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A generalizatioﬁ of the classical mechanica is presen~-
ted. The dynsmical variables \fumctions—omr——thns pazse apace
are assudad to be 2lements of an algebra with anticommting
generators (the Grassmasn algebra). The action functionpal
and the Poisson brackets are defined. The equationa of motion
are deduced from the variatiopnal principle. The dynamics is
described also by means of the Liouville equation Tfor the
phase=space distribution, The canonical quantization leads

Vio the Pepmi {anticommtator) commutation relations. The
Dhass.space path integral approach Lo the guantum theory 1is
also foraulated. The theory is applied to describe the par=
ticle spin._'-\I; the nonz;cmimm cage, the elsments of the
phase=space anticonmuting three-vactors 5 ¥ t:anafor-
ped to the P satrices after the gquantization: i .
= (% 2V 2_1!' Classical description of the spin preces-
sion and of the spin-orbital forces io given. introduce
the relativistic spin in ap invariant needs a fi-
ve-dimensional phase space (a four- T plus a scalar),
.The Lagranglan is singular and there is a constraint, resul-
ting from & "supersymmetry". The quantized phase-space els—
ments are proportional to the Dirac matrices f,); and );’. ’
: while the comstraint is tranaformed to the Dirac squation.
‘. The phase-space distribution and the interaction with an ex-

ternal field are also considered.
© wrao, w78
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I. IFFRCICTION

1.1, Phyeieal Backeround

During the past few years a not 50 familiar concept has
emerged in high-energy physics, that of "anticoamuting o-num-
bers". The formalism of the Grassmernm algebra is well lkmown
%0 mathematicians sud used for a long time. The analysis on
the Grassmann algebra was developped and exploited in a sys-
tematic way in applying the generating functiopal method to
the theory of second guantization [1) . This method was also
used for the theory of fermion fields im a texthook by Rie=~
wuski [ 2] . Seemingly, the £irst physical work dealing with
she anticommating numbers in ¢onnection with fer iona was
shat by Matthaws and Selam [ 3] . The anticommuting c-numbers
and the "Lie algebra with anticommutators" (i.e. the Lymgra-
ded Lie algebra) were the tools applied by Gervais sud Saki~
ta[ll-] to the dual theory, These authors invented the two=di=~
mentional field-theoretical approach to the fermionic dual
models (those proposed by Ramond and Nevesi-Schwartz) and used
the symmetry under the transformation with anticommuting para-
metera (“supergauge® transformations) to prove the no-ghost
tt.corem. Naburally, anticomt_ins classical fields are necessa-
- to construct the string plcture of the fermionic dusl mo-
delsi a highly shiliful approach to this problem is presented
by Iwaseki and I.tkkm[BJ » Interest to the concept in view
was greatly increased by exciting new resuwlts obtained in
1974, elaborating the four-dimensional supersymmetry, disco-
vered previously by Golfend and Lichtman{6] , and the forma-
lism of superspace (see ¢.g. the review report by Zumino [ ?].



where references t¢ baale works on the subject may be found).
We present here an application of the analyasls on Grass-—
mann algebra to such a respectable problem as the Hamilton
dypanics of a classical spinning particle. Both nonrelativis=
tic and relativistic situations are comsidered. The first at-
tempt to treat the classical .elativistic top dates as early
as 1926 and is du to Frenkel [8,9_] + A review of subsequent
work along this line is given by Barut [10] » However, the
probless seems to be far from its exhaustive solutbion in terms
of the convensional approach. An evidence to that is the pa-
per by Hanson and Regge [11] s where one may find a number of
furtioer references. Our approach is essentially different as
it uses the Grassmann algebra to desceribe the spin degrees of
freedom., Apart from the concrete physical ayplication to spin
dynamics the present theory nay be of some interest as an exam-
Ple of a generalized Hamilton dynamics with the appropriste

quantizatior scheme.

1.2. kathematical Background

To  define the classical mechanics in an abstract way
one needs vhree basic objects . 1) A& differentiable manyfold
M, called the phase space. Local cocerdinates x,‘ may be
introduced in the manyfold M. In principle, no global coordi-
nates may exist, and even theydo, there may be no reasonable
definition of the canonical coordinate-momentum pairs.

2} The algebra (M) of complex~valued differentiable fun~
ctions on M defined in terms of the ususl sum snd product ope-
rations ,



3) A lie algebra of the Foisson brackets in (M), gi-
ven by means of a skew-symmetric Gensor field wu ()
{(sum over repeated indeces is .implied)

— A 29
{f’g}p.s - wkéfx"g'f; 3-.§£ (1.1)

for any £(x) and g(x) belonging to 8L(M). The field 4},(x)
satisfies the condition

9, @
W, . L ki mk 2 Ems
LW axw + A?g»-—_?xh -+ a)knvs;; =ﬂ, {1.2}

whick is egquivalent to the Jacohi identity. Fhysical obsepr-
vables gre real eleuwents of 8(M). D-namics is a antinuous
one-parsmeter isomorphisa group on#(M), determiped by a Ha-

milton function i—.[(:r.) by means of the equation

j—jz{”’{}p_g. (1.3

for any element f£(x), where the "time™ % is the parameter
of the group.

A way o generalize the concept of the classicsl mecha-
n’.ca is to abandon the manifold M, the "mwaterial basis™ of
* & mechanics, retaining orly the algebraic coastruction:
ring and Lie algebra. The Grassmann variant is a simple ¢xsm=-
ple of such an "ideal mechanics", for which the mulciplica-
tion in the algebra is not commutative. The generallization is
rather straight-forward, because though the elements of the
Grassmenn algebra are not just functions, there are for them
meaningful analogues of such concepts of the conventionsl ana-
1ysis as the differentiation, the integration, and the Lie

groups, a3 introduced in the work [12] (see also the review

7.



article [13] ).

%o quantize am ideal mechenics is to comstruct an as-
sociative algebra of operators in the Hilbert space, fela-
ted to the classical algebra and having someé general proper—
tles, discussed in paper [22] s which may be formulated in
& purely algebraic way independently on the existence of a
material phase spnce, One may see that in the Grassmano ca-~
se with the "flat"™ Poisson brackets ( &Jkl is a constant
matrix) the operator algebra has a finite-dimensional repre-

sentation.

143, Results and Discussion

The basic idea of the present approach is to consider
elements of a Grassmann algebra as classical dynamical varia=-
bles, i.e¢. functions of the pbase space. The action functio-
nal, She Hamiltonian and the Poisson brackets, as well as so-
me other concepts of the classical mechanics. are defined.
The receipt of gquantigation is to substitute the Poisson
oracket for the canonical variables by the anticommutator of
the corresponding operators (as usual, devided by -11i).50
afcver the quantization the Grassmann algebra generabes the
Clifford algebra.

The Grassmann algebra with three generators, transfor-
wed as components of a three-vector under space rotations,
gives rise uo the nonrelativistic spin dynemics. Quantized
canonical variables are represented by the Pauli matrices.
The Grassmann slgebra with five generators, an axial vectoer
and a pseudoacalar, is necessery for deacription of the re-
lativiatic spin. Quantized variables are expressed in terms

of che Dirac matrices. In the relativistic case the system,



describing a particle, is constrained in the spin phase cpa=-
Ge¢, as well as in the orbital phass space. The apln const-
raint is just the Dirac equation. Thus after quantisation
the present scheme reproduces the well known Fanli-Dirac
cheory of the spinning electrom. 4 brief aceount of our re=-
sults was published previously [14] .

