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Abstract

The classical complex Grassmann variety of lines in projective space
generalizes to moduli of higher degree “stable maps” of rational curves
with marked points, but only as a Deligne-Mumford stack, not as a
variety (or even as a scheme). Schubert calculus on the Grassman-
nian generalizes to Gromov-Witten invariants on the stack of stable
maps, but unlike Schubert calculus, these invariants only comprise a
small portion of the intersection numbers on the moduli stack of stable
maps. Equivariant cohomology and reconstruction theorems produce
efficient methods for calculating Gromov-Witten invariants without the
full knowledge of the intersection ring.
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1 Introduction

I want to begin by reminding you of the Grassmannian. Of course this is a

homogeneous space, but as a model for the moduli spaces and intersection

theory questions you will see in my talks (and others), it is better to take

the “Grothendieck” point of view. Fix positive integers m < n.

The Functor of Points: The Grassmann functor G(m,n) is the functor

from schemes (of finite type over C) to sets, given by:

G(m,n)(S) = {vector subbundles E ⊂ O⊕n
S of rank m}

(a vector subbundle (as opposed to subsheaf) has a vector bundle quotient)

G(m,n)(φ : S → T ) = (φ∗ : {subbundles of O⊕n
T } → {subbundles of O⊕n

S })

To say that this functor is represented by a Grassmann scheme G(m,n)

is to say that there is an isomorphism of functors:

G(m,n) ∼= hG(m,n)

where hG(m,n) is the functor of points of G(m,n):

hG(m,n)(S) = Hom(S,G(m,n)) := {f : S → G(m,n)}

hG(m,n)(φ : S → T ) 7→ (φ∗ : Hom(T,G(m,n))→ Hom(S,G(m,n))).

This not only says that the (closed) points of G(m,n) are in a bijection with

the rank m subspaces of Cn via:

G(m,n)(Spec(C)) = {rank m subspaces W ⊂ Cn}

↔ hG(m,n)(Spec(C)) = {closed points of G(m,n)}

but even more that there is a universal vector subbundle:

(U ⊂ O⊕n
G(m,n))↔ (idG(m,n) : G(m,n)→ G(m,n)) ∈ hG(m,n)(G(m,n))

such that each vector subbundle is pulled back from the universal one:

(f∗U ⊂ O⊕n
S )↔ (f : S → G(m,n)) = (f ∗idG(m,n)) ∈ hG(m,n)(S)

The Construction of G(m,n): The open subset:

V ⊂ P(Hom(Cm,Cn))
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parametrizing injective linear maps l : Cm → Cn is a principal PGL(m,C)

bundle over the subvariety G(m,n) ⊂ P(∧mCn) via l 7→ l(e1) ∧ ... ∧ l(em)

(the ei are the basis of Cm) and the “tautological” injective homomorphism:

Cm ⊗OV ↪→ Cn ⊗OV

descends to the desired universal subbundle U ⊂ Cn ⊗OG(m,n).

Some of the local properties of the Grassmannian can be seen with:

Simple Deformation Theory: The Zariski tangent space at each point of

the Grassmannian (= (f : Spec(C)→ G(m,n)) = (W ⊂ Cn)) is:

{morphisms fε : Spec(C[ε])→ G(m,n) extending f : Spec(C)→ G(m,n)}

l




Eε ⊂ O
⊕n
Spec(C[ε])

↓
Spec(C[ε])

extending
W ⊂ Cn

↓
Spec(C)





(C[ε] ∼= C[x]/x2 are the dual numbers) and this is naturally identified with:

Hom(W,Cn/W )

The smoothness of G(m,n) is checked by the infinitessimal lifting property.

A point f : Spec(C)→ G(m,n) is smooth if and only if, for every surjective

map of local Artinian C-algebras B → A, every extension of f to a morphism

fA : Spec(A) → G(m,n) extends further to some fB : Spec(B) → G(m,n).

This follows from the fact that every extension of

W ⊂ Cn

↓
Spec(C)

to

EA ⊂ O
⊕n
Spec(A)

↓
Spec(A)

extends further to

EB ⊂ O
⊕n
Spec(B)

↓
Spec(B)

because each EA is a free submodule!

