
Algebrai
 Theory of D-modules

J. Bernstein

Le
ture 1. D-modules and fun
tors.

x0. Introdu
tion.

1. In my le
ture I will dis
uss the theory of modules over rings of di�erential operators (for short D-

modules). This theory started about 15 years ago and now it is 
lear that it has very valuable appli
ations

in many �elds of mathemati
s.

Names: Sato, Kashiwara, Kawai, Bernstein, Roos, Bj�ork, Malgrange, Beilinson.

2. I will speak on an interpretation of the theory, given by Beilinson and myself. We restri
t ourselves

to purely algebrai
 theory of D-modules over any algebrai
ally 
losed �eld k of 
hara
teristi
 0. Sato

and Kashiwara worked for analyti
 varieties over C , so as usual, our theories are interlapped like this

. I should mention from the very beginning, that some of the most important te
hni
al notions and

results are due to Kashiwara.

x1. 1. O-modules.

So we �x an algebrai
ally 
losed �eld k of 
har 0. One 
an assume k = C .

Let X be an algebrai
 variety (over k), O

X

the stru
ture sheaf. Let F be a sheaf of O

X

-modules. I


all F quasi-
oherent sheaf of O

X

-modules (or O

X

-module) if it satis�es the 
ondition:

(*) If U � X is open aÆne subset, f � O(U); U

f

= fu 2 U

�

�

f(u) 6= 0g, then F (U

f

) = F (U)

f

def

= O(U

f

)

O

o(U)

F .

By Serre's theorem this 
ondition is lo
al.

Let �(O

X

) be the 
ategory of O-modules. Lo
ally, i.e., on an open aÆne subspa
e, U � X , I will

identify �(O

U

) with the 
ategory of C-modules, where C = O(U).

2. Di�erential operators and D-modules.

By de�nition, a di�erential operator of order � k on U is a k-linear morphism d : C ! C, su
h that

[

^

f

k

: : : [

^

f

1

[

^

f

o

; d℄℄℄ = 0 for any f

o

; : : : ; f

k

2 C, where

^

f : C ! C is an operator of multipli
ation by f .

The ring of di�erent operators on U I denote by D(U), O(U) � D(U).

Proposition. D(U

f

) = O(U

f

)

O

o(U)

D(U) = D(U)

O

o(U)

O(U

f

). Hen
e U ! D(U) is a quasi
oherent

sheaf of O

X

-modules. I denote it by D

X

and 
all the sheaf of di�erential operators on X.

1
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D-module is by de�nition a sheaf F of left D

X

-modules whi
h is quasi-
oherent as O

X

-module. Cat-

egory of D

X

-modules I will denote by �(D

X

). Lo
ally, on aÆne open set U , �(D

U

)

�

=

D(U)-mod.

If X is singular, D

X


an be bad (for instan
e, it 
an be not lo
ally noetherian). So from now on I

assume X regular, if I don't say otherwise.

Lemma. 1. For ea
h x 2 X there exist an aÆne neighbourhood U � x fun
tions x

1

; : : : ; x

n

on U and

ve
tor �elds �

1

; : : : ; �

n

on U su
h that �

i

(x

j

) = Æ

ij

; �

i

generate tangent bundle of X.

2. D(U) = O(U)

O

k

k[�

1

; : : : ; �

n

℄.

The system (x

i

; �

i

) I will 
all the 
oordinate system in D

X

.

3. So I introdu
ed main 
hara
ters of my story and 
an begin the play. It is very useful, though formally

not ne
essary, to have in mind some analyti
 pi
ture, 
orresponding to D-modules. Let me des
ribe it.

Analyti
 pi
ture. Suppose we have a system S of p linear di�erential equations on q fun
tions f

1

: : : f

q

,

S = f

q

X

j=1

d

ij

f

j

= 0, i = 1; : : : ; pg. Then we 
an assign to S a D-module M given by q generators

e

1

; : : : ; e

q

and p-relations M = �D � e

j

=(+D(

P

d

ij

e

j

)). In this language, a solution s of the system S in

some spa
e of fun
tions F is nothing else than a morphism of D-modules �

S

:M ! F .

Having in mind this pi
ture we 
an start investigation of D-modules.

4. Left and right D-modules.

Let us denote by �

R

(D

X

) the 
ategory of right D-modules. How is it 
onne
ted with �(D

X

)?

Motivation. In analyti
 pi
ture, the spa
e of fun
tions F is a left D-module. But if we 
onsider the

spa
e of distributions F

�

, it has a natural stru
ture of a right D-module. Hen
e systems of di�erential

equations for distributions 
orrespond to right D-modules.

But if we �x a di�erential form w of highest degree, we 
an identify F and F

�

by � 2 F 7�! �w 2 F

�

.

Proposition-De�nition. Let 
 = 


X

be the O

X

-module of di�erential forms of highest degree on X.

For any D

X

-module F denote by 
(F ) the right D

X

-module, given by 
(F ) = 


O

o

X

F

f(w 
 u) = fw 
 u; �(w 
 u) = �Lie

�

(w)
 u� w 
 u:

Fun
tor 
 : �(D

X

)! �

R

(D

X

) is an equivalen
e of 
ategories.

I prefer to use a slightly di�erent des
ription of 
. Consider the module




D

X

= 
(D

X

) = 


O

o

X

D

X

.

It has two di�erent stru
tures of a right D

X

-module { one as 
( ), and another from the endomorphism

of left D

X

-module D

X

, whi
h are given by right multipli
ations. It is easy to 
he
k that there exists a

unique involution v of




D

X

, whi
h inter
hanges these two stru
tures of right D

X

-module and is identi
al

on 
 �




D

X

. By de�nition,


(F ) =




D

X

O

D

X

F:
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The inverse fun
tion 


�1

: �

R

(D

X

) ! �(D

X

) is given by multipli
ation on the module D




X

=

D

X

O

o

X




�1

= Hom

D

X

(




d

X

; D

X

), whi
h has two stru
tures of left D-module.

We will work with left D-modules but remember that we 
an go freely to right D-modules and ba
k.

5. Inverse image of D-modules.

Let � : Y ! X be a morphism of algebrai
 varieties.

Motivation. We 
an lift a fun
tion from X to Y . If they satisfy some system of equations S, then their

images also would satisfy some system of equations S

0

. Is it possible to des
ribe this system?

It turns out that we 
an do some algebrai
 version of this. Namely, I will des
ribe a fun
tor

�

�

: �(D

X

) �! �(D

Y

):

First do it lo
ally, i.e., suppose X and Y are aÆne, and D

X

-module is given by a D

X

= D(X)-module

M . Then put

�

�

(M) = O

y

O

o

X

M

and de�ne the a
tion of D

Y

on �

�

(M) by

(*) f

0

(f 
m) = f

0

f 
m; �(f 
m) = �f 
m+ f(

X

i

�(x

i

)
 �

i

m);

where (x

i

; �

i

) is a 
oordinate system in D

X

. It is easy to 
he
k that this de�nition is 
orre
t. Intuitively,

it is a version of the 
hain rule.

Now we 
an write the general de�nition

�

�

(F ) = O

Y

O

��(o

X

)

�

�

(F );

where �

�

is an inverse image in the 
ategory of sheaves and the a
tion of D

Y

is given by (*).

Again, it is 
onvenient to rewrite this de�nition slightly. Put

D

Y!X

= �

�

(D

X

):

D

Y!X

is a sheaf on Y , whi
h is D

Y

� �

�

(D

X

)-bimodule. By de�nition

�

�

(F ) = D

Y!X

O

��(D

X

)

�

�

(F ):

Note that as an O

Y

-module �

�

(F ) 
oin
ides with an inverse image �

�

(F ), but I would like to save

notation �

�

for other 
ase.

Lemma. If � : Y ! Z is a morphism we have (��)

�

= �

�

�

�

.



4

6. Dire
t image of D-modules.

Motivation. We 
an integrate fun
tions on Y (say with 
ompa
t support) to get fun
tions on X . How

does this a�e
t systems of equations they satisfy?

First of all, we should realize that there is no natural way of integrating fun
tions, but there is a

natural way of integrating distributions (namely h

R

E; �i = hE; �

�

(�)i). Hen
e we should try to 
onstru
t

a fun
tor �

+

: �

R

(D

Y

) �! �

R

(D

X

).

First 
onsider a lo
al 
ase. Then we 
an put �

+

(N) = N

D

Y


D

Y!X

, where N is a right D

Y

-module.

Or, in terms of sheaves,

�

+

(H) = �

�

(H

D

Y


D

Y!X

);

where �

�

is the dire
t image in the 
ategory of sheaves.

Sin
e we 
an freely go from left D-modules to right D-modules and ba
k, we 
an rewrite this fun
tor

for left D-modules. Sin
e I prefer to work with left D-modules, let us do it.

Put D

X!Y

= 
(�

�

(D




X

)) = 


Y ��(o

X

)





�1

X

). This is a sheaf on Y , whi
h is �

�

(D

X

)�D

Y

-bimodule.

Now we de�ne the fun
tor �

+

: �(D

Y

) �! �(D

X

) by (*)

(*) �

+

(H) = �

�

(D

X Y

O

D

Y

H):

Now let us try to handle the general 
ase (X and Y are not aÆne). Then we immediately run into

trouble. The matter is, that formula (*) des
ribes �

+

as a 
omposition of left exa
t fun
tor �

�

and right

exa
t fun
tor D

X Y


, and this 
omposition apparently does not make mu
h sense (formally, it a�e
ts

the 
omposition rule, (��)

+

6= �

+

�

+

).

De�nition (*) makes some sense for aÆne morphism � [when �

�1

(aÆne open subset) is aÆne℄, sin
e

in this 
ase �

�

is an exa
t fun
tor. But in order to study the general 
ase, we should work in derived


ategories.

7. D-
omplexes and fun
tors.

Hen
eforth I assume all algebrai
 varieties to be quasiproje
tive.

Proposition. Category �(D

X

) has enough inje
tive and lo
ally proje
tive obje
ts. It has a �nite homo-

logi
al dimensin (we will see that it is � 2dimX).

De�nition. D

X

-
omplex is a bounded 
omplex of D

X

-modules. Corresponding derived 
ategory, whi
h


onsists of D

X

-
omplexes up to quasi-isomorphisms we denote by D(D

X

).

D

X

-
omplexes I will often denote by

_

F ;

_

H; : : : . We de�ne fun
tors


 : D(D

X

)

�

�! D

R

(D

X

)
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L�

�

: D(D

X

) �! D(D

Y

), for � : Y ! X, by

L�

�

(

_

F ) = D

Y!X

L

O

��(D

X

)

�

�

(

_

F ):

�

�

: D(D

Y

)! D(D

X

) by

�

�

(

_

H) = R�

�

(D

X Y

L

O

D

Y

_

H):

Proposition. L(� Æ �)

�

= L�

�

Æ L�

�

(��)

�

= �

�

�

�

:

Usually we will de
ompose � as a produ
t of a lo
ally 
losed imbedding and a smooth morphism. So

let us 
onsider these 
ases in more detail.

8. Case of a 
losed imbedding i : Y ! X.

Let us de�ne fun
tors

i

+

: �(D

Y

) �! �(D

X

) by i

+

= i

�

(D

X!Y




D

Y

H)

i

+

: �(D

X

) �! �(D

Y

) by i

+

(F ) = Hom

i

�

D

X

(D

X Y

0

i

�

(F )).

Lemma. i

+

is left adjoint to i

+

; i

+

is exa
t and i

+

is left exa
t.

Ri

+

= i

�

0

Ri

+

= Li

�

[dim Y � dimX ℄:

It turns out that it is quite 
onvenient to use shifted fun
tor L�

�

[dim Y � dim X ℄ whi
h in the 
ase

of imbedding 
oin
ides with Ri

+

. So I put

�

!

= L�

�

[dim Y � dim X ℄ : D(D

X

) �! D[D

Y

℄:

For any 
losed subset Z � X I denote by �

Z

(X) the full sub
ategory of �(X), 
onsisting of D

X

-modules

F su
h that supp F � Z.

Theorem (Kashiwara). Let i : Y ! X be a 
losed imbedding. Then fun
tors i

+

: �(D

Y

) ! �

Y

(D

X

)

and i

+

: �

Y

(D

X

)! �(D

Y

) are inverse and de�ne an equivalen
e of 
ategories.

This simple te
hni
al statement is very important and very useful.

9. D-modules on singular varieites.

Let Z be a singular variety. Then the algebra D

Z


an be very bad, so it does not make sense to study

modules over D

Z

. But using Kashiwara's theorem we 
an de�ne 
ategory of D-modules on Z (whi
h we

denote by �(D

Z

) though it is not 
ategory of D

Z

-modules) in the following way.
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Let us realize Z as a 
losed subvariety of a nonsingular variety X and put by de�nition

�(D

Z

) = �

Z

(D

X

):

Even if we 
annot realize Z as a subvariety, we 
an do it lo
ally. Now, Kashiwara's theorem implies,

that at least lo
ally, �(D

Z

) is 
orre
tly de�ned. Glueing pie
es together we 
an 
onstru
t �(D

Z

) globally.

We de�ne D(D

Z

) as derived 
ategory of �(D

Z

). If Z is a 
losed subset of X , one 
an show that

D(D

Z

) = D

Z

(D

X

) = f

_

F 2 D(D

X

)

�

�

supp

_

F � Z; i:e:;

_

F

�

�

XnZ

= 0g:

Later I will dis
uss only nonsingular varieties, but all results 
an be transferred to the singular 
ase.

10. Proof of Kashiwara's theorem.

We should prove that natural morphisms of fun
tors

Id

�(D

Y

)

�! i

+

i

+

; i

+

i

+

�! Id

�

Y

(D

X

)

are isomorphisms. It is suÆ
ient to 
he
k lo
ally, so I 
an assume that X is aÆne, Y is given by equations

x

1

; : : : ; x

`

. Using indu
tion by ` I 
an assume that Y is given by one equation x. Lo
ally I 
an 
hoose a

ve
tor �eld � su
h that �(x) = 1, i.e., [�; x℄ = 1.

If F 2 �

Y

(D

X

), then supp F � Y and sin
e F is quasi
oherent, any se
tion � 2 F is annihilated by

large powers of x.

Consider the operator I = x� and put F

i

= f�jI� = i�g. Then it is 
lear that x : F

i

! F

i+1

,

� : F

i

! F

i�1

, x� : F

i

! F

i

is an isomorphism for i < 0, �x = x� + 1 is an isomorphism for i < �1.

Hen
e x : F

i

! F

i+1

and � : F

i+1

! F

i

are isomorphisms for i < �1. If � 2 F and x� = 0, then

x�� = �x� � � = ��, i.e., � 2 F

�1

. By indu
tion on k it is easy to prove, that if x

k

� = 0, then

� 2 F

�1

� : : :�F

�k

. Hen
e F =

1

M

i=1

F

�1

= k[�℄

O

k

F

�1

and Ker (x; F ) = F

�1

. This is the statement of

Kashiwara's theorem.
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Le
ture 2.

1. Some appli
ations of Kashiwara's theorem.

a) Stru
ture of O-
oherent D

X

-modules.

We say that D

X

-module F is O-
oherent if lo
ally it is a �nitely generated O

X

-module.

Proposition. O-
oherent D

X

-module F is lo
ally free as O

X

-module.

