
Algebrai Theory of D-modules

J. Bernstein

Leture 1. D-modules and funtors.

x0. Introdution.

1. In my leture I will disuss the theory of modules over rings of di�erential operators (for short D-

modules). This theory started about 15 years ago and now it is lear that it has very valuable appliations

in many �elds of mathematis.

Names: Sato, Kashiwara, Kawai, Bernstein, Roos, Bj�ork, Malgrange, Beilinson.

2. I will speak on an interpretation of the theory, given by Beilinson and myself. We restrit ourselves

to purely algebrai theory of D-modules over any algebraially losed �eld k of harateristi 0. Sato

and Kashiwara worked for analyti varieties over C , so as usual, our theories are interlapped like this

. I should mention from the very beginning, that some of the most important tehnial notions and

results are due to Kashiwara.

x1. 1. O-modules.

So we �x an algebraially losed �eld k of har 0. One an assume k = C .

Let X be an algebrai variety (over k), O

X

the struture sheaf. Let F be a sheaf of O

X

-modules. I

all F quasi-oherent sheaf of O

X

-modules (or O

X

-module) if it satis�es the ondition:

(*) If U � X is open aÆne subset, f � O(U); U

f

= fu 2 U

�

�

f(u) 6= 0g, then F (U

f

) = F (U)

f

def

= O(U

f

)

O

o(U)

F .

By Serre's theorem this ondition is loal.

Let �(O

X

) be the ategory of O-modules. Loally, i.e., on an open aÆne subspae, U � X , I will

identify �(O

U

) with the ategory of C-modules, where C = O(U).

2. Di�erential operators and D-modules.

By de�nition, a di�erential operator of order � k on U is a k-linear morphism d : C ! C, suh that

[

^

f

k

: : : [

^

f

1

[

^

f

o

; d℄℄℄ = 0 for any f

o

; : : : ; f

k

2 C, where

^

f : C ! C is an operator of multipliation by f .

The ring of di�erent operators on U I denote by D(U), O(U) � D(U).

Proposition. D(U

f

) = O(U

f

)

O

o(U)

D(U) = D(U)

O

o(U)

O(U

f

). Hene U ! D(U) is a quasioherent

sheaf of O

X

-modules. I denote it by D

X

and all the sheaf of di�erential operators on X.

1
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D-module is by de�nition a sheaf F of left D

X

-modules whih is quasi-oherent as O

X

-module. Cat-

egory of D

X

-modules I will denote by �(D

X

). Loally, on aÆne open set U , �(D

U

)

�

=

D(U)-mod.

If X is singular, D

X

an be bad (for instane, it an be not loally noetherian). So from now on I

assume X regular, if I don't say otherwise.

Lemma. 1. For eah x 2 X there exist an aÆne neighbourhood U � x funtions x

1

; : : : ; x

n

on U and

vetor �elds �

1

; : : : ; �

n

on U suh that �

i

(x

j

) = Æ

ij

; �

i

generate tangent bundle of X.

2. D(U) = O(U)

O

k

k[�

1

; : : : ; �

n

℄.

The system (x

i

; �

i

) I will all the oordinate system in D

X

.

3. So I introdued main haraters of my story and an begin the play. It is very useful, though formally

not neessary, to have in mind some analyti piture, orresponding to D-modules. Let me desribe it.

Analyti piture. Suppose we have a system S of p linear di�erential equations on q funtions f

1

: : : f

q

,

S = f

q

X

j=1

d

ij

f

j

= 0, i = 1; : : : ; pg. Then we an assign to S a D-module M given by q generators

e

1

; : : : ; e

q

and p-relations M = �D � e

j

=(+D(

P

d

ij

e

j

)). In this language, a solution s of the system S in

some spae of funtions F is nothing else than a morphism of D-modules �

S

:M ! F .

Having in mind this piture we an start investigation of D-modules.

4. Left and right D-modules.

Let us denote by �

R

(D

X

) the ategory of right D-modules. How is it onneted with �(D

X

)?

Motivation. In analyti piture, the spae of funtions F is a left D-module. But if we onsider the

spae of distributions F

�

, it has a natural struture of a right D-module. Hene systems of di�erential

equations for distributions orrespond to right D-modules.

But if we �x a di�erential form w of highest degree, we an identify F and F

�

by � 2 F 7�! �w 2 F

�

.

Proposition-De�nition. Let 
 = 


X

be the O

X

-module of di�erential forms of highest degree on X.

For any D

X

-module F denote by 
(F ) the right D

X

-module, given by 
(F ) = 


O

o

X

F

f(w 
 u) = fw 
 u; �(w 
 u) = �Lie

�

(w)
 u� w 
 u:

Funtor 
 : �(D

X

)! �

R

(D

X

) is an equivalene of ategories.

I prefer to use a slightly di�erent desription of 
. Consider the module




D

X

= 
(D

X

) = 


O

o

X

D

X

.

It has two di�erent strutures of a right D

X

-module { one as 
( ), and another from the endomorphism

of left D

X

-module D

X

, whih are given by right multipliations. It is easy to hek that there exists a

unique involution v of




D

X

, whih interhanges these two strutures of right D

X

-module and is idential

on 
 �




D

X

. By de�nition,


(F ) =




D

X

O

D

X

F:
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The inverse funtion 


�1

: �

R

(D

X

) ! �(D

X

) is given by multipliation on the module D




X

=

D

X

O

o

X




�1

= Hom

D

X

(




d

X

; D

X

), whih has two strutures of left D-module.

We will work with left D-modules but remember that we an go freely to right D-modules and bak.

5. Inverse image of D-modules.

Let � : Y ! X be a morphism of algebrai varieties.

Motivation. We an lift a funtion from X to Y . If they satisfy some system of equations S, then their

images also would satisfy some system of equations S

0

. Is it possible to desribe this system?

It turns out that we an do some algebrai version of this. Namely, I will desribe a funtor

�

�

: �(D

X

) �! �(D

Y

):

First do it loally, i.e., suppose X and Y are aÆne, and D

X

-module is given by a D

X

= D(X)-module

M . Then put

�

�

(M) = O

y

O

o

X

M

and de�ne the ation of D

Y

on �

�

(M) by

(*) f

0

(f 
m) = f

0

f 
m; �(f 
m) = �f 
m+ f(

X

i

�(x

i

)
 �

i

m);

where (x

i

; �

i

) is a oordinate system in D

X

. It is easy to hek that this de�nition is orret. Intuitively,

it is a version of the hain rule.

Now we an write the general de�nition

�

�

(F ) = O

Y

O

��(o

X

)

�

�

(F );

where �

�

is an inverse image in the ategory of sheaves and the ation of D

Y

is given by (*).

Again, it is onvenient to rewrite this de�nition slightly. Put

D

Y!X

= �

�

(D

X

):

D

Y!X

is a sheaf on Y , whih is D

Y

� �

�

(D

X

)-bimodule. By de�nition

�

�

(F ) = D

Y!X

O

��(D

X

)

�

�

(F ):

Note that as an O

Y

-module �

�

(F ) oinides with an inverse image �

�

(F ), but I would like to save

notation �

�

for other ase.

Lemma. If � : Y ! Z is a morphism we have (��)

�

= �

�

�

�

.
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6. Diret image of D-modules.

Motivation. We an integrate funtions on Y (say with ompat support) to get funtions on X . How

does this a�et systems of equations they satisfy?

First of all, we should realize that there is no natural way of integrating funtions, but there is a

natural way of integrating distributions (namely h

R

E; �i = hE; �

�

(�)i). Hene we should try to onstrut

a funtor �

+

: �

R

(D

Y

) �! �

R

(D

X

).

First onsider a loal ase. Then we an put �

+

(N) = N

D

Y


D

Y!X

, where N is a right D

Y

-module.

Or, in terms of sheaves,

�

+

(H) = �

�

(H

D

Y


D

Y!X

);

where �

�

is the diret image in the ategory of sheaves.

Sine we an freely go from left D-modules to right D-modules and bak, we an rewrite this funtor

for left D-modules. Sine I prefer to work with left D-modules, let us do it.

Put D

X!Y

= 
(�

�

(D




X

)) = 


Y ��(o

X

)





�1

X

). This is a sheaf on Y , whih is �

�

(D

X

)�D

Y

-bimodule.

Now we de�ne the funtor �

+

: �(D

Y

) �! �(D

X

) by (*)

(*) �

+

(H) = �

�

(D

X Y

O

D

Y

H):

Now let us try to handle the general ase (X and Y are not aÆne). Then we immediately run into

trouble. The matter is, that formula (*) desribes �

+

as a omposition of left exat funtor �

�

and right

exat funtor D

X Y


, and this omposition apparently does not make muh sense (formally, it a�ets

the omposition rule, (��)

+

6= �

+

�

+

).

De�nition (*) makes some sense for aÆne morphism � [when �

�1

(aÆne open subset) is aÆne℄, sine

in this ase �

�

is an exat funtor. But in order to study the general ase, we should work in derived

ategories.

7. D-omplexes and funtors.

Heneforth I assume all algebrai varieties to be quasiprojetive.

Proposition. Category �(D

X

) has enough injetive and loally projetive objets. It has a �nite homo-

logial dimensin (we will see that it is � 2dimX).

De�nition. D

X

-omplex is a bounded omplex of D

X

-modules. Corresponding derived ategory, whih

onsists of D

X

-omplexes up to quasi-isomorphisms we denote by D(D

X

).

D

X

-omplexes I will often denote by

_

F ;

_

H; : : : . We de�ne funtors


 : D(D

X

)

�

�! D

R

(D

X

)
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L�

�

: D(D

X

) �! D(D

Y

), for � : Y ! X, by

L�

�

(

_

F ) = D

Y!X

L

O

��(D

X

)

�

�

(

_

F ):

�

�

: D(D

Y

)! D(D

X

) by

�

�

(

_

H) = R�

�

(D

X Y

L

O

D

Y

_

H):

Proposition. L(� Æ �)

�

= L�

�

Æ L�

�

(��)

�

= �

�

�

�

:

Usually we will deompose � as a produt of a loally losed imbedding and a smooth morphism. So

let us onsider these ases in more detail.

8. Case of a losed imbedding i : Y ! X.

Let us de�ne funtors

i

+

: �(D

Y

) �! �(D

X

) by i

+

= i

�

(D

X!Y




D

Y

H)

i

+

: �(D

X

) �! �(D

Y

) by i

+

(F ) = Hom

i

�

D

X

(D

X Y

0

i

�

(F )).

Lemma. i

+

is left adjoint to i

+

; i

+

is exat and i

+

is left exat.

Ri

+

= i

�

0

Ri

+

= Li

�

[dim Y � dimX ℄:

It turns out that it is quite onvenient to use shifted funtor L�

�

[dim Y � dim X ℄ whih in the ase

of imbedding oinides with Ri

+

. So I put

�

!

= L�

�

[dim Y � dim X ℄ : D(D

X

) �! D[D

Y

℄:

For any losed subset Z � X I denote by �

Z

(X) the full subategory of �(X), onsisting of D

X

-modules

F suh that supp F � Z.

Theorem (Kashiwara). Let i : Y ! X be a losed imbedding. Then funtors i

+

: �(D

Y

) ! �

Y

(D

X

)

and i

+

: �

Y

(D

X

)! �(D

Y

) are inverse and de�ne an equivalene of ategories.

This simple tehnial statement is very important and very useful.

9. D-modules on singular varieites.

Let Z be a singular variety. Then the algebra D

Z

an be very bad, so it does not make sense to study

modules over D

Z

. But using Kashiwara's theorem we an de�ne ategory of D-modules on Z (whih we

denote by �(D

Z

) though it is not ategory of D

Z

-modules) in the following way.
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Let us realize Z as a losed subvariety of a nonsingular variety X and put by de�nition

�(D

Z

) = �

Z

(D

X

):

Even if we annot realize Z as a subvariety, we an do it loally. Now, Kashiwara's theorem implies,

that at least loally, �(D

Z

) is orretly de�ned. Glueing piees together we an onstrut �(D

Z

) globally.

We de�ne D(D

Z

) as derived ategory of �(D

Z

). If Z is a losed subset of X , one an show that

D(D

Z

) = D

Z

(D

X

) = f

_

F 2 D(D

X

)

�

�

supp

_

F � Z; i:e:;

_

F

�

�

XnZ

= 0g:

Later I will disuss only nonsingular varieties, but all results an be transferred to the singular ase.

10. Proof of Kashiwara's theorem.

We should prove that natural morphisms of funtors

Id

�(D

Y

)

�! i

+

i

+

; i

+

i

+

�! Id

�

Y

(D

X

)

are isomorphisms. It is suÆient to hek loally, so I an assume that X is aÆne, Y is given by equations

x

1

; : : : ; x

`

. Using indution by ` I an assume that Y is given by one equation x. Loally I an hoose a

vetor �eld � suh that �(x) = 1, i.e., [�; x℄ = 1.

If F 2 �

Y

(D

X

), then supp F � Y and sine F is quasioherent, any setion � 2 F is annihilated by

large powers of x.

Consider the operator I = x� and put F

i

= f�jI� = i�g. Then it is lear that x : F

i

! F

i+1

,

� : F

i

! F

i�1

, x� : F

i

! F

i

is an isomorphism for i < 0, �x = x� + 1 is an isomorphism for i < �1.

Hene x : F

i

! F

i+1

and � : F

i+1

! F

i

are isomorphisms for i < �1. If � 2 F and x� = 0, then

x�� = �x� � � = ��, i.e., � 2 F

�1

. By indution on k it is easy to prove, that if x

k

� = 0, then

� 2 F

�1

� : : :�F

�k

. Hene F =

1

M

i=1

F

�1

= k[�℄

O

k

F

�1

and Ker (x; F ) = F

�1

. This is the statement of

Kashiwara's theorem.
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Leture 2.

1. Some appliations of Kashiwara's theorem.

a) Struture of O-oherent D

X

-modules.

We say that D

X

-module F is O-oherent if loally it is a �nitely generated O

X

-module.

Proposition. O-oherent D

X

-module F is loally free as O

X

-module.