Key Point: The tangent space and smoothness (hence the dimension)

were detected using only the functor of points applied to local Artinian

C-algebras! Similarly, the valuative criteria for properness and separated-

ness only require knowledge of the functor of points for Spec(D) where D is

a valuation ring.

Classical Schubert calculus, on the other hand, is a global property of

the Grassmannian. In some sense, the complete story is captured with:
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The Intersection Ring: Let 1, c1(U
∨), c2(U

∨), ..., cm(U∨) ∈ A∗(G(m,n))

be the Chern classes of the dual of the universal subbundle. Then:

Z[x1, ..., xn]→ A∗(G(m,n)); xi 7→ ci(U
∨)

is surjective, and the Segre polynomials sn−m+1(x1, ..., xm), ..., sn(x1, ..., xm)

generate the kernel ideal. Recall that si(x1, ..., xm) is the coefficient of ti in:

1

1 + x1t+ x2t2 + ...+ xmtm

and the ith Segre class of U∨ is si(U
∨) = si(c1(U

∨), ..., cm(U∨)). Since:

∫

G(m,n)
cm(U∨)n−m = 1

any intersection number:
∫

G(m,n)
p(c1(U

∨), c2(U
∨), ..., cm(U∨)) = Np

can be computed (in principle) by calculating:

p(x1, ..., xm) ≡ Npx
n−m
m (mod 〈sn−m+1, ..., sn〉)

This can be done using a classical theorem of Pieri and the Schubert calculus

of the Grassmannian, but we will investigate other methods in these notes.

For example, here is a direct computation involving “residues”:

Vafa-Intriligator Formula: Let q1, ..., qm be the “Chern roots” of U∨, i.e.

c1(U
∨) = q1 + ...+ qm, ..., ci(U

∨) = σi(q), ..., cm(U∨) = q1 · · · qm

where σi(q) is the ith elementary symmetric polynomial in q1, ..., qm. Then:

Np =
(−1)(

m
2 )

m!nm

∑

{(ζ1 ,...,ζm)|ζn
i =1}

p(σ1(ζ), ..., σm(ζ)) · σm(ζ) · v(ζ)

where v(ζ) is the Vandermonde determinant v(ζ) =
∏

i6=j(ζi − ζj).

Note: Frequently the polynomial p(c1, ..., cm) is given more naturally as a

symmetric polynomial in the Chern roots than as a polynomial in ci(U
∨),

and in those cases formulas like these (with the assistance of a computer)

are particularly attractive.
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Example: The “universal projective line” in Pn−1 is:

P(U)
e
→ Pn−1

π ↓
G(2, n)

and the basic enumerative classes:

σHm := π∗e
∗Hm (lines meeting a subspace of codimension m)

τOPn(k) := ck+1(π∗OPn(k)) (lines in a hypersurface of degree k)

are expressed very naturally in terms of the Chern roots as:

σm−1 =
∑

m1+m2=m−1

qm1
1 qm2

2 and τk+1 =
∏

m1+m2=m−1

(m1q1 +m2q2)

Thus any intersection number of the form:

∫

G(m,n)
σHm1 · · · σHma · τOPn(k1) · · · τOPn(kb)

lends itself to the Vafa-Intriligator formula. Such intersection numbers are

now known as the basic “Gromov-Witten invariants” of lines in Pn.

Basic genus-zero Gromov-Witten invariants are analogues of the σ and

τ classes above when the “universal line”:

P(U)
e
→ Pn−1

is replaced by a “universal map to a rational curve”:

C
e
→ X

of arbitrary degree in an arbitrary projective variety. In these talks, I want

to consider two separate problems. First, how to carry out the Grothendieck

program above to find the generalized Grassmannian of rational curves of

arbitrary degree in an arbitrary projective manifold (we will start with Pn),

and second, how to compute Gromov-Witten invariants (in good cases) with

only a partial knowledge of the intersection ring of this “Grassmannian.”
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2 Maps from P1 to Pn and Deligne-Mumford Stacks

We start by looking at the PGL(2,C)-quotient of the open subset:

Vd := Mapd(P
1,Pn) ⊂ P(Hom(Symd(C2),Cn+1)) =: Pn

d

parametrizing the regular (not rational) maps f : P1 → Pn of degree d

(i.e. f = (P0(x, y) : ... : Pn(x, y)) ∈ Vd ⇔ gcd(P0, ..., Pn) = 1)

But there are two problems with this:

(i) The action on Vd isn’t free, and

(ii) The (GIT) quotient Vd/PGL(2,C) isn’t proper.

