satis�es the onditions making (G;n) symmetri

monoidal is then immediate from the fat that (!; q) is symmetri monoidal. 2

Lemma 15 The unit of the adjuntion � : 1

C

�

!GF is a monoidal natural transformation.

8

It may well be that there is a sensible de�nition of a ategory of `linear resolutions' in whih L

�

!

is

initial and Exp(L

!

) is terminal, but this idea has not yet been followed up.
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Proof. This is also straighforward, though we have not so far made expliit what the

de�nition of �

(A;h

A

)

: (A; h

A

) ! (!A; Æ

A

) is. The answer is that it is just h

A

, whih is

readily seen to be a oalgebra morphism by the de�nition of oalgebra and to be natural

by the de�nition of oalgebra map. That h

A

is monoidal is then ompletely trivial from

the de�nition of the produt of oalgebras. 2

Lemma 16 The ounit " : FG

�

!1

L

of the adjuntion is a monoidal natural transforma-

tion.

Proof. By assumption. 2

Taking the preeding results together, we have:

Corollary 17 Any linear ategory gives rise to an LNL model, though it is not in general

unique. 2

Of ourse, given a linear ategory L, there may be many hoies of C whih lead to an

LNL model other than the two given above. One ould start with an arbitrary LNL model

omprising some L and C together with the assoiated data, and then onstrut the linear

ategory (L; !). In general, there is then no reason why C should be equivalent to either

of L

�

!

or Exp(L

!

), although in partiular ases the distintion between some or all of these

CCCs an ollapse.

2.2.3 Additives and the Seely Isomorphisms

So far, we have onentrated on the relationship between the multipliative
;�Æ fragment

of ILL and the �;! fragment of IL. We now onsider briey what happens when an LNL

model (or, equivalently, a linear ategory) also has the extra struture required to model

the additive linear onnetives &;� and the non-linear sum +.

The simplest ase is when the SMCC part L of an LNL model also has �nite produts,

modelling the additive onnetive `with' (&). The funtor G preserves limits beause it is

a right adjoint, and in partiular

G(A&B)

�

=

GA�GB

G1

�

=

1

(note that we use 1 for the terminal objet in both L and C). Taking this together with

Proposition 1, we obtain the following natural isomorphisms:

!A
!B

�

=

!(A&B)

I

�

=

!1

These isomorphisms were entral to Seely's proposed model of ILL [See80℄, whih also

proposed interpreting IL in the Kleisli ategory. See [Bie94a℄ or [Bie94b℄ for a ritique of

Seely's semantis; here we shall merely show that a linear ategory with produts does

indeed have a Kleisli ategory whih is artesian losed.

The isomorphisms �

A;B

:!(A&B) !!A
!B and � :!1 ! I an be given expliit de�ni-

tions in terms of the data determining a linear ategory thus:

�

A;B

def

=

!(A&B) !(A&B)
!(A&B) !A
!B

-

d

A&B

-

!�

1


!�

2

�

def

=

!1 I

-

e

1
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(Expliit de�nitions of the inverses are left as an exerise for the reader.)

Lemma 18 If a linear ategory has produts then the produt of two free !-oalgebras is

a free oalgebra.

Proof. This amounts to heking the following diagram:

!!(A&B)

!(A&B)

!(!A
!B)

!!A
!!B

!A
!B

?

Æ

A&B

-

�

A;B

-

!(�

A;B

)

?

Æ

A


 Æ

B

?

q

!A;!B

whih is an easy onsequene of naturality and the fat that d is a oalgebra morphism.

2

Corollary 19 If a linear ategory has produts then the Kleisli ategory L

!

is artesian

losed.

Proof. Lemma 18 says that L

!

oinides with L

�

!

, whih is artesian losed by Lemma 12.

2

Produts were relatively easy to deal with { the orrespondene between linear at-

egories and LNL models extends trivially to one between linear ategories with �nite

produts and LNL models with produts on the SMCC part. Coproduts are slightly

more problemati. Whilst the appropriate extension of an LNL model seems obvious (just

require both L and C to have �nite oproduts), this does not orrespond quite as simply

as one might hope to linear ategories with oproduts.

The diÆulty is that, whilst an LNL model with oproduts ertainly gives rise to

a linear ategory with oproduts, the onverse does not appear neessarily to be true.

Assume L is a linear ategory with �nite oproduts, then L

!

also has �nite oproduts as

we an de�ne the oprodut of (A; h

A

) and (B; h

B

) to be

(A+B; [!inl Æ h

A

; !inr Æ h

B

℄)

and this is easily heked to satisfy the appropriate onditions. There seems no general

reason, however, why either of the two CCCs whih we have already identi�ed as arising

from L should be losed under this oprodut.

Fortunately, something an be salvaged. There are weak �nite oproduts � in the

Kleisli ategory, obtained by de�ning

(!A; Æ

A

)� (!B; Æ

B

)

def

=(!(!A+!B); Æ

!A+!B

)

with, for example, the left injetion given by !inl Æ Æ

A

. That this is a weak oprodut is

easy to hek.
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2.3 The Monad and Comparison with Let-CCCs

The monad on C is (GF; � : 1 ! GF;� : GFGF ! GF ) where � is the unit of the

adjuntion and � is the natural transformation with omponents �

X

: GFGF (X) !

GF (X) given by �

X

= G("

FX

). Writing T for GF , we obtain the usual monad diagrams:

TX

TX T

2

X TX

Z

Z

Z

Z

Z

Z

Z

Z~

1

?

�

X

-

�

TX

�

�

�

�

�

�

�

�=

1

�

T (�

X

)

T

2

X TX

T

3

X T

2

X

-

�

X

?

�

X

-

T (�

X

)

?

�

TX

It is then easy to see that (T; �; �) is a symmetri monoidal monad, in that T is a symmetri

monoidal funtor and both � and � are monoidal natural transformations (this is simply

a monad in the 2-ategory of SMCs, SM funtors and monoidal natural transformations

[Str72℄). Cartesian losed ategories with (not neessarily symmetri) monoidal monads

have reently been the fous of some interest, as they are the models for Moggi's om-

putational lambda alulus [Mog89, Mog91, BBdP93℄. The de�nition is, however, more

ommonly given in terms of strong monads, for whih we now make a brief digression.

Most of the de�nitions and results about the various kinds of monads on various kinds of

monoidal ategories are due to Anders Kok; the interested reader should see [Ko71℄ and

the further referenes ited there.

2.3.1 Strong Monads

De�nition 11 If (M;
; I; �; l; r) is a monoidal ategory, and (T; �; �) is a monad on

M, then T is a strong monad if there is a natural transformation � (alled the tensorial

strength) with omponents

�

A;B

: A
 TB ! T (A
B)

suh that the following four diagrams ommute:

I 
 TA

TA

T (I 
A)

-

�

Z

Z

Z

Z

Z

Z

Z

Z~

l

?

T (l)

A
B

T (A
B)

A
 TB

-

1
 �

Z

Z

Z

Z

Z

Z

Z

Z~

�

?

�

A
 (B 
 TC) A
 T (B 
 C) T (A
 (B 
 C))

(A
B)
 TC T ((A
B)
 C)

-

�

?

�

-

1
 �

-

�

?

T (�)
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A
 TB

A
 T

2

B T (A
 TB) T

2

(A
B)

T (A
B)

?

1
 �

-

�

-

T (�)

?

�

-

�

If M above is symmetri monoidal (with symmetry �), then there is a `twisted' ten-

sorial strength

�

0

A;B

: TA
B ! T (A
B)

given by

�

0

A;B

= T (�) Æ �

B;A

Æ �

In this ase we an also onstrut a pair of natural transformations �;�

0

whih have

omponents

�

A;B

;�

0

A;B

: TA
 TB ! T (A
B)

given by

�

A;B

= �

A
B

Æ T (�

0

A;B

) Æ �

TA;B

�

0

A;B

= �

A
B

Æ T (�

A;B

) Æ �

0

A;TB

The monad is said to be ommutative if � = �

0

.

Proposition 20 If M is a symmetri monoidal ategory and T is a strong monad on M,

then

1. either of � or �

0

, together with the map �

I

: I ! TI, makes T into a monoidal

funtor;

2. both � and � are monoidal natural transformations with respet to either of these

monoidal strutures on T ;

3. T is a symmetri monoidal funtor i� it is ommutative.

2

Now, a model of the omputational lambda alulus (what Crole and Pitts all a let-

[Cro92, CP90℄) is a artesian losed ategory with a strong monad. The above implies

that an LNL model always has a strong monad on the CCC part of the model and thus

inludes a let-. The monad is, however, always ommutative (beause T is a symmetri

monoidal funtor). It is not the ase that all strong monads on CCCs are ommutative;

indeed, some very important monads arising in omputer siene are non-ommutative,

for example the free monoid monad (list; [�℄; f latten) on the ategory of sets. Thus it

is ertainly the ase that not all, or even all interesting, let-'s will arise from LNL

models. Having said that, many of the most important monads arising in semantis, suh

as lifting and various avours of powerset/powerdomain, are ommutative, so the theory

of ommutative strong monads on CCCs is not without independent interest.
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2.4 Examples

The preeding material is all rather abstrat, so we now give a ouple of onrete examples

of LNL models. The �rst example is important from a omputer siene perspetive and

was a major motivation for the present work. The seond arises from one of the most

ommon (or at least, most ommonly ited) `mathematial' examples of a symmetri

monoidal losed ategory.