Proof. Let x 2 X , m

X

orresponding maximal ideal of O

X

. The spae F

x

= F=m

x

F is alled the �ber

of F at x. Sine F is oherent as O

X

-module, it is suÆient to hek that dim F

x

is a loally onstant

funtion on X . This we an hek for restrition of F on any nonsingular urve C � X . Hene we an

replae X by C and F by i

�

C!X

(F ), and assume that X is a urve.

If F has a torsion at a point x, then F ontains a nonzero subsheaf (i

x

)

+

i

+

x

(F ), whih is not O-oherent.

Hene F has no torsion, and, sine X is a urve, F is loally free. Q.E.D.

Reall that loally free O

X

-modules F naturally orrespond to the algebrai vetor bundles E on X

(F is a sheaf of setions of E). Ation of D

X

on F de�nes a onnetion on E, by r

�

(�) = ��. Sine

[r

�

;r

�

℄ = r

[�;�℄

this onnetion is at.

This gives an equivalene of ategories

f0� oherent D

X

�modulesg =

�

algebrai vetor bundles on X

with at onnetion

:

b) D-modules on projetive spae.

Let V = k

n

be an aÆne spae over k, V

�

= V n f0g, X = P(V )-orresponding projetive spae,

pr : V

�

! P(V ) the natural projetion.

Theorem. Funtor of global setions � : �(D

X

) ! Vet, F ! �(X;F ) is exat, and eah D

X

-module

F is generated by its global setions (i.e., D

X


 �(F )! F is an epimorphism).

Remark. Note that �(F ) = Hom

�(D

X

)

(D

X

; F ). Hene theorem simply means that D

X

is a projetive

module and is a generator of ategory �(D

X

).

Proof. For any D

X

-module F put F

�

= pr

�

(F ) 2 �(D

V

�

). This sheaf arries a natural ation of the

homotety group k

�

and hene the spae of setions �(F

�

) is a graded spae

1

M

n=�1

�(F

�

)

n

. It is lear

that �(F ) = �(F

�

)

0

{ zero omponent. If we denote by I 2 D

V

the Euler operator

P

x

i

�

i

, whih is an

in�nitesimal generator of the group k

�

, then it de�nes a grading on �(F

�

), i.e., its ation on �(F

�

)

n

is

multipliation by n.

Funtor F ! F

�

is exat, hene all nonexatness an ome only from the funtor �

V

�

. Let us

deompose it as �

V

�

= �

V

Æ j

+

: �(D

V

�

) ! �(D

V

) ! Vet, where j : V

�

,! V . Sine V is aÆne,

funtor �

V

is exat.
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Let 0! F

1

! F

2

! F

3

! 0 be an exat sequene of D

X

-modules. Then the sequene 0! j

+

(F

�

1

)!

j

+

(F

�

2

) ! j

+

(F

�

3

) ! 0 is exat when restrited to V

�

, hene its ohomologies are sheaves on V ,

onentrated at 0.

By Kashiwara's theorem eah sheaf onentrated at 0 is a diret sum of many opies of a standard

D

V

-module � = P Æ 1[�

1

; : : : ; �

k

℄Æ, where x

i

Æ = 0. This implies that eigenvalues of I on �(�) are equal

�n;�n� 1;�n� 2; : : :�. Hene the sequene

0 �! �(F

�

1

)

o

�! �(F

�

2

)

o

�! �(F

�

3

)

o

�! 0

is exat, sine � = �

V

is an exat funtor and sheaves, onentrated at 0, do not a�et 0-graded part.

The statement, that any D

X

-module is generated by its global setions an be redued, using exatness

of �, to the statement F 6= 0 =) �(F ) 6= 0. This is proved in the same way as exatness of �.

2. Case of an open imbedding.

Let j : V ! X be an open imbedding. Then j

�

is an exat funtor of restrition, i.e., j

!

= j

�

, and

j

+

is the usual funtor of diret image in ategory of sheaves. Its derived funtor Rj

+

equals j

�

. In

partiular ase when j is an aÆne imbedding the funtor j

+

is exat, i.e., j

�

= j

+

.

Funtor j

�

is left adjoint to j

+

and j

�

j

+

= Id

U

. For arbitrary D

X

-module F the kernel and okernel

of the morphism F

�

�! j

+

j

�

F are supported on the losed subset Z = X n U .

Let us onsider the funtor �

Z

: �(D

X

) �! �(D

X

) given by �

Z

(F ) = f� 2 F jsupp � � Zg. Then we

have an exat sequene

0 �! �

Z

(F ) �! F

�

�! j

+

j

�

F:

If F is an injetive D

X

-module, � is onto. Hene in derived ategory we always have an exat triangle

(*) R�

Z

(

_

F ) �!

_

F �! j

�

j

!

_

F :

We will all this triangle a deomposition of

_

F with respet to (U;Z).

Denote by D

Z

(D

X

) the full subategory of D(D

X

), onsisting of D

X

-omplexes

_

F suh that

_

F j

U

= 0.

Then (*) implies that the natural inlusion D(�

Z

(D

X

))! D

Z

(D

X

) is an equivalene of ategories.

3. Base hange.

Theorem. Consider Cartesian square

Z

��

�! Y

?

?

y

��

?

?

y

�

S

�

�! X

i.e., Z = Y �

X

S.

Then funtors �

!

�

�

and ��

�

��

!

: D(D

Y

) �! D(D

S

) are naturally isomorphi.
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Corollary. If Z = ;, i.e., �(S) \ �(Y ) = ;, then �

!

�

�

= 0.

Sketh of the proof. It is suÆient to onsider 2 ases

i) � is a projetion T �X ! X

ii) � is a losed imbedding.

The ase (i) is straightforward. In (ii) let U be a omplement of S,

V = �

�1

(U) = Y n Z; j : U ! X;

�

j : V ! Y:

We have natural exat triangles

��

�

��

!

_

H �!

_

H �! j

�

�j �

!

_

H

�

�

�

!

_

F �!

_

F �! j

�

j

!

_

F:

Put

_

F = �

�

_

H . Then sine we learly have a base hange for an open subset U , we have �

�

(j

�

�j �

!

H)

�

=

j

�

j

!

_

F . Hene, sine �

�

is an exat funtor in derived ategories, we have

�

�

(��

�

��

!

_

H)

�

=

�

�

�

!

_

F :

But �

�

��

�

�

=

�

�

��

�

, i.e., �

�

(��

�

��

!

H)

�

=

�

�

(�

!

�

�

H). By Kashiwara's theorem we an remove �

�

, whih gives

us the base hange.

4. Let S = fX =

n

[

i=0

X

i

g be a smooth strati�ation of X , i.e., eah X

i

is a loally losed nonsingular

subvariety, andX

o

[X

i

[: : :[X

j

is losed for eah j. For eah i onsider the funtor S

i

: D(D

X

)! D(D

X

),

where S

i

= r

I

�

r

!

i

, r

i

: X

i

! X . Then eahD

X

-omplex

_

F is glued from S

i

(

_

F ), i.e., we haveD

X

-omplexes

_

F

i

and exat triangles

_

F

i�1

�!

_

F

i

�! S

i

(

_

F ) suh that

_

F

�1

= 0;

_

F

n

=

_

F .

We will all fS

i

(

_

F )g the strati�ation of

_

F with aordane to S, and D

X

i

omplexes r

!

i

(

_

F ) omponents

of the strati�ation.

5. Case of smooth (submersive) morphism � : Y ! X.

For any smooth variety Y let us denote by DR

Y

the de Rham omplex 


0

Y

! 


1

Y

! : : : ! 


k

Y

of sheaves on Y . More generally, if H is a D

Y

-module, we an by the same formulae de�ne de Rham

omplex DR

Y

(H) with omponents DR

Y

(H)

i

= 


i

Y




o

Y

H .

It is lear that DR

Y

(D

Y

) is a omplex of right D

Y

-modules. Now, let � : Y ! X be a smooth

morphism. Denote by 


i

Y=X

sheaves of relative i-forms on Y . In the same way as earlier we an de�ne

the relative de Rham omplex DR

Y=X

(H) for any D

Y

-module H .
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Lemma. DR

Y=X

(D

Y

)[k℄ = D

X Y

as a omplex of right D

Y

-modules.

Hene we an alulate the diret image funtor �

�

using this omplex:

�

�

(H) = R�

�

(D

X Y

L

O

D

Y

H) = R�

�

(DR

Y=X

(D

Y

)

O

D

Y

H)[k℄ = R�

�

(DR

Y=X

(H)[k℄:

The only trouble here is that this formula de�nes �

�

(H) only as a omplex of O-modules. Ation of

vetor �elds in general is desribed by quite unpleasant formulae. In the ase when � is a projetion

� : Y = T �X ! X , ation of vetor �elds is given by their ation on H .

6. Coherent D

X

-modules and D

X

-omplexes.

D

X

-module F is alled oherent if loally it is �nitely generated. We'll see that loally D

X

is a

noetherian ring, hene any submodule of a oherent D

X

-module F is oherent.

Any D

X

-module F is a union of oherent O

X

-submodules L

�

. If we put F

�

= D

X

L

�

we see that F

is a union of oherent D

X

-submodules F

�

. It implies:

(i) Any oherent D

X

-module F is generated by a oherent O

X

-submodule F

o

.

(ii) Extension priniple. If H is a D

X

-module, U � X an open subset, F � H j

U

{ a oherent D

U

-

submodule, then then exists a oherent D

X

-submodule H

0

� H suh that H

0

j

U

= F . Category of

oherent D

X

-modules I denote by �

oh

(D

X

).

D

X

-omplex

_

F is alled oherent if all its homology sheaves H

i

(

_

F ) are oherent D

X

-modules. The

full subategory of D(D

X

) onsisting of oherent D

X

-omplexes I will denote by D

oh

(D

X

).

Properties of oherent D

X

-modules imply

Lemma. The natural morphism D(�

oh

(D

X

)) �! D

oh

(D

X

) is an equivalene of ategories.

7. Diret image of proper morphism.

Proposition. Let � : Y ! X be a proper morphism. Then �

�

D

oh

(D

Y

) � D

oh

(D

X

).

Proof. If � is a losed imbedding, proposition follows from Kashiwara's theorem. So onsider the ase

when � : Y = P�X �! X is a projetion, where P is a projetive spae.

We an assume X to be aÆne. Then by 1(b) D

Y

is a generator in �

oh

(D

Y

) and hene it is suÆient

to prove that �

�

(D

Y

) � D

oh

(D

X

). But

�

�

(D

Y

) = R�

�

(D

X Y

O

D

Y

D

Y

) = R�

�

(D

X

O

k




P

)

= D

X

O

k

R�

�

(


P

) = D

X

[�dim P℄ 2 D

oh

(D

X

):
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8. Good �ltration and singular support of a D-module.

Consider the �ltration D

0

X

� D

1

X

� : : : of D

X

by order of an operator. Eah D

i

X

is a oherent

O-module, D

0

X

= O

X

and D

i

�D

j

� D

i+j

.

Let � =

L

1

i=0

�

i

; �

i

= D

i

=D

i�1

be the assoiated graded sheaf of algebras. Then � is ommutative

and naturally isomorphi to the algebra of regular funtions on the otangent bundle T

�

(X).

Let F be a D

X

-module. A �ltration on F is a �ltration � = fF

o

� : : : F

k

� : : : g of F by O-

submodules suh that F = [F

j

, D

i

F

j

� F

i+j

. The assoiated graded module F

�

= �F

i

=F

i�1

has a

natural struture of �-module.

We say that �ltration � is good if F

�

is a oherent �-module. An equivalent ondition is

(*) Eah F

j

is a oherent O

X

�module and D

1

F

j

= F

j+1

for large j:

It is lear that D

X

-module F with a good �ltration is oherent. Conversely, if F is a oherent D

X

-

module, then it is generated by a oherent O

X

-module F

o

and we an de�ne a good �ltration � on F by

F

j

= D

j

F

o

.

Let F be a oherent D

X

-module. Choose a good �ltration � on F and denote by F

�

the orresponding

�-module. As a oherent �-module F

�

has a support supp(F

�

) � T

�

(X) (this support is a losed

subvariety whih is de�ned by the ideal J

F

� �, equal to the annulator of F

�

in �).

Proposition. Supp(F

�

) depends only on F and not on a partiular hoie of a �ltration �.

We will denote this supp(F

�

) as S.S.(F ) � T

�

X and all it the singular support or the harateristi

variety of F .

Proof. Let �;	 be two good �ltrations of F . We say that � and 	 are neighbour if F

i+1

�

� F

i

	

� F

i

�

for

all i. For neighbour �ltrations onsider the natural morphism F

��

�! F

�	

and inlude it in the exat

sequene

0 �! K �! F

��

�! F

�	

�! C �! 0:

It is easy to hek that �-modules K and C are isomorphi (only the grading is shifted by 1). This proves

the proposition for neighbour �ltrations.

If � and 	 are arbitrary good �ltrations, we de�ne the sequene of �ltrations �

k

by F

i

�

k

= F

i

�

+F

i+k

	

.

It is lear that �

k

and �

k+1

are neighbour, �

k

= � for k � 0 and �

k

= 	 shifted on k for k � 0. This

proves the proposition.

Remarks. 1. Let F be a D

K

-module with a good �ltration �, H � F a D

X

-submodule. Consider indued

�ltrations on H and F=H . Then we have an exat sequene 0! H

�

! F

�

! F=H

�

! 0. In partiular,

�ltration on H is good, i.e., H is D

X

-oherent. Also we have

S.S.F = S.S.H [ S.S.(F=H):
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Moreover, let k = dim S.S.F . Then we an assign to eah k-dimensional omponent W of S.S.F some

multipliity (the multipliity of supp F

�

at W ; the proposition above really proves that this multipliity

is well de�ned). Put m

k

(F ) = sum of multipliities of all k-dimensional omponents of S.S.F . Then

m

k

(F ) = m

k

(H) +m

k

(F=H):

2. It is easy to see that D

X

-module F is O-oherent if and only if S.S.F � X � T

�

X .