The quantal action for apticommuting camonical variabe
les was written first by Scawinger [15] + Who Damed them va-
riables of the second kind. However, the classical sschantics
and the theory of a relativistic spinning particle was not
considered by Schwinger; this author had in mind the quanti-
zed electron fields necessary for his formulation of the
quantum electrodynamics. No clear s-atement that she clessi-
cal variables not only snticommute, but have alsc zero squ-
are, may be found in the work by Schwinger. He dso argued
that the number of the second-kind variables must be even
(note, that in our comstruction the phase spaca is odd-dimen-
sional), so that complex-conjugated coordinate-momentum psirs
may be defined. No particuler mechanical sysvem was discussed
by Schwinger. Perhaps our theory is useful as & simple exam-
ple to Schwinger's varistionel formulation of the quantum
£:218 theory '’ . The idea to consider the gemeralization of
::e classical mechanics on a ring with arbitrary generators
was suggested by Martin [‘16_] s Who alsoc presented a nonrela~
tivistic Sop as example of mechanics on a ring with anticom-
muting generators. Unfortunately, we ware not aware of this
interesting work in time of our first publication [14] and
did not mentiomed it. The progress of the theory of supersym-
metry provoled an interest %o the classicsl mechanies in the

N Lagrangian formaliem for spin wariables, extending
Schwinger's variational principle, was coanstructed by

Volkov and Peletainsky [52] .

[———



puperapace, in other words, to the theory of diffeomorphism
groups on the Grassmpann algebras; an evidence to that is a
uote by DeWits[ 17] .

In Section II, the nonrelativistic spinning particle is
conaidered. The c¢lagsaical action prineip’e is formuiated.
The phase-space dynamics based on the Liouville aquation is
developed, The canonical quantization is discussed in general
anpd reconstruction of the conventicnal formalisw is shown.
The path integral in the Grassmann phase space is defined;
the quantal Green's function for precession of spin in a
constant field is calculated by thic method. rhe theory of
a relativistic spinning particle is presented in Section III.
It is snown that in the invaciant description of a free par-
ticle there are two syumetries, "gauge" and "supergauge". The
quantization is done and the Dira¢ equation is deduced. The
case of external rield is also considered and the Bargmann-
-inichel~Telegdi equation is obtained in the classical mecha=-
nics. Some necessary results, published previously, are pre-
sented in the wost appropriate Iform in ippendices, Results
on the Grassmann algebra are compiled in Appendix A. Phase-
space represenvation of quantal ¢perators and the phase-spa-
ce path integral for Green's function in case of the conven=-

tional cheory are considered in Appendices B and C.

II. KOKRELATIVISTIC SPIN DYRAXICS

2.5. Classical Action Primciple and Squations of

Motion

Suppose that cke dynamical variables, describing the

nonrglativistic spin dynamics, are elements of vhe Grassmsnn

algebra 93 with three real generators fk » Xk 31,2,3

10



(for definitions see Appendix A). Define the phase-space
trajectory § (t) as an odd e)ament of 9’\, » depending
on a time parameter % . Introduce the classical action es
a functional of f (t) and suppose it is an sven real sle~
ment of 93 . Write it in a form emaloguous to the Hamilto-
nian action ( ¢f. Bg. (0.1)):

Z fjaf atf ﬁkgfkft H@)];(z.u

where H( i is an even reaAJ; function of 'ﬁ s the Hamilto~
nian, df /85, and &) is a symmetric imaginary mat-

iz ( w is anti-~-Hermitian, as in the conventinnal mechanics).
By means of a linear transformation & may be .sduced to
the simplest form

il 4 .
W= za;,- (2.2)

Note that the first term in Eq. (2.1} is not a cowmplete deri-
vative, because and._f. anticommmbe. As any element of
% , E(i ) is a polynomial of a degree, no more thap 3.
Only even terms may be present; so, omitting asn ineasential
constant, the most general form of the Hemiltonian is

»

’L/(f}=—f Gelm 'kagfu..,u .(2.3)

woere by ars real number.y,
The equations of motion are obtained under the conditi-

or that the variation of & be zero:

-
Si=CH =6, 46 ew

Lk



e -
. where 7“ = 9o/ ?fk . 4s the right derivative. The so-
lution of this equation is evident

-f (1‘/ =R (éji (ﬂj (2.5)

where R is an orthogonal masrix deseribing the rotation
with the angular velocity l + This scolution may be inter-
preted as the spiiu precession in an external wagnetic field
3 » where 3:‘33 and & is ths magnonefic moment. AD ex-
plicitv rtime dependence of "E_ is also possible, The Hamiltoe
nian (2.3), a blilinear functiocn ¢n the phase space, is an
analogue of the ¢gcillator. A formal equivalence between the
spin precession and the Fermi oscillasor was also noted in
anocher context [13] .

In accordance with Bq. (2.4) define the Poisson brackets
for any pair of dypamical variables

{£(8), 3(€)}p.3_‘ t(f‘s“)(é})) (2.6)
f' - { H, ”p.a. (2.7)

dvidently, the Poisson brackets are antisyumetric if

£ apd
g are even elements of the Grassmapn algebra apd 1f £ 1s
an sven element while g is an odd element, In case f and
£ are odd elements the Polsson brackets are symmetric. The
graded versiop ¢f Jacobits identity is also valid. So the al=-
gebra defined by 2q. (2.6) iz a 2, -graded Lie algebra (see
e.g. the definition in [12] or [13] ). Por the cancnical va-

riables the Poisson brackets are

B\-u "f’}p.a. =i4, - (2.8)

12



The rotaticn group in the Grassmann phase epace is genera-
ted by the spin angular momentunm

S =3 ektmfzf i (ixf.)“ y(2:9
,.Sk > fe }P.B. ==~¢ Ky 3w * (2.10)

The ¢lassical mechanics of a ponrelativistic particle
with spin is constructed in the phase "superspace”™ consisting
of the six-dimensiopal obrital subspace (gy, R) and the
three-dimensiconal spin Grassmann subspace. The moat general
action descriving a part:.cle iz a local external field is

(4, 1,)= fau‘[,f?/ » £ 55 - pYin

{(2.1)

-V.(3)-L5 V(3)- 5803),

where Ly = &, .. 7{}1,‘ 5'(9”‘3)& is the orbital angu-
lar momentum,V (q) and V,{(q) are potential functions,_g(q)

is a vector field. The %erm with V, in Fq. {2.11) is the spin-’
orbital interasction. The aquation of motion derived £rom the

-&

3., = p/m +(Sx9) 7V,
p=-TV -(LS)VV; +(SX/J)V -V(s8);

§= ([xf)]'/;.,-(axf) (2.12)

13



It ie reparkable that in presence of the spin-orbital inte-
raction the orbital subspace is not invariant, so q and
p are pot just real numbers. The dynamics algebra-i; a
ring with & coomuting and 3 anticommuting genepators, The
equations are simplified in the ¢ase of sp..erical symmetry;

it is considered in some detafl in Section 2.5.