Already (i) will put us in the realm of stacks, but let’s consider (ii) first.

We could take the quotient of the larger open subset of GIT (semi)-stable

points for the SL(2,C) action on Pn
d to get a proper quotient, but this will

parametrize rational maps to Pn. Instead, we enlarge Vd to a bigger open set

of a “better” compactification. To see what this compactification should be,

suppose e∗ is a family of regular maps of degree d over a punctured t-disk:

P1 ×∆∗ e∗
→ Pn

↓
∆∗

Then e∗ extends generically across the central fiber to a rational map

P1 ×∆−− > Pn defined outside of finitely many points in P1 × {0}. We

can resolve the map by blowing up points of P1×{0}, but possibly at the cost

of introducing non-reduced fibers in the map to ∆. We can extend across a

family with reduced fibers, but this may require a base change, giving us:

C0 ⊂ C → P1 ×∆ −− > Pn

↓ ↓ ↓

0 ∈ ∆
t=sk

→ ∆

(for some k) that uniquely extends e∗ across the s-disk subject to:

Restrictions on the family:

(o) C has only the mildest (canonical) surface singularities

(i) C0 is nodal (i.e. a divisor with normal crossings in C).
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(ii) C0 is minimal with respect to the map to Pn, i.e. if any component

introduced by blowing up maps to a point in Pn, then it must meet the rest

of C in at least 3 points. Equivalently (by a happy coincidence) the group

of automorphisms of the map e0 : C0 → Pn (fixing the map to P1) is finite.

Now that we have a characterization of what limits of regular maps should

be, the next step is to actually construct a compactification of Mapd(P
1,Pn)

with such limits as the “points of the boundary.”

Compactification of Mapd(P
1,Pn)

We start by giving this the Grothendieck treatment:

Functor of Points: The functorMapd(P
1,Pn) is defined by:

Mapd(P
1,Pn)(S) =





families
P1 × S

fS← C
eS→ Pn

↘ ↓
S





such that C is flat over S, each Cs is nodal, each fs : Cs → P1 has degree 1,

and with respect to fs, each es : Cs → Pn satisfies (ii) above.

Mapd(P
1,Pn)(φ : S → T ) = (base change by φ)

Theorem (Kontsevich-Manin [11]): This functor is a smooth, proper

Deligne-Mumford stack.

Before we get into D-M stacks, consider what the theorem implies:

When d > 1, this is NOT the functor of points of a proper scheme:

For example, consider the family of maps of degree two from P1 to P1:

et = (x2 : ty2 + x2) : P1 ×∆∗ → P1

This family cannot be extended across 0 without the base change t = s2.

(Every e−1
t (1 : a) = (1 : ±

√
a−1

t ) has nontrivial monodromy around t = 0.)

But if there were a proper scheme Mapd(P
1,Pn) then the associated map

et : ∆∗ → Mapd(P
1,Pn) would extend across ∆ by the valuative criterion for

properness and the family of maps would then extend without base change!
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The problem with this functor is a subtle question of automorphisms.

Since (unlike the Grassmann functor) there exist non-trivial automorphisms:

P1 f
← C

e
→ Pn

‖ |o ‖

P1 f
← C

e
→ Pn

of some limits of regular maps (for example, the limit of the es above),

Mapd(P
1,Pn) is not actually a functor from schemes to sets “at” such maps.

For example, the monodromy problem for the family et is reflected in the

fact that for the following commuting diagram of morphisms:

0 ∈ ∆
‖ n ↓
0 ∈ ∆

n(s) = −s

the induced isomorphism of the pull-backs es|0 and e−s|0 is not the identity

map (otherwise the family would descend to an extension of et). Thus the

“functor” of points isn’t functorial! But it is (2-)functorial, as a functor from

schemes to groupoids. And a Deligne-Mumford stack is the (2-)functor of

points of a “groupoid-like scheme.”