9. Singular support and funtors.

Usually it is very diÆult to desribe the e�et of funtors �

+

; �

�

on singular support. (For instane,

these funtors usually do not preserve D-ohereny.) But there are 2 ases when it an be done.

a) Let i : Y ! X be a losed imbedding, H 2 �(D

Y

). Then i

+

(H) is oherent if and only if H is oherent

and

S.S.(i

+

H) = f(x; �)jx 2 Y; (x; Pr

T

�

(X)!T

�

(Y )

�) 2 S.S.Hg:

b) Let � : Y ! X be a smooth (i.e., submersive) morphism, F 2 �(D

X

). Then �

�

(F ) is oherent if and

only if F is oherent and

S.S.(�

�

F ) = f(y; �)j� = d

�

�

T

�

(�y)!T

�

(y)

�; (�(y); �) 2 S.S.Fg:

Let us note that in these two ases one important harateristi of S.S. is preserved. Namely, if we

de�ne the defet of F as def(F ) = dim S.S.F � dim X , then the defet is preserved.

10. Theorem on defet.

Theorem. Let F 6= 0 be a oherent D

X

-module. Then def(F ) � 0, i.e., dim S.S.(F ) � dim X.

Proof. Suppose that dim S.S.(F ) < n = dim X . Then F is supported on some proper losed subset

Z � X . Restriting to an appropriate open subset we an assume that Z is not empty and nonsingular. By

Kashiwara's theorem F = i

+

(H), where i : Z ! X , H be a oherent D

Z

-module. Then d(F ) = d(H) < 0

and we have a ontradition by indution on dim X .

11. Holonomi D-modules.

Coherent D

X

-module F is alled holonomi if def(F ) � 0, i.e., dim S.S.(F ) � dim X , i.e., F has

\minimal possible size". Holonomi modules will play a entral role in our disussion.

Example. O-oherent D-modules are holonomi. The full subategory of �

oh

(D

X

), onsisting of holo-

nomi D

X

-modules I will denote by Hol(D

X

).
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Proposition. a) Sub-ategory Hol is losed with respet to subquotients and extensions.

b) Eah holonomi D

X

-module has a �nite length.

) If F is a holonomi D

X

-module, then there exists an open dense subset U � X suh that F jU is

O-oherent D

U

-module.

Proof. a) and b) easily follow from Remark 1 in 8. Indeed if n = dim X , then m

n

(H) is an additive

harateristi on subquotients of F whih is stritly positive by the theorem on defet. Hene F has a

�nite length. Another proof is based on the existene of a ontravariant duality D : Hol! Hol, suh that

D

2

= id

Hol

, whih will be proved next time. This duality implies that F satis�es together asending and

desending hain onditions, i.e., F has a �nite length.

In the proof of ) put S = S.S.(F ) nX . Sine F

�

is a graded �-module, S is invariant with respet to

homotety in �bers of T

�

X . It means that projetion p : T

�

X ! X has at least 1-dimensional �bers on

S. Hene dim p(S) < dim S � dim X . After replaing X by a suitable open subset U � X n p(S) we an

assume that S = ;, i.e., S.S.F � X , i.e., F is O-oherent.
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1. Main theorem A.

We all a D

X

-omplex

_

F holonomi if all its ohomology sheaves H

i

(

_

F ) are holonomi D

X

-modules.

The full subategory of D(D

X

) onsisting of holonomi D

X

-omplexes we denote by D

hol

(D

X

).

Remark. I do not know whether the natural inlusion d(Hol(D

X

)) ! D

hol

(D

X

) is an equivalene of

ategories. In a sense, I do not are.

Main theorem A. Let � : Y ! X be a morphism of algebrai varieties. Then

�

�

D

hol

(D

Y

) � D

hol

(D

X

); �

!

D

hol

(D

X

) � D

hol

(D

Y

):

The proof of the theorem is based on the following

Key lemma. Let i : Y ! X be a loally losed imbedding,

_

H � D

hol

(D

Y

). Then i

�

(

_

H) � D

hol

(D

X

).

We will prove the lemma in the subsetion 8.

2. Proof of theorem A for �

!

.

It is suÆient to hek 2 ases

a) � is a smooth morphism (e.g., � is a projetion � : Y = T �X ! X). In this ase �

�

is exat and

�

�

(Hol) � Hol by 2.9, i.e., �

!

TD

hol

(D

X

) � D

hol

(D

Y

).

b) i : Y ! X is a losed imbedding. Let j : U = X n Y ! X be the imbedding of the omplementary

open set. For

_

F 2 D

hol

(D

X

) onsider the exat triangle

i

�

(i

!

_

F ) �!

_

F �! j

�

(

_

F jU):

By the key lemma ki

�

(

_

F jU) is a holonomi D

X

-omplex. Hene i

�

(i

!

_

F ) is also holonomi. Now sine

the funtor i

�

is exat and preserves the defet of a module, we an onlude that i

!

_

F is a holonomi

D

Y

-omplex.

3. Criteria of holonomiity.

Criterion. Let

_

F be a D

X

-omplex. Then

_

F is holonomi i�

_

F is oherent and for any point x 2 X the

�ber (i

!

x

_

F ) of F at x is �nite dimensional.

Proof. Diretion \only i�" follows from 2. To prove \if" diretion we need some general

Lemma. Let F be a oherent D

X

-module. Then there exists an open dense subset U � X suh that F jU

is loally free as O

U

-module.

Proof. We assume X to be aÆne and irreduible. Consider a good �ltration � on F and the assoiated

�-module F

�

. Sine F

�

is a �nitely generated �-module and � is a �nitely generated algebra over O

X

,

general results of ommutative algebra imply that we an replaeX by an open dense aÆne subset U � X
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suh that F

�

jU is free as O

U

-module (see EGA IV, 6.9.2). Sine F

�

= �F

n

�

= �(F

n

=F

n�1

), all modules

F

n

�

are projetive as O

U

-module. This proves the lemma.

Now let us prove that a oherent D

X

-omplex

_

F with �nite dimensional �bers is holonomi.

We use indution on dim S = supp

_

F . Choose an open nonsingular subvariety Y � S suh that

dim(S n Y ) < dim S and put

_

H = i

!

Y

_

F � D(D

Y

). Then

_

H is oherent and hene, replaing Y by a

suitable open dense subset, I an assume that all ohomology sheaves of

_

H are loally free as O

Y

-modules.

At eah point y 2 Y the �ber i

!

Y

_

H = i

!

Y

_

F is �nite dimensional. Sine i

!

y

up to a shift is equal to Ri

�

y

,

and all ohomology sheaves of

_

H are i

�

y

ayli (sine they are O-free), it simply means that �bers of all

these sheaves are �nite dimensional, i.e., these sheaves are O-oherent. Hene

_

H is holonomi and by the

key lemma i

�

(

_

H) is also holonomi.

Replaing

_

F by

_

F

0

= oone (

_

F ! i

�

(

_

H)) we see that

_

F

0

is oherent, sine

_

F and i

�

(

_

H) are, and all

its �bres are �nite dimensional (they are 0 outside of S n Y and oinide with �bers of

_

F on S n Y , sine

by base hange i

!

x

i

�

(

_

H) = 0 for X =2 Y ). Sine dim supp

_

F

0

< dim S, we see by indution that

_

F

0

is

holonomi and hene

_

F is holonomi.

Remark. The proof above proves also the following

Criterion. A D

X

-omplex

_

F is holonomi if and only if there exists a smooth strati�ation S = fX =

UX

i

g of X suh that all omponents (see 2.4) H

i

= r

!

i

_

F � D(D

X

i

) of the orresponding strati�ation of

_

F are 0-oherent (i.e., all their ohomology sheaves are 0-oherent).

4. Proof of theorem A for �

�

.

Sine the ase of loally losed imbedding is ontained in the key lemma, it is suÆient to onsider

morphism � : Y = T �X ! X , where T is a omplete variety.

Let

_

H 2 D

hol

(D

Y

),

_

F = �

�

(

_

H) 2 D(D

X

). In order to prove that

_

F is holonomi we use riterion

>from 3. Sine � is proper,

_

F is oherent by 2.7. For any point x 2 X using base hange we have

i

!

x

_

F = (�

x

)

�

(i

!

T

x

_

H); where

T

x

= �

�1

(x) ' T; i

T

x

: T

x

�! Y and �

x

: T

x

�! x

are natural inlusion and projetion. By 2., i

!

T

x

_

H is holonomi. Sine �

x

is proper, it maps this omplex

into a oherent omplex, i.e., i

!

x

_

F is oherent, whih means �nite dimensional. QED

5. Theoremof J.E. Roos.

In order to prove the key lemma and introdue a duality on holonomi modules we need the following

important result, due to J.E. Roos, whih gives a onnetion between S.S.F. and homologial properties

of F .

Consider the D

X

-module D




X

, desribed in 1.4, whih has a seond struture of a left D

X

-module. For

any oherentD

X

-module F this struture de�nes the struture ofD-module on all sheavesExt

i

D

X

(F;D




X

).

Note that if F is not oherent, these sheaves are not quasioherent; we will not onsider this ase.
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Theorem. 0. F has a �nite resolution by loally projetive D

X

-modules.

1. odim S.S.(Ext

i

D

X

(F;D




X

) � i.

2. If odim S.S.F = k, then

Ext

i

D

X

(F;D




X

) = 0 for i < k:

We postpone the proof of the theorem until 3.15.

Duality funtor.

Let us de�ne duality D : D

oh

(D

X

)

o

�! D

oh

(D

X

) by

D(

_

F ) = R Hom

D

X

(

_

F ;D




X

)[dim X ℄:

It means that we should replae

_

F by a omplex

_

P of loally projetive oherent D-modules

_

P =

f�! P

�1

�! P

0

�! P

1

�! : : : g and put D

_

F = D

_

P , given by D

_

P

i

= �(P

�dim X�i

), where �P

j

=

Hom

D

X

(P

j

; D




X

).

Sine � � P ' P , we have DD = Id. Also by de�nition

H

i

(DF ) = Ext

dim X+i

D

X

(F;D




X

) for F 2 �

oh

(D

X

):

Corollary of J.E. Roos's theorem. Let F be a oherent D

X

-module. Then

a) omplex DF is onentrated in degrees between - dim X and 0, i.e., H

i

(DF ) = 0 for i =2 [�dim X; 0℄.

b) F has a loally projetive resolution of the length � dim X.

) F is holonomi i� DF is a module, i.e., H

i

(DF ) = 0 for i 6= 0.

d) D gives an autoduality D : Hol(D

X

)

0

�! Hol(D

X

), i.e., D is a ontravariant funtor, suh that

DD = Id

Hol

. In partiular, D is exat.

Proof.

a) Put E

i

= Ext

i

D

X

(F;D




X

). By Roos's theorem def(E

i

) = dim S.S.E

i

�dim X = dim X�odim S.S.E

i

is negative if i > dim X . Hene by theorem of defet E

i

= 0 for these i, and also for i < 0. This

means that H

i

(DF ) = 0 for i > 0 and for i < �dim X .

b) We should prove that loally F has a projetive dimension � dim X . So we assume that X is aÆne

and F has a �nite projetive resolution

_

P . Dual omplex D

_

P onsists of projetive modules and by a)

is ayli in degrees i > 0. This means that D

_

P =

_

P

0

�

_

P

00

, where

_

P

0

i

= 0 for i > 0 and i < �dim X

and

_

P

00

is ayli. Then D(

_

P

0

) gives a resolution of P of the length � dim X .

) If F is holonomi, then H

i

(DF ) = Ext

dim X+i

D

X

(F;D




X

) = 0 for i < 0 by Roos's theorem, i.e., DF

is a module. Conversely, if F

0

= DF is a module, then F = DF

0

again is a module, i.e., F =

Ext

dim X

D

X

(F

0

; D




X

) and by Roos's theorem odim S.S.F � dim X , i.e., dim S.S.F � dim X .

d) follows from ) and DD = Id.

Remark. 1. Property ) was the reason for the normalization [dim X ℄ in the de�nition of duality D.

2. It is lear from d) that D

hol

(D

X

)) = D

hol

(D

X

).
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7. Extension lemma. Let F 2 D

X

, U must be an open subset of X and H � F

�

�

U

a holonomi

D

U

-module. Then there exists a holonomi D

X

-submodule F

0

� F , suh that F

0

�

�

U

= H.

Proof. We an assume that F is oherent and F

�

�

U

= H (using extension priniple for oherent D-

modules). Consider D

X

-omplex DF . It has ohomologies in dimensions � 0. Put G = H

0

(DF ),

F

0

= DG. By Roos's theorem dim S.S.G � dim X , i.e., G is a holonomi D

X

-module. Hene F

0

is also

harmoni.

Natural morphism DF ! G de�nes a morphism F

0

= DG into F = DDF (one an hek that this

morphism is an imbedding). It is lear that F

�

�

U

= H = F

0

�

�

U

. Hene F

0

(or image of F

0

in F ) is the

holonomi submodule we looked for.

8. Proof of the key lemma.

Step 1. For losed imbeddings the lemma follows from 2.9. Hene we an assume that i : Y ! X is an

open imbedding. Also we assume that X is aÆne and

_

H = H is a holonomi D-module, generated by

one setion u. Consider a overing of Y by aÆne open subsets Y

�

and replae H by its

�

Ceh resolution,

onsisting of (i

�

)

+

(H

�

�

Y

�

). This trik redues the proof to the ase when Y is aÆne, i.e, Y has a form

Y = X

f

= fxjf(x) 6= 0g for some regular funtion f on X . In this ase i

�

= i

+

is an exat funtor.

Step 2. Thus we have an aÆne variety X , a funtion f 2 O(X), an open subset i : Y = X

f

,! X and a

holonomi D

Y

-module H , generated by a setion u, and we want to prove that D

X

-module F = i

+

(H)

is holonomi.

The diÆult point is to prove that F is oherent. What does it mean?

Sine global setions F (X) and H(Y ) oinide and D(Y ) =

S

0

n=�1

D(X)f

n

, we see that D

X

-module

F is generated by setions f

n

u for all n 2 Z. Hene what we really want to prove is the statement:

(*) for all n� 0 f

n

u 2 D(X)(f

n+1

u):

This follows immediately from the following

Lemma on b-funtions. There exists a polynomial in n operator d

0

2 D(X)[n℄ and a nonzero polyno-

mial b

0

2 k[n℄ suh that

(**) d

0

(f

n+1

u) � b

0

(n) � (f

n

u):

Step 3. Proof of the lemma.