2.4.1 !-omplete Partial Orders

Let L be the ategory of pointed !pos (!-oomplete partial orders with a least element)

and strit (bottom preserving) ontinuous maps. This is a symmetri monoidal losed

ategory with tensor produt given by the so-alled smash produt, the identity for the

tensor by the one-point spae (whih is also a biterminator) and internal hom by the strit

ontinuous funtion spae. In fat, L also has binary produts and oproduts, given by

artesian produt and oalesed sum respetively.

Given this hoie of L, there are a ouple of obvious hoies for the CCC C whih give

an LNL model. One is to take C to be the ategory of pointed !-pos and ontinuous

(not neessarily strit) maps, G to be the inlusion funtor and F to be the lifting funtor

F : X ! X

?

. The monoidal struture m on F is given by the evident isomorphism

X

?


 Y

?

�

=

(X � Y )

?

. In this ase, C is (equivalent to) the Kleisli ategory of the lifting

omonad on L. Note that the artesian losure of the Kleisli ategory follows from the

fat that L has produts. There are strong oproduts in L but only weak ones in C.

An alternative hoie of C is the ategory of (not neessarily pointed) !-pos (these

are sometimes alled predomains) and ontinuous maps, again with inlusion and lifting

funtors. This is equivalent to the Eilenberg-Moore ategory of the lift omonad on L, so

it has produts and oproduts by our previous general arguments, but it also turns out

to be artesian losed.

2.4.2 Abelian Groups

Let L be the ategory of Abelian groups and group homomorphisms. This is symmetri

monoidal losed with A
B the Abelian group generated by the set of tokens fa
 b j a 2

A; b 2 Bg subjet to the relations

(a

1

+ a

2

)
 b = a

1


 b+ a

2


 b

a
 (b

1

+ b

2

) = a
 b

1

+ a
 b

2

(More ategorially, A 
 B an be de�ned by a homomorphism A � B ! A 
 B whih

is universal amongst bilinear maps into Abelian groups.) The unit for 
 is the group of

integers under addition, Z, and the internal hom A�ÆB is the group of homomorphisms

from A to B with the multipliation inherited from B. In fat L also has biproduts { the

diret sum A�B is both a produt and a oprodut and the trivial group is a biterminator.

Now let C be the ategory of sets, whih is the prototypial example of a artesian

losed ategory, and F and G be the free and forgetful funtors respetively. This gives

an LNL model with the monoidal strutures on the funtors given (in what should be

omprehensible notation) by

n

A;B

: GA�GB ! G(A
B)

: (a; b) 7! [a
 b℄
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n : 1! GZ

: � 7! 1

m

X;Y

: FX 
 FY ! F (X � Y )

: [�

i

n

i

x

i


 �

j

m

j

y

j

℄ 7! �

i;j

n

i

:m

j

(x

i

; y

j

)

m : I ! F1

: n 7! n:�

It is fairly straightforward to hek that this does indeed give an LNL model. The omonad

on L takes an Abelian group to the free group on its underlying set. " is `evaluation' and

� is the insertion of generators. This is another example of the situation desribed in

Setion 2.2.3, sine C is equivalent to the Kleisli ategory of the omonad on L.
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3 LNL Logi

LNL-models are, of ourse, supposed to be models of a logial system. Corollary 8 says

that they are models for intuitionisti linear logi as de�ned by Girard, but the form of the

de�nition of LNL-model suggests an interesting alternative presentation of the logi. The

basi idea is that one starts with two independent logis, orresponding to the ategories

L and C and then adds operators whih orrespond in some way to the adjuntion between

the two ategories. To do this and obtain a logi with a good proof theory is, however,

not entirely straightforward.

Before attempting to be more preise about the rules of LNL-logi, we should perhaps

say a little about what we are aiming for. Di�erent researhers approah logi from many

di�erent bakgrounds and with many di�erent motivations, as is at least partly reeted

by the question of whether one desribes one's work as logi, type theory or proof theory

(or even ategorial logi, or ategorial proof theory). Of ourse, the very fat that suh

a onfusion is possible is at the heart of what makes onstrutive logis exiting objets

of study, but it does seem to lead to a ertain lak of onsensus about what onstitutes a

`good' or `well-behaved' system, and about whih results are important.

We take propositional intuitionisti logi as our touhstone and the following properties

of that system as our goals: Gentzen-style sequent alulus presentation with (preferably

loal) ut-elimination and subformula property; equivalent natural dedution system and

term alulus with strong normalisation; natural lass of ategorial models whih reets

aurately not just provability, but the equalities on proofs given by ut-elimination and

proof normalisation. On the minus side, we are prepared to aept ertain infeliities of

syntax, suh as ommuting onversions in natural dedution, and we shall, at least in this

paper, ignore Hilbert-style axiomati presentations entirely. Furthermore we want a logi

whih ontains both linear and non-linear propositions, treated in a way whih reets the

symmetri presentation of the intended ategorial models.

In keeping with our earlier onventions for naming objets of L and C, we will use

A;B;C to range over linear propositions and X;Y;Z for onventional ones. We shall use

� and � to range over linear ontexts (�nite multisets of linear propositions) and � and �

for non-linear ones. We also deorate turnstiles with L or C to indiate whih subsystem

they belong to. Finally, if � is X

1

; : : : ;X

n

then F� means FX

1

; : : : ; FX

n

, and similarly

for G�. The two lasses of propositions with whih we shall be dealing are de�ned by the

following grammar:

A;B := A

0

j I j A
B j A�ÆB j FX

X;Y := X

0

j 1 j X � Y j X ! Y j GA

where A

0

(resp. X

0

) ranges over some unspei�ed set of atomi linear (resp. non-linear)

propositions.

3.1 Sequent Calulus

Sequent alulus rules may be divided into three main lasses: strutural rules, suh as

weakening or exhange; the ut rule, whih allows proofs to be omposed, and logial

rules. The logial rules are further divided into left and right rules for eah onnetive. In

a well-behaved sequent system there should be a ertain symmetry between the left and

right rules whih leads to a ut elimination theorem. Furthermore, in many logis the ut

rule is the only rule whih an have a formula in the premises whih is not a subformula of



32 3 LNL LOGIC

a formula in the onlusion. For suh systems, a ut elimination theorem means that any

provable sequent has a proof whih only mentions subformulae of the onlusion, whih

has important impliations for, for example, proof searh.

The two logis with whih we start are very familiar viz. the exponential-free, mul-

tipliative fragment of propositional intuitionisti linear logi and the �;! fragment of

ordinary intuitionisti logi. These both have sequent presentations with all the properties

we desire. How should the systems be enrihed and ombined to give LNL-logi? We shall

approah this question by �rst outlining two unsatisfatory answers.

3.1.1 The First Wrong Way

The most obvious answer is to take the two familiar sequent aluli and add rules for the

two funtors and the unit and ounit of the adjuntion. Thus we have all the usual linear

rules (inluding ut) for deduing sequents of the form � `

L

A and all the usual non-linear

rules (inluding ontration, weakening and another ut rule) for deduing things of the

form � `

C

X, together with the following four new rules:

�; A `

L

B

FG-left

�; FGA `

L

B

� `

C

X

F

F� `

L

FX

� `

C

X

GF -right

� `

C

GFX

� `

L

A

G

G� `

C

GA

Categorially we interpret proofs of onventional sequents

�

X

1

; : : : ;X

n

`

C

Y

as maps

[[�℄℄ : [[X

1

℄℄� � � � � [[X

n

℄℄! [[Y ℄℄

in C, and proofs of linear sequents

�

A

1

; : : : ; A

m

`

L

B

as maps

[[�℄℄ : [[A

1

℄℄
 � � � 
 [[A

m

℄℄! [[B℄℄

in L, where eah of the logial onnetives is interpreted as the obviously orresponding

piee of ategorial struture. (Thus [[A
B℄℄ is [[A℄℄
 [[B℄℄ and so on. Heneforth we will

omit semanti brakets whenever we think we an get away with it.)

The interpretations of the four new rules are as follows:

�
A

e

�!B

FG-left

�
 FGA

1
"

A

���!�
A

e

�!B

X

1

� � � � �X

n

e

�!Y

F

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

Fe

�!FY

�

e

�!X

GF -right

�

e

�!X

�

X

�!GFX
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A

1


 � � � 
A

n

e

�!B

G

GA

1

� � � �GA

n

n

�!G(A

1


 � � � 
A

n

)

Ge

�!GB

Notie how the monoidal struture of the model is used to interpret the two funtor rules.

The oherene onditions on the model are suÆient to ensure that what we have rather

glibly written as m and n above are in fat determined up to isomorphism, and we will

in general be rather sloppy about inluding all the natural isomorphisms whih should

stritly be inluded in the ategorial interpretations of logial rules. The interpretations

of the remaining rules are ompletely standard, so we omit them for the moment, but note

that the two ut rules are interpreted by omposition in the two ategories.

From the point of view of provability, this olletion of rules is �ne { it proves exatly

the sequents we intend. From the point of view of proofs, however, things are not so

good. Whilst the logi allows us to express eah of the di�erent intended proofs of a given

sequent (i.e. morphisms in the free LNL-model), the equality of morphisms is not reeted

by a good proof theory. This shows up most obviously in the fat that ut elimination

fails for this formulation of the logi. We should not be too surprised that these rules are

unsatisfatory, as their form is rather strange { the funtor rules introdue a onnetive

on both sides of the turnstile whilst the two other rules introdue two onnetives at one.