Proof. Let x 2 X , m

X


orresponding maximal ideal of O

X

. The spa
e F

x

= F=m

x

F is 
alled the �ber

of F at x. Sin
e F is 
oherent as O

X

-module, it is suÆ
ient to 
he
k that dim F

x

is a lo
ally 
onstant

fun
tion on X . This we 
an 
he
k for restri
tion of F on any nonsingular 
urve C � X . Hen
e we 
an

repla
e X by C and F by i

�

C!X

(F ), and assume that X is a 
urve.

If F has a torsion at a point x, then F 
ontains a nonzero subsheaf (i

x

)

+

i

+

x

(F ), whi
h is not O-
oherent.

Hen
e F has no torsion, and, sin
e X is a 
urve, F is lo
ally free. Q.E.D.

Re
all that lo
ally free O

X

-modules F naturally 
orrespond to the algebrai
 ve
tor bundles E on X

(F is a sheaf of se
tions of E). A
tion of D

X

on F de�nes a 
onne
tion on E, by r

�

(�) = ��. Sin
e

[r

�

;r

�

℄ = r

[�;�℄

this 
onne
tion is 
at.

This gives an equivalen
e of 
ategories

f0� 
oherent D

X

�modulesg =

�

algebrai
 ve
tor bundles on X

with 
at 
onne
tion

:

b) D-modules on proje
tive spa
e.

Let V = k

n

be an aÆne spa
e over k, V

�

= V n f0g, X = P(V )-
orresponding proje
tive spa
e,

pr : V

�

! P(V ) the natural proje
tion.

Theorem. Fun
tor of global se
tions � : �(D

X

) ! Ve
t, F ! �(X;F ) is exa
t, and ea
h D

X

-module

F is generated by its global se
tions (i.e., D

X


 �(F )! F is an epimorphism).

Remark. Note that �(F ) = Hom

�(D

X

)

(D

X

; F ). Hen
e theorem simply means that D

X

is a proje
tive

module and is a generator of 
ategory �(D

X

).

Proof. For any D

X

-module F put F

�

= pr

�

(F ) 2 �(D

V

�

). This sheaf 
arries a natural a
tion of the

homotety group k

�

and hen
e the spa
e of se
tions �(F

�

) is a graded spa
e

1

M

n=�1

�(F

�

)

n

. It is 
lear

that �(F ) = �(F

�

)

0

{ zero 
omponent. If we denote by I 2 D

V

the Euler operator

P

x

i

�

i

, whi
h is an

in�nitesimal generator of the group k

�

, then it de�nes a grading on �(F

�

), i.e., its a
tion on �(F

�

)

n

is

multipli
ation by n.

Fun
tor F ! F

�

is exa
t, hen
e all nonexa
tness 
an 
ome only from the fun
tor �

V

�

. Let us

de
ompose it as �

V

�

= �

V

Æ j

+

: �(D

V

�

) ! �(D

V

) ! Ve
t, where j : V

�

,! V . Sin
e V is aÆne,

fun
tor �

V

is exa
t.
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Let 0! F

1

! F

2

! F

3

! 0 be an exa
t sequen
e of D

X

-modules. Then the sequen
e 0! j

+

(F

�

1

)!

j

+

(F

�

2

) ! j

+

(F

�

3

) ! 0 is exa
t when restri
ted to V

�

, hen
e its 
ohomologies are sheaves on V ,


on
entrated at 0.

By Kashiwara's theorem ea
h sheaf 
on
entrated at 0 is a dire
t sum of many 
opies of a standard

D

V

-module � = P Æ 1[�

1

; : : : ; �

k

℄Æ, where x

i

Æ = 0. This implies that eigenvalues of I on �(�) are equal

�n;�n� 1;�n� 2; : : :�. Hen
e the sequen
e

0 �! �(F

�

1

)

o

�! �(F

�

2

)

o

�! �(F

�

3

)

o

�! 0

is exa
t, sin
e � = �

V

is an exa
t fun
tor and sheaves, 
on
entrated at 0, do not a�e
t 0-graded part.

The statement, that any D

X

-module is generated by its global se
tions 
an be redu
ed, using exa
tness

of �, to the statement F 6= 0 =) �(F ) 6= 0. This is proved in the same way as exa
tness of �.

2. Case of an open imbedding.

Let j : V ! X be an open imbedding. Then j

�

is an exa
t fun
tor of restri
tion, i.e., j

!

= j

�

, and

j

+

is the usual fun
tor of dire
t image in 
ategory of sheaves. Its derived fun
tor Rj

+

equals j

�

. In

parti
ular 
ase when j is an aÆne imbedding the fun
tor j

+

is exa
t, i.e., j

�

= j

+

.

Fun
tor j

�

is left adjoint to j

+

and j

�

j

+

= Id

U

. For arbitrary D

X

-module F the kernel and 
okernel

of the morphism F

�

�! j

+

j

�

F are supported on the 
losed subset Z = X n U .

Let us 
onsider the fun
tor �

Z

: �(D

X

) �! �(D

X

) given by �

Z

(F ) = f� 2 F jsupp � � Zg. Then we

have an exa
t sequen
e

0 �! �

Z

(F ) �! F

�

�! j

+

j

�

F:

If F is an inje
tive D

X

-module, � is onto. Hen
e in derived 
ategory we always have an exa
t triangle

(*) R�

Z

(

_

F ) �!

_

F �! j

�

j

!

_

F :

We will 
all this triangle a de
omposition of

_

F with respe
t to (U;Z).

Denote by D

Z

(D

X

) the full sub
ategory of D(D

X

), 
onsisting of D

X

-
omplexes

_

F su
h that

_

F j

U

= 0.

Then (*) implies that the natural in
lusion D(�

Z

(D

X

))! D

Z

(D

X

) is an equivalen
e of 
ategories.

3. Base 
hange.

Theorem. Consider Cartesian square

Z

��

�! Y

?

?

y

��

?

?

y

�

S

�

�! X

i.e., Z = Y �

X

S.

Then fun
tors �

!

�

�

and ��

�

��

!

: D(D

Y

) �! D(D

S

) are naturally isomorphi
.
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Corollary. If Z = ;, i.e., �(S) \ �(Y ) = ;, then �

!

�

�

= 0.

Sket
h of the proof. It is suÆ
ient to 
onsider 2 
ases

i) � is a proje
tion T �X ! X

ii) � is a 
losed imbedding.

The 
ase (i) is straightforward. In (ii) let U be a 
omplement of S,

V = �

�1

(U) = Y n Z; j : U ! X;

�

j : V ! Y:

We have natural exa
t triangles

��

�

��

!

_

H �!

_

H �! j

�

�j �

!

_

H

�

�

�

!

_

F �!

_

F �! j

�

j

!

_

F:

Put

_

F = �

�

_

H . Then sin
e we 
learly have a base 
hange for an open subset U , we have �

�

(j

�

�j �

!

H)

�

=

j

�

j

!

_

F . Hen
e, sin
e �

�

is an exa
t fun
tor in derived 
ategories, we have

�

�

(��

�

��

!

_

H)

�

=

�

�

�

!

_

F :

But �

�

��

�

�

=

�

�

��

�

, i.e., �

�

(��

�

��

!

H)

�

=

�

�

(�

!

�

�

H). By Kashiwara's theorem we 
an remove �

�

, whi
h gives

us the base 
hange.

4. Let S = fX =

n

[

i=0

X

i

g be a smooth strati�
ation of X , i.e., ea
h X

i

is a lo
ally 
losed nonsingular

subvariety, andX

o

[X

i

[: : :[X

j

is 
losed for ea
h j. For ea
h i 
onsider the fun
tor S

i

: D(D

X

)! D(D

X

),

where S

i

= r

I

�

r

!

i

, r

i

: X

i

! X . Then ea
hD

X

-
omplex

_

F is glued from S

i

(

_

F ), i.e., we haveD

X

-
omplexes

_

F

i

and exa
t triangles

_

F

i�1

�!

_

F

i

�! S

i

(

_

F ) su
h that

_

F

�1

= 0;

_

F

n

=

_

F .

We will 
all fS

i

(

_

F )g the strati�
ation of

_

F with a

ordan
e to S, and D

X

i


omplexes r

!

i

(

_

F ) 
omponents

of the strati�
ation.

5. Case of smooth (submersive) morphism � : Y ! X.

For any smooth variety Y let us denote by DR

Y

the de Rham 
omplex 


0

Y

! 


1

Y

! : : : ! 


k

Y

of sheaves on Y . More generally, if H is a D

Y

-module, we 
an by the same formulae de�ne de Rham


omplex DR

Y

(H) with 
omponents DR

Y

(H)

i

= 


i

Y




o

Y

H .

It is 
lear that DR

Y

(D

Y

) is a 
omplex of right D

Y

-modules. Now, let � : Y ! X be a smooth

morphism. Denote by 


i

Y=X

sheaves of relative i-forms on Y . In the same way as earlier we 
an de�ne

the relative de Rham 
omplex DR

Y=X

(H) for any D

Y

-module H .
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Lemma. DR

Y=X

(D

Y

)[k℄ = D

X Y

as a 
omplex of right D

Y

-modules.

Hen
e we 
an 
al
ulate the dire
t image fun
tor �

�

using this 
omplex:

�

�

(H) = R�

�

(D

X Y

L

O

D

Y

H) = R�

�

(DR

Y=X

(D

Y

)

O

D

Y

H)[k℄ = R�

�

(DR

Y=X

(H)[k℄:

The only trouble here is that this formula de�nes �

�

(H) only as a 
omplex of O-modules. A
tion of

ve
tor �elds in general is des
ribed by quite unpleasant formulae. In the 
ase when � is a proje
tion

� : Y = T �X ! X , a
tion of ve
tor �elds is given by their a
tion on H .

6. Coherent D

X

-modules and D

X

-
omplexes.

D

X

-module F is 
alled 
oherent if lo
ally it is �nitely generated. We'll see that lo
ally D

X

is a

noetherian ring, hen
e any submodule of a 
oherent D

X

-module F is 
oherent.

Any D

X

-module F is a union of 
oherent O

X

-submodules L

�

. If we put F

�

= D

X

L

�

we see that F

is a union of 
oherent D

X

-submodules F

�

. It implies:

(i) Any 
oherent D

X

-module F is generated by a 
oherent O

X

-submodule F

o

.

(ii) Extension prin
iple. If H is a D

X

-module, U � X an open subset, F � H j

U

{ a 
oherent D

U

-

submodule, then then exists a 
oherent D

X

-submodule H

0

� H su
h that H

0

j

U

= F . Category of


oherent D

X

-modules I denote by �


oh

(D

X

).

D

X

-
omplex

_

F is 
alled 
oherent if all its homology sheaves H

i

(

_

F ) are 
oherent D

X

-modules. The

full sub
ategory of D(D

X

) 
onsisting of 
oherent D

X

-
omplexes I will denote by D


oh

(D

X

).

Properties of 
oherent D

X

-modules imply

Lemma. The natural morphism D(�


oh

(D

X

)) �! D


oh

(D

X

) is an equivalen
e of 
ategories.

7. Dire
t image of proper morphism.

Proposition. Let � : Y ! X be a proper morphism. Then �

�

D


oh

(D

Y

) � D


oh

(D

X

).

Proof. If � is a 
losed imbedding, proposition follows from Kashiwara's theorem. So 
onsider the 
ase

when � : Y = P�X �! X is a proje
tion, where P is a proje
tive spa
e.

We 
an assume X to be aÆne. Then by 1(b) D

Y

is a generator in �


oh

(D

Y

) and hen
e it is suÆ
ient

to prove that �

�

(D

Y

) � D


oh

(D

X

). But

�

�

(D

Y

) = R�

�

(D

X Y

O

D

Y

D

Y

) = R�

�

(D

X

O

k




P

)

= D

X

O

k

R�

�

(


P

) = D

X

[�dim P℄ 2 D


oh

(D

X

):
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8. Good �ltration and singular support of a D-module.

Consider the �ltration D

0

X

� D

1

X

� : : : of D

X

by order of an operator. Ea
h D

i

X

is a 
oherent

O-module, D

0

X

= O

X

and D

i

�D

j

� D

i+j

.

Let � =

L

1

i=0

�

i

; �

i

= D

i

=D

i�1

be the asso
iated graded sheaf of algebras. Then � is 
ommutative

and naturally isomorphi
 to the algebra of regular fun
tions on the 
otangent bundle T

�

(X).

Let F be a D

X

-module. A �ltration on F is a �ltration � = fF

o

� : : : F

k

� : : : g of F by O-

submodules su
h that F = [F

j

, D

i

F

j

� F

i+j

. The asso
iated graded module F

�

= �F

i

=F

i�1

has a

natural stru
ture of �-module.

We say that �ltration � is good if F

�

is a 
oherent �-module. An equivalent 
ondition is

(*) Ea
h F

j

is a 
oherent O

X

�module and D

1

F

j

= F

j+1

for large j:

It is 
lear that D

X

-module F with a good �ltration is 
oherent. Conversely, if F is a 
oherent D

X

-

module, then it is generated by a 
oherent O

X

-module F

o

and we 
an de�ne a good �ltration � on F by

F

j

= D

j

F

o

.

Let F be a 
oherent D

X

-module. Choose a good �ltration � on F and denote by F

�

the 
orresponding

�-module. As a 
oherent �-module F

�

has a support supp(F

�

) � T

�

(X) (this support is a 
losed

subvariety whi
h is de�ned by the ideal J

F

� �, equal to the annulator of F

�

in �).

Proposition. Supp(F

�

) depends only on F and not on a parti
ular 
hoi
e of a �ltration �.

We will denote this supp(F

�

) as S.S.(F ) � T

�

X and 
all it the singular support or the 
hara
teristi


variety of F .

Proof. Let �;	 be two good �ltrations of F . We say that � and 	 are neighbour if F

i+1

�

� F

i

	

� F

i

�

for

all i. For neighbour �ltrations 
onsider the natural morphism F

��

�! F

�	

and in
lude it in the exa
t

sequen
e

0 �! K �! F

��

�! F

�	

�! C �! 0:

It is easy to 
he
k that �-modules K and C are isomorphi
 (only the grading is shifted by 1). This proves

the proposition for neighbour �ltrations.

If � and 	 are arbitrary good �ltrations, we de�ne the sequen
e of �ltrations �

k

by F

i

�

k

= F

i

�

+F

i+k

	

.

It is 
lear that �

k

and �

k+1

are neighbour, �

k

= � for k � 0 and �

k

= 	 shifted on k for k � 0. This

proves the proposition.

Remarks. 1. Let F be a D

K

-module with a good �ltration �, H � F a D

X

-submodule. Consider indu
ed

�ltrations on H and F=H . Then we have an exa
t sequen
e 0! H

�

! F

�

! F=H

�

! 0. In parti
ular,

�ltration on H is good, i.e., H is D

X

-
oherent. Also we have

S.S.F = S.S.H [ S.S.(F=H):
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Moreover, let k = dim S.S.F . Then we 
an assign to ea
h k-dimensional 
omponent W of S.S.F some

multipli
ity (the multipli
ity of supp F

�

at W ; the proposition above really proves that this multipli
ity

is well de�ned). Put m

k

(F ) = sum of multipli
ities of all k-dimensional 
omponents of S.S.F . Then

m

k

(F ) = m

k

(H) +m

k

(F=H):

2. It is easy to see that D

X

-module F is O-
oherent if and only if S.S.F � X � T

�

X .