Recall: A groupoid is a category where all the morphisms are isomorphisms.

Basic Observation: A groupoid C consists of the following data:

(a) Two sets R = Mor(C) and U = Ob(C) together with

(b) Five maps:

• s : R→ U the “source” map s(f : X → Y ) = X

• t : R→ U the “target” map t(f : X → Y ) = Y

• e : U → R the “identity” map e(X) = (idX : X → X)

• i : R→ R the “inverse” map i(f) = f−1

• m : R×U R→ R the “composition map” m(f, g) = g ◦ f
(where q1, q2 are the first and second projections in:

R×U R
q2→ R

q1 ↓ s ↓

R
t
→ U



12 A. Bertram

so that composition is well-defined, i.e. s(g) = t(f))

(c) Six (sets of) conditions on the maps

(i) s ◦ e = idU = t ◦ e (the source and target of idX are X)

(ii) s◦m = s◦q1 and t◦m = t◦q2 (source and target of compositions)

(iii) m ◦ (idR,m) = m ◦ (m, idR) : R×U R×U R→ R (associativity)

(iv) m ◦ (e ◦ s, idR) = idR = m ◦ (idR, e ◦ t) : R→ R×U R→ R

(the identity morphism is a left and right identity)

(v) i2 = idR, s ◦ i = t, and t ◦ i = s (source and target of the inverse)

(vi) m ◦ (idR, i) = e ◦ s and m ◦ (i, idR) = e ◦ t : R→ R

(the inverse is a left and right inverse).

Definition: A pair of étale surjective morphisms of schemes s, t : R ⇒ U

together with three additional morphisms:

e : U → R, i : U → U, m : R×U R→ R

constitute an étale equivalence relation if they satisfy (i)-(vi) above.

Fundamental examples of étale equivalence relations:

(I) A finite group acting on a scheme. The action and projection:

s = σ : G× U → U and t = π : G× U → U

together with the additional morphisms:

• e : U → G× U ; u 7→ (1G, u)

• m : G×G× U ∼= (G× U)×U (G× U)→ G× U ;

(g, g′, u)↔ ((g, g′u), (g′, u)) 7→ (gg′, u)

• i : G× U → G× U ; (g, u) 7→ (g−1, gu)

constitute an étale equivalence relation.

(II) An étale surjective map U →M (e.g. a Zariski open cover!). Then

s = p1 : U ×M U → U and t = p2 : U ×M U → U

(the two projections) together with:

• e = δ : U → U ×M U , • i = (p2, p1) : U ×M U → U ×M U and
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• m = π13 : U ×M U ×M U ∼= (U ×M U)×U (U ×M U)→ U ×M U

constitute and étale equivalence relation.

The raison d’étre for étale equivalence relations (which I’ll denote U/R)

is that for many purposes, they can be treated as though they were schemes.

For example, the following theorem is abstracted into the definitions of the

category of quasi-coherent sheaves on U/R and the functor of points of U/R:

Descent Theorem (Grothendieck): For the particular étale equivalence

relation in Example (II) above:

(a) A quasi-coherent sheaf F on U together with “descent data”:

g : s∗F
∼
→ t∗F satisfying e∗g = idF , i

∗g = g−1, and m∗g = q∗2g ◦ q
∗
1g

descends to a uniquely determined quasi-coherent sheaf on M . Moreover,

sheaf homomorphisms φ : F → G that commute with the descent data also

descend uniquely, and there is an equivalence of categories between quasi-

coherent sheaves with descent data on U and quasi-coherent sheaves on M

(b) A morphism φ : U → S descends to φ : M → S if and only if

s∗φ = t∗φ : U ×M U → S

Remark: If U =
∐
Ui → M is a (Zariski) open cover and F = Cn ⊗ OU ,

then descent data is the same thing as a collection of ordinary transition

functions gij : Cn ⊗OUi∩Uj
→ Cn ⊗OUi∩Uj

satisfying the ordinary cocycle

condition gik = gjk ◦ gij : Cn⊗OUi∩Uj∩Uk
→ Cn⊗OUi∩Uj∩Uk

. Thus descent

data can be thought of as the generalization of transition functions with

cocycle conditions from trivial bundles to arbitrary quasi-coherent sheaves,

and from Zariski open covers to arbitrary étale surjective morphisms.