2,2. The Phase—Space Distribution and Observables

Relation between an abstract mechanics and observable
quanctities is established by means of a distribution func—
tion in tae phase space. As in the convensional mechanics,
the dynamic¢al principle for the Grassmann varlant may be
formulated s a Cauchy problem for the distribution f’(f .

t)., The Loiuville equation is

2—? * iH’Jo}P.B.: 0, (2.13)

the eguations of motion (2.4) are just its characteristics
eguations. For any dynamical variable f(f), its averaged

6r=(4)p(51) L%,
”‘3§ =¢ "{fs "(fa. a(f_‘ )

The integral is defined in Appendix A. It is appropriate to

(2.14)

assume that tie distribution is an odd resl element of %

PG)=-£(55P) * <&
(f.ig) = eklm, §kf4 f.., .



The distribution is noraaliszed and ¢ 1s the average apin

momen tham

<1y=71, <5r=C , (=Y.

(2.16)

In case of motion (2.5) the vector K depends on the time
Lt » and the dependence is given by the seme rotation matriz
R . S0 the average spin wector is subject to the precession.
 To be ar homest distribution the function ﬁ(.i ) must
be non=negative in some sense. The usual way to generalige
the concept of positivity is to demand that the integral of
_P £t* ve non~-pegative for any function £. One may see that
this is true only in the trivial czie g = Q. Tuis is the re-
ason, why the Grassmenn variant of the classical mechamics
can not be applied to the real world. It acquires a physical
meaning only after the guantization.

2.3+ The Canonical Quantization

In accordance with the genmeral rule of guantization [19],
we replace the Polsson brackets for the canonical variables
in the Grassmann cage by the anticommutator of the correspon-

ding operators, divided by -l’t H

[?k ’ ?e ]+ =% J;( (2.17)

Repormalizing the operators suitably, we get the Clifford al-
pebra with 3 generators:

/2 A A
§ ( */2/ [ ’6-‘]+= 2 Ske * (2.18)

The only irreducible represeatation of this algebra is two-di-

15
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mensjonel, it ls equivalent to that realized by the FPauli

uu'ices. Gonaequently.

Sk-' k(mf«fﬁ fﬁ [S:SJ (2.19) -

=7 tek(u S'W '

Yote, that in the conventione' theory of the angular mouentum
the startipg poir“ is the commutator, while the simple form
of the antlcoomutator arises only in vhe spinor representa=
tion describing the spin 1/2. The pregent approach is inver-
se: the anticommutacor (2.17) is postulated and therefore op-
iy the spipor revresentagion is produced.

The operator corresponding to the phase-space distribu-

tion (2.15) is proportional to the usual density matrix
3/%
o/
2(7"/'2} (i‘ '*..QP'/#‘)’ (2.20)

while the incegral over the phase space is replaced by t;ra-v
cing of the representiag matrix. {ote that the matrix _P ig
positive semidefinite if ]3_[5 A /2. S0, the purely guan-
tal nature of the spin manifests itself once more.

Tpe Heiserberg equations of motion are obtained from
29s8. (2.4} by means of the direct substitution. To get the
Scuroedinger picture one has to incroduce the spinor I’I func=-
yiop, "“factorizing" the depsity matrix ﬁ( t)= 4’(’5)3“,’*(&
Its vime evolusior is mastered by the Pauli equation. So the
usual tﬁeory of the nonrlelativistic spin 1/2 is reconstructeﬁ.

Now, 1tls appropriate to consider the case of the Grass-
@ann algebra with any number of zenerators, g n " Evidently,
the constructice of the classical mechanics, described for

3’ may te directly expanded to ?m « The auantization

is defined by Eq. (2.17), and § =(i/£)f/£a. , k=

16



~
= 1y eess By Where ﬁ‘k ara genmerators of the Clifford

algebra On « It i3 knowzn thet ", has only one irreducible
Hermitiap matrix represemtation. Its dimensionality is 4 =
= 2% for asz2merns=am+ 1, mis iﬁteger.,(ﬂote that the
patrix representation of n ia 2% - dinensional).' The
case of an evep n is in ¢loser analogy with the coaventio-
nal theory, as one may introduce pairs of conjugated cano-
nical {(complex) variables (q s P, Yy T o= lyeeaspy defining
= ( F,-r-t.f&)/f?. » Dy = (bf + &, WYL = iqq ’

2 = ( ?3 +¢ § v )y, + etc. The anticommutators are

[%/r»ﬁs]-'_:': 28 ? [?,1.: ] "'[P-: :Ps]fO- (2.21)

Just this case was considered by Schwinger [15] « It is the
case of an odd n that is of interest for our purpose. i
remarikable feature of G for odd p is that io the nat-
rix repre sentat:.on the generators are not independent,

6" 01 .. d' = + 2 . Indeed, the product comgmses with
any 0‘ and its square is =1, while its sizn is reifered
%o the choice between two classes of eguivalent represenvati-
sns (right or lef: coordinate frames). Therefore, to make un-
sibiguous she classical counverpart of a guantal operator,

»2 has to declare whether it is an even element, or an odd

element of g n° ]
Represent the quental operators by their symbols, in

analogy with the usual guantun mechenics (see Appendiz B).
For any operator & & polynomial representasion may be

written .
A _ Z"’ for Ky A n .2
g y=0 {k} ?” §k1 e {kg g

17 .
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where gj, are "cepumbar® totally sntisyametric tensors.
¥or odd pn, this form is unique if oniy terms of a fixed pa-
rity are present. Thus any E has two equivalent decompesi- )
tions, even and odd. Defipe an analogue of the Weyl symbol
for the operator

A _ Z Ky oo ky
j-ﬂ-f{f}- 2§ by e
¥, {kj kq
Bach operator hes two syobols, even and odd. It may be seen
that they are interrelated by a Fourier transformation. As
in the convenctional theory, the Fourier transformation may
be used also o formulate the Weyl quantizacion. Relation
between an operator and its symbol is given by the integral

é*f(§)=/¢xpﬁ(§f)j§(f)a£jo, -
j =f_é(f)f90)d ;, ﬁ(ﬁ):e)tp[i(fp{

2.25)

Here £ —-— (ﬁh ...,fn’)are generators of the irassmsnn
_
algebra gw . a.nticommg\ting with f K and § o * Pro=-

perties of the ogerator .Q. g?) are similar to those of
the operator _Q( T ) s considered in Appendix B:

(p )0 (o, )= [P IO,
Tr Q) =d[4 (k)" 5] e

10



(We discuss now the cage of an odd o, d = 2(’1'1)‘(2 is the
dimensionality). Using these formulae, one easily gots

To[ D693 ] = d [ (RB)"*G(p)r g (5 %P

{2.28)

This result enables ome to find the symbol of the operator
g s Lf its parity is chosen (note, that 5(§ ) and E(J)J

have opposite parities). The multiplication law for the sym-
bols is obtainable from Zgq. (2.26)

§1 ﬁm""g(%j =,(w(§*’§’-’5)34(5')%gt)dmfa A,

W(z,,8,.8) ('k)exp{ [(ﬁ §)+(5.9 (¢ fi)”

Here 5 27 5 23 :i are regarded as three independent sets
of generators of the Grassmann algebra Qs ,

e conclude this Section with che following resume,. IDn
the Grassmann mechanics the quantal operators have two rep—
resentatiops: by finite dimensional macrices and by elements
of <he Grassmann algebra. This is quite similar to che usual
quansum mechanics, whére the operators may be represented
either by functionsal kermels (say, in the coordinate space)

ar Ty their symbols, i.e. funcvions on the phagse space.