9. Singular support and fun
tors.

Usually it is very diÆ
ult to des
ribe the e�e
t of fun
tors �

+

; �

�

on singular support. (For instan
e,

these fun
tors usually do not preserve D-
oheren
y.) But there are 2 
ases when it 
an be done.

a) Let i : Y ! X be a 
losed imbedding, H 2 �(D

Y

). Then i

+

(H) is 
oherent if and only if H is 
oherent

and

S.S.(i

+

H) = f(x; �)jx 2 Y; (x; Pr

T

�

(X)!T

�

(Y )

�) 2 S.S.Hg:

b) Let � : Y ! X be a smooth (i.e., submersive) morphism, F 2 �(D

X

). Then �

�

(F ) is 
oherent if and

only if F is 
oherent and

S.S.(�

�

F ) = f(y; �)j� = d

�

�

T

�

(�y)!T

�

(y)

�; (�(y); �) 2 S.S.Fg:

Let us note that in these two 
ases one important 
hara
teristi
 of S.S. is preserved. Namely, if we

de�ne the defe
t of F as def(F ) = dim S.S.F � dim X , then the defe
t is preserved.

10. Theorem on defe
t.

Theorem. Let F 6= 0 be a 
oherent D

X

-module. Then def(F ) � 0, i.e., dim S.S.(F ) � dim X.

Proof. Suppose that dim S.S.(F ) < n = dim X . Then F is supported on some proper 
losed subset

Z � X . Restri
ting to an appropriate open subset we 
an assume that Z is not empty and nonsingular. By

Kashiwara's theorem F = i

+

(H), where i : Z ! X , H be a 
oherent D

Z

-module. Then d(F ) = d(H) < 0

and we have a 
ontradi
tion by indu
tion on dim X .

11. Holonomi
 D-modules.

Coherent D

X

-module F is 
alled holonomi
 if def(F ) � 0, i.e., dim S.S.(F ) � dim X , i.e., F has

\minimal possible size". Holonomi
 modules will play a 
entral role in our dis
ussion.

Example. O-
oherent D-modules are holonomi
. The full sub
ategory of �


oh

(D

X

), 
onsisting of holo-

nomi
 D

X

-modules I will denote by Hol(D

X

).
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Proposition. a) Sub-
ategory Hol is 
losed with respe
t to subquotients and extensions.

b) Ea
h holonomi
 D

X

-module has a �nite length.


) If F is a holonomi
 D

X

-module, then there exists an open dense subset U � X su
h that F jU is

O-
oherent D

U

-module.

Proof. a) and b) easily follow from Remark 1 in 8. Indeed if n = dim X , then m

n

(H) is an additive


hara
teristi
 on subquotients of F whi
h is stri
tly positive by the theorem on defe
t. Hen
e F has a

�nite length. Another proof is based on the existen
e of a 
ontravariant duality D : Hol! Hol, su
h that

D

2

= id

Hol

, whi
h will be proved next time. This duality implies that F satis�es together as
ending and

des
ending 
hain 
onditions, i.e., F has a �nite length.

In the proof of 
) put S = S.S.(F ) nX . Sin
e F

�

is a graded �-module, S is invariant with respe
t to

homotety in �bers of T

�

X . It means that proje
tion p : T

�

X ! X has at least 1-dimensional �bers on

S. Hen
e dim p(S) < dim S � dim X . After repla
ing X by a suitable open subset U � X n p(S) we 
an

assume that S = ;, i.e., S.S.F � X , i.e., F is O-
oherent.
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1. Main theorem A.

We 
all a D

X

-
omplex

_

F holonomi
 if all its 
ohomology sheaves H

i

(

_

F ) are holonomi
 D

X

-modules.

The full sub
ategory of D(D

X

) 
onsisting of holonomi
 D

X

-
omplexes we denote by D

hol

(D

X

).

Remark. I do not know whether the natural in
lusion d(Hol(D

X

)) ! D

hol

(D

X

) is an equivalen
e of


ategories. In a sense, I do not 
are.

Main theorem A. Let � : Y ! X be a morphism of algebrai
 varieties. Then

�

�

D

hol

(D

Y

) � D

hol

(D

X

); �

!

D

hol

(D

X

) � D

hol

(D

Y

):

The proof of the theorem is based on the following

Key lemma. Let i : Y ! X be a lo
ally 
losed imbedding,

_

H � D

hol

(D

Y

). Then i

�

(

_

H) � D

hol

(D

X

).

We will prove the lemma in the subse
tion 8.

2. Proof of theorem A for �

!

.

It is suÆ
ient to 
he
k 2 
ases

a) � is a smooth morphism (e.g., � is a proje
tion � : Y = T �X ! X). In this 
ase �

�

is exa
t and

�

�

(Hol) � Hol by 2.9, i.e., �

!

TD

hol

(D

X

) � D

hol

(D

Y

).

b) i : Y ! X is a 
losed imbedding. Let j : U = X n Y ! X be the imbedding of the 
omplementary

open set. For

_

F 2 D

hol

(D

X

) 
onsider the exa
t triangle

i

�

(i

!

_

F ) �!

_

F �! j

�

(

_

F jU):

By the key lemma ki

�

(

_

F jU) is a holonomi
 D

X

-
omplex. Hen
e i

�

(i

!

_

F ) is also holonomi
. Now sin
e

the fun
tor i

�

is exa
t and preserves the defe
t of a module, we 
an 
on
lude that i

!

_

F is a holonomi


D

Y

-
omplex.

3. Criteria of holonomi
ity.

Criterion. Let

_

F be a D

X

-
omplex. Then

_

F is holonomi
 i�

_

F is 
oherent and for any point x 2 X the

�ber (i

!

x

_

F ) of F at x is �nite dimensional.

Proof. Dire
tion \only i�" follows from 2. To prove \if" dire
tion we need some general

Lemma. Let F be a 
oherent D

X

-module. Then there exists an open dense subset U � X su
h that F jU

is lo
ally free as O

U

-module.

Proof. We assume X to be aÆne and irredu
ible. Consider a good �ltration � on F and the asso
iated

�-module F

�

. Sin
e F

�

is a �nitely generated �-module and � is a �nitely generated algebra over O

X

,

general results of 
ommutative algebra imply that we 
an repla
eX by an open dense aÆne subset U � X
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su
h that F

�

jU is free as O

U

-module (see EGA IV, 6.9.2). Sin
e F

�

= �F

n

�

= �(F

n

=F

n�1

), all modules

F

n

�

are proje
tive as O

U

-module. This proves the lemma.

Now let us prove that a 
oherent D

X

-
omplex

_

F with �nite dimensional �bers is holonomi
.

We use indu
tion on dim S = supp

_

F . Choose an open nonsingular subvariety Y � S su
h that

dim(S n Y ) < dim S and put

_

H = i

!

Y

_

F � D(D

Y

). Then

_

H is 
oherent and hen
e, repla
ing Y by a

suitable open dense subset, I 
an assume that all 
ohomology sheaves of

_

H are lo
ally free as O

Y

-modules.

At ea
h point y 2 Y the �ber i

!

Y

_

H = i

!

Y

_

F is �nite dimensional. Sin
e i

!

y

up to a shift is equal to Ri

�

y

,

and all 
ohomology sheaves of

_

H are i

�

y

a
y
li
 (sin
e they are O-free), it simply means that �bers of all

these sheaves are �nite dimensional, i.e., these sheaves are O-
oherent. Hen
e

_

H is holonomi
 and by the

key lemma i

�

(

_

H) is also holonomi
.

Repla
ing

_

F by

_

F

0

= 
o
one (

_

F ! i

�

(

_

H)) we see that

_

F

0

is 
oherent, sin
e

_

F and i

�

(

_

H) are, and all

its �bres are �nite dimensional (they are 0 outside of S n Y and 
oin
ide with �bers of

_

F on S n Y , sin
e

by base 
hange i

!

x

i

�

(

_

H) = 0 for X =2 Y ). Sin
e dim supp

_

F

0

< dim S, we see by indu
tion that

_

F

0

is

holonomi
 and hen
e

_

F is holonomi
.

Remark. The proof above proves also the following

Criterion. A D

X

-
omplex

_

F is holonomi
 if and only if there exists a smooth strati�
ation S = fX =

UX

i

g of X su
h that all 
omponents (see 2.4) H

i

= r

!

i

_

F � D(D

X

i

) of the 
orresponding strati�
ation of

_

F are 0-
oherent (i.e., all their 
ohomology sheaves are 0-
oherent).

4. Proof of theorem A for �

�

.

Sin
e the 
ase of lo
ally 
losed imbedding is 
ontained in the key lemma, it is suÆ
ient to 
onsider

morphism � : Y = T �X ! X , where T is a 
omplete variety.

Let

_

H 2 D

hol

(D

Y

),

_

F = �

�

(

_

H) 2 D(D

X

). In order to prove that

_

F is holonomi
 we use 
riterion

>from 3. Sin
e � is proper,

_

F is 
oherent by 2.7. For any point x 2 X using base 
hange we have

i

!

x

_

F = (�

x

)

�

(i

!

T

x

_

H); where

T

x

= �

�1

(x) ' T; i

T

x

: T

x

�! Y and �

x

: T

x

�! x

are natural in
lusion and proje
tion. By 2., i

!

T

x

_

H is holonomi
. Sin
e �

x

is proper, it maps this 
omplex

into a 
oherent 
omplex, i.e., i

!

x

_

F is 
oherent, whi
h means �nite dimensional. QED

5. Theoremof J.E. Roos.

In order to prove the key lemma and introdu
e a duality on holonomi
 modules we need the following

important result, due to J.E. Roos, whi
h gives a 
onne
tion between S.S.F. and homologi
al properties

of F .

Consider the D

X

-module D




X

, des
ribed in 1.4, whi
h has a se
ond stru
ture of a left D

X

-module. For

any 
oherentD

X

-module F this stru
ture de�nes the stru
ture ofD-module on all sheavesExt

i

D

X

(F;D




X

).

Note that if F is not 
oherent, these sheaves are not quasi
oherent; we will not 
onsider this 
ase.
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Theorem. 0. F has a �nite resolution by lo
ally proje
tive D

X

-modules.

1. 
odim S.S.(Ext

i

D

X

(F;D




X

) � i.

2. If 
odim S.S.F = k, then

Ext

i

D

X

(F;D




X

) = 0 for i < k:

We postpone the proof of the theorem until 3.15.

Duality fun
tor.

Let us de�ne duality D : D


oh

(D

X

)

o

�! D


oh

(D

X

) by

D(

_

F ) = R Hom

D

X

(

_

F ;D




X

)[dim X ℄:

It means that we should repla
e

_

F by a 
omplex

_

P of lo
ally proje
tive 
oherent D-modules

_

P =

f�! P

�1

�! P

0

�! P

1

�! : : : g and put D

_

F = D

_

P , given by D

_

P

i

= �(P

�dim X�i

), where �P

j

=

Hom

D

X

(P

j

; D




X

).

Sin
e � � P ' P , we have DD = Id. Also by de�nition

H

i

(DF ) = Ext

dim X+i

D

X

(F;D




X

) for F 2 �


oh

(D

X

):

Corollary of J.E. Roos's theorem. Let F be a 
oherent D

X

-module. Then

a) 
omplex DF is 
on
entrated in degrees between - dim X and 0, i.e., H

i

(DF ) = 0 for i =2 [�dim X; 0℄.

b) F has a lo
ally proje
tive resolution of the length � dim X.


) F is holonomi
 i� DF is a module, i.e., H

i

(DF ) = 0 for i 6= 0.

d) D gives an autoduality D : Hol(D

X

)

0

�! Hol(D

X

), i.e., D is a 
ontravariant fun
tor, su
h that

DD = Id

Hol

. In parti
ular, D is exa
t.

Proof.

a) Put E

i

= Ext

i

D

X

(F;D




X

). By Roos's theorem def(E

i

) = dim S.S.E

i

�dim X = dim X�
odim S.S.E

i

is negative if i > dim X . Hen
e by theorem of defe
t E

i

= 0 for these i, and also for i < 0. This

means that H

i

(DF ) = 0 for i > 0 and for i < �dim X .

b) We should prove that lo
ally F has a proje
tive dimension � dim X . So we assume that X is aÆne

and F has a �nite proje
tive resolution

_

P . Dual 
omplex D

_

P 
onsists of proje
tive modules and by a)

is a
y
li
 in degrees i > 0. This means that D

_

P =

_

P

0

�

_

P

00

, where

_

P

0

i

= 0 for i > 0 and i < �dim X

and

_

P

00

is a
y
li
. Then D(

_

P

0

) gives a resolution of P of the length � dim X .


) If F is holonomi
, then H

i

(DF ) = Ext

dim X+i

D

X

(F;D




X

) = 0 for i < 0 by Roos's theorem, i.e., DF

is a module. Conversely, if F

0

= DF is a module, then F = DF

0

again is a module, i.e., F =

Ext

dim X

D

X

(F

0

; D




X

) and by Roos's theorem 
odim S.S.F � dim X , i.e., dim S.S.F � dim X .

d) follows from 
) and DD = Id.

Remark. 1. Property 
) was the reason for the normalization [dim X ℄ in the de�nition of duality D.

2. It is 
lear from d) that D

hol

(D

X

)) = D

hol

(D

X

).
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7. Extension lemma. Let F 2 D

X

, U must be an open subset of X and H � F

�

�

U

a holonomi


D

U

-module. Then there exists a holonomi
 D

X

-submodule F

0

� F , su
h that F

0

�

�

U

= H.

Proof. We 
an assume that F is 
oherent and F

�

�

U

= H (using extension prin
iple for 
oherent D-

modules). Consider D

X

-
omplex DF . It has 
ohomologies in dimensions � 0. Put G = H

0

(DF ),

F

0

= DG. By Roos's theorem dim S.S.G � dim X , i.e., G is a holonomi
 D

X

-module. Hen
e F

0

is also

harmoni
.

Natural morphism DF ! G de�nes a morphism F

0

= DG into F = DDF (one 
an 
he
k that this

morphism is an imbedding). It is 
lear that F

�

�

U

= H = F

0

�

�

U

. Hen
e F

0

(or image of F

0

in F ) is the

holonomi
 submodule we looked for.

8. Proof of the key lemma.

Step 1. For 
losed imbeddings the lemma follows from 2.9. Hen
e we 
an assume that i : Y ! X is an

open imbedding. Also we assume that X is aÆne and

_

H = H is a holonomi
 D-module, generated by

one se
tion u. Consider a 
overing of Y by aÆne open subsets Y

�

and repla
e H by its

�

Ce
h resolution,


onsisting of (i

�

)

+

(H

�

�

Y

�

). This tri
k redu
es the proof to the 
ase when Y is aÆne, i.e, Y has a form

Y = X

f

= fxjf(x) 6= 0g for some regular fun
tion f on X . In this 
ase i

�

= i

+

is an exa
t fun
tor.

Step 2. Thus we have an aÆne variety X , a fun
tion f 2 O(X), an open subset i : Y = X

f

,! X and a

holonomi
 D

Y

-module H , generated by a se
tion u, and we want to prove that D

X

-module F = i

+

(H)

is holonomi
.

The diÆ
ult point is to prove that F is 
oherent. What does it mean?