Definition: For an arbitrary étale equivalence relation U/R:

(a) The category of quasi-coherent sheaves on U/R is by definition the

category of quasi-coherent sheaves on U with descent data.

(b) The functor of points of U/R is the “sheafification” hU/R of:

hU/R(S) = (s∗, t∗ : Hom(S,R)⇒ Hom(S,U) with e∗,m∗, i∗)

hU/R(φ : S → T ) = φ∗

This allows one to define, not just hU/R(S), but also (in a consistent way)

hU/R(U ′/R′) for any étale equivalence relation. These are, of course, the
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scheme analogues of functors of groupoids F : C ′ → C, which naturally form

a 2-category, with natural transformations as the 2-morphisms.

Remark: Sheafifying the functor hU/R(S) is a very reasonable thing to do!

For example, if U is a Zariski open cover of M and R = U ×M U , then:

hU/R(S) = {morphisms f : S →M that factor through U}!

and it is only after sheafifying that we get the desired:

hU/R(S) = Hom(S,M)

Definition: A Deligne-Mumford stack is the (sheafified) functor of

points of some étale equivalence relation U/R.

Example: In Example (I) above,

(a) The category of quasi-coherent sheaves on U/R is same thing as the

category of G-sheaves on U .

(b) The “presheaf” functor of points is:

hU/R(S) = {Hom(S,U) + trivial G-bundle on S}

and the sheafified functor of points is:

hU/R(S) = {Hom(S,U) + principal G-bundles on S}

which is therefore a Deligne-Mumford stack.

Getting back toMapd(P
1,Pn), we need to construct an étale equivalence

relation U/R such that:

Mapd(P
1,Pn) = hU/R

We will do this in the next lecture. The equivalence relation will be a mixture

of Examples (I) and (II), i.e. patched out of equivalence relations Ui/Gi×Ui.

3 Pointed Curves and Stacks of Maps

We start with the two basic moduli spaces of pointed genus-zero curves:
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Unparametrized: For each n ≥ 3, M 0,n is the smooth projective n−3-fold

that represents the functor:

M0,n(S) =





flat families

C
π ↓⇑ ρi

S




, M0,n(φ) = (base-change)

where the Cs are nodal, projective genus 0 curves, the ρ1, ..., ρn are sections

that avoid the nodes of the fibers and avoid each other, and finally, each

pointed curve fiber (Cs; p1s, ..., pns) is automorphism-free.

Remark: The same definition works for genus g curves, except that we need

to allow finite automorphism groups. In genus 0, there is a minor miracle:

any pointed curve with a finite automorphism group is automorphism-free.

For this reason, M 0,n is a scheme, but Mg,n is only a Deligne-Mumford

stack.

Examples: M 0,3 = pt, M0,4 = P1 (via the cross-ratio).

Kapranov has a very beautiful description of M 0,n in general. A family

(C; ρ1, ..., ρn) ∈ M0,n(S), uniquely determines a morphism fS : C → Pn−3

of degree n− 3 on each Cs with the condition that the fS ◦ ρi are constant

maps for i = 1, ..., n− 1:

fS ◦ ρ1(S) = (1 : 0 : ... : 0), ..., fS ◦ ρn−2(S) = (0 : ... : 0 : 1) and

fS ◦ ρn−1(S) = (1 : 1 : ... : 1)

This gives a natural transformation of functorsM0,n → hPn−3 ; CS 7→ fS ◦ρn,

hence a morphism of their moduli spaces:

Φ : M0,n → Pn−3

which is an isomorphism off the codimension 2 (and higher) linear subspaces

spanned by the images of the fS◦ρi, and which is a blow-up of these subspaces

in a particular order, starting with the points themselves. Thus, for example,

M0,5 → P2 is the blow-up of 4 independent points

Parametrized: P1[n] is the smooth projective n-fold that represents:

P1[n](S) =





P1 × S
f
← C
↘ π ↓⇑ ρi

S




, P1[n](φ) = (base-change)
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where, in addition to the previous conditions on the fibers and sections,

each fs : Cs → P1 is a degree 1 “parametrization” of Cs, and each n-pointed

parametrized curve (Cs; p1s, ..., pns, fs) is automorphism-free.