2«44 Path Integral for Green's Function

The subject of this Section is %0 obtaln an eXpression

for she operator

CE('I;) = exp (—-% t ﬁ) (2.30)

19



in the Grassmann case, The wmethod is %o caleculate ivs ayubol
Q( ?) in form of the phase- space path integral. Thia is
a direct generslization of the approach applied to the gquan-
tum mechanics in a work by one of the authors [ 20] (see also
the Appendix C). I% 1s quite najursl to us~ this approach,
because ip the Grassmann phase space one can not use the co-
ordinate - aomentum language, and it is impossible vo defi-
ne an analogue the Feyoman path incergal in the coordinaste
{or momentum) space. - .
Represent the operator q_ ('f-) as an infinite pro-

duct of infinitesimal tine tra.nslat:ionsN
~
EL .
- lom [ ]
CL(H "N_):: C'-U:/N) (2.31)

Rewriting cnis form in Geras of symbols and using the multi-

pllc&;lun law (2.29%) one gets QC€,-':) L..,_ q_(N(E t))
N
C:'C (’s' U (tilj gn d' §)’ OL 'Lﬂ (2.32)

p{iy i, 1 [2(8,70)+ 20§t L (onsBy)
-t Hip )t |

with the boundary condition § - { » Note that one
N+

sbould regard as indepen—
& §’§1,"‘)§y)21:"':.251 =

dent sets of (anticommusing) generators of the Grassmamn al-

gebra, Tais formula is to be compared with BEq. (C.4). One

may integrate over ?‘1 s s ;N » £t an analogue of

Bg, (C.8) and wrice the formal expression

QG,'&) =[ %[?L(t)] exp{%ﬂ“ I'l(t)ji-(z.}s)
+E1G9)+(e)+ ()]}



whers 1r‘-\ —'l(ﬂ) H-Lt (t)
d['z(v-!] I[ (’11) H('Z)]d"t (2e34)

nN/& N

Aqf= b EAT N1 A7,

However, only Eg. (2.52) reveals the true msaning of the
funcciopal integral, and it is useful for further aralysis.
" Apply the path integral approach to a simple example:
the spin precession in a conatant nmagnetic field. The Hamile
topian is given by Eq. (2.3) ‘and way be rewritten also as
H(j ) = S, where S is the gpin womentum (2.9). Using the
resemblance ¢o the barmonic :sc:.lla*er we procee  along the

same lines as in obtaining Eg. (C. 10). the present case

G5, t) = (L t/e) exp[- L (Sn ytyith)

(2+36)

= ca(4tf)~ &L (Sn)sin(4t/a),

where b= |b , y b = b/b} we have used the fact that

e L
(sn)2 = 0. To get this result, we calculated the Gaussian
integrals over the Grasamano phase space by seans of Eq.(4.9).
*ite that the cosine is now in the nominasvor, contrary to
40+ (G.16). Using the symbol and Eq. (2.19) it is guite easy

to write the operator

C(Y) = cos(gt/g)-ilgn)sin(6t/¥)

and to reproduce the result that one obtains calculaving
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ex:p(-‘. JO'ZL ) in a2 usual manner,

A n:m;er of authors used the comcept of the path integ-
ral in space of anticommuting functions: Ehalatnikov [21] ’
Kutthews and Salam [3] , Cendlin [ aa] » ¥artin [23] end
others. A consister mathematical formulation and the defini-
tion of the incegral on the L.>assmann algebra were given in
paper [24] «» On t.e other hand, some aucthors described the
spin dypamics by means of phase spaces with commuting ele—
ments: Schulman [ 25] » Bezak [26] (both considered the path
incegrals), Berezin [ 2?] »y Tarski [28] y Hanson and Regge
[1‘1] « The present approach seems to be the most adequate,
ard spin of .he electron Finds “a simple and ready represen-
tation™ in che method of path integrals, absent before, as
was stated in the book by Feyomsn and Hibbs [29] (DPe355),

2+5. Wotion in a central potential with Spin=Orbital

Porces

¥or a simnle zvample, consider the motion of a spinnipg
particle influenced by forces presented by the Hamiltonian
{2.11), assuming that B = 0 and that the potential fumctions
depend on R = I kY , only. The intergals of motion are the to-
tal angular momentum 4 2aL+8, IPand A =1g (note
that 525 0and A = 0). From the aquations {2.12) we get
for the radial motion.

ReP/u, D=~V (R) » 12558 - AV;'(RJ
(2.38)
The problem iz now reduced to that of movlon with the effece-
tive potential U( R)= K*LVZMR‘*AI{mntainins &
nilpotent perturbation in the last term. Bvidently, the so-

lution is %o be represeated in form
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R(2) = r(t)+halt), Plt)=ptt)+ Afig) s

where ) , p, 2, and b are number functions. Substituting
into (2.38) one’ can see that r{t) ang p(t) are just the so-
lution of the problem with no account of ths spin-orbital
potential, while g and b satisfy the linear equations

»
a

b/m, b a -g{t)a = £(t) (2.40)

where

”
8 = V(o) + t¥mt, 2(0) = v (0

If the orbit is stable against spall perturbation 1n ths
classical sense, g(t) > O apd (2.40) is the equation for an
oseillator with the frequency [ g(t)] 2 414 the driving
force £(t), which are comstante in case of @ circular orbit.
Thus the solution is i1dentical to the usual perfurbation
theory in /A , however it is exact, because higher powcrs
of%anish identically. To get the "obsexrvable™ trajectory
one bas to average over the spin variables, i.e. to integra-
te R{t) with the distribution (2.15). The result is that in
the final expression one should dubstitute A by a cons—
tant <AD 2 (eL), determined by the initial conditions.
As for the angular ccordinate and spin, their motion

i: wastersd by the equations

..f‘ =Vax )= v,,(le)

;?, a T,LX8) = 71(12 5) (2.81)

L= (XL = v.,() x L)

A

where V, a 7, [ r(t)] is a function of £ . It ie possibe
le to substitute R by r in the argument of V, in Equ(2.41),



beceuse A SE 0, (Sx;-' )= 0, anda A (L xg' }= 0. The
vectors § s S5, and L precess around the came fixed axis
27 with the same ancular velocity, which is constant in ca-

ge of a circular orbit.

IITI., RELATIVISTIC SPIX AND TEE DIRAC ELUATION
341 Classical Action and the Symregrics

Construct the action for a relativistic spinnding partic-
le, invariant under the full Poincare greup and havirpg the
nonrelativistic lizis, considered ip Section 2.1. Assume
that the spin variables are components of a four-vector f .
However, an intraoduztion of a zew phase-space coordipate ?’
ig pot so inofr'encive in view of two reasons, First, iz the
nonrelacivissic lizic a "second spin® §'f~. would arize
and :ce representation of the rotation group would be redu-
cible, Seccrd, and more serious, is fhas one is not able %o
quantize such a system because of the Xinkowski ipdefinite
Jetrics. To get a consistent acheme (and So reconstruct the
Dirac theory) we assume That the action has an additional
syzoetry, soO that §’ be ip fact excluded from the egua-
tiors of mo:tion, ever thougr the eguations are Lorentz-inva-
riante.