Sin
e global se
tions F (X) and H(Y ) 
oin
ide and D(Y ) =

S

0

n=�1

D(X)f

n

, we see that D

X

-module

F is generated by se
tions f

n

u for all n 2 Z. Hen
e what we really want to prove is the statement:

(*) for all n� 0 f

n

u 2 D(X)(f

n+1

u):

This follows immediately from the following

Lemma on b-fun
tions. There exists a polynomial in n operator d

0

2 D(X)[n℄ and a nonzero polyno-

mial b

0

2 k[n℄ su
h that

(**) d

0

(f

n+1

u) � b

0

(n) � (f

n

u):

Step 3. Proof of the lemma.

We extend our situation by extension of s
alars k �! K = k(�) { the �eld of rational fun
tions. Denote

by

b

Y ,

b

X extended varieties and de�ne D

b

Y

-module

b

H and D

b

X

-module

b

F by

b

H = f

�

� (K 


k

H)� and the stru
ture of D

b

Y

-module is given by

�(f

�

h) =

��(f)

f

� f

�

hh+ f

�

� �h, � a ve
tor �eld on Y ,

b

F = i

+

(

b

H).
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The D

b

Y

-module

b

H is holonomi
 and by extension lemma 7,

b

F 
ontains a holonomi
 D

b

Y

-module E

su
h that E

�

�

b

Y

=

b

H , i.e., the quotient D

b

Y

-module

b

F=E is 
on
entrated on X n Y .

Consider the se
tion bu = f

�

u 2 F . Sin
e its image in

b

F=E is 
on
entrated on X n Y , it is annihilated

by some power of f , i.e., f

n

0

� bu 2 E. Moreover, sin
e E is holonomi
, it has a �nite length, that implies

that for some n there exists d 2 D

b

X

su
h that d(f

n+1

bu) = f

n

eu. In other words, d(f

n+1+�

u) = f

n+�

u.

Sin
e we 
an everywhere repla
e � by �+ n we have proved the existen
e of d 2 D

e

X

su
h that

d(f

�+1

u) = f

�

u:

Now we 
an write d = d

o

=b

o

, d

o

2 D(X)[�℄; b

o

2 k[�℄. Then d

o

; b

o

satisfy (**).

Step 4. Now, when we know that F is 
oherent, let us prove that it is holonomi
.

First of all, lemma on b-fun
tions implies that

e

F = E (notations from the step 3), i.e.,

e

F is holonomi


and is generated by eu. It means that we 
an 
hoose operators d

1

; : : : ; d

`

2 D

e

X

su
h that the set

� � T

�

(

e

X) of 
ommon zeroes of their symbols �

1

; : : : ; �

`

2

e

� has dimension dim � � dim X .

For almost any n 2 Z we 
an substitute n 7�! �, and we obtain operators d

(n)

i

2 D

X

, their symbols

�

(n)

i

2 � and the set �

(n)

2 T

�

(X) of their 
ommon zeroes, su
h that dim � � dim X and d

(n)

i

(f

n

u) = 0.

These formulae imply that f

n

u lies in a holonomi
 submodule of F . Sin
e F is generated by f

n

u for any

n, whi
h is � 0, it implies that F is holonomi
.

9. Fun
tors �

!

; �

�

and their properties.

For any morphism � : Y ! X we de�ne fun
tors

�

!

: D

hol

(D

Y

) �! D

hol

(D

X

)

�

�

: D

hol

(D

X

) �! D

hol

(D

Y

) by

�

!

= D�

�

D

�

�

= D�

!

D:

This de�nition makes sense as �

�

and �

!

maps holonomi
 
omplexes into holonomi
.

Let us list some properties of �

!

and �

�

.

1. There exists the 
anoni
al morphism of fun
tors �

!

! �

�

whi
h is an isomorphism for proper �.

2. The fun
tor �

!

is left adjoint to �

!

.

3. The fun
tor �

�

is left adjoint to �

�

.

4, If � is smooth, �

!

= �

�

[2(dim Y � dim X)℄:

Let us 
omment on these properties. By de�nition 3. follows from 2.

Consider in more detail the 
ase when � = j : Y ! X is an open imbedding. In this 
ase j

�

= j

!

=

restri
tion on Y , i.e., j

�

is left adjoint to j

�

and hen
e j

!

= Dj

�

D is left adjoint to j

!

= Dj

�

D. For

any

_

H � D

hol

(D

Y

) the restri
tion of j

!

(

_

H) on Y 
oin
ides with

_

H , that gives a 
anoni
al morphism

j

!

_

H ! j

�

_

H , identi
al on Y .
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Thus it remains to prove properties 1 and 2 for proper � and 4 for smooth �. But these properties

have nothing to do with holonomi
ity, sin
e �

�

for proper � and �

!

for smooth � map 
oherent D-modules

into 
oherent. We will prove them in reasonable generality.

10. The duality theorem for a proper morphism.

Theorem. Let � : Y ! X be a proper morphism. Then on the 
ategory of 
oherent D-
omplexes

a) D�

�

= �

�

D and

b) �

�

is left adjoint to �

!

.

Proof of the statement a).

Case 1 � is a 
losed imbedding. Let P be a lo
ally proje
tive D

Y

-module. I 
laim that �

�

(P ) and

D�

�

D(P ) are D

X

-modules and they are 
anoni
ally isomorphi
. It is suÆ
ient to 
he
k this lo
ally, so

we 
an assume that P = D

Y

. In this 
ase it follows from the formula

R Hom

D

X

(D

X Y

; D

X

) = D

Y!X

[dim Y � dim X ℄:

Case 2 We 
all a D

Y

-module P elementary if it has the form P = D

Y




O

Y

�

�

(V ) for some lo
ally

free O

X

-module V . Considerations from 2.1b) show that ea
h D

Y

-module has a resolution, 
onsisting

from elementary modules. I 
laim that for elementary D

Y

-module P D

X

-
omplexes D�

�

(P )[�dim Y ℄

and �

�

(DP )[�dim Y ℄ are sheaves and they are 
anoni
ally isomorphi
.

This fa
t is lo
al, so I 
an assume P = D

Y

.

The 
laim follows from the formulae

R Hom

D

Y

(D

Y!X

) = D

X Y

[dim X � dim Y ℄

D

Y!X

= D

X




k

O

P

; D

X Y

= D

X




k




P

;

R�(O

P

) = k; R�(


P

) = k[�dim P℄:

This proves a).

11. Hom

D

X

and internal Hom.

Usually one 
an write homomorphisms of 2 sheaves as global se
tions of the sheaf of homomorphism.

Let us look, how to set it for D-modules.

Of 
ourse, we have for D

X

-modules F; F

0

the following formula

Hom

D

X

(F; F

0

) = �(Hom

D

X

(F; F

0

))

or, in derived 
ategory,

(*) RHom

D

X

(

_

F ;

_

F

0

) = R�(RHom

D

X

(F; F

0

)):

This formula, by the way, implies that

(**)

Homol. dim Hom

D

X

� Homol. dim � + Homol. dim Hom

D

X

� Homol. dim of �(O

X

) + dim X � 2 dim X:

But I want to write down RHom in terms of fun
tors, suitable for D-modules.
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De�nition. Fun
tors \!-tensor produ
t" � : D(D

X

) �D(D

X

) �! D(D

X

) and \internal Hom" Hom:

D


oh

(D

X

)

o

�D(D

X

) �! D(D

X

) are de�ned by

_

F4

�

_

H = 4

!

(

_

F �

_

H); Hom(

_

F ;

_

H) = D

_

F4

�

_

H

where 4 : X �! X �X is the diagonal imbedding, � is the exterior tensor produ
t over k.

Proposition. RHom

D

X

(

_

F ;

_

H) =

Z

X

Hom(

_

F ;

_

H) where

Z

X

: D(D

X

) �! D(Ve
t) is the dire
t image of

the proje
tion of X onto a point.

Proof. If F;H are D

X

-modules, we de�ne D

X

-module stru
ture on F 


O

x

H by Leibniz rule. It is 
lear

that 4

�

= L(


O

X

)[dim X ℄. (Left derived fun
tor.)

Consider the 
ase when F is 
oherent and lo
ally proje
tive. Then

Hom(F;H) = Hom

D

X

(F;D




X

)


O

X

H = Hom

D

X

(F;D




X




O

X

H):

Let us 
ompute 


X




D

X

Hom(F;H). We have




X




D

X

Hom(F;H) = 


X




D

X

Hom

D

X

(F;D




X




O

X

H)

Hom

D

X

(F;


X




D

X

(D




X




O

X

H)) = Hom

D

X

(F;H):

Applying this formula we see that

Z

X

Hom(F;H) = R�(


X




D

X

Hom(F;H) = R�(Hom

D

X

(F;H)) = RHom

D

X

(F;H):

General 
ase is proved using resolutions.

12. Proof of the duality theorem, statement b).

Using base 
hange it is easy to 
he
k the proje
tion formula

�

�

(

_

H4

�

�

!

_

F ) = �

�

(

_

H)4

�

_

F :

By duality theorem a) we 
an repla
e

_

H and �

�

_

H on dual 
omplexes and obtain

�

�

(Hom(

_

H; �

!

_

F )) = Hom(�

�

(

_

H);

_

F ):

Now, applying integral

R

, we have

RHom

D

Y

(

_

H; �

!

_

F ) = RHom

D

X

(�

�

(

_

H);

_

F );

QED.
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13. Fun
tor �

�

for smooth morphisms.

In order to �nish the proof of property 4 in 9 we should 
he
k, that for a smooth morphism � : Y ! X

and a 
oherent D

X

-
omplex

_

F one has

D�

!

_

F = �

!

D

_

F [�2k℄;

where k = dim Y � dim X .

As in 10. the proof 
an be redu
ed to the statement, that

RHom

D

Y

(D

Y!X

; D

Y

) = D

X Y

[�k℄:

This statement is proved by studying the resolution DR

Y=X

(D

Y

).

14. Classi�
ation of irredu
ible holonomi
 modules.

Theorem. Let i : Y ! X be an aÆne imbedding with Y -irredu
ible, E an irredu
ible O-
oherent D

Y

-

module. Put

i

!�

E = Im(i

!

E �! i

�

E):

a) i

!�

E is an irredu
ible holonomi
 module. It is a unique irredu
ible submodule of i

�

E (and unique

irredu
ible quotient of i

!

E). Also it 
an be 
hara
terized as the unique irredu
ible subquotient of i

�

E (or

i

!

E) whi
h restri
tion to Y is nonzero.

b) Any irredu
ible holonomi
 module F has a form i

�!

E for some aÆne imbedding i : Y ! X with

irredu
ible Y and irredu
ible O-
oherent D

Y

-module E.

We will denote this irredu
ible holonomi
 module by L(Y;E).


) L(Y;E) = L(Y

0

; E

0

) if and only if

�

Y =

�

Y

0

and restri
tions of E and E

0

to some subset U � Y \ Y

0

,

open in Y and in Y

0

are isomorphi
.

Remark. We also will use notation L(Y;E) for nonaÆne imbeddings i : Y ! X . In this 
ase we should

repla
e i

!

E and i

�

E by their zero 
omponents H

o

(i

!

E) and H

o

(i

�

E) = i

+

E, and denote by L(Y;E) the

image of i

!

E ! i

�

E.

Proof. a) A

ording to theorem A, D

X

-modules i

!

E and i

�

E are holonomi
, and hen
e have �nite lengths.

Let F be any irredu
ible submodule of i

�

E. Then sin
e Hom(F; i

�

E) = Hom(i

!

F;E) 6= 0 and i

!

F

is irredu
ible, as well as E, we see that E = i

!

F . Sin
e i

!

i

�

E = E, there exists only one irredu
ible

subquotient F of i

�

E with the property that i

!

F 6= 0 and in parti
ular, only one irredu
ible submodule.

Applying the same arguments to i

!

E we see that it has a unique irredu
ible quotient.

Further, Hom(i

!

E; i

�

E) = Hom(E; i

!

i

�

E) = k, and the same is true for Hom(i

!

E;F ), where F is a

unique irredu
ible submodule of i

�

E. This shows, that F = Im(i

!

E ! i

�

E).
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b) Let F be an irredu
ible holonomi
 D-module, Y an open aÆne subset of an irredu
ible 
omponent of

Supp F . Then sheaf E = i

!

(F ) is irredu
ible holonomi
 D

Y

-module and, de
reasing Y , we 
an assume it

is O-
oherent. Sin
e Hom(F; i

�

E) 6= 0, F = L(Y;E).


) The same proof that in a), b).

15. Sket
h of the proof of Roos's theorem.

Step 1. Let

_

F = f�! F

1

�! F

2

�! : : : �! F

k

�!g be a 
omplex of D

X

-modules, f�

1

g good �ltrations

on F

i

, whi
h are 
ompatible with d. Then it indu
es a 
omplex of 
oherent �-modules

_

F

�

= f0 �! F

1

�

�! : : : �! F

k

�

�! 0g:

Lemma. H

i

(

_

F )

�

is a subquotient of H

i

(

_

F

�

):

In parti
ular, if

_

F

�

is exa
t then

_

F is exa
t. Also S.S.H

i

(

_

F ) � Supp H

i

(

_

F

�

).

Step 2. The statement of theorem is lo
al, so I will assume X to be small. Let F be a D

X

-module, � a

good �ltration on F; F

�

the asso
iated graded �-mdoule.

Sin
e T

�

X is regular of dim T

�

X = 2n, I 
an �nd a free resolution

_

C = f0! C

�2n

! : : : C

o

! F

�

!

og of �-mdoule F

�

. Then it is easy to 
he
k that I 
an lift

_

C to a 
omplex of free D

X

-modules with a

good �ltration �

_

P = f0! P

�2n

! : : :! P

o

! F ! 0g su
h that

_

P

�

=

_

C. Then by step 1, P is a free

resolution of F .

Step 3. For any lo
ally proje
tive D

X

-module P , I denote by �P the D

X

-module Hom

D

X

(P;D




X

). By

de�nition, Ext(F;D




X

) are 
al
ulated as homologies of the 
omplex

�

_

P = f0 �! �P

0

�! �P

�1

�! : : : �! �P

�2n

g:

If we 
onsider the natural �ltration on D




X

and indu
ed �ltration on �

_

P , we will get pre
isely the 
omplex

�

_

C = fHom

�

(C

�i

;�)g. (Here I identify 


X

with O

X

.)

Now we should apply the fa
t, that the statement of the theorem is true for 
ommutative regular ring

�. Applying now step 1 we 
an dedu
e from this 
orresponding statement for D

X

-modules.
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4. Holonomi
 D-modules with regular singularities (RS-modules).

It turns out that 
lass of holonomi
 D-modules 
ontains a natural sub
lass, invariant with respe
t to

all operations - - sub
lass of RS-modules.

1. RS-modules on a 
urve.

First of all, let us 
onsider the 
lassi
al 
ase-modules with regular singularities on a 
urve.

Let C be a 
urve. Choose a nonsingular 
urve C

+

, whi
h 
ontains C as an open dense subset and a

point 
 2 C

+

nC (it plays a role of in�nity for C). Let t be a lo
al parameter at 
, � = �=�

t

, d = t� 2 D

C

+
.

We denote by D

�

C

the subsheaf of subalgebras of D

C

+
, generated by d and O

C

+
. It is 
lear that D

�

C

and

element d in quotient algebra D

�

=tD

�

do not depend on the 
hoi
e of a lo
al parameter t.

De�nition. a) Let F be an O-
oherent D

C

-module. We say that F has a RS at the point 
, if its dire
t

image F

+

= (i

C!C

+
)

+

F is a union of O-
oherent D

�

C

-submodules.

b) We say that an O-
oherent D

C

-module F is RS, if it has RS at all points on in�nity (i.e., at all

points 
 2

b

C n C of the nonsingular 
ompletion

b

C of the 
urve C).