We extend our situation by extension of salars k �! K = k(�) { the �eld of rational funtions. Denote

by

b

Y ,

b

X extended varieties and de�ne D

b

Y

-module

b

H and D

b

X

-module

b

F by

b

H = f

�

� (K 


k

H)� and the struture of D

b

Y

-module is given by

�(f

�

h) =

��(f)

f

� f

�

hh+ f

�

� �h, � a vetor �eld on Y ,

b

F = i

+

(

b

H).
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The D

b

Y

-module

b

H is holonomi and by extension lemma 7,

b

F ontains a holonomi D

b

Y

-module E

suh that E

�

�

b

Y

=

b

H , i.e., the quotient D

b

Y

-module

b

F=E is onentrated on X n Y .

Consider the setion bu = f

�

u 2 F . Sine its image in

b

F=E is onentrated on X n Y , it is annihilated

by some power of f , i.e., f

n

0

� bu 2 E. Moreover, sine E is holonomi, it has a �nite length, that implies

that for some n there exists d 2 D

b

X

suh that d(f

n+1

bu) = f

n

eu. In other words, d(f

n+1+�

u) = f

n+�

u.

Sine we an everywhere replae � by �+ n we have proved the existene of d 2 D

e

X

suh that

d(f

�+1

u) = f

�

u:

Now we an write d = d

o

=b

o

, d

o

2 D(X)[�℄; b

o

2 k[�℄. Then d

o

; b

o

satisfy (**).

Step 4. Now, when we know that F is oherent, let us prove that it is holonomi.

First of all, lemma on b-funtions implies that

e

F = E (notations from the step 3), i.e.,

e

F is holonomi

and is generated by eu. It means that we an hoose operators d

1

; : : : ; d

`

2 D

e

X

suh that the set

� � T

�

(

e

X) of ommon zeroes of their symbols �

1

; : : : ; �

`

2

e

� has dimension dim � � dim X .

For almost any n 2 Z we an substitute n 7�! �, and we obtain operators d

(n)

i

2 D

X

, their symbols

�

(n)

i

2 � and the set �

(n)

2 T

�

(X) of their ommon zeroes, suh that dim � � dim X and d

(n)

i

(f

n

u) = 0.

These formulae imply that f

n

u lies in a holonomi submodule of F . Sine F is generated by f

n

u for any

n, whih is � 0, it implies that F is holonomi.

9. Funtors �

!

; �

�

and their properties.

For any morphism � : Y ! X we de�ne funtors

�

!

: D

hol

(D

Y

) �! D

hol

(D

X

)

�

�

: D

hol

(D

X

) �! D

hol

(D

Y

) by

�

!

= D�

�

D

�

�

= D�

!

D:

This de�nition makes sense as �

�

and �

!

maps holonomi omplexes into holonomi.

Let us list some properties of �

!

and �

�

.

1. There exists the anonial morphism of funtors �

!

! �

�

whih is an isomorphism for proper �.

2. The funtor �

!

is left adjoint to �

!

.

3. The funtor �

�

is left adjoint to �

�

.

4, If � is smooth, �

!

= �

�

[2(dim Y � dim X)℄:

Let us omment on these properties. By de�nition 3. follows from 2.

Consider in more detail the ase when � = j : Y ! X is an open imbedding. In this ase j

�

= j

!

=

restrition on Y , i.e., j

�

is left adjoint to j

�

and hene j

!

= Dj

�

D is left adjoint to j

!

= Dj

�

D. For

any

_

H � D

hol

(D

Y

) the restrition of j

!

(

_

H) on Y oinides with

_

H , that gives a anonial morphism

j

!

_

H ! j

�

_

H , idential on Y .
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Thus it remains to prove properties 1 and 2 for proper � and 4 for smooth �. But these properties

have nothing to do with holonomiity, sine �

�

for proper � and �

!

for smooth � map oherent D-modules

into oherent. We will prove them in reasonable generality.

10. The duality theorem for a proper morphism.

Theorem. Let � : Y ! X be a proper morphism. Then on the ategory of oherent D-omplexes

a) D�

�

= �

�

D and

b) �

�

is left adjoint to �

!

.

Proof of the statement a).

Case 1 � is a losed imbedding. Let P be a loally projetive D

Y

-module. I laim that �

�

(P ) and

D�

�

D(P ) are D

X

-modules and they are anonially isomorphi. It is suÆient to hek this loally, so

we an assume that P = D

Y

. In this ase it follows from the formula

R Hom

D

X

(D

X Y

; D

X

) = D

Y!X

[dim Y � dim X ℄:

Case 2 We all a D

Y

-module P elementary if it has the form P = D

Y




O

Y

�

�

(V ) for some loally

free O

X

-module V . Considerations from 2.1b) show that eah D

Y

-module has a resolution, onsisting

from elementary modules. I laim that for elementary D

Y

-module P D

X

-omplexes D�

�

(P )[�dim Y ℄

and �

�

(DP )[�dim Y ℄ are sheaves and they are anonially isomorphi.

This fat is loal, so I an assume P = D

Y

.

The laim follows from the formulae

R Hom

D

Y

(D

Y!X

) = D

X Y

[dim X � dim Y ℄

D

Y!X

= D

X




k

O

P

; D

X Y

= D

X




k




P

;

R�(O

P

) = k; R�(


P

) = k[�dim P℄:

This proves a).

11. Hom

D

X

and internal Hom.

Usually one an write homomorphisms of 2 sheaves as global setions of the sheaf of homomorphism.

Let us look, how to set it for D-modules.

Of ourse, we have for D

X

-modules F; F

0

the following formula

Hom

D

X

(F; F

0

) = �(Hom

D

X

(F; F

0

))

or, in derived ategory,

(*) RHom

D

X

(

_

F ;

_

F

0

) = R�(RHom

D

X

(F; F

0

)):

This formula, by the way, implies that

(**)

Homol. dim Hom

D

X

� Homol. dim � + Homol. dim Hom

D

X

� Homol. dim of �(O

X

) + dim X � 2 dim X:

But I want to write down RHom in terms of funtors, suitable for D-modules.
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De�nition. Funtors \!-tensor produt" � : D(D

X

) �D(D

X

) �! D(D

X

) and \internal Hom" Hom:

D

oh

(D

X

)

o

�D(D

X

) �! D(D

X

) are de�ned by

_

F4

�

_

H = 4

!

(

_

F �

_

H); Hom(

_

F ;

_

H) = D

_

F4

�

_

H

where 4 : X �! X �X is the diagonal imbedding, � is the exterior tensor produt over k.

Proposition. RHom

D

X

(

_

F ;

_

H) =

Z

X

Hom(

_

F ;

_

H) where

Z

X

: D(D

X

) �! D(Vet) is the diret image of

the projetion of X onto a point.

Proof. If F;H are D

X

-modules, we de�ne D

X

-module struture on F 


O

x

H by Leibniz rule. It is lear

that 4

�

= L(


O

X

)[dim X ℄. (Left derived funtor.)

Consider the ase when F is oherent and loally projetive. Then

Hom(F;H) = Hom

D

X

(F;D




X

)


O

X

H = Hom

D

X

(F;D




X




O

X

H):

Let us ompute 


X




D

X

Hom(F;H). We have




X




D

X

Hom(F;H) = 


X




D

X

Hom

D

X

(F;D




X




O

X

H)

Hom

D

X

(F;


X




D

X

(D




X




O

X

H)) = Hom

D

X

(F;H):

Applying this formula we see that

Z

X

Hom(F;H) = R�(


X




D

X

Hom(F;H) = R�(Hom

D

X

(F;H)) = RHom

D

X

(F;H):

General ase is proved using resolutions.

12. Proof of the duality theorem, statement b).

Using base hange it is easy to hek the projetion formula

�

�

(

_

H4

�

�

!

_

F ) = �

�

(

_

H)4

�

_

F :

By duality theorem a) we an replae

_

H and �

�

_

H on dual omplexes and obtain

�

�

(Hom(

_

H; �

!

_

F )) = Hom(�

�

(

_

H);

_

F ):

Now, applying integral

R

, we have

RHom

D

Y

(

_

H; �

!

_

F ) = RHom

D

X

(�

�

(

_

H);

_

F );

QED.
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13. Funtor �

�

for smooth morphisms.

In order to �nish the proof of property 4 in 9 we should hek, that for a smooth morphism � : Y ! X

and a oherent D

X

-omplex

_

F one has

D�

!

_

F = �

!

D

_

F [�2k℄;

where k = dim Y � dim X .

As in 10. the proof an be redued to the statement, that

RHom

D

Y

(D

Y!X

; D

Y

) = D

X Y

[�k℄:

This statement is proved by studying the resolution DR

Y=X

(D

Y

).

14. Classi�ation of irreduible holonomi modules.

Theorem. Let i : Y ! X be an aÆne imbedding with Y -irreduible, E an irreduible O-oherent D

Y

-

module. Put

i

!�

E = Im(i

!

E �! i

�

E):

a) i

!�

E is an irreduible holonomi module. It is a unique irreduible submodule of i

�

E (and unique

irreduible quotient of i

!

E). Also it an be haraterized as the unique irreduible subquotient of i

�

E (or

i

!

E) whih restrition to Y is nonzero.

b) Any irreduible holonomi module F has a form i

�!

E for some aÆne imbedding i : Y ! X with

irreduible Y and irreduible O-oherent D

Y

-module E.

We will denote this irreduible holonomi module by L(Y;E).

) L(Y;E) = L(Y

0

; E

0

) if and only if

�

Y =

�

Y

0

and restritions of E and E

0

to some subset U � Y \ Y

0

,

open in Y and in Y

0

are isomorphi.

Remark. We also will use notation L(Y;E) for nonaÆne imbeddings i : Y ! X . In this ase we should

replae i

!

E and i

�

E by their zero omponents H

o

(i

!

E) and H

o

(i

�

E) = i

+

E, and denote by L(Y;E) the

image of i

!

E ! i

�

E.

Proof. a) Aording to theorem A, D

X

-modules i

!

E and i

�

E are holonomi, and hene have �nite lengths.

Let F be any irreduible submodule of i

�

E. Then sine Hom(F; i

�

E) = Hom(i

!

F;E) 6= 0 and i

!

F

is irreduible, as well as E, we see that E = i

!

F . Sine i

!

i

�

E = E, there exists only one irreduible

subquotient F of i

�

E with the property that i

!

F 6= 0 and in partiular, only one irreduible submodule.

Applying the same arguments to i

!

E we see that it has a unique irreduible quotient.

Further, Hom(i

!

E; i

�

E) = Hom(E; i

!

i

�

E) = k, and the same is true for Hom(i

!

E;F ), where F is a

unique irreduible submodule of i

�

E. This shows, that F = Im(i

!

E ! i

�

E).
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b) Let F be an irreduible holonomi D-module, Y an open aÆne subset of an irreduible omponent of

Supp F . Then sheaf E = i

!

(F ) is irreduible holonomi D

Y

-module and, dereasing Y , we an assume it

is O-oherent. Sine Hom(F; i

�

E) 6= 0, F = L(Y;E).

) The same proof that in a), b).

15. Sketh of the proof of Roos's theorem.

Step 1. Let

_

F = f�! F

1

�! F

2

�! : : : �! F

k

�!g be a omplex of D

X

-modules, f�

1

g good �ltrations

on F

i

, whih are ompatible with d. Then it indues a omplex of oherent �-modules

_

F

�

= f0 �! F

1

�

�! : : : �! F

k

�

�! 0g:

Lemma. H

i

(

_

F )

�

is a subquotient of H

i

(

_

F

�

):

In partiular, if

_

F

�

is exat then

_

F is exat. Also S.S.H

i

(

_

F ) � Supp H

i

(

_

F

�

).

Step 2. The statement of theorem is loal, so I will assume X to be small. Let F be a D

X

-module, � a

good �ltration on F; F

�

the assoiated graded �-mdoule.

Sine T

�

X is regular of dim T

�

X = 2n, I an �nd a free resolution

_

C = f0! C

�2n

! : : : C

o

! F

�

!

og of �-mdoule F

�

. Then it is easy to hek that I an lift

_

C to a omplex of free D

X

-modules with a

good �ltration �

_

P = f0! P

�2n

! : : :! P

o

! F ! 0g suh that

_

P

�

=

_

C. Then by step 1, P is a free

resolution of F .

Step 3. For any loally projetive D

X

-module P , I denote by �P the D

X

-module Hom

D

X

(P;D




X

). By

de�nition, Ext(F;D




X

) are alulated as homologies of the omplex

�

_

P = f0 �! �P

0

�! �P

�1

�! : : : �! �P

�2n

g:

If we onsider the natural �ltration on D




X

and indued �ltration on �

_

P , we will get preisely the omplex

�

_

C = fHom

�

(C

�i

;�)g. (Here I identify 


X

with O

X

.)

Now we should apply the fat, that the statement of the theorem is true for ommutative regular ring

�. Applying now step 1 we an dedue from this orresponding statement for D

X

-modules.
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4. Holonomi D-modules with regular singularities (RS-modules).

It turns out that lass of holonomi D-modules ontains a natural sublass, invariant with respet to

all operations - - sublass of RS-modules.

1. RS-modules on a urve.

First of all, let us onsider the lassial ase-modules with regular singularities on a urve.

Let C be a urve. Choose a nonsingular urve C

+

, whih ontains C as an open dense subset and a

point  2 C

+

nC (it plays a role of in�nity for C). Let t be a loal parameter at , � = �=�

t

, d = t� 2 D

C

+
.

We denote by D

�

C

the subsheaf of subalgebras of D

C

+
, generated by d and O

C

+
. It is lear that D

�

C

and

element d in quotient algebra D

�

=tD

�

do not depend on the hoie of a loal parameter t.

De�nition. a) Let F be an O-oherent D

C

-module. We say that F has a RS at the point , if its diret

image F

+

= (i

C!C

+
)

+

F is a union of O-oherent D

�

C

-submodules.

b) We say that an O-oherent D

C

-module F is RS, if it has RS at all points on in�nity (i.e., at all

points  2

b

C n C of the nonsingular ompletion

b

C of the urve C).