Start from the action

L7

Bo= [ -meei[G) i) [ 4,

free

o 72 .
z=[-)', =gz



Here T is a monotonic parameter labelling the points on the
particle world 1ine,. q» (T ) are coordinates of the point,
ir— = dg, /4T , §F_ 243, /4T , the light velocity ¢ =
= 1. Hote that § 2T the phase=-space elemgnts. and (3.1)
nay be considered as Routh's form of the action. Our metric
convention 1s («~, +4 +, ¢), 50 ‘“z = =1, The action is in-
varia.nt under the reparanetrigzation of the tra;iectoryz f-\'
T= PLT) , where o/ T) is a monotonous
function. The fundamental bilinear form for the f variab-
les 'is degenerate , and there is no equation of motlon for
the longitudinal component of the vector fﬁ + To formula—
e the dynatics, an additional conhstraint 1s nec¢essary, and
%0 zake this c¢onstraint explicitly invariamt int duce a new

Grassmann variable § g « The constraint is

)+ &, =0. ' (3.2)

To get a manifestly covariant caponical formeliism for the
sysvels having a singular Lagrangian one may apply Dirac's
method ($he general approach is given in a book by Dirac [30],
modern applications to the relativistic parcvicle dynamics may
te found in papers by Hanson and Regge [‘1"1] and by Gasalbuc-
21 et al. [51] ). a&dd the constraint (3.2) with the Lagrane
ge 2ultiplier A (anticommuting) to the original Lagrangi-

e f Yook [0 (g4

(3¢3)

The cancnical momentum is

PrL/2 = mut-E (5 s (uf)’)Ar2,

(Ga4)



and the. phase-space constraints are
p% + a2 = 0, (E)emf =o0. (3.5)

¥ith account of the constraints the Hamilton action is

4 .
"'Qree = i(f’y" '{/ ‘*mz}*

f (3.6)

#1055 +$:8s = (pE+mg )2 m] 4,

where 1 is another Lagrangs multiplier (commuting). The

-

equations of mocion derived from the action principle are

= ZJF/‘_‘PC.)‘/‘/]/“Q"" » /O/..:ﬂ{
b = puAlEm, f5 =272
The first equation is consistent with (3.#) if

-z’:/z-,{ f;/‘l/’n//zm-, (3.8)

and the equation takes ancther forsm

G =it 2 (5t o )/ 9

An appearance of the second term in Eq. (3.9) might be anti-
cipated; it is the classical analogue of Schroedinger's Zit-

7

# (3.7)

terbewegung (a discussion of this concept was presented by
Dirac ( 19] N § 69, the algebraic¢ aspects are considered by
Jordan and kiukunda | 52] )« Note that the time evolubion mi~
xes ¢oordinate and spin degrees of freedom, just as in the
nonrelasivisiic case with a spin-orbital potential (££,Egs.
(2412) )i the whole phase space of the relativistic spinning

particle is a "superspace™,



The comstraints (3.5)result from the invariance of the
action under two kinda of transformations. The firat one
was mentioned; it is the "gauge™ group, ?ﬂ-‘? = ?{r}

An infipitesomal transformation of the second kind is

5 e =5t e, FrE=E vy,
7/‘_—: i".-_-z“_rt';?/m,

whe:.-e 'Z {(T) is an anticomputing “parameter depending
on T ambiguously, In analogy with the transformations ip-
treoduced in g dual model by’ Gervais and Sakita [ 4} we call
{3+10) the “supergauge" group. The variation of the action
(3.3), induced by (3.10) is

& |
§5A4=1¢ /di' 2 (F 9)/dr (311
%

it vaniahes if z(Z‘;}: 2(?'}}:0 » It is remabiable
that both transformations, gauge and supergauge, change the

(3.10)

scale factor z , contrary to the Poincué’ Eroup.

To fix a solutionm of the egquations of motion (3.7),
{3.9) one has to choose the indefinite factors A ama 2
(or 1) in some way, i.6. to £ix the supergauge and the gau-
€3, As for g, two variants ave used in case of no spin:

) z=1, € is the selt-time, and 1i) z=wp, T = q,
iz the "laboratory" time. An appropriate chioice of ) is
not s0 evident. There are only 2 Poincaré'-inva.riant anticom-
mutini’e}ed_mente in the phase apac'e? fs and (Ffff V=
=& ﬂfﬂfr-;: « If opne taokes ﬂﬂfs.,the
equations of motion have po apperent T invariance. More app-

ropriate ie the choice



A= ik 2(p )"ff}, (3.12)

where Kk is a real constant of dimension (actiou)-a. Kote
that if z = consst, A is elso conserved. This choice is
rather converient, because the secord term in (3.9) vani-
shes identically and the wotion of a free particle is quite

simple:

9.(%) =;/L/0/f TR 2/, 0=, /o/,z;g.,l(/z,.:_
3:13

A defect of the caoice (3,12) is that it breaks the symmet-
ry under syruce reflections, Just as in the nonrelativistic

case, before the quantization one cannot decide whether }5.._
is an axial vecyor (and fs is a pseudoscalar), or a vec-
tor (and fs is a scalar). However, parisy of A given

¥ {3.12) is cpposite to the parity of 5‘5 in both the va-
riapts., Do fdentify T wich the laboratory time q, one may
put :
L= (27", A =taf, (3474)

where £ is a scalar furncsion of dimension (action)"1 .

5e2+ guantization and the Dirac Eguation
™e actior (3.6) results in the caronical Poisson brac-
kets

{Pr»%}p‘gfﬁp » { f}» §'}P.l..= ci;,.g ' {fb fr},. '.""' ¢

(3.95)

where 3)&9 = dizg(~-1, +1, +1, +1), other brackets vanish.

The commutation relaticns for the gquantal operatoers are



[Fr'%r}_ =" itﬁﬂ g [é-:“- ’;J:' tﬂ»’ ’ E« *gf]f k, (3.16)

while the c¢onstraints (3.5) ars converted into conditions
on the physical states '

R+ Y mo, (3.178)

C E;% - m%){! 2 0. (3.970)

The operators {P' s {s are generators of the Clifford
algebra 05, its representation is four-dimensional and is
given by the Dirac~Pauli matrices:

-

5:}“- = ('R/ﬂ.)fﬂ% X;, s 5 s =(t,’9.)m‘ s

(3.18)

where, as usual,

(50 0] =2, Bs = BTN, , 1 - 4

2 (319

a~o and Ts are Hermitean, X 4,%,3 are anti-Hermitean,
¥ultiplying (3.170) by (& /272y, we get the Dirac
sasion (pyem) =0 . Condicions (3.178) and
{2 17b) are consistent, as @ay be (and should be)} checked
4 rectly. Note that without the condition (3.17b) the quan~
ti:ition would be inconsistent, because in view of (3.18)

§ o= -% and anindefinite metrics arisea.

Genorators of the Lorents grouy ])4.1! are construce~

ted along the conventional lines

Jor = s + 5.