De�nition. Let F be a holonomi
 D

C

-module on a 
urve C. We say that F is RS if its restri
tion to

an open dense subset U � C is O-
oherent RS D

C

-module.

Lemma. Let C;C

0

be irredu
ible 
urves � : C ! C

0

a dominant (non
onstant) morphism. Then D

C

0

-

module F is RS i� �

0

(F ) is RS; also D

C

-module H is RS i� �

�

(H) is RS.

2. RS D-modules.

De�nition. a) Let F be an O-
oherent D

X

-module. Then F is RS if its restri
tion to any 
urve is RS.

b) Let ?(Y;E) be an irredu
ible holonomi
 D

X

-module. We say that F is RS if E is RS O-
oherent

D

Y

-module.


) A holonomi
 D

X

-module F is RS if all its irredu
ible subquotients are RS.

d) A holonomi
 D

X

-
omplex

_

F is RS if all its 
ohomology sheaves are RS.

We denote by RS (D

X

) the full sub
ategory of Hol(D

X

), 
onsisting of RS-modules, and by D

RS

(D

X

)

the full sub
ategory of D(D

X

) 
onsisting of RS D

X

-
omplexes.

Proposition. The 
ategory RS(D

X

) is 
losed with respe
t to subquotients and extensions.

Proof. By de�nition.

3. Main Theorem B.

Main Theorem B.

a) Fun
tors D, �

�

, �

!

, �

!

,�

�

preserve sub
ategory

D

RS

(D) � D

Hol

(D):
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b) RS � 
riterion

An holonomi
 D

X

-
omplex

_

F is RS if and only if its restri
tion i

!

C

_

F to any 
urve C � X is RS.

Remark. It would be more natural to take b) as a de�nition of RS D

X

-
omplexes. But then it would

be diÆ
ult to prove \subquotient" properties, like lemma in 2. So we prefer the de�nition, whi
h makes

these properties trivial, and transfers all the diÆ
ulties into the \
ohomologi
al part", where we have an

appropriate ma
hinery to work with.

The proof of theorem B 
ontains two te
hni
al results both due to P. Deligne. The �rst des
ribes RS

property of O-
oherent D-modules without referring to 
urves. The se
ond proves that �

�

preserves RS

in a simplest 
ase.

4. D-modules with regular singularities along a divisor.

Let X be an algebrai
 variety. A regular extension of X is a nonsingular variety X

+

, 
ontaining X as

an open subset, su
h that X

�

= X

+

nX is the divisor with normal 
rossings. We denote by J � O

X

+

the ideal of X

�

; T

�

the subsheaf of ve
tor �elds preserving J and D

�

X

the subalgebra of D

X

+
, generated

by T

�

and O

X

+
.

Let F be an O-
oherent D

X

-module F

+

= (i

X!X

+
)

+

F .

Proposition (P. Deligne).. The following 
onditions are equivalent.

(i) F

+

is a union of O-
oherent D

�

X

submodules

(ii) For any extended 
urve

� : (C

+

; C) �! (X

+

; X) (i.e., � : C

+

! X

+

, su
h that

�(C) � X; �(
) 2 X

+

nX) F j

C

has RS at 
.

(iii) For ea
h irredu
ible 
omponent W of X

�

there is an extended 
urve � : (C

+

; C) �! (X

+

; X) whi
h

interse
ts WK transversally at 
 su
h that F j

C

has RS at 
.

Corollary. Suppose X

+

is a 
omplete regular extension of X, F and O-
oherent D

X

-module. Then F

is RS i� F

+

is a union of O-
oherent D

�

X

-modules.

5. Proof of theorem B.

Key lemma. Let �

�

: Y ! X be a morphism, where Y is a surfa
e, X is a 
urve, X;Y are irredu
ible.

Let H be an O-
oherent kRS D

Y

-module. Then for some open subset

X

0

� X �

�

(H)j

X

0

is RS:

We will prove this lemma in 6.

We also will use the following version of Hironaka's desingularisation theorem.
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Proposition. Let � : Y ! X be a morphism. Then there exists a regular extension i : Y ! Y

+

and a

morphism �

+

: Y

+

! X su
h that � = �

+

oi and �

+

is a proper morphism.

We will 
all the triple (�

+

; Y

+

; i) the resolution of the morphism �.

Now let us start the proof of theorem B. By de�nition RS is 
losed with respe
t to the duality D, and

hen
e D

RS

is 
losed with respe
t to D.

Proof of theorem B for �

�

. We have a morphism � : Y ! X and an RS D

Y

-
omplex

_

H and we want

to prove that �

�

(

_

H) is RS. The proof is by indu
tion on the dimension of S = Supp

_

H. So we assume

that the statement is true for dom S < n. Also we assume that RS-
riterion of theorem B is true for

dim F < n.

Step 1. Let � = i : Y ! Y

+

be an in
lusion into a regular extension of Y , H be an RS O-
oherent

D

Y

-module. Then i

�

(H) is RS D

Y

+
-module.

Sin
e i is an aÆne morphism i

�

(H) = i

+

(H). Without loss of generality we 
an assume Y

+

to

be 
omplete. By Deligne's proposition i

+

(H) is a union of O-
oherent D

Y

-modules. Hen
e arbitrary

irredu
ible subquotient F of i

+

(H) has this property.

Let AZ

+

= Supp F . Then it is easy to 
he
k that Z

+

is an irredu
ible 
omponent of an interse
tion

of some 
omponents of the divisor X

�

and F = L(Z;E), where Z is an open subset of Z

+

. It is 
lear

that E

+

= i

Z!Z

+
(E) is a union of O-
oherent D

�

Z

-modules, sin
e D

�

Z

is a quotient of the algebra D

�

Y

and E

+

is a subquotient of H

+

. Hen
e E is RS, i.e., F is RS.

6. Sket
h of the proof of the key lemma.

We have a smooth morphism � : Y ! X with dim Y = 2, dim X = 1. Then, after deleting several

points from X , we 
an �nd a regular 
omplete extension Y

+

of Y and a morphism �

+

: Y

+

! X

+

, where

X

+

is the regular 
ompletion of X , su
h that

(i) �

�1

(X

�

) � Y

�

; where X

�

= X

+

nX; Y

�

= Y

+

n Y

(ii) �

�1

(X

�

) 
ontains all singularities of Y

�

.

Denote by T

�

Y

and T

�

X

sheaves of ve
tor �elds on Y

+

and X

+

, whi
h preserve Y

�

and X

�

. Conditions

(i), (ii) imply that ea
h lo
al ve
tor �eld � 2 T

�

X


an be lifted lo
ally to a ve
tor �eld �

0

2 T

�

Y

. This

means that the natural morphism of sheaves on Y

+

� : T

�

Y

�! (�

+

)

�

T

�

X

= O

Y

+

O

�

+

�O

X

+

�

+

� (T

�

X

)

is epimorphi
.
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We denote by T

�

Y=X

the kernel of �. Consider sheaves of algebras D

�

Y

and D

�

X

on Y

+

and X

+

,

generated by T

�

Y

and by T

�

X

and denote by M

R

(D

�

Y

), M

R

(D

�

X

) 
orresponding 
ategories of right D

�

-

modules, and by D

R

(D

�

Y

); D

R

(D

�

X

) derived 
ategories (here I prefer to work with right D-modules as all

formulae are simple).

Let us put D

�

Y!X

= O

Y

+

O

�

+

�O

X

+

�

+

� (D

�

X

). This module is D

�

Y

� �

+

� (D

�

X

)-bimodule. Using D

Y!X

let us de�ne the fun
tor

�

�

�

: D

R

(D

�

Y

) �! D

R

(D

�

X

) by

�

�

�

(E) = R(�

+

) � (E

L

O

D

�

Y

D

�

Y!X

):

Statement. (i) Let H be a right D

Y

-module, H

+

= (i

Y

)

+

H 2 M

R

(D

Y

+
). Then, if we 
onsider H

+

as

D

�

Y

-module, we have

�

�

�

(H

+

) = �

�

(H

+

) as D

�

X

-module:

(ii) if E is an O-
oherent D

�

Y

-module, then

�

�

�

(E) is O-
oherent D

�

X

-module:

This statement implies the key lemma. Indeed, if H is an RS O-
oherent (right) D

Y

-module, then H

+

is an indu
tive limit of O

Y

+-
oherent D

�

Y

-modules and hen
e �

�

(H

+

) = �

�

�

(H

+

) is an indu
tive limit of

O

X

+
-
oherent D

�

Y

-modules, i.e., it is RS.

Proof of statement. (i) is an immediate 
onsequen
e of the proje
tion formula and the fa
t that D

�

Y

j

Y

=

D

Y

, D

�

Y!X

j

Y

= D

Y!X

.

(ii) Consider \De Rham" resolution of D

Y!X

0 �! D

�

Y

O

O

Y

T

�

Y=X

�! D

�

Y

�! D

�

Y!X

�! 0:

Using it we see that as O

X

+
-module

�

�

�

(E) = R(�

+

) � (E 
 T

�

Y=X

�! E):

Sin
e �

+

is a proper morphism, R�

+

maps 
oherent O

Y

+
-modules into 
oherent O

X

+
-modules, i.e.,

�

�

�

(E) is O-
oherent for O-
oherent E.

2. The following statement, due to P. Deligne, is a very useful 
riterion of RS.

Criterion. Let X

+

be an irredu
ible 
omplete normal (maybe singular) variety, X � X

+

an open

nonsingular subset, E an O-
oherent D

X

-module. Assume that for any 
omponent W of X

�

= X

+

nX of
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odimension 1 in X

+

, S is RS along W (i.e., E satis�es 
onditions (i), (ii), (iii) in 4 along W ). Then

E is RS.

Unfortunately, the only proof of this 
riterion I know is analyti
. I would like to have an algebrai


proof.

8. RS-modules with given exponents.

Let us �x some Q-linear subspa
e � � kK, 
ontaining 1. Let C be a 
urve, C

+

its regular extension


 2 C

+

nC, F an RS O-
oherent D

C

-module, F

+

= (i

C

)

+

F . For any O-
oherent D

�

submodule E � F

+

we denote by �




(E) the set of eigenvalues of the operator d = t� in the �nite-dimensional spa
e E=tE (t

is a lo
al parameter at 
, see 1). Now we de�ne

�(F ) =

[


;E

�(E) for all O-
oherent

D

�

-submodules of F

+

and all points 
 2 C

+

n C:

The set �(F ) is 
alled the set of exponents of F . We say that F is RS� if �(F ) � A. We say that

D

X

-
omplex

_

F is RS� if for any 
urve C � X all 
ohomology sheaves of i

!

C

(

_

F ) are RS�.

It is not diÆ
ult to prove that all fun
tors D; �

�

; �

!

; �

!

; �

�

preserve D

RS�(D

X

)

{ one should repeat

proofs in 1-5 with minor modi�
ations. Apparently 
riterion 6 is also true for RS� (for � = Q it is

proved by Kashiwara). I would like to have an algebrai
 proof of it.
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5. Riemann-Hilbert 
orresponden
e.

In this le
ture I will work over the �eld k = C of 
omplex numbers.

1. Constru
tible sheaves and 
omplexes.

LetX be a 
omplex algebrai
 variety. We denote byX

an

the 
orrespondent analyti
 variety, 
onsidered

in 
lassi
al topology.

Let C

X

be the 
onstant sheaf of 
omplex numbers on X

an

. We denote by Sh(X

an

) the 
ategory of

sheaves of C

X

-modules, i.e., the 
ategory of sheaves of C -ve
tor spa
es. Derived 
ategory of bounded


omplexes of sheaves we denote by D(X

an

). I will 
all sheaves F 2 Sh(X

an

) C

X

-modules and 
omplexes

_

F 2 D(X

an

) C

X

-
omplexes.

I 
all C

X

-module F 
onstru
tible if there exists a strati�
ationX = UX

i

ofX by lo
ally 
losed algebrai


subvarieties X

i

, su
h that F jX

an

I

is �nite dimensional and lo
ally 
onstant (in 
lassi
al topology). I


all C

X

-
omplex

_

F 
onstru
tible if all its 
ohomology sheaves are 
onstru
tible C

X

-modules. The full

sub
ategory of D(X

an

) 
onsisting of 
onstru
tible 
omplexes I denote by D


on

(X

an

).

Any morphism � : Y ! X of algebrai
 varieties indu
es the 
ontinuous map �

an

: Y

an

! X

an

and we


an 
onsider fun
tors

�

!

; �

�

: D(Y

an

) �! D(X

an

)

�

�

; �

!

: D(X

an

) �! D(Y

an

)

also we will 
onsider the Verdier duality fun
tor

D;D(X

an

) �! D(X

an

):

Theorem. Fun
tors �

�

; �

!

; �

�

; �

!

and Dk preserve sub
ategories D


on

( ). On this 
ategories DD = Id

and

D�

�

D = �

!

; D�

�

D = �

!

:

2. De Rham fun
tor.

Denote by O

an

X

the stru
ture sheaf of the analyti
 variety X

an

. We will assign to ea
h O

X

-module F


orresponding \analyti
" sheaf of O

an

X

-modules F

an

, whi
h lo
ally is given by

F

an

= O

an

X

M

O

X

F:

This de�nes an exa
t fun
tor

an :M(O

X

) �!M(O

an

X

):

In parti
ular, sheaf D

an

X

is the sheaf of analyti
 di�erential operators on X

an

, and we have an exa
t

fun
tor

an :M(D

X

) �! M(D

ab

X

):

Sin
e this fun
tor is exa
t it indu
es a fun
tor

an : D(D

X

) �! D(D

an

X

):
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De�nition. I de�ne the De Rham fun
tor

DR : D(D

X

) �! D(X

an

) = D(Sh(X

an

)) by

DR(

_

F ) = 


an

X

M

D

an

X

_

F

an

:

Remarks. 1. We know that the 
omplexDR(D

X

) is a lo
ally proje
tive resolution of the rightD

X

-module




X

. Hen
e

DR(

_

F ) = DR

X

(D

an

X

)

M

D

an

X

_

F

an

jnj = DR

X

(

_

F

an

)jnj;

where n = dim X .

In parti
ular, if F is an O-
oherent D

X

-module, 
orresponding to bundle with a 
at 
onne
tion and

L = F


at

the lo
al system of 
at se
tions of F (in 
lassi
al topology), then by Poin
ar�e lemma

DR(F ) = Ljnj:

2. Kashiwara usually uses slightly di�erent fun
tor Sol : D


oh

(D

X

)

o

! D(X

an

),

Sol(

_

F ) = R Hom

D

an

X

(F

an

; O

an

X

):

I 
laim that Sol(

_

F ) = DR(D

_

F )j � dim X j. This follows >from the formula

Hom

D

X

(P;O

X

) = 


X

M

D

X

(�P );

whi
h is true for any lo
ally proje
tive 
oherent D

X

-module P , where �P = Hom

D

X

(P;D




X

).

3. Main Theorem C.

a) DR(D

hol

(D

X

)) � D


on

(X

an

) and on the sub
ategory

D

hol

D ÆDR = DR ÆD .

If

_

F 2 D

hol

(D

X

);

_

H 2 D(D

Y

), then

Dr(

_

F �

_

H) � DR(

_

F )�DR(

_

H):

b) On the sub
ategory D

RS

fun
tor DR 
ommutes with D; �

�

; �

!