The failure of ut elimination an be seen by onsidering the sequent FX `

L

FX 
 FX.

This sequent is ertainly provable, but there is no rule whih ould be the last rule of a

ut-free proof. This partiular problem ould be �xed in a slightly ad ho way by adding

ontration for linear assumptions of the form FX, but there are other problems, suh as

the following ut:

� `

C

X

GF -right

� `

C

GFX

�; FX `

L

A

G

G�; GFX `

C

GA

C-ut

�; G� `

C

GA

This ut annot, in general, be removed. (There is a rewrite whih replaes the ut with

a simpler L-ut, but it also introdues a new ut of the original form for eah formula in

�.)

3.1.2 The Seond Wrong Way

The seond set of rules whih we shall onsider looks even odder than the �rst, so the fat

that it too fails to have a good proof theory is no surprise at all. The system is worth

mentioning, however, beause it is very simple and has a ertain appeal from a ategorial

point of view. Like the �rst system, we start with the two separate logis but now we add

just two rules, eah of whih is the inverse of the other:

F� `

L

A

G-right

� `

C

GA

� `

C

GA

F -left

F� `

L

A

These rules are, of ourse, syntax for the alternative presentation of the adjuntion in the

model in terms of a natural bijetion between hom sets

L(FX;A)

========

C(X;GA)
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and indeed it turns out that this system proves exatly the same sequents as the previous

one. This is beause eah rule of one system is derivable (or admissible) in the other. For

example, the G rule of the �rst system is admissible in the seond system:

GA

n

`

C

GA

n

F -left

FGA

n

`

L

A

n

GA

1

`

C

GA

1

F -left

FGA

1

`

L

A

1

A

1

; : : : ; A

n

`

L

B

L-ut

FGA

1

; A

2

; : : : ; A

n

`

L

B

�

�

�

�

FGA

1

; : : : ; FGA

n�1

; A

n

`

L

B

L-ut

FGA

1

; : : : ; FGA

n

`

L

B

G-right

GA

1

; : : : ; GA

n

`

C

GB

The reader may be surprised by the equivalene of these two systems. In partiular,

the way in whih the monoidal strutures on the two funtors arise in the �rst presentation

is lear, but the seond system does not mention G on the left at all. Where, then, does

the monoidal struture on G ome from? The answer is in the remark made at the end

of Setion 2.1 { the ategorial interpretation of the seond system uses both m and m

�1

(whih we alled p earlier), and this, together with the adjuntion, is suÆient to ensure

that G is monoidal too.

FX

1


 � � � 
 FX

n

e

�!A

G-right

X

1

� � � � �X

n

�

�!GF (X

1

� � � � �X

n

)

Gm

�1

���!G(FX

1


 � � � 
 FX

n

)

Ge

�!GA

X

1

� � � � �X

n

e

�!GA

F -left

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

Fe

�!FGA

"

�!A

That the seond systems fails to have ut-elimination may be seen by onsidering the

following situation:

F� `

L

A

G-right

� `

C

GA

F�

0

; FGA `

L

B

G-right

�

0

; GA `

C

GB

C-ut

�;�

0

`

C

GB

or by trying to �nd a ut-free proof of FX `

L

F (X � X). Another reason for rejeting

this seond system is that even ut-free proofs do not have the subformula property.

3.1.3 A Well-Behaved Sequent Calulus

Fortunately, there is a way to present the logi whih has a good proof theory. The trik is

to allow onventional non-linear formulae to appear in the assumptions of a linear sequent.

A typial linear sequent looks, therefore, like this:

X

1

; : : : ;X

m

; A

1

; : : : ; A

n

`

L

B

whih is interpreted as a morphism in L of the form

FX

1


 � � � 
 FX

m


A

1


 � � � 
A

n

�! B
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Non-linear sequents are still onstrained to have purely non-linear anteedents and are

interpreted as morphisms in C as before.

9

We will usually abuse notation by writing linear sequents in the form �;� `

L

A, even

though there is no need at all for the `;' sine linear and non-linear formulae an never

be onfused. It is important to understand that there is really just one kind of omma

in the anteedent, and that the exhange rule (whih we will supress) really allows linear

and non-linear formulae to be mingled. One this is understood, however, our potentially

misleading notation seems rather less onfusing than the alternative (to whih we shall

return) of introduing new metavariables ranging over arbitrary propositions and ontexts.

The sequent rules for LNL logi are shown in Figures 1 and 2.

There are several points to be noted about the rules. There are three ut rules aording

to the type of the ut formula and of the ultimate onlusion (there is no LC-ut rule

beause a linear formula annot be ut into a non-linear sequent). Eah of the non-linear

left rules (inluding ontration and weakening) splits into two versions aording to the

type of the overall sequent. The rules for F and G look muh pleasant than in the two

unsatisfatory systems { eah has one left and one right rule, neither of whih a�et the

rest of the sequent. The annotations on the turnstiles are, stritly speaking, redundant as

they are impliit in the onsequent. The following is easy to verify:

Proposition 21 The sequent rules of LNL logi are equivalent in terms of provability to

the two systems presented earlier. To be preise:

� � `

C

X in LNL logi i� � `

C

X in either of the earlier systems.

� �;� `

L

A in LNL logi i� F�;� `

L

A in either of the earlier systems.

2

The interpretation of LNL logi in an LNL-model is fairly straightforward, given what

has gone before. We assume that the reader is familiar with the interpretation of the

standard logial onnetives and just give details of the interpretation of one of the ut

rules and the four rules for F and G in Figure 3.

3.1.4 Cut Elimination

We now turn to the question of ut elimination in LNL logi. As usual, the proof desribes

a proedure in whih the uts in a proof are loally rewritten (making the proof, in general,

muh larger) so that they perolate up towards the leaves, where they eventually disappear.

As is also usual, the �ne details of making the indution go through are slightly deliate.

In partiular, we start by replaing the CL-ut and CC-ut rules with the following n-ary

(n � 0) variants, yielding an equivalent system whih we all LNL

+

:

� `

C

X X

n

;�;� `

L

A

CL-ut

n

�;�;� `

L

A

� `

C

X X

n

;� `

C

Y

CC-ut

n

�;� `

C

Y

where

X

n

def

=

n

z }| {

X; : : : ;X

9

The attempt to make a more symmetri system by allowing linear assumptions in onventional sequents

gives yet another system without ut-elimination.
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Axioms

A `

L

A L-axiom X `

C

X C-axiom

Strutural Rules

�;X;X; � `

L

A

L-ontration

�;X; � `

L

A

�;X;X `

C

Y

C-ontration

�;X `

C

Y

�;� `

L

A

L-weakening

�;X; � `

L

A

� `

C

Y

C-weakening

�;X `

C

Y

Cut Rules

� `

C

X X;�;� `

L

A

CL-ut

�;�;� `

L

A

� `

C

X X;� `

C

Y

CC-ut

�;� `

C

Y

�;� `

L

A �;A;� `

L

B

LL-ut

�;�;�;� `

L

B

�=1 Rules

�;X `

C

Z

C-�-left1

�;X � Y `

C

Z

�; Y `

C

Z

C-�-left2

�;X � Y `

C

Z

�;X; � `

L

A

L-�-left1

�;X � Y ; � `

L

A

�; Y ; � `

L

A

L-�-left2

�;X � Y ; � `

L

A

� `

C

X � `

C

Y

�-right

�;� `

C

X � Y

1-right

`

C

1


=I Rules

�;�; A;B `

L

C


-left

�;�; A
B `

L

C

�;� `

L

A �;� `

L

B


-right

�;�;�;� `

L

A
B

�;� `

L

A

I-left

�;�; I `

L

A

I-right

`

L

I

Figure 1: Sequent alulus presentation of LNL logi (I)
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! Rules

� `

C

X Y;� `

C

Z

C-!-left

�;X ! Y;� `

C

Z

� `

C

X Y;�;� `

L

A

L-!-left

�;X ! Y;�;� `

L

A

�;X `

C

Y

!-right

� `

C

X ! Y

�Æ Rules

�;�; A `

L

B

�Æ-right

�;� `

L

A�ÆB

�;� `

L

A �;�; B `

L

C

�Æ-left

�;�;�; A�ÆB;� `

L

C

F Rules

� `

C

X

F -right

� `

L

FX

�;X; � `

L

A

F -left

�;FX;� `

L

A

G Rules

�;B;� `

L

A

G-left

�; GB; � `

L

A

� `

L

A

G-right

� `

C

GA

Figure 2: Sequent alulus presentation of LNL logi (II)

Y

1

� � � � � Y

n

e

�!X FX 
 F�
 �

f

�!A

CL-ut

 

O

i

FY

i

!


 F�
 �

m
1
1

����!F

 

Y

i

Y

i

!


 F�
 �

Fe
1
1

����!FX 
 F�
 �

f

�!A

X

1

� � � � �X

n

e

�!X

F -right

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

Fe

�!FX

(F�
 FX)
 �

e

�!A

F -left

F�
 (FX 
 �)

e

�!A

F�
B 
 �

e

�!A

G-left

F�
 FGB 
 �

1
"
1

���!F�
B 
 �

e

�!A

FX

1


 � � � 
 FX

n

e

�!A

G-right

Y

i

X

i

�

�!GF

 

Y

i

X

i

!

Gm

�1

���!G

 

O

i

FX

i

!

Ge

�!GA

Figure 3: Categorial interpretation of LNL logi (sketh)
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These rules are easily seen to be admissible in LNL, and it is also lear that ut-elimination

for LNL

+

implies ut-elimination for LNL.