(3.20)



In the olassioal theory

=g, Pr=Pufrs %- -cf,.f,

{)-"%} 391% $2 %y
{.Sr*:"?: }P_&, 3» ‘;r 4 §v

%o got the quantal operators an (anti) symmesrisation

(3.21)
(3.22)

=i(i;~ﬁ’+§’§m-§vﬁﬁwp"'%ﬂ) (3.23)
9"",1,(5,..5;* fv 5:- ""ﬂ(!}-Yv war;- (3.24)

To construct a relativistic phase-space distributiom,
like (2,15), note that the compoperts ( p§ ) apd §s are
not obgervable and were introduced in order to meke the fop-
malism invarisnt. So we assume that P(§) 8[{};;)/“]
S(§S)P(§) ,Ihe:eﬁ' depends on the tTanaversal
components of § only and is an odd element, As it is
evident froa definitlion of the integral on the Grassmann gl=
gobra (Bq.(a.6)), (¥, )= 3%, .+ With all this in view,
wrlte the phase-gpace distridution in a fors ready for the
quantisation

- P8) =1 {EVA 5] SO pa-5 »
P& = @i ~td(pEsY), @-25)



where -v;‘_ iz a real four-vector, (VP)-O'.nnd
b = 1/6a, as given by the norna’isation

(po)ds =1, d5=-tdsdrdiudiude o

The function j;(ﬁ) is written in a form invariant under
the supergsuge trersformations (3.10), The vector v;,. 1a
& classical snalogue of the Pauli~lubansid wector; it de-

termines the averaged value of the spin momentum, defined

vy (3.21)

5 A
< S}-w) = (Sf“‘ﬁ(g)d i E""lf v Ff' (3.27)

For a free particle Jr is constant, as follows from the
licuville equation for P(§) .

Po get the quantal deneity matrix substitute the npe-
rators (3.18) into (3.25)

b= a(kh) O [0y o) B

(3.28)

where a;.,-‘-‘-!'),'../t . This is just the form iDtrodn-
ced by Michel and Wightman [ 331 .

>



3,3, Particle in an Exterpsl Field

To describe bthe interaction of a charged particle with
an electromagnetic field L"‘-(q) write the action as a sum

A= "free + lint’ where Aeree is given by Rq. (3.1}, and

ﬁd I[Ag -;xz/'-ﬁ f]a(r (3.29)

Here g :l.s the charge, # is che (total) magnetic moment
= 94 79?,“— 44)‘/ 32}. he interaction of

spin with the field was written as (F S g) by Fren-
kel['8] This form was alsc analysed by Barutb [10] and Han—
son and Regge [1‘1] + (Among many ovher papers on motion of
spin in 2 Iield menticen the works by Suitorp and de Groet
[}4] and 2llis [35] )« Dealing with the Grassmpamnn variabe
les, one escapes some difficulfties present in the previous

approaches.

The canopical zomentum is

p F=24/%,.=P +eA

(3.30)

P»'-'[m* L2 (Fgg)]ur";‘.[gh*(“g)“»]”* ’
and tne equar:ions of movion are

PreeF” q,+22(dF /31»)5 .

éy-:. iziF,,,,g -|~'IL,~1/2., €s=)/2.u (3.31)

Besides the Zicierbewegung , pressabt also in case of no

field, shere are two effects on the spage-time trajectory

due to the spin variables: a renormalization of the mass

32
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apd forces proporticonal to the derivatives of the field.

To obbain the Bargmerm-Michel-Telegdi equation [35] ,
describing the spin precession in e homogencous field, wri-
te the phase-space distribution (3.25) as follows

P(f) = [(«r§)-§(ﬂ§§§)](ﬂ§)§, > (3.32)

whers 'u.}‘. is a solution of the equation mt.b*"CF 7‘,
end apply to it the Id.ouville equation in mhbles

-p={up} = g,..,.(7ig )(% (_3% ()_.E)
H= é*’*(pgﬁ)*i[(ﬂ*ﬁ)i-ﬁs]}\ . (3.33)

Under the conditica (WE )+ E . = 0,this equation 1s
squivslent to the following one

. 4
vh= 9.2]'-# ‘IJ’Q + 9-(1"3/2»;)“}*(':1"“)) (3.38)

and we got the familler results [56] .

The interaction Lagrangian (3.,29) is Lorents-invariapt
and geuge-invariant, but it Dreaks the supergeuge syRnstry.
Tha variation of the first term umdsr (3.10) is

5(A qv) = d(Alq)/dT - (F4 s‘lf) > = E'sr'l/’?i.ss)

Note that the bhreaking is in e sense "minimai®, i.e. propor-
tional to higher powers of § s 1f there is no anomalous
sagoetic moment and £ = e/2m. It 1s possible also to Te-
duce the supergauge breaking, Iriting the first term in
(3.29) in s "superspace” Torm: ei (Q)q s Whare Q . =
“a 1§p~§s /. Now Sq#-gu,__%ul , w=d
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the wariation (3;35) vanilhon;

I¥. CONCLUDING REMARKS

We have presented the Grassmann variant of the Hamil-
ton mechanics and epplied the gemeral theory to the simp-
lest aystea, a relativistic spinning particle, Mention so-
me other physical objects that way be conaidered along the
similar linesa,

Higher spins. The quantisation in our scheme ieads to
the gpin 1/2 only, To get a higher spin 2 one may consi-
der the Grassmann algebra generated by 2s wvectors. After
the qQuantisation, a multiepincr wave function ariszes, in
the relativistic case the formalisa by Bargmanmaund ¥igner
[371 ige reconstruccted (its relation to other formalisms is
considered, tor imstance, in [33] e

Internal symmetry. If generators of the Grassmann al-
gebra are components of a vector in an intermal "isoepace”,
the quantization resulta in & multiplet of particles, The

internal symmetry groups SO(n) are directly obtainped by
this method; the simplest example is the lisotopic group
50(3)ro 50(2). Another possibility is to consider the Grass-
mann variables with a pair of indeces, one spatial and ano-
ther related to the internal syametry.

Pield theory. In fact, the classical fleld theory dsa-
ling with the anticommuting fields was formulated by Schwin-
ger [ 39.15] in developing the quantum dynamical principle
for elsctrodynamics. However, it 1s not necesasry to invese
tigate the classical theory in this case, because the quan-
tisation 18 quite simple. & more sophisticated example is

-



%he theory of relativissic spinning etring [5,no] o Non-
linear field Lagrangisne and the clm.teal solugions are
now intenmeively investigated (ses, &.g. the review by Raja-
AR [MD. In this commeowion, an extension of the acope
of ¢laseical fislds may be of interess.

¥ith all this in view, we osupposs that the Grassasnn
algebra and "enticommnting C-pumbers” are not “an unhioces-
sary addition $o sathematical physics®, as it was etated
by Klauder [#2] .
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Anpendix j. The Grassmann Algebra: Basic Definitions and
Resulss '

Gemerptors. et  §, ... F = b p genera-
tors of & Grasamann slgebra ?n. s let. for any f:k:;
n

“ary

5o S f1'=0’ (4.4)

2
in particular, fﬁ. s 0. ADy olement ? £ ¢ day de
represented as a finite sua of houogemus monowmials

S5 g0 s aw

{
!
«(kr I
I

where f}’ are nuabers (real or complex) and it is as-
sumed that they are antisymmetric in indeces {k] « The
set of elements, for which only term= with even VvV are 0 *)
present in the sum (the even elements) 1s g subzigebra .
The set of odd elements, defined in an snaloguous way, : 4,
18 not a subalgebra. Even elements commute with all elements
ot n ; odd elements commite with even elements and anti-
commute with odd elements.