De�nition. Let F be a holonomi D

C

-module on a urve C. We say that F is RS if its restrition to

an open dense subset U � C is O-oherent RS D

C

-module.

Lemma. Let C;C

0

be irreduible urves � : C ! C

0

a dominant (nononstant) morphism. Then D

C

0

-

module F is RS i� �

0

(F ) is RS; also D

C

-module H is RS i� �

�

(H) is RS.

2. RS D-modules.

De�nition. a) Let F be an O-oherent D

X

-module. Then F is RS if its restrition to any urve is RS.

b) Let ?(Y;E) be an irreduible holonomi D

X

-module. We say that F is RS if E is RS O-oherent

D

Y

-module.

) A holonomi D

X

-module F is RS if all its irreduible subquotients are RS.

d) A holonomi D

X

-omplex

_

F is RS if all its ohomology sheaves are RS.

We denote by RS (D

X

) the full subategory of Hol(D

X

), onsisting of RS-modules, and by D

RS

(D

X

)

the full subategory of D(D

X

) onsisting of RS D

X

-omplexes.

Proposition. The ategory RS(D

X

) is losed with respet to subquotients and extensions.

Proof. By de�nition.

3. Main Theorem B.

Main Theorem B.

a) Funtors D, �

�

, �

!

, �

!

,�

�

preserve subategory

D

RS

(D) � D

Hol

(D):
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b) RS � riterion

An holonomi D

X

-omplex

_

F is RS if and only if its restrition i

!

C

_

F to any urve C � X is RS.

Remark. It would be more natural to take b) as a de�nition of RS D

X

-omplexes. But then it would

be diÆult to prove \subquotient" properties, like lemma in 2. So we prefer the de�nition, whih makes

these properties trivial, and transfers all the diÆulties into the \ohomologial part", where we have an

appropriate mahinery to work with.

The proof of theorem B ontains two tehnial results both due to P. Deligne. The �rst desribes RS

property of O-oherent D-modules without referring to urves. The seond proves that �

�

preserves RS

in a simplest ase.

4. D-modules with regular singularities along a divisor.

Let X be an algebrai variety. A regular extension of X is a nonsingular variety X

+

, ontaining X as

an open subset, suh that X

�

= X

+

nX is the divisor with normal rossings. We denote by J � O

X

+

the ideal of X

�

; T

�

the subsheaf of vetor �elds preserving J and D

�

X

the subalgebra of D

X

+
, generated

by T

�

and O

X

+
.

Let F be an O-oherent D

X

-module F

+

= (i

X!X

+
)

+

F .

Proposition (P. Deligne).. The following onditions are equivalent.

(i) F

+

is a union of O-oherent D

�

X

submodules

(ii) For any extended urve

� : (C

+

; C) �! (X

+

; X) (i.e., � : C

+

! X

+

, suh that

�(C) � X; �() 2 X

+

nX) F j

C

has RS at .

(iii) For eah irreduible omponent W of X

�

there is an extended urve � : (C

+

; C) �! (X

+

; X) whih

intersets WK transversally at  suh that F j

C

has RS at .

Corollary. Suppose X

+

is a omplete regular extension of X, F and O-oherent D

X

-module. Then F

is RS i� F

+

is a union of O-oherent D

�

X

-modules.

5. Proof of theorem B.

Key lemma. Let �

�

: Y ! X be a morphism, where Y is a surfae, X is a urve, X;Y are irreduible.

Let H be an O-oherent kRS D

Y

-module. Then for some open subset

X

0

� X �

�

(H)j

X

0

is RS:

We will prove this lemma in 6.

We also will use the following version of Hironaka's desingularisation theorem.
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Proposition. Let � : Y ! X be a morphism. Then there exists a regular extension i : Y ! Y

+

and a

morphism �

+

: Y

+

! X suh that � = �

+

oi and �

+

is a proper morphism.

We will all the triple (�

+

; Y

+

; i) the resolution of the morphism �.

Now let us start the proof of theorem B. By de�nition RS is losed with respet to the duality D, and

hene D

RS

is losed with respet to D.

Proof of theorem B for �

�

. We have a morphism � : Y ! X and an RS D

Y

-omplex

_

H and we want

to prove that �

�

(

_

H) is RS. The proof is by indution on the dimension of S = Supp

_

H. So we assume

that the statement is true for dom S < n. Also we assume that RS-riterion of theorem B is true for

dim F < n.

Step 1. Let � = i : Y ! Y

+

be an inlusion into a regular extension of Y , H be an RS O-oherent

D

Y

-module. Then i

�

(H) is RS D

Y

+
-module.

Sine i is an aÆne morphism i

�

(H) = i

+

(H). Without loss of generality we an assume Y

+

to

be omplete. By Deligne's proposition i

+

(H) is a union of O-oherent D

Y

-modules. Hene arbitrary

irreduible subquotient F of i

+

(H) has this property.

Let AZ

+

= Supp F . Then it is easy to hek that Z

+

is an irreduible omponent of an intersetion

of some omponents of the divisor X

�

and F = L(Z;E), where Z is an open subset of Z

+

. It is lear

that E

+

= i

Z!Z

+
(E) is a union of O-oherent D

�

Z

-modules, sine D

�

Z

is a quotient of the algebra D

�

Y

and E

+

is a subquotient of H

+

. Hene E is RS, i.e., F is RS.

6. Sketh of the proof of the key lemma.

We have a smooth morphism � : Y ! X with dim Y = 2, dim X = 1. Then, after deleting several

points from X , we an �nd a regular omplete extension Y

+

of Y and a morphism �

+

: Y

+

! X

+

, where

X

+

is the regular ompletion of X , suh that

(i) �

�1

(X

�

) � Y

�

; where X

�

= X

+

nX; Y

�

= Y

+

n Y

(ii) �

�1

(X

�

) ontains all singularities of Y

�

.

Denote by T

�

Y

and T

�

X

sheaves of vetor �elds on Y

+

and X

+

, whih preserve Y

�

and X

�

. Conditions

(i), (ii) imply that eah loal vetor �eld � 2 T

�

X

an be lifted loally to a vetor �eld �

0

2 T

�

Y

. This

means that the natural morphism of sheaves on Y

+

� : T

�

Y

�! (�

+

)

�

T

�

X

= O

Y

+

O

�

+

�O

X

+

�

+

� (T

�

X

)

is epimorphi.
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We denote by T

�

Y=X

the kernel of �. Consider sheaves of algebras D

�

Y

and D

�

X

on Y

+

and X

+

,

generated by T

�

Y

and by T

�

X

and denote by M

R

(D

�

Y

), M

R

(D

�

X

) orresponding ategories of right D

�

-

modules, and by D

R

(D

�

Y

); D

R

(D

�

X

) derived ategories (here I prefer to work with right D-modules as all

formulae are simple).

Let us put D

�

Y!X

= O

Y

+

O

�

+

�O

X

+

�

+

� (D

�

X

). This module is D

�

Y

� �

+

� (D

�

X

)-bimodule. Using D

Y!X

let us de�ne the funtor

�

�

�

: D

R

(D

�

Y

) �! D

R

(D

�

X

) by

�

�

�

(E) = R(�

+

) � (E

L

O

D

�

Y

D

�

Y!X

):

Statement. (i) Let H be a right D

Y

-module, H

+

= (i

Y

)

+

H 2 M

R

(D

Y

+
). Then, if we onsider H

+

as

D

�

Y

-module, we have

�

�

�

(H

+

) = �

�

(H

+

) as D

�

X

-module:

(ii) if E is an O-oherent D

�

Y

-module, then

�

�

�

(E) is O-oherent D

�

X

-module:

This statement implies the key lemma. Indeed, if H is an RS O-oherent (right) D

Y

-module, then H

+

is an indutive limit of O

Y

+-oherent D

�

Y

-modules and hene �

�

(H

+

) = �

�

�

(H

+

) is an indutive limit of

O

X

+
-oherent D

�

Y

-modules, i.e., it is RS.

Proof of statement. (i) is an immediate onsequene of the projetion formula and the fat that D

�

Y

j

Y

=

D

Y

, D

�

Y!X

j

Y

= D

Y!X

.

(ii) Consider \De Rham" resolution of D

Y!X

0 �! D

�

Y

O

O

Y

T

�

Y=X

�! D

�

Y

�! D

�

Y!X

�! 0:

Using it we see that as O

X

+
-module

�

�

�

(E) = R(�

+

) � (E 
 T

�

Y=X

�! E):

Sine �

+

is a proper morphism, R�

+

maps oherent O

Y

+
-modules into oherent O

X

+
-modules, i.e.,

�

�

�

(E) is O-oherent for O-oherent E.

2. The following statement, due to P. Deligne, is a very useful riterion of RS.

Criterion. Let X

+

be an irreduible omplete normal (maybe singular) variety, X � X

+

an open

nonsingular subset, E an O-oherent D

X

-module. Assume that for any omponent W of X

�

= X

+

nX of
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odimension 1 in X

+

, S is RS along W (i.e., E satis�es onditions (i), (ii), (iii) in 4 along W ). Then

E is RS.

Unfortunately, the only proof of this riterion I know is analyti. I would like to have an algebrai

proof.

8. RS-modules with given exponents.

Let us �x some Q-linear subspae � � kK, ontaining 1. Let C be a urve, C

+

its regular extension

 2 C

+

nC, F an RS O-oherent D

C

-module, F

+

= (i

C

)

+

F . For any O-oherent D

�

submodule E � F

+

we denote by �



(E) the set of eigenvalues of the operator d = t� in the �nite-dimensional spae E=tE (t

is a loal parameter at , see 1). Now we de�ne

�(F ) =

[

;E

�(E) for all O-oherent

D

�

-submodules of F

+

and all points  2 C

+

n C:

The set �(F ) is alled the set of exponents of F . We say that F is RS� if �(F ) � A. We say that

D

X

-omplex

_

F is RS� if for any urve C � X all ohomology sheaves of i

!

C

(

_

F ) are RS�.

It is not diÆult to prove that all funtors D; �

�

; �

!

; �

!

; �

�

preserve D

RS�(D

X

)

{ one should repeat

proofs in 1-5 with minor modi�ations. Apparently riterion 6 is also true for RS� (for � = Q it is

proved by Kashiwara). I would like to have an algebrai proof of it.
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5. Riemann-Hilbert orrespondene.

In this leture I will work over the �eld k = C of omplex numbers.

1. Construtible sheaves and omplexes.

LetX be a omplex algebrai variety. We denote byX

an

the orrespondent analyti variety, onsidered

in lassial topology.

Let C

X

be the onstant sheaf of omplex numbers on X

an

. We denote by Sh(X

an

) the ategory of

sheaves of C

X

-modules, i.e., the ategory of sheaves of C -vetor spaes. Derived ategory of bounded

omplexes of sheaves we denote by D(X

an

). I will all sheaves F 2 Sh(X

an

) C

X

-modules and omplexes

_

F 2 D(X

an

) C

X

-omplexes.

I all C

X

-module F onstrutible if there exists a strati�ationX = UX

i

ofX by loally losed algebrai

subvarieties X

i

, suh that F jX

an

I

is �nite dimensional and loally onstant (in lassial topology). I

all C

X

-omplex

_

F onstrutible if all its ohomology sheaves are onstrutible C

X

-modules. The full

subategory of D(X

an

) onsisting of onstrutible omplexes I denote by D

on

(X

an

).

Any morphism � : Y ! X of algebrai varieties indues the ontinuous map �

an

: Y

an

! X

an

and we

an onsider funtors

�

!

; �

�

: D(Y

an

) �! D(X

an

)

�

�

; �

!

: D(X

an

) �! D(Y

an

)

also we will onsider the Verdier duality funtor

D;D(X

an

) �! D(X

an

):

Theorem. Funtors �

�

; �

!

; �

�

; �

!

and Dk preserve subategories D

on

( ). On this ategories DD = Id

and

D�

�

D = �

!

; D�

�

D = �

!

:

2. De Rham funtor.

Denote by O

an

X

the struture sheaf of the analyti variety X

an

. We will assign to eah O

X

-module F

orresponding \analyti" sheaf of O

an

X

-modules F

an

, whih loally is given by

F

an

= O

an

X

M

O

X

F:

This de�nes an exat funtor

an :M(O

X

) �!M(O

an

X

):

In partiular, sheaf D

an

X

is the sheaf of analyti di�erential operators on X

an

, and we have an exat

funtor

an :M(D

X

) �! M(D

ab

X

):

Sine this funtor is exat it indues a funtor

an : D(D

X

) �! D(D

an

X

):
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De�nition. I de�ne the De Rham funtor

DR : D(D

X

) �! D(X

an

) = D(Sh(X

an

)) by

DR(

_

F ) = 


an

X

M

D

an

X

_

F

an

:

Remarks. 1. We know that the omplexDR(D

X

) is a loally projetive resolution of the rightD

X

-module




X

. Hene

DR(

_

F ) = DR

X

(D

an

X

)

M

D

an

X

_

F

an

jnj = DR

X

(

_

F

an

)jnj;

where n = dim X .

In partiular, if F is an O-oherent D

X

-module, orresponding to bundle with a at onnetion and

L = F

at

the loal system of at setions of F (in lassial topology), then by Poinar�e lemma

DR(F ) = Ljnj:

2. Kashiwara usually uses slightly di�erent funtor Sol : D

oh

(D

X

)

o

! D(X

an

),

Sol(

_

F ) = R Hom

D

an

X

(F

an

; O

an

X

):

I laim that Sol(

_

F ) = DR(D

_

F )j � dim X j. This follows >from the formula

Hom

D

X

(P;O

X

) = 


X

M

D

X

(�P );

whih is true for any loally projetive oherent D

X

-module P , where �P = Hom

D

X

(P;D




X

).

3. Main Theorem C.

a) DR(D

hol

(D

X

)) � D

on

(X

an

) and on the subategory

D

hol

D ÆDR = DR ÆD .