; �

!

; �

�

and �


) DR : D

RS

(D

X

)! D


on

(X

an

) is an equivalen
e of 
ategories.

4. First let us 
onsider some basi
 properties of the fun
tor DR.

(i) DR 
ommutes with restri
tion to an open subset. For an �etale 
overing � : Y ! X DR 
ommutes

with �

�

and �

!

.

(ii) There exists a natural morphism of fun
tors � : DR�

�

! �

�

ÆDR whi
h is an isomorphism for proper

�.
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In order to prove this let us 
onsider the fun
tor

�

an

�

: D(D

an

Y

)! D(D

an

X

) on the 
ategories of D

an

-
omplexes;

whi
h is given by

�

an

�

(

_

F ) = R�

an

:

(D

an

X Y

O

D

an

Y

_

F ):

I 
laim that DR�

an

�

= �

�

ÆDR. Indeed,

DR(�

an

�

(

_

F ) = 


an

X

L

M

D

an

X

R�

an

:

(D

an

X Y

L

M

D

an

Y

_

F ) =

R�

an

:

(�

:

(


an

X

)

L

O

�

:

D

an

X

D

an

X Y

L

M

D

an

Y

_

F ) = R�

an

:

(


an

Y

L

O

D

an

Y

_

F );

sin
e �

:




X

O

�

:

D

X

D

X Y

� 


Y

as D

Y

-module.

Now there exists in general the natural isomorphism of fun
tors

an ÆR�

:

(

_

F ) �! R�

an

:

(an

_

F ):

This fun
tor is not an isomorphism in general, sin
e dire
t image on the left and on the right are taken

in di�erent topologies. But a

ording to Serre's \GAGA" theorem it is an isomorphism for proper �.

Combining these 2 observations we obtain (ii).

(iii) On the 
ategory of 
oherent D

X

-
omplexes there exists a natural morphism of fun
tors

� : DR ÆD(

_

F ) �! D ÆDR(

_

F )

whi
h is an isomorphism for O-
oherent

_

F and whi
h is 
ompatible with the isomorphism �

�

DR = DR�

�

for proper �, des
ribed in (ii).

By de�nition of the duality fun
tor D in the 
ategory D(X

an

)

D(

_

S) = RHom

C

X

(

_

S;C

X

jddimX j):

(Here C

X

j2dimX j is the dualizing sheaf of X

an

). Hen
e in order to 
onstru
t � it is suÆ
ient to 
onstru
t

a morphism

�

0

: DR ÆD(

_

F )


C

X

DR(

_

F ) �! 
ln

where 
ln is an inje
tive resolution of C

X

j2 dim X j.

As we saw, DR ÆD(

_

F ) is naturally isomorphi
 to Sol(

_

F )jdim X j = RHom

D

an

X

(

_

F

an

; O

an

X

)jdim X j.

Let us realize DR(

_

F ) as DR

X

(

_

F

an

) and DR ÆD(

_

F ) as Hom

D

an

X

(

_

F

an

; 
l

an

) where 
l is an inje
tive

resolution of kO

X

jdim X j. Then we have the natural morphism

�

00

: DR ÆD(

_

F )


C

X

DR(

_

F ) �! DR

X

(
l

an

):
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Sin
e DR

X

(
l

an

) � DR

X

(O

an

X

)jdim X j = C

X

j2dim X j, we have a morphism D

X

(
l

an

) �! 
ln, whi
h


omposition with �

00

gives us �

0

. It is easy to 
he
k that � is an isomorphism for O-
oherent

_

F . Com-

patibility 
ondition with �

�

it is suÆ
ient to 
he
k for imbeddings and proje
tions P�X ! X , where it

is straightforward.

(iv) There is a natural morphism of fun
tors


 : DR(F �H) �! DR(F )�DR(H)

whi
h is an isomorphism for O-
oherent F .

Morphism 
 is de�ned by the natural imbedding 


an

X

�

C




an

Y

�! 


an

X�Y

. If F is O-
oherent and H is

lo
ally proje
tively is an isomorphism by partial Poin
ar�e lemma. This implies the general statement.

(v) There is a natural morphism of fun
tors Æ : DR Æ �

!

(

_

F ) ! �

!

DR(

_

F ) whi
h is an isomorphism for

smooth �.

Indeed, for smooth � the isomorphism of these fun
tors 
an be 
onstru
ted on generators { lo
ally

proje
tive modules (for instan
e if � : Y = T �X ! X is the proje
tion, then �

!

(

_

F ) = O

T

�

_

F jdim T j;

�

!

DR(

_

F ) = C

T

�DR(

_

F )j2dim T j = Dr(O

T

)�DR(

_

F )jdim T j). Consider the 
ase of a 
losed imbedding

i : Y ! X . Using i

�

, whi
h 
ommutes with DR, we will identify sheaves on Y with sheaves on X ,

supported on Y . Then i

�

i

!

_

F = R�

jY j

_

F in both 
ategories, whi
h gives the natural morphism

Æ : DR Æ i

�

i

!

(

_

F ) = DR(R�

jY j

_

F ) �! R�

jY j

DR(

_

F ) = i

�

i

!

DR(

_

F ):

5. Proof of Theorem C a) (
ase of holonomi
 
omplexes).

Let

_

F be a holonomi
 D

X

-
omplex. Consider the maximal Zariski open subset U � X su
h that

DR(

_

F )j

U

is 
onstru
tible. Sin
e F is O-
oherent almost everywhere U is dense in X .

Let W be an irredu
ible 
omponent of X nU . I want to show that DR(

_

F ) is lo
ally 
onstant on some

dense Zariski open subset W

0

�W .

Claim. I 
an assume that

X = P�W; W = p�W; where p 2 P;

U and V = U [W are open in X .

Indeed, 
onsider an �etale morphism of some open subset of W onto an open subset of an aÆne spa
e

A

k

and extend it to an �etale morphism of a neighbourhood of W onto an open subset of A

n

� A

k

. By


hanging base from A

k

to W , I 
an assume that V = U [W is an open subset of X

0

= P

n�k

�W . Then

I 
an extend F to some sheaf of X

0

.

Now 
onsider the proje
tion pr : X = P �W ! W . Sin
e it is a proper morphism DR(pr

�

(

_

F )) =

pr

�

DR(

_

F ). Sin
e pr

�

(

_

F ) is a holonomi
D

W

-
omplex, it is 0-
oherent almost everywhere, i.e.,DR(pr

�

(

_

F ))

is lo
ally 
onstant almost everywhere.
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Put

_

S = DR(

_

F ) � D(X

an

). Repla
ing W on an open subset, we 
an assume that pr

�

(

_

S) =

DR(pr

�

(

_

F )) is lo
ally 
onstant. We have an exa
t triangle.

_

S

V

!

_

S !

_

S

XnV

; where

_

S

V

= (i

V

) : (

_

S=V ) is extension by zero.

By the 
hoi
e of U ,

_

S=

V

is 
onstru
tible, i.e.,

_

S

V

is 
onstru
tible. Hen
e pr

�

(

_

S

XnV

) is 
onstru
tible

and going to an open subset we 
an assume it is lo
ally 
onstant.

Now

_

S

XnV

is a dire
t sum of 2 sheaves (i

W

)

!

_

S=W and something 
on
entrated on X n V nW . This

implies that

_

S=W is a dire
t summand of the lo
ally 
onstant sheaf pr

�

(

_

S

XnV

) and hen
e itself is lo
ally


onstant. QED

Now let

_

F be a holonomi
 
omplex. Put

Err(

_

F ) = Cone(DR ÆD(

_

F )! D ÆDR(

_

F )):

This sheaf vanishes on a dense open subset, where

_

F is 0-
oherent. Also fun
tion Err 
ommutes with

dire
t image for proper morphisms. Repeating the arguments above we see that Err = 0, i.e., DR


ommutes with D on D

hol

(D

X

).

The same arguments show that DR(

_

F �

_

H) = DR(

_

F )�DR(

_

H) for holonomi


_

F .

Remark. Of 
ourse this proof is simply a variation of Deligne's proof of \Th�eor�emes de �nitude" in SGA

4 1/2.

6. Proof of theorem C b) for dire
t image..

Let us prove that the morphism

DR Æ �

�

(

_

H)! �

�

ÆDR(

_

H)

is an isomorphism for H 2 D

RS

(D

Y

).

Case 1. � = i : Y ! X is a regular extension and H is an RS 0-
oherent D

Y

-module.

In this 
ase the proof is straightforward, using the de�nition of RS (it was done by P. Deligne). Namely,

lo
ally in the neighbourhood of a point x 2 X nY we 
an 
hoose 
oordinates x

1

; : : : ; x

n

su
h that X n Y

is given by x

1

; : : : ; x

k

. Now we pla
e x by an analyti
 neighbourhood of x. Then H and H

+

= i

+

(H)

are determined by monodromy representation of the fundamental group �; (X n Y ). Sin
e this group is


ommutative, we 
an de
ompose H into 1-dimensional subquotients. Using 
ommutativity with � we


an redu
e to the 
ase dim Y = 1. Hen
e as O

Y

-module H

+

is generated by one element e, whi
h satis�es

the equation x�(e) = �e. Now dire
t 
al
ulations show that

DR(H

+

) = (i)

�

DR(H):
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Case 2. H is an RS 0-
oherent D

Y

-module.

In this 
ase we de
ompose � = �

+

Æ i, where i : Y ! Y

+

is a regular extension and �

+

: Y

+

! X is a

proper morphism. DR 
ommutes with i by 
ase 1 and with �

+

by 4 (ii).

General Case. It is suÆ
ient to 
he
k the statement on generators. Hen
e we 
an assume that

_

H = i

�

(�),

where i : Z ! Y is a lo
ally 
losed imbedding and � an RS 0-
oherent D

Z

-module. Then

DR�

�

(

_

H) = DR(�i)

�

(�)


ase 2

==== (�i)

�

DR(�) =

�

�

(i

�

DR(�))


ase 2

==== �

�

DR(i

�

(�)) = �

�

DR(

_

H):

7. Proof of theorem C b).

Fun
tors D; �

�

and � were 
onsidered in 5 and 6.

Fun
tor �

!

: In 4(v) I have 
onstru
ted the morphism Æ : DR�

!

! �

!

DR whi
h is an isomorphism for

smooth �. Hen
e it is suÆ
ient to 
he
k that RS D

Y

-
omplexes Æ is an isomorphism for the 
ase of a


losed imbedding � = i : Y ! X . Denote by j : V = X n Y ! X the imbedding of the 
omplementary

open set. Then we have the morphism of exa
t triangles

DR(i

�

i

!

_

F )�!DR(

_

F )�!DR(j

�

(

_

F j

V

))

?

?

?

y

Æ

?

?

?

y

id

?

?

?

y

�

i

�

i

!

DR(

_

F )�!DR(

_

F )�!j

�

(DR(

_

F )j

V

):

Sin
e � is an isomorphism by 6, Æ is an isomorphism.

Fun
tors �

!

and �

�

. They 
ommute with DR sin
e �

!

= D�

�

D and �

�

= D�

!

D.

8. Proof of theorem C 
).

First of all, let us prove that DR gives an equivalen
e of D

RS

(D

X

) with a full sub
ategory of

D


oh

(X

an

). We should prove that for

_

F ;

_

R 2 D

RS

(D

X

)

DR : Hom

D

RS

(

_

F ;

_

H) �! Hom

D


oh

(DR(

_

F ); DR(

_

H))

is an isomorphism.

It turns out that it is simpler to prove the isomorphism of RHom ( ). We have shown in le
ture 3

that

RHom(

_

F ;

_

H) =

Z

X

Hom(

_

F ;

_

H) =

Z

X

Hom(

_

F ;

_

H) =

Z

X

D

_

F4

�

_

H:

Let us prove that in the 
ategory D


oh

(X

an

) RHom is given by the same formula we have

R Hom(

_

R;DS

:

) = RHom(

_

R;R Hom(S

:

;Dual)) =

R Hom(

_

R
 S

:

;Dual) = D(R

:


 S

:

) = DR

:

4

�

DS

:

:
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Hen
e

R Hom(

_

R;S

:

) =

Z

R Hom(

_

P ; S

:

) =

Z

D(

_

R)4

�

S

:

:

This proves that DR gives an equivalen
e of the 
ategoryD

RS

(D

X

) with a full sub
ategory of D


oh

(X

an

).

Now let us prove that this sub
ategory 
ontains all isomorphism 
lasses of D


oh

(X

ab

). Sin
e it is a

triangulated full sub
ategory, it is suÆ
ient to 
he
k that it 
ontains generators. As generators we 
an


hoose C

X

-
omplexes of the form i

�

(L) where i : Y ! X is an imbedding and L is a lo
al system on

Y . Sin
e DR 
ommutes with dire
t images it is suÆ
ient to 
he
k that there exists an RS 0-
oherent

D

Y

-module � su
h that DR(�) � Ljdim Y j, i.e., su
h that the sheaf of 
at se
tions kof �

an

is isomorphi


to L. This is a result by P. Deligne.

9. Perverse sheaves, interse
tion 
ohomology and su
h.

Main theorem C gives us a di
tionary whi
h allows to translate problems, statements and notions from

D-modules to 
onstru
tible sheaves and ba
k.

Consider one parti
ular example. The 
ategory D

RS

(D

X

) of RS-
omplexes 
ontains the natural full

abelian sub
ategory RS-
ategory of RS-modules.

How to translate it in the language of 
onstru
tible sheaves.

>From the des
ription of the fun
tor i

!

for lo
ally 
losed imbedding one 
an immediately get the

following

Criterion. Let

_

F be a holonomi
 D

X

-
omplex. Then

_

F is 
on
entrated in nonnegative degrees (i.e.,

H

i

(

_

F ) = 0 for i < 0) if and only if it satis�es the following 
ondition.

(�)

RS

For any lo
ally 
losed imbedding i : Y ! X there exists an open dense subset Y

0

� Y su
h that

i

!

(

_

F )

�

�

Y

0

is an 0-
oherent D

Y

0

-
omplex, 
on
entrated in degrees � 0.

In terms of 
onstru
tible 
omplexes this 
ondition 
an be written as

(�)


on

For any lo
ally 
losed imbedding i : Y ! X there exists an open dense subset Y

0

� Y su
h that

i

!

(

_

S)

�

�

Y

is lo
ally 
onstant and 
on
entrated in degrees � - dim Y .

Thus we have proved the following.

Criterion. A 
onstru
tible 
omplex S

:

lies in the abelian sub
ategory

DR(RS(D

X

)) i�

_

S and DS

:

satisfy (�)


on

:

Now it is easy to re
ognize this as a de�nition of a perverse sheaf on X

an

.

Exer
ise. Let L(Y; �) be an irredu
ible RS D

X

-module. Then DR(L(Y; �))j�dim Y j is the interse
tion


ohomology sheaf, asso
iated to (Y;Lo
. syst. �).

Thus interse
tion 
ohomology sheaves just 
orrespond to irredu
ible RS d-modules.
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10. Analyti
 
riterion of regularity.

For any point x 2 X I denote by O

an

x

and O

form

x

algebras of 
onvergent and formal power series on X

at the point x. For any D

X

-
omplex

_

F the natural in
lusion O

an

x

! O

form

x

indu
es a morphism

�

x

: R Hom

D

X

(

_

F ;O

an

x

) �! R Hom

D

X

(

_

F ;O

form

X

):

We say that

_

F is good at x if �

x

is an isomorphism.