De�ne the rank jAj (resp. jXj) of a linear (resp. non-linear) proposition to be the

number of logial onnetives in the proposition (so in partiular, the rank of atomi

propositions is 0). The ut rank (�) of a proof � is one more than the maximum of the

ranks of all the ut formulae in �, and 0 if � is ut-free. The depth d(�) of a proof � is

the length of the longest path in the proof tree (so the depth of an axiom is 0). The key

to the proof is the following lemma, whih shows how to transform a single ut, either by

removing it or by replaing it with one or more simpler uts:

Lemma 22 (Cut Redution)

1. If �

1

is an LNL

+

proof of � `

C

X and �

2

is an LNL

+

proof of X

n

;� `

C

Y with

(�

1

); (�

2

) � jXj then there exists a proof � of �;� `

C

Y with (�) � jXj;

2. If �

1

is an LNL

+

proof of � `

C

X and �

2

is an LNL

+

proof of X

n

;�;� `

L

A with

(�

1

); (�

2

) � jXj then there exists a proof � of �;�;� `

L

A with (�) � jXj;

3. If �

1

is an LNL

+

proof of �;� `

L

A and �

2

is an LNL

+

proof �;A;� `

L

B with

(�

1

); (�

2

) � jAj then there exists a proof � of �;�;�;� `

L

B with (�) � jAj.

Proof. The three parts are proved simultaneously by indution on d(�

1

) + d(�

2

). We

onsider ases aording to the lasses of the last rules used in eah of the two proofs:

1. Both proofs end in logial rules whih introdue the ut formula (so �

1

ends in a

right rule and �

2

in a orresponding left rule). This is the most interesting ase,

and we onsider eah subase in turn:

F -right/ F -left In this ase we have

�

1

=

�

1

� `

C

X

F -right

� `

L

FX

�

2

=

�

2

�;X;FX

n

;� `

L

A

F -left

�;FX

n+1

;� `

L

A

By the indution hypothesis applied to the proofs �

1

and �

2

there exists a

proof �

0

of �;�;X; � `

L

A with (�

0

) � jFXj = jXj + 1. Then let � be the

following proof:

�

1

� `

C

X

�

0

�;�;X; � `

L

A

CL-ut

1

�;�;�;� `

L

A

============

�;�;� `

L

A

where the double line stands for a number of ontrations. � has ut rank

max(jXj+ 1; (�

1

); (�

0

)) whih is equal to jXj + 1 = jFXj as required.

Note that there is an obvious simpli�ation in the ase that n = 0 as we an

then avoid an appeal to the indution hypothesis altogether by letting � be

simply

�

1

� `

C

X

�

2

�;X; � `

L

A

CL-ut

1

�;�;� `

L

A
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G-right/ G-left We have

�

1

=

�

1

� `

L

A

G-right

� `

C

GA

�

2

=

�

2

�; GA

n

;A;� `

L

B

G-left

�; GA

n+1

; � `

L

B

By applying the indution hypothesis to �

1

and �

2

we obtain a proof �

0

of

�;�;A;� `

L

B with (�

0

) � jGAj = jAj+ 1. Now let � be

�

1

� `

L

A

�

0

�;�;A;� `

L

B

LL-ut

�;�;�;� `

L

B

============

�;�;� `

L

B

The ut rank of � is max(jAj+1; (�

1

); (�

0

)) = jAj+1 so we are done. Again,

there is an obvious simpli�ation when n = 0.

�-right/ C-�-left1 We have

�

1

=

�

1

�

1

`

C

X

�

2

�

2

`

C

Y

�-right

�

1

;�

2

`

C

X � Y

and

�

2

=

�

3

�;X; (X � Y )

n

`

C

Z

C-�-left1

�; (X � Y )

n+1

`

C

Z

Let �

0

be the result of applying the indution hypothesis to �

1

and �

3

, so �

0

is a proof of �

1

;�

2

;�;X `

C

Z with (�

0

) � jX � Y j = jXj+ jY j+ 1. Now let

� be

�

1

�

1

`

C

X

�

0

�

1

;�

2

;�;X `

C

Z

CC-ut

1

�

1

;�

1

;�

2

;� `

C

Z

==============

�

1

;�

2

;� `

C

Z

whih has a ut rank of max(jXj + 1; (�

1

); (�

0

)) � jX � Y j.

� The remaining subases are similar and left to the reader.

2. The last rule used in �

1

is not a right logial rule. These are dealt with by simple

permutations of the rules. We onsider eah remaining possibility for the last rule

in �

1

and form of onlusion of �

2

in turn. A few representative ases:

C-ontration/ C sequent The situation is

�

1

=

�

1

�;X;X `

C

Y

C-ontration

�;X `

C

Y

�

2

Y

n

;� `

C

Z
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and by indution applied to �

1

and �

2

there is a proof �

0

of �;X;X;� `

C

Z

with (�

0

) � jY j. Let � be

�

0

�;X;X;� `

C

Z

C-ontration

�;X;� `

C

Z

Clearly, (�) � jY j so we are done.

CC-ut

n

/ L sequent

�

1

=

�

1

� `

C

X

�

2

X

n

;� `

C

Y

CC-ut

n

�;� `

C

Y

�

2

Y

m

;�

0

; � `

L

A

By indution applied to �

2

and �

2

we an form �

0

proving X

n

;�;�

0

; � `

L

A

with (�

0

) � jY j. Now let � be

�

1

� `

C

X

�

0

X

n

;�;�

0

; � `

L

A

CL-ut

n

�;�;�

0

; � `

L

A

By assumption, (�

1

) � jY j, so in partiular jXj + 1 � jY j. This means

(�) = max(jXj + 1; (�

1

); (�

0

)) � jY j as required.

�Æ-left/ L sequent

�

1

=

�

1

�;� `

L

A

�

2

�;B;� `

L

C

�Æ-left

�;�;�; A�ÆB;� `

L

C

�

2

�

0

;C;�

0

`

L

D

By indution applied to �

2

and �

2

there's a proof �

0

of �;�

0

;B;�;�

0

`

L

D

with (�

0

) � jCj. Let � be

�

1

�;� `

L

A

�

0

�;�

0

;B;�;�

0

`

L

D

�Æ-left

�;�;�

0

; �; A�ÆB;�;�

0

`

L

D

and (�) = max((�

1

); (�

0

)) � jCj as required.

L-axiom/ L sequent This is one of the base ases for the indution. We have

�

1

= A `

L

A

�

2

�;A;� `

L

B

and we simply let � be �

2

(reall that (�

2

) � jAj by assumption).

3. The ut formula is a minor formula of the last rule in �

2

. These ases are also dealt

with by fairly straightforward permutations and we omit them.

4. The last rule in �

2

is ontration on the ut formula. This is why we have the n-ary

ut rules.
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C-ontration

�

1

� `

C

X

�

2

=

�

1

X

n+2

;� `

C

Y

C-ontration

X

n+1

;� `

C

Y

By indution on �

1

and �

1

there is a � proving �;� `

C

Y with (�) � jXj as

required.

L-ontration Similar.

5. The last rule in �

2

is weakening introduing the ut formula.

L-weakening

�

1

� `

C

X

�

1

X

n

;�;� `

L

A

L-weakening

X

n+1

;�;� `

L

A

By indution on �

1

and �

1

there is a � proving �;�;� `

L

A with (�) � jXj

as required. There is a simpli�ation if n = 0, in whih ase � is just

�

1

�;� `

L

A

==========

�;�;� `

L

A

where (�) = (�

1

) � jXj by assumption.

C-weakening Similar.

6. �

2

is an axiom on the ut formula. Trivial.

2

Lemma 23 Let � be an LNL

+

proof of a sequent � `

C

X or �;� `

L

A suh that

(�) > 0. Then there is a proof �

0

of the same sequent with (�

0

) < (�).

Proof. Indution on d(�). If the last inferene of � is not a ut then we simply apply the

indution hypothesis. Assume then that the last inferene is a ut on a formula A (the two

ases of uts on non-linear formulae are treated in just the same way). If (�) > jAj + 1

then we an apply the indution hypothesis. This leaves the ase where the last rule is a

ut on A and (�) = jAj+ 1 so that

� =

�

1

�;� `

L

A

�

2

�;A;� `

L

B

LL-ut

�;�;�;� `

L

B

Clearly (�

1

); (�

2

) � jAj+1, so by indution we an onstrut �

0

1

proving �; � `

L

A and

�

0

2

proving �;A;� `

L

B with (�

0

1

); (�

0

2

) � jAj. Then by Lemma 22, we an onstrut

a �

0

proving �;�;�;� `

L

B with (�

0

) � jAj as required. 2



42 3 LNL LOGIC

Theorem 24 (Cut Elimination) Let � be a proof of a sequent � `

C

X or �;� `

L

A

suh that (�) > 0. Then there is an algorithm whih yields a ut-free proof �

0

of the

same sequent.

Proof. This follows immediately by indution on (�) and Lemma 23. 2

It is very important to note that the proof of the ut elimination theorem says a lot

more than that the theorem is true as stated. The proof gives a proedure for simplifying

proofs by applying suessive rewrites until a ut-free proof is reahed. These rewrit-

ing steps are purely loal and ut-free proofs also have the subformula property. Note

that the algorithm desribed by the ut-elimination proof is non-deterministi { there is

some freedom in hoosing the order in whih rewrites should be applied. On the other

hand, the order in whih transformations are applied is onstrained rather more than is

stritly neessary in order to make the indution work. In the present work we shall not,

however, onsider further the question of the extent to whih ut elimination is strongly

normalising.