If

_

F 2 D

hol

(D

X

);

_

H 2 D(D

Y

), then

Dr(

_

F �

_

H) � DR(

_

F )�DR(

_

H):

b) On the subategory D

RS

funtor DR ommutes with D; �

�

; �

!

; �

!

; �

�

and �

) DR : D

RS

(D

X

)! D

on

(X

an

) is an equivalene of ategories.

4. First let us onsider some basi properties of the funtor DR.

(i) DR ommutes with restrition to an open subset. For an �etale overing � : Y ! X DR ommutes

with �

�

and �

!

.

(ii) There exists a natural morphism of funtors � : DR�

�

! �

�

ÆDR whih is an isomorphism for proper

�.
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In order to prove this let us onsider the funtor

�

an

�

: D(D

an

Y

)! D(D

an

X

) on the ategories of D

an

-omplexes;

whih is given by

�

an

�

(

_

F ) = R�

an

:

(D

an

X Y

O

D

an

Y

_

F ):

I laim that DR�

an

�

= �

�

ÆDR. Indeed,

DR(�

an

�

(

_

F ) = 


an

X

L

M

D

an

X

R�

an

:

(D

an

X Y

L

M

D

an

Y

_

F ) =

R�

an

:

(�

:

(


an

X

)

L

O

�

:

D

an

X

D

an

X Y

L

M

D

an

Y

_

F ) = R�

an

:

(


an

Y

L

O

D

an

Y

_

F );

sine �

:




X

O

�

:

D

X

D

X Y

� 


Y

as D

Y

-module.

Now there exists in general the natural isomorphism of funtors

an ÆR�

:

(

_

F ) �! R�

an

:

(an

_

F ):

This funtor is not an isomorphism in general, sine diret image on the left and on the right are taken

in di�erent topologies. But aording to Serre's \GAGA" theorem it is an isomorphism for proper �.

Combining these 2 observations we obtain (ii).

(iii) On the ategory of oherent D

X

-omplexes there exists a natural morphism of funtors

� : DR ÆD(

_

F ) �! D ÆDR(

_

F )

whih is an isomorphism for O-oherent

_

F and whih is ompatible with the isomorphism �

�

DR = DR�

�

for proper �, desribed in (ii).

By de�nition of the duality funtor D in the ategory D(X

an

)

D(

_

S) = RHom

C

X

(

_

S;C

X

jddimX j):

(Here C

X

j2dimX j is the dualizing sheaf of X

an

). Hene in order to onstrut � it is suÆient to onstrut

a morphism

�

0

: DR ÆD(

_

F )


C

X

DR(

_

F ) �! ln

where ln is an injetive resolution of C

X

j2 dim X j.

As we saw, DR ÆD(

_

F ) is naturally isomorphi to Sol(

_

F )jdim X j = RHom

D

an

X

(

_

F

an

; O

an

X

)jdim X j.

Let us realize DR(

_

F ) as DR

X

(

_

F

an

) and DR ÆD(

_

F ) as Hom

D

an

X

(

_

F

an

; l

an

) where l is an injetive

resolution of kO

X

jdim X j. Then we have the natural morphism

�

00

: DR ÆD(

_

F )


C

X

DR(

_

F ) �! DR

X

(l

an

):
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Sine DR

X

(l

an

) � DR

X

(O

an

X

)jdim X j = C

X

j2dim X j, we have a morphism D

X

(l

an

) �! ln, whih

omposition with �

00

gives us �

0

. It is easy to hek that � is an isomorphism for O-oherent

_

F . Com-

patibility ondition with �

�

it is suÆient to hek for imbeddings and projetions P�X ! X , where it

is straightforward.

(iv) There is a natural morphism of funtors

 : DR(F �H) �! DR(F )�DR(H)

whih is an isomorphism for O-oherent F .

Morphism  is de�ned by the natural imbedding 


an

X

�

C




an

Y

�! 


an

X�Y

. If F is O-oherent and H is

loally projetively is an isomorphism by partial Poinar�e lemma. This implies the general statement.

(v) There is a natural morphism of funtors Æ : DR Æ �

!

(

_

F ) ! �

!

DR(

_

F ) whih is an isomorphism for

smooth �.

Indeed, for smooth � the isomorphism of these funtors an be onstruted on generators { loally

projetive modules (for instane if � : Y = T �X ! X is the projetion, then �

!

(

_

F ) = O

T

�

_

F jdim T j;

�

!

DR(

_

F ) = C

T

�DR(

_

F )j2dim T j = Dr(O

T

)�DR(

_

F )jdim T j). Consider the ase of a losed imbedding

i : Y ! X . Using i

�

, whih ommutes with DR, we will identify sheaves on Y with sheaves on X ,

supported on Y . Then i

�

i

!

_

F = R�

jY j

_

F in both ategories, whih gives the natural morphism

Æ : DR Æ i

�

i

!

(

_

F ) = DR(R�

jY j

_

F ) �! R�

jY j

DR(

_

F ) = i

�

i

!

DR(

_

F ):

5. Proof of Theorem C a) (ase of holonomi omplexes).

Let

_

F be a holonomi D

X

-omplex. Consider the maximal Zariski open subset U � X suh that

DR(

_

F )j

U

is onstrutible. Sine F is O-oherent almost everywhere U is dense in X .

Let W be an irreduible omponent of X nU . I want to show that DR(

_

F ) is loally onstant on some

dense Zariski open subset W

0

�W .

Claim. I an assume that

X = P�W; W = p�W; where p 2 P;

U and V = U [W are open in X .

Indeed, onsider an �etale morphism of some open subset of W onto an open subset of an aÆne spae

A

k

and extend it to an �etale morphism of a neighbourhood of W onto an open subset of A

n

� A

k

. By

hanging base from A

k

to W , I an assume that V = U [W is an open subset of X

0

= P

n�k

�W . Then

I an extend F to some sheaf of X

0

.

Now onsider the projetion pr : X = P �W ! W . Sine it is a proper morphism DR(pr

�

(

_

F )) =

pr

�

DR(

_

F ). Sine pr

�

(

_

F ) is a holonomiD

W

-omplex, it is 0-oherent almost everywhere, i.e.,DR(pr

�

(

_

F ))

is loally onstant almost everywhere.
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Put

_

S = DR(

_

F ) � D(X

an

). Replaing W on an open subset, we an assume that pr

�

(

_

S) =

DR(pr

�

(

_

F )) is loally onstant. We have an exat triangle.

_

S

V

!

_

S !

_

S

XnV

; where

_

S

V

= (i

V

) : (

_

S=V ) is extension by zero.

By the hoie of U ,

_

S=

V

is onstrutible, i.e.,

_

S

V

is onstrutible. Hene pr

�

(

_

S

XnV

) is onstrutible

and going to an open subset we an assume it is loally onstant.

Now

_

S

XnV

is a diret sum of 2 sheaves (i

W

)

!

_

S=W and something onentrated on X n V nW . This

implies that

_

S=W is a diret summand of the loally onstant sheaf pr

�

(

_

S

XnV

) and hene itself is loally

onstant. QED

Now let

_

F be a holonomi omplex. Put

Err(

_

F ) = Cone(DR ÆD(

_

F )! D ÆDR(

_

F )):

This sheaf vanishes on a dense open subset, where

_

F is 0-oherent. Also funtion Err ommutes with

diret image for proper morphisms. Repeating the arguments above we see that Err = 0, i.e., DR

ommutes with D on D

hol

(D

X

).

The same arguments show that DR(

_

F �

_

H) = DR(

_

F )�DR(

_

H) for holonomi

_

F .

Remark. Of ourse this proof is simply a variation of Deligne's proof of \Th�eor�emes de �nitude" in SGA

4 1/2.

6. Proof of theorem C b) for diret image..

Let us prove that the morphism

DR Æ �

�

(

_

H)! �

�

ÆDR(

_

H)

is an isomorphism for H 2 D

RS

(D

Y

).

Case 1. � = i : Y ! X is a regular extension and H is an RS 0-oherent D

Y

-module.

In this ase the proof is straightforward, using the de�nition of RS (it was done by P. Deligne). Namely,

loally in the neighbourhood of a point x 2 X nY we an hoose oordinates x

1

; : : : ; x

n

suh that X n Y

is given by x

1

; : : : ; x

k

. Now we plae x by an analyti neighbourhood of x. Then H and H

+

= i

+

(H)

are determined by monodromy representation of the fundamental group �; (X n Y ). Sine this group is

ommutative, we an deompose H into 1-dimensional subquotients. Using ommutativity with � we

an redue to the ase dim Y = 1. Hene as O

Y

-module H

+

is generated by one element e, whih satis�es

the equation x�(e) = �e. Now diret alulations show that

DR(H

+

) = (i)

�

DR(H):
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Case 2. H is an RS 0-oherent D

Y

-module.

In this ase we deompose � = �

+

Æ i, where i : Y ! Y

+

is a regular extension and �

+

: Y

+

! X is a

proper morphism. DR ommutes with i by ase 1 and with �

+

by 4 (ii).

General Case. It is suÆient to hek the statement on generators. Hene we an assume that

_

H = i

�

(�),

where i : Z ! Y is a loally losed imbedding and � an RS 0-oherent D

Z

-module. Then

DR�

�

(

_

H) = DR(�i)

�

(�)

ase 2

==== (�i)

�

DR(�) =

�

�

(i

�

DR(�))

ase 2

==== �

�

DR(i

�

(�)) = �

�

DR(

_

H):

7. Proof of theorem C b).

Funtors D; �

�

and � were onsidered in 5 and 6.

Funtor �

!

: In 4(v) I have onstruted the morphism Æ : DR�

!

! �

!

DR whih is an isomorphism for

smooth �. Hene it is suÆient to hek that RS D

Y

-omplexes Æ is an isomorphism for the ase of a

losed imbedding � = i : Y ! X . Denote by j : V = X n Y ! X the imbedding of the omplementary

open set. Then we have the morphism of exat triangles

DR(i

�

i

!

_

F )�!DR(

_

F )�!DR(j

�

(

_

F j

V

))

?

?

?

y

Æ

?

?

?

y

id

?

?

?

y

�

i

�

i

!

DR(

_

F )�!DR(

_

F )�!j

�

(DR(

_

F )j

V

):

Sine � is an isomorphism by 6, Æ is an isomorphism.

Funtors �

!

and �

�

. They ommute with DR sine �

!

= D�

�

D and �

�

= D�

!

D.

8. Proof of theorem C ).

First of all, let us prove that DR gives an equivalene of D

RS

(D

X

) with a full subategory of

D

oh

(X

an

). We should prove that for

_

F ;

_

R 2 D

RS

(D

X

)

DR : Hom

D

RS

(

_

F ;

_

H) �! Hom

D

oh

(DR(

_

F ); DR(

_

H))

is an isomorphism.

It turns out that it is simpler to prove the isomorphism of RHom ( ). We have shown in leture 3

that

RHom(

_

F ;

_

H) =

Z

X

Hom(

_

F ;

_

H) =

Z

X

Hom(

_

F ;

_

H) =

Z

X

D

_

F4

�

_

H:

Let us prove that in the ategory D

oh

(X

an

) RHom is given by the same formula we have

R Hom(

_

R;DS

:

) = RHom(

_

R;R Hom(S

:

;Dual)) =

R Hom(

_

R
 S

:

;Dual) = D(R

:


 S

:

) = DR

:

4

�

DS

:

:
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Hene

R Hom(

_

R;S

:

) =

Z

R Hom(

_

P ; S

:

) =

Z

D(

_

R)4

�

S

:

:

This proves that DR gives an equivalene of the ategoryD

RS

(D

X

) with a full subategory of D

oh

(X

an

).

Now let us prove that this subategory ontains all isomorphism lasses of D

oh

(X

ab

). Sine it is a

triangulated full subategory, it is suÆient to hek that it ontains generators. As generators we an

hoose C

X

-omplexes of the form i

�

(L) where i : Y ! X is an imbedding and L is a loal system on

Y . Sine DR ommutes with diret images it is suÆient to hek that there exists an RS 0-oherent

D

Y

-module � suh that DR(�) � Ljdim Y j, i.e., suh that the sheaf of at setions kof �

an

is isomorphi

to L. This is a result by P. Deligne.

9. Perverse sheaves, intersetion ohomology and suh.

Main theorem C gives us a ditionary whih allows to translate problems, statements and notions from

D-modules to onstrutible sheaves and bak.

Consider one partiular example. The ategory D

RS

(D

X

) of RS-omplexes ontains the natural full

abelian subategory RS-ategory of RS-modules.

How to translate it in the language of onstrutible sheaves.

>From the desription of the funtor i

!

for loally losed imbedding one an immediately get the

following

Criterion. Let

_

F be a holonomi D

X

-omplex. Then

_

F is onentrated in nonnegative degrees (i.e.,

H

i

(

_

F ) = 0 for i < 0) if and only if it satis�es the following ondition.

(�)

RS

For any loally losed imbedding i : Y ! X there exists an open dense subset Y

0

� Y suh that

i

!

(

_

F )

�

�

Y

0

is an 0-oherent D

Y

0

-omplex, onentrated in degrees � 0.

In terms of onstrutible omplexes this ondition an be written as

(�)

on

For any loally losed imbedding i : Y ! X there exists an open dense subset Y

0

� Y suh that

i

!

(

_

S)

�

�

Y

is loally onstant and onentrated in degrees � - dim Y .

Thus we have proved the following.

Criterion. A onstrutible omplex S

:

lies in the abelian subategory

DR(RS(D

X

)) i�

_

S and DS

:

satisfy (�)

on

:

Now it is easy to reognize this as a de�nition of a perverse sheaf on X

an

.

Exerise. Let L(Y; �) be an irreduible RS D

X

-module. Then DR(L(Y; �))j�dim Y j is the intersetion

ohomology sheaf, assoiated to (Y;Lo. syst. �).

Thus intersetion ohomology sheaves just orrespond to irreduible RS d-modules.
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10. Analyti riterion of regularity.

For any point x 2 X I denote by O

an

x

and O

form

x

algebras of onvergent and formal power series on X

at the point x. For any D

X

-omplex

_

F the natural inlusion O

an

x

! O

form

x

indues a morphism

�

x

: R Hom

D

X

(

_

F ;O

an

x

) �! R Hom

D

X

(

_

F ;O

form

X

):

We say that

_

F is good at x if �

x

is an isomorphism.