Proposition. Let

_

F be an RS O

X

-
omplex. Then

_

F is good at all points.

Remark. One 
an show that 
onversely, if X is a 
omplete variety and

_

F a holonomi
 D

X

-
omplex good

at all points x 2 X , then

_

F is RS.

proof. For lo
ally proje
tive D

X

-module P we have

Hom

D

X

(P;O

form

x

) = Hom

k

(P=M

x

P; k) = i

�

x

(P )

�

:

Hen
e R Hom

D

X

(

_

F ;O

form

x

) = i

0

x

:

(

_

F )

�

jdim X j. If we put

_

G = D

_

F and remember that i

�

x

= Di

!

x

D we see

that

R Hom

D

X

(

_

F ;O

form

x

) = i

�

x

(

_

G)jdim X j:

>From the other side

R Hom

D

X

(

_

F ;O

an

x

) = �ber at x of Sol(

_

F ) = i

�

x

DR(

_

G)jdim X j:

Thus we 
an reformulate our problem, using the DR fun
tor.

(*) Holonomi
 D

X

-
omplex

_

F is good at x i� for

_

G = D

_

F the 
anoni
al morphism

�

x

: i

�

x

DR(

_

G) �! DR i

�

x

(

_

G)

is an isomorphism.

Hen
e the proposition is simply a parti
ular 
ase of theorem C.

The proof of the 
onverse statement is based on the 
riterion of RS whi
h is dis
ussed in 4.

Le
ture 6. D-modules and the proof of the Kazhdan-Lusztig 
onje
ture.

I would like to outline main steps of the proof of the Kazhdan-Lusztig 
onje
ture. Only part of it is


onne
ted with D-modules, but somehow it has the same spirit as the theory of D-modules, as I presented

it.

The amazing feature of the proof is that it does not try to solve the problem but just keeps translating

it in languages of di�erent areas of mathemati
s (further and further away from the original problem)

until it runs into Deligne's method of weight �ltrations whi
h is 
apable to solve it.

So, have a seat; it is going to be a long journey.
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Stop 1. g-modules, Verma modules and su
h.

Let g be a semisimple Lie algebra over C , f � g a Carton subalgebra, � f

�

root system, �

+

the

system of positive roots and n � g 
orresponding nilpotent subalgebra. To ea
h weight � 2 f

�

we assign

g-module M

�

(it is 
alled Verma module) whi
h is a universal g-module, generated by 1 element f

�

su
h

that nf

X

= 0 and f

�

is an eigenve
tor of f with the eigen
hara
ter � � � (here � is the halfsum of

positive roots). Ea
h Verma module M

X

has unique irredu
ible quotient L

X

, has �nite length and all its

irredu
ible subquotients are of the form L

 

for  2 f

�

. Hen
e we 
an write in the Grothendie
k group

M

�

= b

� 

L

 

:

Problem. Cal
ulate multipli
ities b

� 

.

It is usually more 
onvenient to work with the inverse matrix a

� 

, su
h that L

�

= �a

� 

M

 

.

Also, using elements of the 
enter z(g) � U(g) it is easy to show that a

� 

6= 0 only if � and  lie on

one orbit of the Weyl group. The most interesting 
ase is the W -orbit of (��). So let us put for w 2 W ,

M

w

=M

w(��)

; L

w(��)

and formulate the

Problem A. Cal
ulate matrix a

ww

0

, given by

L

w

= � a

ww

0

M

w

0

:

Stop 2. D-modules, S
hubert 
ells : : : .

Now we are going to translate Problem A into the language of D-modules.

Let G be an algebrai
 group 
orresponding to g, X the 
ag variety of G, i.e., X = G=B where B is a

Borel subgroup of G. The natural a
tion of G, i.e., X = G=B where B is a Borel subgroup of G. The

natural a
tion of G on X de�nes the morphism U(g) ! D

X

. Hen
e for ea
h D

X

-module F the spa
e

�(F ) = �(X;F ) of global se
tions of F has the natural stru
ture of g-module. Our translation is based

on the following

Theorem (Beilinson, Bernstein).

The fun
tor � : �(D

X

) ! �(g); F ! �(F ) gives an equivalen
e of the 
ategory �(D

X

) with the


ategory �

�

(g) of g-modules with trivial in�nitesimal 
hara
ter �. Here � is the 
hara
ter of the 
enter

Z(g) � U(g), i.e., the homomorphism � : Z(g) �! C , 
orresponding to the trivial representation of g.

We say that g-module M has in�nitesimal 
hara
ter � if Ker � �M = 0.

The proof of the theorem 
onsists of two parts:

1. We show that the fun
tor � is exa
t and ea
h D

X

-module F is generated by its global se
tions. This

implies that �(D

X

) is equivalent to the 
ategory of D(X)-modules, where D(X) = �(X;D

X

) is the

algebra of global di�erential operators. We already saw that this fa
t is true for proje
tive spa
es (see

le
ture 2); though the proof is di�erent, the e�e
t has the same nature.
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2. We show that D(X) = U(g)=Ker � � U(g).

This is pure lu
k. The proof is just a dire
t 
al
ulation, whi
h uses Kostant's theorem on fun
tions on

nilpotent 
one.

This theorem allows us to translate all the problems of the representation theory, involving modules

in �

�

(g) into the language of D-modules. Sin
e M

w

; L

w

2 M(g) we 
an translate our problem. Let us

indi
ate how to do it.

It is easy to prove that on any module M =M

w

or L

w

the nilpotent algebra n a
ts lo
ally nilpotent.

It means that we 
an exponentiate this a
tion and de�ne some algebrai
 a
tion of the 
orresponding

nilpotent subgroup N � G. Hen
e on M we have two a
tions: a
tion � of the Lie algebra g, and the

representation � of the Lie group N . It is 
lear that M is a (g;N)-module, i.e., it satis�es the following


onditions:

(i) Representation � is algebrai
, i.e., M is a union of �nite dimensional algebrai
 representations of the

algebrai
 group N .

(ii) Morphism � : g 
M ! M is N -invariant with respe
t to the adjoint a
tion of N on g and a
tion �

of N on M .

(iii) On Lie algebra n, g a
tions � and d� 
oin
ide.

Translating in D

X

-modules we see that the D

X

-module F , 
orresponding to M is really a (D

X

; N)-

module, i.e., it is endowed with an a
tion � of the group N su
h that

(i) � is algebrai
, i.e., F is a union of 
oherent O-modules with algebrai
 a
tion of N (
ompatible with

the natural a
tion of N on X).

(ii) A
tion � : D

X


 F ! F is N -invariant.

(iii) On Lie algebra n of the group N a
tion �, given by the natural morphism n ! Ve
t. �elds on X ,

D

X


oin
ides with d�.

In parti
ular, it means that Supp F is N -invariant. Using Bruhat de
omposition we see that N haws

a �nite number of orbits on X . Namely,

X =

[

w2W

Y

w

; where Y

w

= N(wx

N

);

and x

N

2 X is the point, 
orresponding to N . If Y is an open orbit of N in the Supp F , then i

!

Y

(F ) is an

(D

Y

; N)-module. Now, sin
e N a
ts transitively on Y it is not diÆ
ult to des
ribe all (D

Y

; N)-modules.

They all are dire
t sums of many 
opies of the standard (D

X

; N)-module O

Y

.

Let us put �

Y

= (i

Y

)

!

(O

Y

), I

Y

= (i

Y

)

�

(O

Y

), L

Y

= Im(�

Y

! I

Y

). Fortunately in this 
ase Y is aÆne

(it is isomorphi
 to an aÆne spa
e), so �

Y

; I

Y

are (D

X

; N)-modules, not 
omplexes.

Lemma. u

w

= u

Y

w


orresponds to M

w

L

w

= L

Y

w


orresponds to L

w
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It is not quite trivial to establish. But if we are interested only in the images ofM;L in the Grothendie
k

group, then it is easy to prove. Indeed, sin
e ea
h L

w

is selfdual (sin
e DO

Y

= O

Y

), in Grothendie
k

group �

w

' I

w

. Now it is very easy to dire
tly 
ompute �(X; I

w

) as h-module and to show that it


oin
ides with M

w

=h. Sin
e an element in the Grothendie
k group is determined by its restri
tion to h,

this proves that �

w

�M

w

(in Grothendie
k group).

Now we an reformulate the problem.

Problem B. Cal
ulate a

ww

0

given by

L

w

= �a

ww

0

�

w

0

:

Stop 3. Constru
tible sheaves.

Now we 
an use Hilbert-Riemann 
orresponden
e, I have des
ribed in le
ture 5, and translate the

whole problem into the language of 
onstru
tible sheaves.

First of all, let us de�ne the Grothendie
k group K(D

RS

) of the 
ategory D

RS

(D

X

) as a group,

generated by RS-
omplexes and relations [

_

F ℄ + [

_

H ℄ =

_

G for any exa
t triangle

_

F !

_

G !

_

H. It is easy

to prove that K

RS


oin
ides with the Grothendie
k group K(RS) of the 
ategory RS(D

X

); isomorphism

x : K(D

RS

) ! K(RS) is given by Euler 
hara
teristi
 x([

_

F ℄) = �(�1)

i

[H

i

(

_

F )℄. In the same way

K(D


on

) = K(
on). For simpli
ity we restri
t ourselves to the sub
ategories in K(RS) and K(
on)

generated by sheaves, whi
h are N -invariant. Fun
tor DR gives us an isomorphism DR : D(D

RS

) =

K(RS)! K(D


on

) = K(
on). Let us look how to translate �

w

and L

w

.

By de�nition �

w

= (i

Y

w

)

!

(O

y

). Hen
e DR(�

w

) = i

Y

w

)

!

(1

Y

w

)[dimY

w

℄, where 1

Y

is the trivial sheaf on

Y . If we denote by T

w

the element (i

Y

w

)

!

(1

Y

w

) 2 K(
on), (extension by zero), we see that DR(�

w

) =

(�1)

`(w)

T

w

, where by de�nition `(w) = dimY

w

(it is the usual length fun
tion on the Weyl group). As

we dis
ussed in le
ture 5, DR(L

w

) = IC(Y

w

)[dimY

w

℄, where IC(Y ) is the interse
tion 
ohomology sheaf

of Y . Let us denote by IC

w

the element of K(
on), 
orresponding to IC(Y

w

). Then we 
an reformulate

our problem.

Problem C. Find a

ww

0

given by

IC

w

= �a

ww

0

(�1)

`(w)�`(w

0

)

T

w

0

:

Fast train. Etale 
ohomologies, 
hanging of the �eld, : : : .

What we have done so far is the translation of the very diÆ
ult problem A to the not less diÆ
ult

topologi
al problem C. This problem is essentially the problem of 
al
ulating interse
tion 
ohomologies

of the highly singular varieties Y

w

. The only general method of solving su
h problems known so far is

based on algebrai
 geometry over �nite �elds. So we should go this way.
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Let us �x the strati�
ation � = (X = UY

w

) and denote by D

�

(X

an

) the sub
ategory of D(X

an

),


onsisting of C

X

-
omplexes, su
h that their 
ohomology sheaves are lo
ally 
onstant along ea
h stratum

Y

w

(sin
e Y

w

is 
ontra
tible, they in fa
t are 
onstant along Y

w

). Corresponding Grothendie
k group we

denote K

�

. It is 
lear that K

�

=

L

w2W

ZT

w

, and we just want to �nd the expression of elements of

IC

w

2 K in this basis.

It turns out that we 
an repla
e everywhere 
lassi
al topology by etale topology and all properties of


onstru
tible 
omplexes, 
onstru
tible sheaves, whi
h 
an be expressed in terms of fun
torsD; �

�

; �

!

; �

!

; �

�

will not 
hange.

Sin
e etale topology is de�ned purely algebrai
ally, we now 
an translate the whole situation to arbi-

trary �eld.

So, we now 
onsider an algebrai
ally 
losed �eld k of arbitrary 
hara
teristi
 p, a 
ag variety X of a

redu
tive group G over k, and � = (X = UY

w

) the Bruhat strati�
ation. We 
onsider derived 
ategory

D

�

of 
omplexes with 
ohomologies, 
onstant along ea
h stratum Y

w

. In the Grothendie
k group K

�

of

this 
ategory we have a basis T

w

and elements IC

w

, 
orresponding to IC-sheaves, and we want to �nd

an expression of IC

w

via fT

w

0

g.

There are theorems, whi
h 
laim that the situation in etale topology over any �eld will be exa
tly the

same as in 
lassi
al topology over C .

Remark. In etale topology we are working with `-adi
 sheaves whose stalks are ve
tor spa
es over the

algebrai
 
losure Q

`

of the �eld of `-adi
 numbers, where ` 6= 
hark. For simpli
ity we will identify Q

`

with C .

In fa
t, `-adi
 sheaves are not quite sheaves and elements of D

�

are not quite 
omplexes. But it does

not matter sin
e we 
an work with our fun
tors D; �

�

; : : : in the usual way.

Stop 4. Weil sheaves, Tate twist, Lefs
hetz formula.

Now suppose we are working over the �eld k whi
h is the algebrai
 
losure of a �nite �eld F

q

. Also

we assume that our strati�
ation � is de�ned over F

q

, i.e., ea
h stratum Y

w

is given by equations and

inequalities with 
oeÆ
ients in F

q

. Denote by Fr

q

the automorphism of the �eld k, given by 
 7�! 


q

.

For any variety Y , de�ned over F

q

, Fr

q

indu
es a bije
tion Fr

q

: Y (k)! Y (k), whi
h turns out to be a

homeomorphism in etale topology.

Let us 
all Weil sheaf an `-adi
 sheaf F together with the a
tion of Fr

q

on F . In a similar way we


an 
onsider Weil 
omplexes of sheaves. Derived 
ategory of Weil 
omplexes, whose 
ohomologies are


onstant along strata of strati�
ation � we denote D

W

�

, and 
orresponding Grothendie
k group K

W

�

.

These de�nitions make sense sin
e ea
h stratum Y

w

is invariant under Fr

q

.

Important example. Let us des
ribe Weil sheaves on the variety pt, 
onsisting of one point. Then any

sheaf F is given by a ve
tor spa
e V . Hen
e Weil sheaf on pt is just a Q

`

-ve
tor spa
e V together with a
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linear transformation Fr

q

: V ! V .

De�nition. Tate sheaf L over a point p is de�ned by one-dimensional ve
tor spa
e Q

`

together with the

morphism Fr

q

: Q

`

! Q

`

, whi
h is the multipli
ation by q, i.e., Fr

q

(�) = q�.

If � : Y ! X is a morphism of algebrai
 varieties, whi
h is de�ned over F

q

, it indu
es fun
tors

�

�

; �

!

: D

W

(Y ) ! D

W

(X), �

�

; �

!

: D

W

(X) ! D

W

(Y ). Also there is a fun
tor of Verdier duality

D : D

W

(X) ! D

W

(X). All these fun
tors have the same properties, as we have dis
ussed earlier. But

there is one important improvement:

(*) If X is a nonsingular variety, then D(1

X

) = L

�dimX

� 1

X

[2dimX ℄.

Here 1

X

is the trivial sheaf on X , L we 
onsider as a sheaf on X { this is the Tate sheaf lifted from the

point, and L

�k

means (L

�1

)


k

.