10

3.1.5 Cut Elimination and Semanti Equality

The ut elimination proess gives a notion of equality on sequent proofs, obtained by ex-

tending the one-step proof rewriting relation of the algorithm to a ongruene (an equiv-

alene relation whih is ompositional on proof trees). We intend this syntati equality

to be modelled soundly by equality in LNL models, and this is indeed the ase:

Theorem 25 The ut-elimination proedure desribed in Setion 3.1.4 is modelled soundly

in any LNL model.

Proof. The basi idea is to show that whenever one proof is simpli�ed to another then

the interpretations of those two proofs are equal morphisms in the model. This is done by

modifying the statement and proof of the ut redution lemma (Lemma 22) to show that

semanti equality is preserved. Rather than go into the tedious details, we just sketh one

of the ases:

G-right/ G-left The ut redution is

�

1

� `

L

A

G-right

� `

C

GA

�

2

�;A;� `

L

B

G-left

�; GA; � `

L

B

CL-ut

�;�;� `

L

B

redues to

� `

L

A �;A;� `

L

B

LL-ut

�;�;� `

L

B

10

One of the CSL referees asserted that ut elimination is strongly normalising, but I don't see how to

justify that without a lot more work.
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Now, if � = X

1

; : : : ;X

n

, [[�

1

℄℄ = f and [[�

2

℄℄ = g, then this orresponds ategorially

to the ommutation of

(FX

1


 � � � 
 FX

n

)
 F�
 �

F (X

1

� � � � �X

n

)
 F�
 �

FGF (X

1

� � � � �X

n

)
 F�
 �

FG(FX

1


 � � � 
 FX

n

)
 F�
 �

FGA
 F�
 �

A
 F�
 �

B

A
 F�
 �

�

�

�

�

�

�

�

�

�

�)

m
 1
 1

?

F (�) 
 1
 1

?

FG(m

�1

)
 1
 1

?

FG(f)
 1
 1

?

"
 1
 1

P

P

P

P

P

P

P

P

P

P

P

Pq

g

�

�

�

�

�

�

�

�

�

�

�

�

�

�R

f 
 1
 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�	

g

whih is easily seen to follow using one of the triangle laws for the adjuntion and

naturality of ".

2

3.1.6 Variations: Introduing Additive Non-Linear Contexts

There are a large number of possible variations on the sequent rules for LNL logi. One

of the most natural is to treat the non-linear anteedents as additive rather than mul-

tipliative (though linear anteedents are still multipliative, of ourse). This also has

the advantage of a loser orrespondene to the natural dedution system whih we shall

introdue in Setion 3.2 and is one of the reasons for our notational devie of separating

the linear and non-linear parts of the anteedents of linear sequents.

The additive variants of those rules whih hange are shown in Figure 4. The remaining

rules remain unhanged. When we wish to distinguish the additively formulated sequent

system from the multipliiative, we shall refer to LNL

a

or to LNL

m

.
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Axioms

�;A `

L

A L-axiom �;X `

C

X C-axiom

Cut Rules

� `

C

X X;�;� `

L

A

CL-ut

�;� `

L

A

� `

C

X X;� `

C

Y

CC-ut

� `

C

Y

�;� `

L

A �;A;� `

L

B

LL-ut

�;�;� `

L

B

�=1 Rules

� `

C

X � `

C

Y

�-right

� `

C

X � Y

1-right

� `

C

1


=I Rules

�;� `

L

A �;� `

L

B


-right

�;�;� `

L

A
B

I-right

�; `

L

I

! Rules

� `

C

X Y;� `

C

Z

C-!-left

�;X ! Y `

C

Z

� `

C

X Y;�;� `

L

A

L-!-left

�;X ! Y ; � `

L

A

�Æ Rules

�;� `

L

A �;�; B `

L

C

�Æ-left

�;�;�; A�ÆB;� `

L

C

Figure 4: Additive variations on LNL logi
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The following fats onerning LNL

a

are easily veri�ed:

Proposition 26

1. The systems LNL

a

and LNL

m

are equivalent: eah rule in one system is admissible

in the other;

2. The weakening and ontration rules of LNL

m

are admissible in LNL

a

without weak-

ening and ontration.

3. Cut elimination holds for LNL

a

.

2

3.1.7 Variations: A Parsimonious Presentation

As we have already mentioned, there is another way of presenting the logi by using some

new metavariables: let P;Q range over either linear or non-linear propositions and � over

mixed ontexts. We an then present LNL

m

in a onise way as shown in Figure 5.

This presentation is equivalent to that shown in Figures 1 and 2. It has the disadvan-

tage of obsuring the fat that there are really two distint kinds of sequent. These rules

are essentially the same as those given by Jaobs in [Ja93℄, whih also ontains good a-

ounts of some examples of onrete ategorial models. The desription of the semantis

in that paper is somewhat di�erent from that given here, however. Jaobs starts with a

linear ategory L satisfying extra onditions whih make the ategory of !-oalgebras be

artesian losed. He then interprets all sequents as morphisms in L by applying F to

the interpretation of non-linear formulae (in muh the same way that we have interpreted

linear sequents). This auses problems as it is not lear how to interpret !-right, for ex-

ample. The solution is a mixture of syntax and semantis { one an verify that all provable

sequents whih only mention non-linear formulae satisfy what is alled the onventional

witness property. This means that they are interpreted by morphisms in L whih are (up

to m) the image under F of oalgebra morphisms. This property, whih is neessary to

omplete the interpretation, is shown by indution on derivations. Interestingly, the proof

given is inomplete unless one uses the following ruial (and easily veri�ed) fat, whih

is never atually mentioned:

Lemma 27 Any provable parsimonious sequent with a non-linear onsequent has only

non-linear formulae in the aneteedent.

In fat, for the presentation of the logi given by Jaobs, the lemma above is only true

beause I is treated as a derived formula (it is de�ned to be F (1), f. our Proposition 1).

The left rule for 
 is given as

�; A;B ` P

�; A
B ` P

but it just so happens that the onlusion P will always be a linear formula C. This would

ease to be true if the left rule for I were given expliitly as the nullary version of that for


:

� ` P

�; I ` P

for then one ould introdue linear anteedents to non-linear formulae and the proof theory

would break down. A slightly subtle point is that the above rule for I appears at �rst
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Axiom

P ` P

Strutural Rules

�;X;X ` P

Contration

�;X ` P

� ` P

Weakening

�;X ` P

Cut Rule

� ` P P;�

0

` Q

Cut

�;�

0

` Q

�=1 Rules

�;X ` P

�-left1

�;X � Y ` P

�; Y ` P

�-left2

�;X � Y ` P

� ` X � ` Y

�-right

�;� ` X � Y

1-right

` 1


=I Rules

�; A;B ` C


-left

�; A
B ` C

� ` A �

0

` B


-right

�;�

0

` A
B

� ` A

I-left

�; I ` A

I-right

` I

! Rules

� ` X Y;� ` P

!-left

�;X ! Y;� ` P

�;X ` Y

!-right

� ` X ! Y

�Æ Rules

� ` A B;�

0

` C

�Æ-left

�; A�ÆB;�

0

` C

�; A ` B

�Æ-right

� ` A�ÆB

F Rules

�;X ` A

F -left

�; FX ` A

� ` X

F -right

� ` FX

G Rules

�; B ` A

G-left

�; GB ` A

� ` A

G-right

� ` GA

Figure 5: Parsimonious presentation of LNL logi



3.2 Natural Dedution and LNL Terms 47

sight to be valid in the semantis given by Jaobs, though it would atually ause the

onventional witness property to fail and thus prevent the interpretation of !.

In any ase, one one has observed the importane of the previous lemma, it seems

rather more natural to interpret sequents with non-linear onsequents as morphisms in

the artesian losed ategory in the �rst plae, as we have done here.

3.2 Natural Dedution and LNL Terms

In this setion we will present a natural dedution formulation of LNL logi and a proedure

for normalising dedutions. By applying the Curry-Howard orrespondene, we then derive

a term assignment system and a set of redution rules, i.e. a mixed linear/non-linear

lambda alulus.

3.2.1 The Natural Dedution Rules

The usual way to present natural dedutions is as trees, eah of whih has assumptions

at the leaves and a onlusion at the root. Whilst suh a presentation of LNL logi is

possible, we shall just give a `sequent style' natural dedution system. The reason for

this is that, mainly for reasons to do with term assignment, we wish to give the natural

dedution analogue of LNL

a

(rather than LNL

m

), and the mixture of shared and distint

assumption sets whih this involves is more learly shown in the sequent style presentation.

The natural dedution system is haraterised by having introdution and elimination rules

for eah logial onnetive, rather than the left and right rules of the sequent alulus.

The natural dedution rules are shown in Figure 6. We will all this inferene system

ND.

Note that

� The elimination rule for F , like that for 
, builds in some substitution.

� The introdution and elimination rules for G are exat inverses.

� The G-introdution rule orresponds to promotion in ordinary linear logi. The

restrition that the assumptions in the premiss be all non-linear orresponds to the

restrition on the promotion rule. We do not, however, need to build any substitution

into the G-introdution rule.

� None of the natural dedution rules split into L and C versions, so the natural

dedution formulation is automatially `parsimonious'.