Proposition. Let

_

F be an RS O

X

-omplex. Then

_

F is good at all points.

Remark. One an show that onversely, if X is a omplete variety and

_

F a holonomi D

X

-omplex good

at all points x 2 X , then

_

F is RS.

proof. For loally projetive D

X

-module P we have

Hom

D

X

(P;O

form

x

) = Hom

k

(P=M

x

P; k) = i

�

x

(P )

�

:

Hene R Hom

D

X

(

_

F ;O

form

x

) = i

0

x

:

(

_

F )

�

jdim X j. If we put

_

G = D

_

F and remember that i

�

x

= Di

!

x

D we see

that

R Hom

D

X

(

_

F ;O

form

x

) = i

�

x

(

_

G)jdim X j:

>From the other side

R Hom

D

X

(

_

F ;O

an

x

) = �ber at x of Sol(

_

F ) = i

�

x

DR(

_

G)jdim X j:

Thus we an reformulate our problem, using the DR funtor.

(*) Holonomi D

X

-omplex

_

F is good at x i� for

_

G = D

_

F the anonial morphism

�

x

: i

�

x

DR(

_

G) �! DR i

�

x

(

_

G)

is an isomorphism.

Hene the proposition is simply a partiular ase of theorem C.

The proof of the onverse statement is based on the riterion of RS whih is disussed in 4.

Leture 6. D-modules and the proof of the Kazhdan-Lusztig onjeture.

I would like to outline main steps of the proof of the Kazhdan-Lusztig onjeture. Only part of it is

onneted with D-modules, but somehow it has the same spirit as the theory of D-modules, as I presented

it.

The amazing feature of the proof is that it does not try to solve the problem but just keeps translating

it in languages of di�erent areas of mathematis (further and further away from the original problem)

until it runs into Deligne's method of weight �ltrations whih is apable to solve it.

So, have a seat; it is going to be a long journey.
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Stop 1. g-modules, Verma modules and suh.

Let g be a semisimple Lie algebra over C , f � g a Carton subalgebra, � f

�

root system, �

+

the

system of positive roots and n � g orresponding nilpotent subalgebra. To eah weight � 2 f

�

we assign

g-module M

�

(it is alled Verma module) whih is a universal g-module, generated by 1 element f

�

suh

that nf

X

= 0 and f

�

is an eigenvetor of f with the eigenharater � � � (here � is the halfsum of

positive roots). Eah Verma module M

X

has unique irreduible quotient L

X

, has �nite length and all its

irreduible subquotients are of the form L

 

for  2 f

�

. Hene we an write in the Grothendiek group

M

�

= b

� 

L

 

:

Problem. Calulate multipliities b

� 

.

It is usually more onvenient to work with the inverse matrix a

� 

, suh that L

�

= �a

� 

M

 

.

Also, using elements of the enter z(g) � U(g) it is easy to show that a

� 

6= 0 only if � and  lie on

one orbit of the Weyl group. The most interesting ase is the W -orbit of (��). So let us put for w 2 W ,

M

w

=M

w(��)

; L

w(��)

and formulate the

Problem A. Calulate matrix a

ww

0

, given by

L

w

= � a

ww

0

M

w

0

:

Stop 2. D-modules, Shubert ells : : : .

Now we are going to translate Problem A into the language of D-modules.

Let G be an algebrai group orresponding to g, X the ag variety of G, i.e., X = G=B where B is a

Borel subgroup of G. The natural ation of G, i.e., X = G=B where B is a Borel subgroup of G. The

natural ation of G on X de�nes the morphism U(g) ! D

X

. Hene for eah D

X

-module F the spae

�(F ) = �(X;F ) of global setions of F has the natural struture of g-module. Our translation is based

on the following

Theorem (Beilinson, Bernstein).

The funtor � : �(D

X

) ! �(g); F ! �(F ) gives an equivalene of the ategory �(D

X

) with the

ategory �

�

(g) of g-modules with trivial in�nitesimal harater �. Here � is the harater of the enter

Z(g) � U(g), i.e., the homomorphism � : Z(g) �! C , orresponding to the trivial representation of g.

We say that g-module M has in�nitesimal harater � if Ker � �M = 0.

The proof of the theorem onsists of two parts:

1. We show that the funtor � is exat and eah D

X

-module F is generated by its global setions. This

implies that �(D

X

) is equivalent to the ategory of D(X)-modules, where D(X) = �(X;D

X

) is the

algebra of global di�erential operators. We already saw that this fat is true for projetive spaes (see

leture 2); though the proof is di�erent, the e�et has the same nature.
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2. We show that D(X) = U(g)=Ker � � U(g).

This is pure luk. The proof is just a diret alulation, whih uses Kostant's theorem on funtions on

nilpotent one.

This theorem allows us to translate all the problems of the representation theory, involving modules

in �

�

(g) into the language of D-modules. Sine M

w

; L

w

2 M(g) we an translate our problem. Let us

indiate how to do it.

It is easy to prove that on any module M =M

w

or L

w

the nilpotent algebra n ats loally nilpotent.

It means that we an exponentiate this ation and de�ne some algebrai ation of the orresponding

nilpotent subgroup N � G. Hene on M we have two ations: ation � of the Lie algebra g, and the

representation � of the Lie group N . It is lear that M is a (g;N)-module, i.e., it satis�es the following

onditions:

(i) Representation � is algebrai, i.e., M is a union of �nite dimensional algebrai representations of the

algebrai group N .

(ii) Morphism � : g 
M ! M is N -invariant with respet to the adjoint ation of N on g and ation �

of N on M .

(iii) On Lie algebra n, g ations � and d� oinide.

Translating in D

X

-modules we see that the D

X

-module F , orresponding to M is really a (D

X

; N)-

module, i.e., it is endowed with an ation � of the group N suh that

(i) � is algebrai, i.e., F is a union of oherent O-modules with algebrai ation of N (ompatible with

the natural ation of N on X).

(ii) Ation � : D

X


 F ! F is N -invariant.

(iii) On Lie algebra n of the group N ation �, given by the natural morphism n ! Vet. �elds on X ,

D

X

oinides with d�.

In partiular, it means that Supp F is N -invariant. Using Bruhat deomposition we see that N haws

a �nite number of orbits on X . Namely,

X =

[

w2W

Y

w

; where Y

w

= N(wx

N

);

and x

N

2 X is the point, orresponding to N . If Y is an open orbit of N in the Supp F , then i

!

Y

(F ) is an

(D

Y

; N)-module. Now, sine N ats transitively on Y it is not diÆult to desribe all (D

Y

; N)-modules.

They all are diret sums of many opies of the standard (D

X

; N)-module O

Y

.

Let us put �

Y

= (i

Y

)

!

(O

Y

), I

Y

= (i

Y

)

�

(O

Y

), L

Y

= Im(�

Y

! I

Y

). Fortunately in this ase Y is aÆne

(it is isomorphi to an aÆne spae), so �

Y

; I

Y

are (D

X

; N)-modules, not omplexes.

Lemma. u

w

= u

Y

w

orresponds to M

w

L

w

= L

Y

w

orresponds to L

w
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It is not quite trivial to establish. But if we are interested only in the images ofM;L in the Grothendiek

group, then it is easy to prove. Indeed, sine eah L

w

is selfdual (sine DO

Y

= O

Y

), in Grothendiek

group �

w

' I

w

. Now it is very easy to diretly ompute �(X; I

w

) as h-module and to show that it

oinides with M

w

=h. Sine an element in the Grothendiek group is determined by its restrition to h,

this proves that �

w

�M

w

(in Grothendiek group).

Now we an reformulate the problem.

Problem B. Calulate a

ww

0

given by

L

w

= �a

ww

0

�

w

0

:

Stop 3. Construtible sheaves.

Now we an use Hilbert-Riemann orrespondene, I have desribed in leture 5, and translate the

whole problem into the language of onstrutible sheaves.

First of all, let us de�ne the Grothendiek group K(D

RS

) of the ategory D

RS

(D

X

) as a group,

generated by RS-omplexes and relations [

_

F ℄ + [

_

H ℄ =

_

G for any exat triangle

_

F !

_

G !

_

H. It is easy

to prove that K

RS

oinides with the Grothendiek group K(RS) of the ategory RS(D

X

); isomorphism

x : K(D

RS

) ! K(RS) is given by Euler harateristi x([

_

F ℄) = �(�1)

i

[H

i

(

_

F )℄. In the same way

K(D

on

) = K(on). For simpliity we restrit ourselves to the subategories in K(RS) and K(on)

generated by sheaves, whih are N -invariant. Funtor DR gives us an isomorphism DR : D(D

RS

) =

K(RS)! K(D

on

) = K(on). Let us look how to translate �

w

and L

w

.

By de�nition �

w

= (i

Y

w

)

!

(O

y

). Hene DR(�

w

) = i

Y

w

)

!

(1

Y

w

)[dimY

w

℄, where 1

Y

is the trivial sheaf on

Y . If we denote by T

w

the element (i

Y

w

)

!

(1

Y

w

) 2 K(on), (extension by zero), we see that DR(�

w

) =

(�1)

`(w)

T

w

, where by de�nition `(w) = dimY

w

(it is the usual length funtion on the Weyl group). As

we disussed in leture 5, DR(L

w

) = IC(Y

w

)[dimY

w

℄, where IC(Y ) is the intersetion ohomology sheaf

of Y . Let us denote by IC

w

the element of K(on), orresponding to IC(Y

w

). Then we an reformulate

our problem.

Problem C. Find a

ww

0

given by

IC

w

= �a

ww

0

(�1)

`(w)�`(w

0

)

T

w

0

:

Fast train. Etale ohomologies, hanging of the �eld, : : : .

What we have done so far is the translation of the very diÆult problem A to the not less diÆult

topologial problem C. This problem is essentially the problem of alulating intersetion ohomologies

of the highly singular varieties Y

w

. The only general method of solving suh problems known so far is

based on algebrai geometry over �nite �elds. So we should go this way.
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Let us �x the strati�ation � = (X = UY

w

) and denote by D

�

(X

an

) the subategory of D(X

an

),

onsisting of C

X

-omplexes, suh that their ohomology sheaves are loally onstant along eah stratum

Y

w

(sine Y

w

is ontratible, they in fat are onstant along Y

w

). Corresponding Grothendiek group we

denote K

�

. It is lear that K

�

=

L

w2W

ZT

w

, and we just want to �nd the expression of elements of

IC

w

2 K in this basis.

It turns out that we an replae everywhere lassial topology by etale topology and all properties of

onstrutible omplexes, onstrutible sheaves, whih an be expressed in terms of funtorsD; �

�

; �

!

; �

!

; �

�

will not hange.

Sine etale topology is de�ned purely algebraially, we now an translate the whole situation to arbi-

trary �eld.

So, we now onsider an algebraially losed �eld k of arbitrary harateristi p, a ag variety X of a

redutive group G over k, and � = (X = UY

w

) the Bruhat strati�ation. We onsider derived ategory

D

�

of omplexes with ohomologies, onstant along eah stratum Y

w

. In the Grothendiek group K

�

of

this ategory we have a basis T

w

and elements IC

w

, orresponding to IC-sheaves, and we want to �nd

an expression of IC

w

via fT

w

0

g.

There are theorems, whih laim that the situation in etale topology over any �eld will be exatly the

same as in lassial topology over C .

Remark. In etale topology we are working with `-adi sheaves whose stalks are vetor spaes over the

algebrai losure Q

`

of the �eld of `-adi numbers, where ` 6= hark. For simpliity we will identify Q

`

with C .

In fat, `-adi sheaves are not quite sheaves and elements of D

�

are not quite omplexes. But it does

not matter sine we an work with our funtors D; �

�

; : : : in the usual way.

Stop 4. Weil sheaves, Tate twist, Lefshetz formula.

Now suppose we are working over the �eld k whih is the algebrai losure of a �nite �eld F

q

. Also

we assume that our strati�ation � is de�ned over F

q

, i.e., eah stratum Y

w

is given by equations and

inequalities with oeÆients in F

q

. Denote by Fr

q

the automorphism of the �eld k, given by  7�! 

q

.

For any variety Y , de�ned over F

q

, Fr

q

indues a bijetion Fr

q

: Y (k)! Y (k), whih turns out to be a

homeomorphism in etale topology.

Let us all Weil sheaf an `-adi sheaf F together with the ation of Fr

q

on F . In a similar way we

an onsider Weil omplexes of sheaves. Derived ategory of Weil omplexes, whose ohomologies are

onstant along strata of strati�ation � we denote D

W

�

, and orresponding Grothendiek group K

W

�

.

These de�nitions make sense sine eah stratum Y

w

is invariant under Fr

q

.

Important example. Let us desribe Weil sheaves on the variety pt, onsisting of one point. Then any

sheaf F is given by a vetor spae V . Hene Weil sheaf on pt is just a Q

`

-vetor spae V together with a
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linear transformation Fr

q

: V ! V .

De�nition. Tate sheaf L over a point p is de�ned by one-dimensional vetor spae Q

`

together with the

morphism Fr

q

: Q

`

! Q

`

, whih is the multipliation by q, i.e., Fr

q

(�) = q�.

If � : Y ! X is a morphism of algebrai varieties, whih is de�ned over F

q

, it indues funtors

�

�

; �

!

: D

W

(Y ) ! D

W

(X), �

�

; �

!

: D

W

(X) ! D

W

(Y ). Also there is a funtor of Verdier duality

D : D

W

(X) ! D

W

(X). All these funtors have the same properties, as we have disussed earlier. But

there is one important improvement:

(*) If X is a nonsingular variety, then D(1

X

) = L

�dimX

� 1

X

[2dimX ℄.

Here 1

X

is the trivial sheaf on X , L we onsider as a sheaf on X { this is the Tate sheaf lifted from the

point, and L

�k

means (L

�1

)


k

.

If we forget the ation of Fr we have an old formula for dualizing sheaf. So (*) simply means that

though dualizing sheaf is essentially isomorphi to the onstant sheaf, this isomorphism is not anonial;

in partiular, Fr

q

hanges it in q

dimX

times.