If we forget the a
tion of Fr we have an old formula for dualizing sheaf. So (*) simply means that

though dualizing sheaf is essentially isomorphi
 to the 
onstant sheaf, this isomorphism is not 
anoni
al;

in parti
ular, Fr

q


hanges it in q

dimX

times.

Exer
ise. Over a point D(L

k

) = L

�k

.

Digression. Weil sheaves and fun
tions.

For ea
h variety X , de�ned over F

q

denote by X(q) the �nite set, 
onsisting of points of X , whi
h are

de�ned over F

q

(i.e., whi
h are �xed points of Fr

q

). To ea
h Weil 
omplex

_

F I will assign the fun
tion

f

F

on the �nite set X(q) given by

f

F

(x) = �(�1)

i

trFrq(stalkH

i

(

_

F )

x

)

(it makes sense sin
e x is Fr

q

invariant). It is 
lear that f

F

depends only on the 
lass of

_

F in the

Grothendie
k group k.

Theorem. Let � : Y ! X be a morphism, de�ned over F

q

, and � : Y (q)! X(q) the 
orresponding map

of �nite sets. Then

f

�

�

(

_

F )

= �

�

(

_

F

); f

�

!

(

_

H)

=

Z

�

f

_

H

;

where

_

F 2 D

W

(X);

_

H 2 D

W

(Y ) and operations �

�

and

R

�

on fun
tions are de�ned by

�

�

(f)(y) = f(�(y)) (

Z

�

f)(x) =

X

�(y)=x

f(y):

Here the �rst statement is triviality and the se
ond is a deep generalization of Lefs
hetz �xed points

theorem.

This theorem 
laims that all usual operations with fun
tions on �nite sets we 
an rewrite on the

level of Weil sheaves (or at least, their Grothendie
k group). The importan
e of this observation 
an
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be understood if you realize that starting from one Weil 
omplex

_

F we 
an 
onstru
t the sequen
e of

fun
tions: to any q

0

whi
h is a power of q we will assign the fun
tion f

q

0

F

on the set X(q

0

); and any natural

operation with all these fun
tions 
an simultaneously be des
ribed by one operation with the 
omplex

_

F .

This notion gives the formal de�nition of the \natural sequen
e of fun
tions" on sets X(q

0

), q

0

= q

i

.

Example. Consider the proje
tion pr : A

k

! pt of the aÆne spa
e into a point. Then the theorem implies

that pr

!

(a

A

k ) = L

k

[�2k℄, (i.e., in K

W

pr

!

(1) = L

k

).

Indeed, 
omparison with the 
lassi
al 
ase shows that dimH

i

(pr

!

(a

A

k )) = Æ

i;2k

0

, and the theorem

des
ribes the a
tion of Fr

q

on one-dimensional spa
e H

2k

(pr

!

(a

A

k )).

Stop 5. Weights and purity.

Let

_

F be a Weil 
omplex over a point p, whi
h is de�ned over some �eld F

q

0

. We say that w(

_

F ) (weight

of

_

F ) is less or equal to ` (notation w(

_

F ) � `) if for any i all eigenvalues of Fr

q

0

in the spa
e H

o

(

_

F ) have

absolute value � (q

0

)

`+i

2

.

(Hey, what do you mean? They are supposed to be `-adi
 numbers.)

Well, if you remember, we have identi�ed Q

`

with C , so we 
onsider them as 
omplex numbers, and

absolute value is the absolute value. Also Deligne proved that in all interesting 
ases they are algebrai


numbers, so it is all not so bad. And in any 
ase, in what we are going to 
onsider they will always be

powers of q. So do not worry).

It is 
lear that this notion does not depend on the 
hoi
e of q

0

, i.e., if we 
hange q

0

by q" = (q

0

)

`

, it

does not a�e
t the 
ondition.

Let now

_

F be a Weil 
omplex on X . Any point x 2 S is de�ned over k = F

q

0

, i.e., it is de�ned over

some �eld F

q

0

. We say that w(

_

F ) � ` if for any point x 2 X the stalk

_

F

x

= i

�

x

(

_

F ) has weight � `.

We say that W (

_

F ) � ` if W (D

_

F ) � �`. We say that

_

F is pure of the weight ` if

W (

_

F ) � ` and W (

_

F ) � `:

Deligne's purity theorem. Let � : Y ! X be a morphism, de�ned over F

q

. Then �

�

and �

!

de
rease

weight, �

�

and �

!

in
rease weight, i.e.,

if W (

_

F ) � `, then W (�

�

_

F ) � `

if W (

_

H) � `, then W (�

!

_

H) � `

if W (

_

H) � `, then W (�

�

_

H) � `

if W (

_

F ) � `, then W (�

!

_

H) � ` .

In parti
ular, proper morphism preserves purity.

Gabber's purity theorem. Let Y be an irredu
ible algebrai
 variety, IC(Y ) the interse
tion 
ohomol-

ogy Weil sheaf of Y (whi
h 
oin
ides with 1

Y

on the nonsingular part of Y ). Then IC(Y ) is pure of the

weight 0
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Stop 6. He
ke algebra.

Get ba
k to 
ag variety X = UY

w

. Let us 
onsider only 
omplexes, for whi
h all eigenvalues of all

morphisms Fr

q

are powers of q. In general, this 
ategory is not invariant with respe
t to fun
tors, but

in our parti
ular 
ase it is.

Let A = K(D

W

(pt)) be the Grothendie
k group of the Weil sheaves over a point. Then A = Z[L

�1

℄,

the algebra of Laurent polynomials.

Denote by H the Grothendie
k group K(D

W

�

(X)) of Weil sheaves 
onstant along strata of �. Then it

is 
lear that H is a free A-module with the basis fT

w

g.

For any w 2 W the interse
tion 
ohomology sheaf IC

w

2 H satis�es the following relations

(i) D(IC

w

) = L

�dimY

w

� IC

w

(ii) IC

w

= T

w

+�P

w;w

0

T

w

0

,

where P

w;w

0

2 A satisfy the 
ondition

(*) P

w;w

0

= 0 ifY

w

0

6� Y

w

and degP

w;w

0

< 1=2(`(w)� `(w

0

)):

Indeed, as a sheaf IC

w

is selfdual, and sin
e in a neighborhood of Y

w

it 
oin
ides with T

w

and in this

neighbourhood DT

w

= L

�dimY

w

� T

w

0

we have (i).

In order to prove (ii) let us �x some point x 2 Y

w

0

. Then by de�nition of IC

w

stalks of all 
ohomology

sheaves H

i

(IC

w

)

x

equal 0 when i � dimY

w

�dimY

w

0

= `(w)� `(w

0

). By Gabber's theorem w(IC

w

) � 0,

i.e., the a
tion of Fr

q

onH

i

(IC

w

)

x

has eigenvalues� q

i=2

. But it is 
lear that �(�1)

i

TrFr

q

(H

i

(IC

w

)

x

) =

P

w;w

0

(L = q). This proves (ii).

Relations (i) and (ii) gives a hope that if we are able to des
ribe the a
tion of the duality operator D

on H , then we would be able to �nd Kazhdan-Lusztig polynomials P

w;w

0

. After this we 
an forget about

Weil stru
ture (i.e., spe
ialize L! 1) and obtain the formulae for a

ww

0

.

In order to des
ribe the a
tion of D I will introdu
e on H the stru
ture of an algebra.

The motivation for this 
ame from 
omparison with fun
tions. Informally H is a spa
e of fun
tions

on X(q) 
onstant on N(q) orbits. There is the natural identi�
ation of N(q) orbits on X(q) with

G(q) orbits on X � X(q), so we 
an 
onsider elements of H as Q(q)-invariant fun
tions in 2 variables

f(x; y); x; y 2 X(q). But spa
e of fun
tions in 2 variables has the natural operation-
onvolution, given

by

f � h(x; y) =

Z

F (x; z)h(z; y)dz

or, with more details

(f � h)(x; y) =

Z

f(x; u)h(v; y)

substitute u=v=z

dz:

The dis
ussion on the stop 4 allows us immediately to translate this operation in the derived 
ategory,

or in the Grothendie
k group.
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First of all, 
onsider the strati�
ation 	 of X�X by G-orbits and 
onsider 
ategory D

W

	

(X�X) and

the 
orresponding group K

W

	

. This group is naturally isomorphi
 to H = K

W

	

; isomorphism is given by

restri
tion of the sheaves F on X � X to the �ber x

0

� X ' X . I will identify H and K

W

	

using this

isomorphism.

Now, let

_

F ;

_

H 2 D

W

	

(X �X). I will de�ne their 
onvolution � by

_

F �H = pr

!

�

�

(

_

F �

_

H), where

� : X �X �X ! X �X �X �X; �(x; z; y) = (x; z; z; y)

pr : X �X �X ! X �X; pr(x; z; y) = (x; y).

Proposition. H is an asso
iative A-algebra with respe
t to 
onvolution � with identity 1 = T

e

. If

`(ww

0

) = `(w) + `(w

0

), then T

w

� T

w

0

= T

ww

0

.

The last statement 
an be 
he
ked straightforwardly. Also it follows from the fa
t that it is true for

usual He
ke algebras, whi
h 
onsist of G(q) invariant fun
tions on X(q)�X(q).

These formulae imply that H as an A-algebra is generated by elements T

�

0

for simple re
e
tions �.

In order to des
ribe the a
tion of D on H we use the following tri
k due to Lusztig.

Proposition. Let � 2 W be a simple re
e
tion. Then for any h 2 H we have

D((T

�

+ 1) � h) = L

�1

(T

�

+ 1) �Dh

also (T

�

+ 1)

2

= (L+ 1)(T

�

+ 1).

Corollary. D is the automorphism of the algebra H. On generators T

�

D is given by DT

�

= L

�1

T

�

+

(L

�1

� 1).

Indeed, the proposition shows that D((T

�

+ 1) � h) = D(T

�

+ 1) �Dh for all h. Sin
e elements T

�

+1

generate H , we have D(f � h) = Df �Dh. The formula D(T

�

+ 1) = L

�1

(T

�

+ 1) gives the a
tion of D

on T

�

.

The proof of the proposition is based on the following observation. Denote by p

�

the paraboli
 subgroup

of G, obtained by adding to the Borel subgroup the simple root, 
orresponding to �, and 
onsider the

algebrai
 variety X

�

= G=P

�

. The natural G-equivariant proje
tion p

�

: X ! X

�

has �bers, isomorphi


to the proje
tive line P

0

. For instan
e, if we put x

�

= p

�

(x

0

), then p

�1

�

= Y

e

[ Y

�

is the proje
tive line

with the natural strati�
ation. It means that T

�

+1 
orrespond to the sheaf R

�

whi
h is the trivial sheaf

on p

�1

�

(x

�

), extended by zero. After this it is not diÆ
ult to prove that for any F 2 D

W

we have

(*) R

�

� F = p

�

�

(p

�

)

!

F:

Now, sin
e p

�

is proper, dire
t image (p

�

)

!

= (p

�

)

�


ommutes with D. Sin
e p

�

is smooth, p

!

�

= L

�1

p

�

�

,

i.e., Dp

�

�

= Lp

�

�

D (lo
ally X ' X

�

�P

0

, so p

�

�

(F ) = F � 1

P

0

, i.e., Dp

�

�

(F ) = DF �D(1

P

) = LDF � 1

P

=

Lp

�

�

(DF ).
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Also, it is 
lear that (p

�

)

!

(R

�

) ' (L + 1)T

x

�

(in Grothendie
k group) and p

�

�

(T

x

�

) = R

�

. This gives

the se
ond formula of the proposition.

Last stop. Combinatorial problem.

Proposition. (simple 
ombinatori
s).

(i) There exists an A-algebra H whi
h is free with basis T

w

, su
h that

T

w

� T

w

0

= T

ww

0

if `(w) � `(w

0

) = `(ww

0

):

(T

�

+ 1)

2

= (L+ 1)(T

�

+ 1) for simple re
e
tions � 2W .

(ii) There exists a unique automorphism D of the algebra H, su
h that

D(L) = L

�1

D(T

�

+ 1) = L

�1

(T

�

+ 1) for simple re
e
tions � 2W .

(iii) For ea
h w 2W there exists a unique element C

w

2 H su
h that

C

w

= T

w

+

P

w

0

�w

p

w;w

0

T

w

0

; where P

ww

0

2 A has degree

<

1

2

(`(w) � `(w

0

)) and DC

w

= L

�`(w)

C

w

.

In this 
ase P

ww

0

2 Z[L℄.

Example. C

�

= T

�

+ 1.

Polynomials P

w;w

0

are 
alled Kazhdan-Lusztig polynomials. Now, if we summarize our dis
ussion, we

will obtain the 
ombinatorial formula for multipli
ity matrix a

w;w

0

.

Answer. a

ww

0

= (�1)

`(w)�`(w

0

)

P

ww

0

(1):

Some questions.

Question 1. Where is the solution? How 
an I �nd these polynomials?

In a sense there was no solution. We have just translated our original problem, adding a new parameter

L for rigidity, to a 
ombinatorial problem and proved that this problem has a unique solution. Of 
ourse,

now we 
an obtain some re
ursive formulae for 
al
ulation of Kazhdan-Lusztig polynomials, but they are

quite 
ompli
ated.

Whether there exist expli
it formulae for p

ww

0

, I think not, i.e., I think that some type of 
ombinatorial


omplexity is built into the problem.

In some 
ases one 
an ge expli
it formulae for P . For instan
e, one 
an 
al
ulate interse
tion 
oho-

mology sheaves for S
hubert varieties on usual Grassmannians (see Las
oux and S
hutzenberger). But

Zelevinsky showed that in this 
ase it is possible to 
onstru
t small resolutions of singularities. I would say

that if you 
an 
ompute a polynomial P for interse
tion 
ohomologies in some 
ase without a 
omputer,

then probably there is a small resolution, whi
h gives it.

Question 2. What is the geometri
al meaning of other 
oeÆ
ients of p

ww

0

?
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Kazhdan and Lusztig showed that all stalks of the sheaves IC

w

are pure. Hen
e, if we 
hoose a point

x 2 Y

w

0

, then

dimH

i

(IC

w

)

x

= 0 for odd i

= i=2 
oeÆ
ient of p

ww

0

for even i:

In the proof they used an observation, that transversal se
tion to Y

w

0

of the variety Y

w

is 
oni
al, i.e., it

has an a
tion of k

�

whi
h 
ontra
ts everything into a point x 2 Y

w

0

.

In general, stalks of IC sheaves are not pure. But there is one more 
ase, 
al
ulated by Vogan and

Lusztig, namely the strati�
ation of the 
ag variety byorbits of 
omplexi�ed maximal 
ompa
t subgroup,

in whi
h stalks always are pure. I do not know why.

Untwisting the situation ba
k we 
an 
onne
t H

i

(IC

w

) with

Ext

i

�

�

(g)

(M

w

0

; L

w

) or, if you want, with H

i

(n;L

w

):

Question 3. It is all very ni
e but is it really ne
essary to go into all this business with varieties over

�nite �elds? How are �nite �elds 
onne
ted with g-modules?

In fa
t, it is not ne
essary. You 
an obtain the same results using Hodge theory for 
onstru
tible

sheaves or, even better, dire
tly Hodge theory for D-modules.

One small detail { these theories do not exist yet (there is a Hodge theory for lo
ally 
onstant sheaves

{ this is Deligne's theory of variations of Hodge stru
tures { and it is quite powerful, but it is 
learly not

enough). But at least we know what to think about.