An important fat about the natural dedution system is that it satis�es the sub-

stitution property. This essentially means that the ut rules from the sequent alulus

presentation are admissible in natural dedution:

Lemma 28 The following three rules are admissible in the natural dedution formulation

of LNL logi:

� `

C

X X;�;� `

L

A

CL-subs

�;� `

L

A

� `

C

X X;� `

C

Y

CC-subs

� `

C

Y

�;� `

L

A �;A;� `

L

B

LL-subs

�;�;� `

L

B
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�;A `

L

A �;X `

C

X

� `

C

X � `

C

Y

�-intro

� `

C

X � Y

1-intro

� `

C

1

� `

C

X � Y

�-elim1

� `

C

X

� `

C

X � Y

�-elim2

� `

C

Y

�;� `

L

A �;� `

L

B


-intro

�;�;� `

L

A
B

�;� `

L

A
B �;�; A;B `

L

C


-elim

�;�;� `

L

C

I-intro

� `

L

I

�;� `

L

I �;� `

L

A

I-elim

�;�;� `

L

A

�;X `

C

Y

!-intro

� `

C

X ! Y

� `

C

X ! Y � `

C

X

!-elim

� `

C

Y

�;�; A `

L

B

�Æ-intro

�;� `

L

A�ÆB

�;� `

L

A�ÆB �;� `

L

A

�Æ-elim

�;�;� `

L

B

� `

C

X

F -intro

� `

L

FX

�;� `

L

FX �;X;� `

L

A

F -elim

�;�;� `

L

A

� `

L

A

G-intro

� `

C

GA

� `

C

GA

G-elim

� `

L

A

Figure 6: Natural dedution presentation of LNL logi
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Proof. Indution on the derivation of the right-hand premiss. 2

We will also need:

Lemma 29 The weakening rules of the sequent alulus are admissible in the natural

dedution system. 2

Using the previous lemmas, we an establish a onnetion between the sequent alulus

and natural dedution formulations of the logi:

Proposition 30 There are funtions S : ND ! LNL

a

and N : LNL

a

! ND whih map

a proof in one system to a proof of the same sequent in the other system. Furthermore,

for any natural dedution �, NS(�) is equal to �.

Proof. This is all fairly obvious indution. We start by looking at the de�nition of S:

� The axioms map to axioms.

� Introdution rules beome right rules. For example,

�

1

� `

C

X

�

2

� `

C

Y

�-intro

� `

C

X � Y

maps to

S(�

1

)

� `

C

X

S(�

2

)

� `

C

Y

�-right

� `

C

X � Y

� Elimination rules beome ombinations of left rules with uts. For example

�

1

�;� `

L

A
B

�

2

�;�; A;B `

L

C


-elim

�;�;� `

L

C

maps to

S(�

1

)

�; � `

L

A
B

S(�

2

)

�;�; A;B `

L

C


-left

�;�; A
B `

L

C

LL-ut

�;�;� `

L

C

The funtion N mapping sequent proofs to natural dedutions is also fairly straight-

forward:

� Axioms are translated by axioms.

� Instanes of ut rules are translated by the appropriate admissible substitution rules

(Lemma 28).

� Right rules beome introdutions.
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� Left rules beome eliminations modulo some strutural �ddling. For example:

�

�;X `

C

Z

C-�-left1

�;X � Y `

C

Z

maps to

�;X � Y `

C

X � Y

�-elim1

�;X � Y `

C

X

N (�)

�;X `

C

Z

C-weakening

�;X � Y;X `

C

Z

CC-subs

�;X � Y `

C

Z

Similarly, the proof

�

�;X; � `

L

A

F -left

�;FX;� `

L

A

maps to

�;FX `

L

FX

N (�)

�;X; � `

L

A

F -elim

�;FX;� `

L

A

That N Æ S is the identity an then be veri�ed by indution. The proof is most easily

obtained with the assistane of the term alulus whih we are about to introdue. 2

Clearly, there is an ategorial interpretation of natural dedution proofs in any LNL

model. One way to obtain the interpretation is to apply the S translation and then the

interpretation of sequent proofs whih we gave earlier, but it is fairly easy to write down

diretly (and one does indeed get the same answer!). Some of the lauses of this diret

interpretation are shown in Figure 7.

3.2.2 Term Assignment

Just as the simply typed lambda alulus arises as a notation for proofs in a natural

dedution system for ordinary intuitionisti propositional logi, we an annotate proofs in

our system ND to derive a mixed linear and non-linear term alulus. The term assignment

system is shown in Figure 8. We use a; b;  for linear variables, e; f; g; h for linear terms,

w; x; y; z for non-linear variables and s; t; u; v for non-linear terms. Distint linear ontexts

are assumed to mention disjoint sets of linear variable names.

As should be obvious, the two of the forms of let and the two kinds of � are variable-

binding onstruts. We refrain from giving a detailed de�nition of free and bound variables

and apture-avoiding substitution as the reader should be able to work them out without

diÆulty.

Lemma 31 Terms enode dedutions uniquely { if � `

C

s:X or �;� `

L

e:A is derivable

then the derivation is uniquely determined by the term. 2

Lemma 32 If �;� `

L

e:A is derivable then eah linear variable in the ontext (i.e. eah

variable in �) has exatly one free ourene in the term e.

Non-linear variables in the ontext may appear any number of times (inluding zero)

in a well-typed term. 2
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X

1

� � � � �X

n

s

�!Y

F -intro

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

F (s)

��!FY

F�
 �

e

�!FX F�
 FX 
�

f

�!A

F -elim

F�
 �
�

dup
1
1

�����!F�
 F�
 �
�

1
e
1

���!F�
 FX 
�

f

�!A

where if � = X

1

; : : : ;X

n

, dup : F�! F�
 F� is

N

i

FX

i

m

�!F (

Q

i

X

i

)

F (�)

��!F ((

Q

i

X

i

)� (

Q

i

X

i

))

m

�1

��! (

N

i

FX

i

)
 (

N

i

FX

i

)

FX

1


 � � � 
 FX

n

e

�!A

G-intro

X

1

� � � � �X

n

�

�!GF (X

1

� � � � �X

n

)

G(m

�1

)

����!G(FX

1


 � � � 
 FX

n

)

G(e)

��!GA

X

1

� � � � �X

n

s

�!GB

G-elim

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

F (s)

��!FGB

"

�!B

Figure 7: Categorial interpretation of natural dedutions (sketh)

Lemma 28 an now be restated to inlude the terms:

Lemma 33 (Substitution) The following three rules are admissible in the LNL term

alulus:

� `

C

s:X x:X;�;� `

L

e:A

CL-subs

�;� `

L

e[s=x℄:A

� `

C

s ::X x:X;� `

C

t:Y

CC-subs

� `

C

t[s=x℄:Y

�;� `

L

e:A �; a:A;� `

L

f :B

LL-subs

�;�;� `

L

f [e=a℄:B

2

It should be noted that the term alulus ontains the usual simply typed lambda

alulus as a subsystem. Note also that, in ontrast to the term assignment system for

intuitionisti linear logi, there is no expliit syntax for weakening or ontration in the

alulus.

3.2.3 Normalisation and Redution

We now look at the proess of normalisation on natural dedution proofs in our logi, and

at the assoiated redutions on terms. The fundamental kind of normalisation step is the

removal of a `detour' in the dedution, whih onsists of an introdution rule immediately

followed by the orresponding elimination. There is thus a normalisation step for eah

intro/elim pair, and we onsider eah of these in turn:
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�; a:A `

L

a:A �; x:X `

C

x:X

� `

C

s:X � `

C

t:Y

� `

C

(s; t):X � Y

� `

C

(): 1

� `

C

s:X � Y

� `

C

fst(s):X

� `

C

s:X � Y

� `

C

snd(s):Y

�;� `

L

e:A �;� `

L

f :B

�;�;� `

L

e
 f :A
B

�;� `

L

e:A
B �;�; a:A; b:B `

L

f :C

�;�;� `

L

let a
 b = e in f :C

� `

L

�: I

�;� `

L

e: I �;� `

L

f :A

�;�;� `

L

let � = e in f :A

�; x:X `

C

s:Y

� `

C

(�x:X:s):X ! Y

� `

C

s:X ! Y � `

C

t:X

� `

C

s t:Y

�;�; a:A `

L

e:B

�;� `

L

(�a:A:e):A �ÆB

�;� `

L

e:A�ÆB �;� `

L

f :A

�;�;� `

L

e f :B

� `

C

s:X

� `

L

F(s):FX

�;� `

L

e:FX �; x:X;� `

L

f :A

�;�;� `

L

let F(x) = e in f :A

� `

L

e:A

� `

C

G(e):GA

� `

C

s:GA

� `

L

derelit(s):A

Figure 8: LNL term assignment system
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� The dedution

�

1

� `

C

X

�

2

� `

C

Y

�-intro

� `

C

X � Y

�-elim1

� `

C

X

normalises to

�

1

� `

C

X

� The ase of �-intro followed by �-elim2 is similar.

� The dedution

�

1

�;�

1

`

L

A

�

2

�;�

2

`

L

B


-intro

�;�

1

;�

2

`

L

A
B

�

3

�;�

3

; A;B `

L

C


-elim

�;�

1

;�

2

;�

3

`

L

C

normalises to the dedution denoted by

�

1

�;�

1

`

L

A

�

2

�;�

2

`

L

B

�

3

�;�

3

; A;B `

L

C

LL-subs

�;�

2

;�

3

; A `

L

C

LL-subs

�;�

1

;�

2

;�

3

`

L

C

Note that this is not as asymmetri as it appears { the subs rule is only an admissible

rule, and the atual dedution intended by the above shorthand is exatly the same

as the one obtained by substituting the derivation of A �rst.