Exerise. Over a point D(L

k

) = L

�k

.

Digression. Weil sheaves and funtions.

For eah variety X , de�ned over F

q

denote by X(q) the �nite set, onsisting of points of X , whih are

de�ned over F

q

(i.e., whih are �xed points of Fr

q

). To eah Weil omplex

_

F I will assign the funtion

f

F

on the �nite set X(q) given by

f

F

(x) = �(�1)

i

trFrq(stalkH

i

(

_

F )

x

)

(it makes sense sine x is Fr

q

invariant). It is lear that f

F

depends only on the lass of

_

F in the

Grothendiek group k.

Theorem. Let � : Y ! X be a morphism, de�ned over F

q

, and � : Y (q)! X(q) the orresponding map

of �nite sets. Then

f

�

�

(

_

F )

= �

�

(

_

F

); f

�

!

(

_

H)

=

Z

�

f

_

H

;

where

_

F 2 D

W

(X);

_

H 2 D

W

(Y ) and operations �

�

and

R

�

on funtions are de�ned by

�

�

(f)(y) = f(�(y)) (

Z

�

f)(x) =

X

�(y)=x

f(y):

Here the �rst statement is triviality and the seond is a deep generalization of Lefshetz �xed points

theorem.

This theorem laims that all usual operations with funtions on �nite sets we an rewrite on the

level of Weil sheaves (or at least, their Grothendiek group). The importane of this observation an
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be understood if you realize that starting from one Weil omplex

_

F we an onstrut the sequene of

funtions: to any q

0

whih is a power of q we will assign the funtion f

q

0

F

on the set X(q

0

); and any natural

operation with all these funtions an simultaneously be desribed by one operation with the omplex

_

F .

This notion gives the formal de�nition of the \natural sequene of funtions" on sets X(q

0

), q

0

= q

i

.

Example. Consider the projetion pr : A

k

! pt of the aÆne spae into a point. Then the theorem implies

that pr

!

(a

A

k ) = L

k

[�2k℄, (i.e., in K

W

pr

!

(1) = L

k

).

Indeed, omparison with the lassial ase shows that dimH

i

(pr

!

(a

A

k )) = Æ

i;2k

0

, and the theorem

desribes the ation of Fr

q

on one-dimensional spae H

2k

(pr

!

(a

A

k )).

Stop 5. Weights and purity.

Let

_

F be a Weil omplex over a point p, whih is de�ned over some �eld F

q

0

. We say that w(

_

F ) (weight

of

_

F ) is less or equal to ` (notation w(

_

F ) � `) if for any i all eigenvalues of Fr

q

0

in the spae H

o

(

_

F ) have

absolute value � (q

0

)

`+i

2

.

(Hey, what do you mean? They are supposed to be `-adi numbers.)

Well, if you remember, we have identi�ed Q

`

with C , so we onsider them as omplex numbers, and

absolute value is the absolute value. Also Deligne proved that in all interesting ases they are algebrai

numbers, so it is all not so bad. And in any ase, in what we are going to onsider they will always be

powers of q. So do not worry).

It is lear that this notion does not depend on the hoie of q

0

, i.e., if we hange q

0

by q" = (q

0

)

`

, it

does not a�et the ondition.

Let now

_

F be a Weil omplex on X . Any point x 2 S is de�ned over k = F

q

0

, i.e., it is de�ned over

some �eld F

q

0

. We say that w(

_

F ) � ` if for any point x 2 X the stalk

_

F

x

= i

�

x

(

_

F ) has weight � `.

We say that W (

_

F ) � ` if W (D

_

F ) � �`. We say that

_

F is pure of the weight ` if

W (

_

F ) � ` and W (

_

F ) � `:

Deligne's purity theorem. Let � : Y ! X be a morphism, de�ned over F

q

. Then �

�

and �

!

derease

weight, �

�

and �

!

inrease weight, i.e.,

if W (

_

F ) � `, then W (�

�

_

F ) � `

if W (

_

H) � `, then W (�

!

_

H) � `

if W (

_

H) � `, then W (�

�

_

H) � `

if W (

_

F ) � `, then W (�

!

_

H) � ` .

In partiular, proper morphism preserves purity.

Gabber's purity theorem. Let Y be an irreduible algebrai variety, IC(Y ) the intersetion ohomol-

ogy Weil sheaf of Y (whih oinides with 1

Y

on the nonsingular part of Y ). Then IC(Y ) is pure of the

weight 0
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Stop 6. Heke algebra.

Get bak to ag variety X = UY

w

. Let us onsider only omplexes, for whih all eigenvalues of all

morphisms Fr

q

are powers of q. In general, this ategory is not invariant with respet to funtors, but

in our partiular ase it is.

Let A = K(D

W

(pt)) be the Grothendiek group of the Weil sheaves over a point. Then A = Z[L

�1

℄,

the algebra of Laurent polynomials.

Denote by H the Grothendiek group K(D

W

�

(X)) of Weil sheaves onstant along strata of �. Then it

is lear that H is a free A-module with the basis fT

w

g.

For any w 2 W the intersetion ohomology sheaf IC

w

2 H satis�es the following relations

(i) D(IC

w

) = L

�dimY

w

� IC

w

(ii) IC

w

= T

w

+�P

w;w

0

T

w

0

,

where P

w;w

0

2 A satisfy the ondition

(*) P

w;w

0

= 0 ifY

w

0

6� Y

w

and degP

w;w

0

< 1=2(`(w)� `(w

0

)):

Indeed, as a sheaf IC

w

is selfdual, and sine in a neighborhood of Y

w

it oinides with T

w

and in this

neighbourhood DT

w

= L

�dimY

w

� T

w

0

we have (i).

In order to prove (ii) let us �x some point x 2 Y

w

0

. Then by de�nition of IC

w

stalks of all ohomology

sheaves H

i

(IC

w

)

x

equal 0 when i � dimY

w

�dimY

w

0

= `(w)� `(w

0

). By Gabber's theorem w(IC

w

) � 0,

i.e., the ation of Fr

q

onH

i

(IC

w

)

x

has eigenvalues� q

i=2

. But it is lear that �(�1)

i

TrFr

q

(H

i

(IC

w

)

x

) =

P

w;w

0

(L = q). This proves (ii).

Relations (i) and (ii) gives a hope that if we are able to desribe the ation of the duality operator D

on H , then we would be able to �nd Kazhdan-Lusztig polynomials P

w;w

0

. After this we an forget about

Weil struture (i.e., speialize L! 1) and obtain the formulae for a

ww

0

.

In order to desribe the ation of D I will introdue on H the struture of an algebra.

The motivation for this ame from omparison with funtions. Informally H is a spae of funtions

on X(q) onstant on N(q) orbits. There is the natural identi�ation of N(q) orbits on X(q) with

G(q) orbits on X � X(q), so we an onsider elements of H as Q(q)-invariant funtions in 2 variables

f(x; y); x; y 2 X(q). But spae of funtions in 2 variables has the natural operation-onvolution, given

by

f � h(x; y) =

Z

F (x; z)h(z; y)dz

or, with more details

(f � h)(x; y) =

Z

f(x; u)h(v; y)

substitute u=v=z

dz:

The disussion on the stop 4 allows us immediately to translate this operation in the derived ategory,

or in the Grothendiek group.
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First of all, onsider the strati�ation 	 of X�X by G-orbits and onsider ategory D

W

	

(X�X) and

the orresponding group K

W

	

. This group is naturally isomorphi to H = K

W

	

; isomorphism is given by

restrition of the sheaves F on X � X to the �ber x

0

� X ' X . I will identify H and K

W

	

using this

isomorphism.

Now, let

_

F ;

_

H 2 D

W

	

(X �X). I will de�ne their onvolution � by

_

F �H = pr

!

�

�

(

_

F �

_

H), where

� : X �X �X ! X �X �X �X; �(x; z; y) = (x; z; z; y)

pr : X �X �X ! X �X; pr(x; z; y) = (x; y).

Proposition. H is an assoiative A-algebra with respet to onvolution � with identity 1 = T

e

. If

`(ww

0

) = `(w) + `(w

0

), then T

w

� T

w

0

= T

ww

0

.

The last statement an be heked straightforwardly. Also it follows from the fat that it is true for

usual Heke algebras, whih onsist of G(q) invariant funtions on X(q)�X(q).

These formulae imply that H as an A-algebra is generated by elements T

�

0

for simple reetions �.

In order to desribe the ation of D on H we use the following trik due to Lusztig.

Proposition. Let � 2 W be a simple reetion. Then for any h 2 H we have

D((T

�

+ 1) � h) = L

�1

(T

�

+ 1) �Dh

also (T

�

+ 1)

2

= (L+ 1)(T

�

+ 1).

Corollary. D is the automorphism of the algebra H. On generators T

�

D is given by DT

�

= L

�1

T

�

+

(L

�1

� 1).

Indeed, the proposition shows that D((T

�

+ 1) � h) = D(T

�

+ 1) �Dh for all h. Sine elements T

�

+1

generate H , we have D(f � h) = Df �Dh. The formula D(T

�

+ 1) = L

�1

(T

�

+ 1) gives the ation of D

on T

�

.

The proof of the proposition is based on the following observation. Denote by p

�

the paraboli subgroup

of G, obtained by adding to the Borel subgroup the simple root, orresponding to �, and onsider the

algebrai variety X

�

= G=P

�

. The natural G-equivariant projetion p

�

: X ! X

�

has �bers, isomorphi

to the projetive line P

0

. For instane, if we put x

�

= p

�

(x

0

), then p

�1

�

= Y

e

[ Y

�

is the projetive line

with the natural strati�ation. It means that T

�

+1 orrespond to the sheaf R

�

whih is the trivial sheaf

on p

�1

�

(x

�

), extended by zero. After this it is not diÆult to prove that for any F 2 D

W

we have

(*) R

�

� F = p

�

�

(p

�

)

!

F:

Now, sine p

�

is proper, diret image (p

�

)

!

= (p

�

)

�

ommutes with D. Sine p

�

is smooth, p

!

�

= L

�1

p

�

�

,

i.e., Dp

�

�

= Lp

�

�

D (loally X ' X

�

�P

0

, so p

�

�

(F ) = F � 1

P

0

, i.e., Dp

�

�

(F ) = DF �D(1

P

) = LDF � 1

P

=

Lp

�

�

(DF ).
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Also, it is lear that (p

�

)

!

(R

�

) ' (L + 1)T

x

�

(in Grothendiek group) and p

�

�

(T

x

�

) = R

�

. This gives

the seond formula of the proposition.

Last stop. Combinatorial problem.

Proposition. (simple ombinatoris).

(i) There exists an A-algebra H whih is free with basis T

w

, suh that

T

w

� T

w

0

= T

ww

0

if `(w) � `(w

0

) = `(ww

0

):

(T

�

+ 1)

2

= (L+ 1)(T

�

+ 1) for simple reetions � 2W .

(ii) There exists a unique automorphism D of the algebra H, suh that

D(L) = L

�1

D(T

�

+ 1) = L

�1

(T

�

+ 1) for simple reetions � 2W .

(iii) For eah w 2W there exists a unique element C

w

2 H suh that

C

w

= T

w

+

P

w

0

�w

p

w;w

0

T

w

0

; where P

ww

0

2 A has degree

<

1

2

(`(w) � `(w

0

)) and DC

w

= L

�`(w)

C

w

.

In this ase P

ww

0

2 Z[L℄.

Example. C

�

= T

�

+ 1.

Polynomials P

w;w

0

are alled Kazhdan-Lusztig polynomials. Now, if we summarize our disussion, we

will obtain the ombinatorial formula for multipliity matrix a

w;w

0

.

Answer. a

ww

0

= (�1)

`(w)�`(w

0

)

P

ww

0

(1):

Some questions.

Question 1. Where is the solution? How an I �nd these polynomials?

In a sense there was no solution. We have just translated our original problem, adding a new parameter

L for rigidity, to a ombinatorial problem and proved that this problem has a unique solution. Of ourse,

now we an obtain some reursive formulae for alulation of Kazhdan-Lusztig polynomials, but they are

quite ompliated.

Whether there exist expliit formulae for p

ww

0

, I think not, i.e., I think that some type of ombinatorial

omplexity is built into the problem.

In some ases one an ge expliit formulae for P . For instane, one an alulate intersetion oho-

mology sheaves for Shubert varieties on usual Grassmannians (see Lasoux and Shutzenberger). But

Zelevinsky showed that in this ase it is possible to onstrut small resolutions of singularities. I would say

that if you an ompute a polynomial P for intersetion ohomologies in some ase without a omputer,

then probably there is a small resolution, whih gives it.

Question 2. What is the geometrial meaning of other oeÆients of p

ww

0

?
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Kazhdan and Lusztig showed that all stalks of the sheaves IC

w

are pure. Hene, if we hoose a point

x 2 Y

w

0

, then

dimH

i

(IC

w

)

x

= 0 for odd i

= i=2 oeÆient of p

ww

0

for even i:

In the proof they used an observation, that transversal setion to Y

w

0

of the variety Y

w

is onial, i.e., it

has an ation of k

�

whih ontrats everything into a point x 2 Y

w

0

.

In general, stalks of IC sheaves are not pure. But there is one more ase, alulated by Vogan and

Lusztig, namely the strati�ation of the ag variety byorbits of omplexi�ed maximal ompat subgroup,

in whih stalks always are pure. I do not know why.

Untwisting the situation bak we an onnet H

i

(IC

w

) with

Ext

i

�

�

(g)

(M

w

0

; L

w

) or, if you want, with H

i

(n;L

w

):

Question 3. It is all very nie but is it really neessary to go into all this business with varieties over

�nite �elds? How are �nite �elds onneted with g-modules?

In fat, it is not neessary. You an obtain the same results using Hodge theory for onstrutible

sheaves or, even better, diretly Hodge theory for D-modules.

One small detail { these theories do not exist yet (there is a Hodge theory for loally onstant sheaves

{ this is Deligne's theory of variations of Hodge strutures { and it is quite powerful, but it is learly not

enough). But at least we know what to think about.