Involution (an apalogue of the complex conjugated).
Dafine a one-to-one mapping of the algebra onto itself,

4 95*. satiatying the following conditions

€)' =& (4.38)
- %

(818&)‘ - 32* 3‘_ » (A.3b)

(ocg)*' - o*g * (a.3¢)



mﬂ ¢ 18 a complex muader. in slement g 1i» reatl it
5 =g . mugehmisraalttalliuolmumrul.
in particuler, fh fk. .

Derivatives. The following linsar sperators are int-
roduced in w 3

(3/35,)8, -4, = e FuFay -
WA A ARSI A
b §ey (27 ?’fg) S, fk, ST
+(-) §k ST

Theiraction on any ¢ ' 1a detersined by means
of Bqe (Ae2). The operators (‘b/h{e) and (D/aftj
are called the left derivative and the right dsrivative.
In simple words, to £ind the left dsrivative (:5/3§,J of
a monomial one has to permute {e o the first place
and then to drep it; to find the right desxrivative ons has
to permute fl to the last place end then to drop it,
It §£ is absent, the derivative of the monomial vanie

ghes, I‘B-i_.f ouﬂ; gean that {
SAST A -%# G s

%‘. ( 3%) = (% 3)_0‘3{ : (a.5%)



Iptegral (sn epalogue of the definite integral over
the whole region of & variable). It ia sufficlent to defi-

nite the single integrals

fidg,fo, [§§i§k= 1. (4.6)

The mmjtiple integral is defined by megns of imterstion
of the single integrals. Evidently,

X{h“' fkv ‘lfi""’tfi: Ek;...lw ,
Eg(s’)dg..,...;gﬁ €k at....k,_",

where £ Lk} ia the Levi-Uivita temsor, The integration

(8.7

by partas is possible

g ?(%?Q)i;g - g (E) y Rt TR

2
§2
The "Gansas intergal* is important for applications. It msay
be shown that

I
(exf'(za'.ik{j fk) ds,..df = (J'E{"Q'G'J"") > (s

Q.jkz -a.ké .

FNote that the square proot of the determinant of a akew-syhe -

metric satrix (Pfaffian) is a polynomial of 1ite elements.
The Pourier transformation. Let g“. and ,_Flr\\!:/etho

Géum slgobras with generators ¥ = and g:“ s Ee 1,

sy D, Tespectively, Consider a linear mapping g = 3-'(11,) .
e . » h€ hm, defined in terms of the decom-

position (4.2):



I\,(?) Z_ Z_ ki:“] J"' Pj1°" ‘PJH- R

F=0 j} -
berky_ €y o kpedeoJo]pe LCP) (40
3(9) - i J,.. >

where ;u-jgn, » €gatat ) evenand Epmiat
Y odd. The mwrsc transformation is
( Ky..ky
e €
J‘ Jf* "')‘ {% Jowlpky Ky ¢ - am
This mapping is remarkable because -"33 / Bg ; =?(£9JU.
It may be alao presented by means of the integral

3(8)= gexp (T ) h(pds™. Lp
hMp) =€ ge*f'(-tim)g(f)df... Ay, 4

and doceea semal:l.se the concept of the Fourier tramsformation.
Details, proofa and further information may be found in
the book [1] .

_ Appendix B, Operators and thsir Symbols

Cperators of the quantum mechanics are elemnta o.t the
Heisenberg algebra with the generators q PJ (3 - 1, seny
L3 £ is the number of degrees of rreed.on), obeying the cancs
nlcal commutation relationa

[f’;,ﬁ,d:-it {i"-' (2)



It is wsll krown that the operators may be repressnted by
peans of functions of\ the phase space, with an appropriate
multiplication law, Namely, let Z Dbe a vector in thes
phags space, X = (x,,...,.z,, ), = 22; and let the

representation is E,‘ — 51(:), Ez — 32{2). Then

A A A

ﬂcﬂu =3 >3 ) =IV(-"1 Ky X) 3,_(" 1) 3,(’:) (B.2)
dnxt‘A"X& .

The kernel V(x,,x ,_’x) determines the rspreseatation.

The operator algebra is assoclative, so

g\'l (xhxbx) w(x’ x&:x’l) d"‘x = (‘J(x") X, x'i) w(xl: x.ll(xg.f;x -

It is natural to adopt the correspondence principle: in the
classical limit % (X) coincides with the clessical dy~
-~ v
le t : &M = (x).
namical variable, corresponding to - Rl %0‘) 3c! 3]
Then in the clasajical limit the muitiplication law is tri-

vial tjd (% =31u£(") Quee (), and

Lo, Wt 3) = 80x) 8 b8 o
-0

-,

Opne may also require that 1 —= 1, 80
» n Sfl-)
g Wlxo 12,0 d % = jw(x’—:x’:")‘t %120 (%3, 5)

Of oourse, the representation is not unique. Concentrats now
on the Weyl represent;.tion. For the sake of symmetry, we shall
not divide the components of X betwesn coordinates and mo-
septa, and rewrite the canonical commutation relation (B.1):



[:c“xl} =ik "ch; (2.6)

where "Jk P is a constent antisysmetyric Batriz {inver-
se to that of the runauenuf. symplectic forn). Define the
a .

symmetric product ( xk "9) bty means of the denerating
k“ kv
(_x) S_vtr (% ),
{id (2.7)
ukere * i oa vecfor from a “dual’ space,
the gonomials (xk‘ Xk’ ) fora a complots besia

of the operator algebra. Any operator § may be reprsocen-
ted as a tonal ur!.el

g :h-o ) g &) ( x&' xk 9) > (3;3)

Lk}
whare % (v) 8&r® the "¢ - number” totally symmetric ten-
sors. The Weyl representation ia defined by means of thias
dscomposition:

-s-g(!J Z.Z gw xk‘...xw. (3.9

V70 4k}

Bvidently, the correspondgnce ls one-towons. The Woyl rep—
rsgentation may be describsd in an equiwvalent form, making
a direct use of the definition (B.7), and 1t was just the
original prescription [43]. Consider the Pourier trauators

?(x}= f%ﬁ'ﬁfgf;(’}d? (B.10)

I A
The corresponding operator ? ia constructed by means of
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M~
" the exponential operator .Q- s

§ = gf).(r) 'ﬁ(f)im“,
_ﬁ_(r):u,:[i(;")jsi-g (n‘?)”
ya) ¥

(B.41)

Now we are in position to find the kermel of the multi-
plication law Bg., (B.2). Hote that in view of the commuta-
-
tor Bq. (B.6), the operators A (5_) fora a projective group

_(3. ("'q).é. (n)= e'"?(-éitg “dee 't,ktf) ‘ﬁ' (:!1”’) (B.12)

The tollowing equalities are also ugeful:

Q (r)x ﬂ.(r)_ X, - ko, 2t

{B.13a)

'a.Q/?Z = l»(xu +f£'k.'du‘l)_o_(r‘) .
{B.13D)
Tr 2(r) = @m‘t)-n/&(z")” Sw(”' (B.13¢)

Substituting the vepresentation (B.11) and using the Fourier
trausform, iaverse to (3.10), one gete

W, X, X ) W) exp ’;:' [(x, Xy + ans

oo @ =det [0, 0, + (%0 %) *@‘a""f)”:

~ kd

@‘?)=-(‘a°¥)=w XYe (B.15)
~ke . ok
) ‘Jm‘e = 6 ™ )



:I.;e; :3 1s the matrixz, inverge to ) . It 1s remapkab-
le that in case of ons degres ¢ ' freedon (n = 2) the Lili-
near form in the exponential of Bq. (B.14) has s aimple
geometrical meaning: it is proportional %o the srea of the
triangle with vertices (:1 .xa,xs) on the phase plame.