�

I-intro

� `

L

I

�

�;� `

L

A

I-elim

�;� `

L

A

normalises to

�

�;� `

L

A

�

�

1

�;X `

C

Y

!-intro

� `

C

X ! Y

�

2

� `

C

X

!-elim

� `

C

Y

normalises to

�

2

� `

C

X

�

1

�;X `

C

Y

CC-subs

� `

C

Y
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�

�

1

�;�

1

; A `

L

B

�Æ-intro

�;�

1

`

L

A�ÆB

�

2

�;�

2

`

L

A

�Æ-elim

�;�

1

;�

2

`

L

B

normalises to

�

2

�;�

2

`

L

A

�

2

�;�

1

; A `

L

B

LL-subs

�;�

1

;�

2

`

L

B

�

�

1

� `

C

X

F -intro

� `

L

FX

�

2

�;X; � `

L

A

F -elim

�;� `

L

A

normalises to

�

1

� `

C

X

�

2

�;X; � `

L

A

CL-subs

�;� `

L

A

�

�

� `

L

A

G-intro

� `

C

GA

G-elim

� `

L

A

normalises to

�

� `

L

A

The normalisation steps on natural dedutions indue �-redutions on the assoiated

terms. These are shown in Figure 9.

As often happpens with natural dedution systems, there is also a seondary lass of

redutions { the ommuting onversions, whih are aused by rules whih have a `parasiti

formula'. In LNL logi there are three suh rules, the elimination rules for 
, I and F .

Suh a rule an arti�ially prevent an introdution/elimination pair from reating unless

we expliitly add ertain ommutations. The basi pattern is that a natural dedution

looking like

.

.

.

.

.

.

C

r

C

any-elim

D
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fst(s; t) !

�

s

snd(s; t) !

�

t

let a
 b = e
 f in g !

�

g[e=a; f=b℄

let � = � in e !

�

e

(�x:X:s) t !

�

s[t=x℄

(�a:A:e) f !

�

e[f=a℄

let F(x) = F(s) in e !

�

e[s=x℄

derelit(G(e)) !

�

e

Figure 9: Term alulus �-redutions

where r is a rule with parasiti formula C and any-elim is any elimination rule, ommutes

to

.

.

.

.

.

.

C

any-elim

D

r

D

In the ase of LNL logi, the parasiti formula C is always linear, so any-elim an only

be the elimination of one of the four linear onnetives 
, I, �Æ and F . This means that

we have 3 � 4 = 12 ommuting onversions. Rather than give the onversions expliitly

on proofs, we merely list the indued ommutations on terms in Figure 10. The proofs

are easily reonstruted by Lemma 31.

11

The redution relations !

�

and !



are de�ned as the preongruene losures of the

lauses given in Figures 9 and 10 respetively. We write !

�;

for !

�

[ !



. As we have

avoided all mention of raw terms (sometimes also known as preterms), the following is

almost a omplete triviality:

Proposition 34 (Subjet Redution) Redution is well-typed:

� If �;� `

L

e:A and e!

�;

e

0

then �;� `

L

e

0

:A.

� If � `

C

s:X and s!

�;

s

0

then � `

C

s

0

:X.

2

Somewhat more interesting is the fat that when a term is redued its ategorial

interpretation remains unhanged (f. Theorem 25).

Theorem 35 Both the �-redutions and the ommuting onversions are soundly modelled

by the interpretation of the natural dedution system in any LNL model.

11

A small tehniality is that the onversion for F -elim against itself is not an entirely loal rewrite, but

uses the admissible weakening rule. This would not be the ase for an entirely multipliative formulation

of the natural dedution system, however.
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let a
 b = (let � = e in f) in g !



let � = e in (let a
 b = f in g)

let � = (let � = e in f) in g !



let � = e in (let � = f in g)

(let � = e in f) g !



let � = e in (f g)

let F (x) = (let � = e in f) in g !



let � = e in (let F (x) = f in g)

let a
 b = (let 
 d = e in f) in g !



let 
 d = e in (let a
 b = f in g)

let � = (let a
 b = e in f) in g !



let a
 b = e in (let � = f in g)

(let a
 b = e in f) g !



let a
 b = e in (f g)

let F (x) = (let a
 b = e in f) in g !



let a
 b = e in (let F (x) = f in g)

let a
 b = (let F (x) = e in f) in g !



let F (x) = e in (let a
 b = f in g)

let � = (let F (x) = e in f) in g !



let F (x) = e in (let � = f in g)

(let F (x) = e in f) g !



let F (x) = e in (f g)

let F (y) = (let F (x) = e in f) in g !



let F (x) = e in (let F (y) = f in g)

Figure 10: Term alulus ommuting onversions

� If �;� `

L

e:A and e!

�;

e

0

then

[[�; � `

L

e:A℄℄ = [[�; � `

L

e

0

:A℄℄

� If � `

C

s:X and s!

�;

s

0

then

[[� `

C

s:X℄℄ = [[� `

C

s

0

:X℄℄

2

3.3 Translations

We already know from Setion 2 that LNL models and linear ategories are equivalent.

What we have not yet done is show any diret relationship between provability (or proofs)

in LNL logi and in ordinary ILL. Suh questions ould be approahed from the semanti

point of view if we had a ompleteness result for LNL models, but for the moment we shall

just argue proof-theoretially.

12

In this setion we will relate LNL logi to ILL, restriting

attention to the natural dedution formulations (equivalently, the term assignment sys-

tems). Comparable translations for the sequent alulus are straightforward to obtain,

but omitted.

We begin by realling in Figure 11 the linear term alulus (LTC) whih orresponds

to the natural dedution presentation of ILL [BBHdP92℄.

12

I onjeture that the natural ompleteness theorem is true, and see no partiular reason why the proof

should not be by a standard term-model onstrution { I just haven't done it yet. The �rst step is to

list all the term equalites given by the ategory theory. These omprise the �;  equalities from the proof

theory together with a number of naturality and � (uniqueness) equalities.
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a : A ` a : A (Ax)

�; a : A ` e : B

(�Æ

I

)

� ` (�a:A:e) : A�ÆB

� ` e : A�ÆB � ` f : A

(�Æ

E

)

�;� ` ef : B

` � : I (I

I

)

� ` e : A � ` f : I

(I

E

)

�;� ` let f = � in e : A

� ` e : A � ` f : B

(


I

)

�;� ` e
 f : A
B

� ` e : A
B �; a : A; b : B ` f : C

(


E

)

�;� ` let e = a
 b in f : C

�

1

` e

1

:!A

1

� � � �

n

` e

n

:!A

n

a

1

:!A

1

; : : : ; a

n

:!A

n

` f : B

Promotion

�

1

; : : : ;�

n

` promote e

1

; : : : ; e

n

for a

1

; : : : ; a

n

in f :!B

� ` e :!A �; a :!A; b :!A ` f : B

Contration

�;� ` opy e as a; b in f : B

� ` e :!A � ` f : B

Weakening

�;� ` disard e in f : B

� ` e :!A

Derelition

� ` derelit(e) : A

Figure 11: The linear term alulus (LTC)

3.3.1 ILL to LNL Logi

The translation of ILL into LNL logi is not partiularly diÆult. If A is an ILL proposi-

tion, de�ne the linear LNL proposition A

Æ

indutively as follows:

A

Æ

0

= A

0

(A

0

atomi)

(A
B)

Æ

= A

Æ


B

Æ

(A�ÆB)

Æ

= A

Æ

�ÆB

Æ

I

Æ

= I

(!A)

Æ

= FG(A

Æ

)

Theorem 36 If � ` e:A in ILL, then there is an e

Æ

suh that �

Æ

`

L

e

Æ

:A

Æ

.

Proof. This is done by indution on the derivation in ILL (that is, on the struture of

the linear term e). The exponential-free rules are ompletely straightforward, so we just

detail the translations of the one introdution and three elimination rules for !. The easiest

way to present the translations is just to give the translation from terms to terms, as that

determines the translation of proofs.

Promotion The (�)

Æ

translation of

promote e

1

; : : : ; e

n

for a

1

; : : : ; a

n

in f

is

let F (y

1

) = e

Æ

1

in let F (y

2

) = e

Æ

2

in : : : FG(f

Æ

[F (y

i

)=a

i

℄)
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where the y

i

are fresh. One might be tempted to simplify the translation to

FG(f

Æ

[e

i

=a

i

℄)

but a moment's onsideration reveals that this latter expression is not well-typed.

It is interesting to note how the `boxing' behaviour of the promotion rule is thus

maintained by its translation into LNL logi, even though neither of the introdution

rules for F and G themselves involve a hange of variable names. Note also that the

translation makes use of an admissible substitution rule.

Derelition

(derelit(e))

Æ

= let F (x) = e

Æ

in derelit(x)

where x is fresh. (Whih version of derelit() is meant should usually be lear from

ontext.)

Weakening

(disard e in f)

Æ

= let F (x) = e

Æ

in f

Æ

where x is fresh.

Contration

(opy e as a; b in f)

Æ

= let F (x) = e

Æ

in f

Æ

[F (x)=a; F (x)=b℄

where x is fresh. Again, note that this is not just f

Æ

[e

Æ

=a; e

Æ

=b℄.

2

So we an translate ILL into the linear-only part of LNL logi in suh a way that

provability is preserved. That it is also reeted will follow from the translation from LNL

logi to ILL whih we are about to give.

3.3.2 LNL Logi to ILL

This diretion is more interesting. The basi idea is to translate the linear part of LNL

logi essentially unhanged and to translate the non-linear part by using a variant of the

Girard translation. There is a small tehniality onerning atomi propositions, in that

LNL logi has both linear and non-linear atoms. We will thus translate into an ILL theory

whih has an extra atomi proposition A

X

0

for eah non-linear atomi proposition X

0

in

the LNL theory. Given this, we an de�ne the ILL proposition A

�

or X

�

for eah LNL

proposition A or X indutively as follows

A

�

0

= A

0

(A

0

atomi)

(A
B)

�

= A

�


B

�

I

�

= I

(A�ÆB)

�

= A

�

�ÆB

�

(FX)

�

= !(X

�

)

X

�

0

= A

X

0

(X

0

atomi)

(X � Y )

�

= !(X

�

)
!(Y

�

)

1

�

= I

(X ! Y )

�

= !(X

�

)�ÆY

�

(GA)

�

= A

�
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Note that what is usually alled `the Girard translation' of IL to ILL uses the &

onnetive (`with') to translate onjuntion in IL, but we have not done this as we are

dealing only with the multipliative fragment of ILL at the moment. Were we to inlude

additives, then obviously an alternative translation would be possible.

Theorem 37

1. If � `

C

s:X in LNL logi, then there is an LTC term s

�

suh that

!�

�

` s

�

:X

�

2. If �;� `

L

e:A in LNL logi, then there is an LTC term e

�

suh that

!�

�

;�

�

` e

�

:A

�

Proof. This is proved by indution on the LNL derivation. The translation is slightly more

ompliated than it might be beause of the fat that we have treated the onventional

parts of LNL ontexts in an additive way, and this does not easily math the purely

multipliative ontexts used in ILL. For this reason, as well as the way in whih the

translation depends upon ontext, we will present this translation on derivations in the

logi rather than on terms. The reader should be able easily to supply the missing term

annotations so as to prove the theorem as stated.

� The translation of an axiom

�;X `

C

X

is

!X

�

`!X

�

Derelition

!X

�

` X

�

=========== Weakening*

!�

�

; !X

�

` X

�

� The translation of an axiom

�;A `

L

A

is

A

�

` A

�

========== Weakening*

!�

�

; A

�

` A

�

� If the LNL derivation ends in

� `

C

X � `

C

Y

�-intro

� `

C

X � Y

where � = Y

1

; : : : ; Y

n

, then by indution we have ILL derivations of !�

�

` X

�

and

!�

�

` Y

�

so that we an form the following (omitting rule names for reasons of

spae):

!Y

�

1

`!Y

�

1

� � � !Y

�

n

`!Y

�

n

!�

�

` X

�

!Y

�

1

; : : : ; !Y

�

n

`!X

�

!Y

�

1

`!Y

�

1

� � � !Y

�

n

`!Y

�

n

!�

�

` Y

�

!Y

�

1

; : : : ; !Y

�

n

`!Y

�

!�

�

; !�

�

`!X

�


!Y

�

=============== Contration*

!�

�

`!X

�


!Y

�
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� If the LNL derivation ends in

� `

C

X ! Y � `

C

X

!-elim

� `

C

Y

where � = Y

1

; : : : ; Y

n

,then by indution we have ILL derivations of !�

�

`!X

�

�ÆY

�

and !�

�

` X

�

so we an form

!�

�

`!X

�

�ÆY

�

!Y

�

1

`!Y

�

1

� � � !Y

�

n

`!Y

�

n

!�

�

` X

�

Promotion

!Y

�

1

; : : : ; !Y

�

n

`!X

�

�Æ-elim

!�

�

; !�

�

` Y

�

========== Contration*

!�

�

` Y

�

� If the LNL derivation ends with

� `

C

X

F -intro

� `

L

FX

where � = Y

1

; : : : ; Y

n

, then by indution there is a derivation of !�

�

` X

�

so we an

form

!Y

�

1

`!Y

�

1

� � � !Y

�

n

`!Y

�

n

!�

�

` X

�

Promotion

!Y

�

1

; : : : ; !Y

�

n

`!X

�

as required.

� Beause of the fat that the G operator of LNL logi translates to nothing in ILL,

the translation of both the G-introdution and G-elimination rules is the identity.

� The remaining rules are similar.

2

3.3.3 Further Results on the Translations

We now have translations both ways between LNL logi and ILL whih preserve provability.

There are probably other translations one ould use, but these two seem to be the most

natural.

Clearly, if one starts with a judgement of LNL logi and translates it to ILL and then

bak to LNL logi, one will not, in general, get bak to the original judgement. This

is beause the �nal judgment will be in the purely linear fragment of LNL logi. Going

around the yle the other way, however, is the identity:

Theorem 38 For any ILL judgement � ` A, the result of translating it into LNL logi

and then bak to ILL, viz.

�

Æ

�

` A

Æ

�

is equal to the original judgement. As a orollary, the (�)

Æ

translation of ILL into LNL

logi reets, as well as preserves, provability in that

� ` A

is provable in ILL i�

�

Æ

`

L

A

Æ

is provable in LNL logi.
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Proof. A trivial indution shows that for all ILL formulae A, A = A

Æ

�

, from whih the

�rst part of the theorem is immediate. The seond part then follows by Theorems 36 and

37. 2

A natural question is whether the previous result extends to proofs (rather than just to

provability). It is ertainly not the ase that the result of mapping an ILL proof into LNL

logi and bak again is syntatially idential to the original proof, but it turns out that it

is equal to the original proof under the equality on ILL proofs given by linear ategories.

The easiest way to state and prove this result is by using the linear term alulus:

Theorem 39 If � ` e:A in LTC, then not only is � ` e

Æ

�

:A provable, but e � e

Æ

�

where

� is the ategorial equality relation on LTC terms given in [BBHdP92, Figure 11, page

40℄.

Proof. This is an indution on the struture of e, but we omit the rather hairy details

(whih in any ase would require the repetition of too muh material from the earlier

work). One �rst has to �ll in the missing terms in the proof of Theorem 37 and then

prove a number of lemmas onerning the way in whih the (�)

�

translation behaves with

respet to the admissible rules of weakening, ontration and substitution in the LNL

term alulus (beause these rules are used in de�ning the (�)

Æ

translation). The terms

arising diretly from the omposite translation (�)

Æ

�

are in general very large, but, given

a ertain amount of are over variable names, they simplify fairly easily. 2
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4 Conlusions and Further Work

We have given a new and intuitively appealing haraterisation of ategorial models of

intuitionisti linear logi. We then used this presentation of the models as the basis

for de�ning a new logi whih uni�es ordinary intuitionisti logi with intuitionisti linear

logi. The natural dedution presentation of the new logi then gave, by the Curry-Howard

orrespondene, a mixed linear and non-linear lambda alulus.

At �rst sight, one might be tempted to regard LNL logi as \a logial atroity without

interest" [GLT89℄. I hope, however, that I have shown that this is not the ase. LNL logi

has a very natural lass of ategorial models and a well-behaved proof theory in both its

sequent alulus and natural dedution formulations. Given this, and the links with other

researh whih were mentioned in the introdution, LNL logi ertainly seems to merit

further study.

On the theoretial side, muh remains to be done. We have not proved a ompleteness

theorem, nor have we proved that the LNL term alulus is strong normalising. The strong

normalisation proof should be relatively easy to do via a translation argument like that

whih we have previously used for the linear term alulus [Ben95℄ and the omputational

lambda alulus [BBdP93℄. It would be nie to have better (that is, less degenerate)

examples of onrete models and one might well �nd suh examples by looking at some of

the ategories arising in game semantis.

The onnetions between LNL logi and other work on LU and related systems should

be looked at more losely. As well as the referenes ited in the introdution, Shellinx's

work [Sh94℄ on deorating onventional proofs to give linear ones seems partiularly

interesting in this respet.

It should be noted that although the translations between ILL and LNL logi behave

well with respet to equality, we have not laimed anything onerning the translations

and redution. I do not yet have any de�nitive results on whether, for example, redution

is preserved under either of the translations, but it ertainly seems that any positive results

will involve ommuting onversions as well as the more onventional � rules.

There are also many obvious extensions to the system disussed here. The �rst of these

is to onsider the additive onnetives on the linear side, and disjuntion (oproduts) on

the onventional side. We touhed briey on this in Setion 2.2.3, but more remains to be

done; this should be relatively straightforward, although, as we have already seen, there

is some ompliation regarding oproduts in LNL models ompared with oproduts

in linear ategories. Beyond that, one ould onsider adding indutive or oindutive

datatypes or seond-order quanti�ation to the logi. This seems partiularly worthwhile

in the light of Plotkin's work on parametriity and reursion in a logi rather like ours

[Plo93℄.

On the pratial side, we should investigate whether or not the LNL term alulus lends

itself more readily to eÆient implementation than does the linear term alulus. The hope

is that one an arrange an implementation with two memory spaes, orresponding to the

two subsystems of LNL logi. The non-linear spae would be garbage olleted in the

usual way, whereas the linear spae would ontain objets satisfying some useful memory

invariant (suh as having only one pointer to them at all times) whih ould be exploited

to redue the spae usage of programs. Previous experiene, however, shows that turning

suh intuitively plausible hopes into provably orret implementations is a non-trivial task.
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