4 sonewhat more familial way to repressnt the cperatars
is to use their kernels, say, in the ¢oordinate baalst

99u=§=<q" 19197+ Wlsdqﬂ‘f%lazl‘vcm

The mmltiplication law is much simpler, than Eq. (3.2). how=
ever,the correspondencs to the classical machaplce is not
80 transperent. To got a relation Letween the gyabol and
the ke.mel one needs to calculate the kernel for the opera=-
sor (r). Return to usual coordinstes snd momenta end
note that in view of Bq. (B.12) :

e:. 1, "'rf I“'ff

- LA LA
Qv sexp(ingrivp )= ¢ e
It follows from {B.9) and (B.11) that

<4 !q!av 7= (a=k) [ (¢ uiffﬂ P § @@
exp[-5Pg) ] p..

In conclusion, méntion two nice properties of the Weyl
symbols, that are generalized also to the Grasspann case.
¥irst, the Hermitean conjugation of the operatore induces
the complsx conjugation of eymbols § -» 3@, g +—o 3*@!)
Second,

TP§ = (231""\- )-Vg‘gg(x) A : (3.19)
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Representation of quantal oparators by means of fupc-
tions in the phase space was developed by Weyl {43] and
Wigner [# ], and further investigated by Moyal [a5] . Ge-
neralisation to infinite mumber of degrees of freedom and
to the Permi case, as well as some proofs und detaile may
be found in the works by ome ~f the suthors [46,20] . A mo~
9 recent paper o' this subject 1s that by Schmts [47] .

Appepdix C. Repregentation of Green's Function by Means
of the Phage-3Space FPath Integral

Consider a classical mechanical system with a Hamilto-
nian B{ X ), where X 1is a vector from the phase space.
Write the clasaical action in the symmetric form

+
ﬂcé’ [*’(‘U]= [ [ i(x-.:?)- H(x)} d, (2.1)

where (.!'JI’);_ P9 - 9P, the notation is used in Appendix

B (Bq. (B.15) ). This action appears in the phase space path

integral representation of the propagator (Green's operator)
let B be the Hamiltonian operator of the quantised

syatem; H( % ) 18 the Weyl aymbol of i s 40d E(e) -

a exp (-11:&/ % ) is the propsrator. Calculats the Weyl sym-

bol of @(f), i.6. a function G(X ; £) on the phase space.

To this end start from an infinitesimal time interval §% .

Evidently

C(st) = 1= L5t H/k > 1Bt HOI/ K,
G (x3t) = exp (-i 8¢ Hi)/k) + O(5t). >

2)



Ror s fintte § the operator G(t) may be caloulated by
means of the limiting process, repressating the step=by-
=atep evolution of the aystem

- a N
G(t)= bum (LW e
N-» 00

To get the sysbol G( x; t) we spply the multiplication law
(B.2) with the kernel (B.14) to the symbols G(x, t/N) gi-
el b’ Eq. (0.2". The ﬁ“lt is

) = ¢ (i) (c.®)
C.',{ (% ﬂ = [w(rk) ] (FI d x,ol,"'?,
w3 ottt T

where xv1=x + Une may imagine that the system is
propagating in the phase space, being mmancdby its Ha=
miltonian at points ‘J y 4nd being observed at points X;.

Pormally, Bg. (C.4) ia a representation of the propaga=
tor by means of a "double®™ contimual integr.al

Glxt)= ({x] Age)] enp i g[z b9
-2 (X'Jf) - H(})J dt } ) ©.5)

"N/QN "

B[40 Eﬂﬂi: [Cdflt)“} Jl df, , L= {6%),

shere the boundary conditiom x (t) = X 1is implied. How-
ever, to evaluats this expression one should corsider the
original form (C.4). The integral in X, is Gaussian and

L



may be calculated exactly. Substitute N, = ﬂ.,u-%y. wha-
re 2 y e the new integration variables snd the bilinear
form in the exponent has an extremum at X, = W, + The
auaticns to determina tly are

u,‘f-q’_‘ - -z*“lg_i , 962-,...,~-i,

"RL= 41‘ . uN"i =X+‘z~.i- 3”-

(¢.8)

Adssume that N is an even number. then one gets

gn 4" 2, exp[ x Z (2., v)]-‘- “("tﬂw‘t ©7)

x Y = [o@t)] A gill J.a,

exp {— [g‘f ( ‘(11:’21:.-1» *

+ (" (=) - Z H(zy) VN-”

In the continual limit lqs.(o.s) for 1{,,_: are written aa

(C.3)

ue 12y, u0)s30), (0.9)

fo that u( T ) = %/2(3(T ) + (0} ), and

Qxt)= g‘%[‘gﬂ)] wp{i— A, [3(13} +
[ Q) Ge

where cd is the classical acticn defined by BQ. (C.1)e
This form of the phase-apace path integral 1s quite aymmet-~
rlc, ons does not need to distinguish between the coordina—
ts and the momentum, po} to prescribe that the trajectories

(C,10)



are plecewlse linear in q and piecewlse constant in p ,

as in the conventional approach (see the work by Garrod

[50] ). Bowever, the exact meaning of the funotional
((aa.ﬁ)d,t is clear only before the limit N=»o0 and
is given by Bq. (0.8).

In some applications the representation (C.4) is aore
ugeful than (C.8) or {C.10). Por inatance, to get the Feyn-
man original path integral in the coordinate space one may
introduce the variablea (p,qQ) = ¥, (@ '. q') = X, wWrite
H(y) = pzfan + 7(q) amd integrate (C.4) first over p, then
over q' and p' « Consider now the iscotrope harmonic os-
cillator

L
H(y) = k; (Ce11)

Integrating (C.¥) over 7, we obtain

q(lp(.!;f)-.- (Ewtf) ke /’{_17‘: dmx,
. W
& {% Z, [(“’M'e")*ai/ 25}}’

where £v=.&’ .-yh_i . ::,kt/N.m After the ipe
togration over xt’._,)yM y 1< N & N the in-
-»gral takes the form

Cu (11 &% {5 [0t w7
~ta xt f)

¥ M M
while for the constants Ay and Cy the following recursive

relations hold

(C.12)

(C.13)

A7



_(ms )*/* | (G.)

In the comtimmal Jimit, 8-,0 by = AQUE/E), Cy =
(i-‘JI"k § w2 Flv/M), and m functions 4( T ) and
2 T ) are obtained from ths differential equations

| 3
%=k("+A) ’ %%:E: %"LA: (6.15)

4(0) = 0, ¥(O) = 1.

Thas Green's function for the ocacillator in
-/
Q(I;’t) = Q:.OS kf) e,y‘o (-i- J:" 't'g k'&) . (0.16)

Applying Eq. (3;18). relating the aymbol of an operator to
its natrixz element, one can see that this result ie in ao-
cordance with that given by Peynman [29] .

The phass-space path integrals were introduced by Feyn-
 map [48] and discussed in a number of works [49-51} + The
presont exposition follows the work [ 20] .
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