Remark: This is the Fulton-Macpherson configuration space for P1.

Examples: P1[0] = pt,P1[1] = P1,P1[2] = P1 × P1, P1[3] = bl∆((P1)3)

(the blow-up along the small diagonal) and in general,

Ψ : P1[n]→ (P1)n

is the blow-up along certain diagonals (in a very particular order).

Relationships between the two moduli spaces: The action of PGL(2,C)

is free on the open subset

Uaut−free := {(C; p1, ..., pn, f)|(C; p1, ..., pn) is automorphism-free} ⊂ P1[n]

(i.e. the parametrized component should have ≥ 3 nodes + marked points)

and then:

M0,n = Uaut−free/PGL(2,C).

But there are also interesting maps going the other way! For example:

M0,n+1 ×P1 → P1[n]

attaches pn+1 ∈ C to p ∈ P1 to make an n-pointed parametrized curve,

where all the marked points are on the unparametrized component(s). This

is Ψ−1(∆) ⊂ P1[n] (again, the small diagonal) and it lives in the complement

of Uaut−free. More generally, P1[n] is “stratified” by quasi-finite maps:

σn0,n1,...,nν : P1[n0 + ν]×
ν∏

i=1

M0,ni+1 → P1[n];
∑

ni = n

attaching ν extra marked points on a parametrized curve to single marked

points on ν unparametrized curves. The resulting curve is a marked “comb.”

Construction of the étale equivalence relation for Mapd(P
1,Pn).

Choose a basis H = {H0, ...,Hn} of hyperplanes for Pn, and with respect

to this basis, consider only the families (denoted Mapd(P
1,Pn)H(S)):

P1 × S
f
← C

e
→ Pn

↘ ↓
S
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that meet the hyperplanes transversely, in the sense that each e−1(Hi) ⊂ C
is a union of d sections ρij : S → C that avoid the nodes of the fibers. This

looks like it determines an element of P1[d(n + 1)](S), but actually only

gives:

Mapd(P
1,Pn)H(S)→ P1[d(n+ 1)](S)/(Sd)

n+1

(Sd is the symmetric group) because each set {ρi1, ..., ρid} is unordered!.

Moreover, not every pointed curve can occur. Let:

U(n+1)−balanced ⊂ P1[d(n+ 1)]

be the (open!) subscheme of pointed curves with the property that each line

bundle:

OC(pi1 + ...+ pid)

restricts to the same line bundle on every component C0 ⊂ C. Evidently

this open subset is invariant under the action of (Sd)
n+1.

Lemma: (see [7]) The action of (Sd)
n+1 lifts to a (C∗)n-bundle:

(C∗)n+1 → UH

↓
U(n+1)−balanced

such that the equivalence relation UH/(Sd)
n+1 × UH represents the functor

Mapd(P
1,Pn)H, i.e. each Mapd(P

1,Pn)H is a Deligne-Mumford stack.

Moreover, these form an “open cover” ofMapd(P
1,Pn) itself, and there

is an étale equivalence relation:

R⇒
∐

UH

representing the functorMapd(P
1,Pn) (and finitely many UH will suffice.)

(R consists of
∐

H((Sd)
n+1 × UH) and “patching data”

∐
H,H′((Sd)

n+1 ×
UH,H′).)

Variations: There are several important variations to consider:

Pointed Maps: The functor

Mapd,m(P1,Pn)(S) =





P1 × S
fS← C

eS→ Pn

↘ π ↓⇑ ρi

S
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adds in m sections (with the usual conditions on the sections). There are

“forgetful” transformations (this is a theorem!):

Mapd,m+1(P
1,Pm)→Mapd,m(P1,Pn)

so thatMapd,m+1(P
1,Pm) = C is the universal curve overMapd,m(P1,Pm).

Their étale equivalence relations are constructed just as R ⇒ Uβ was

constructed above, but carrying m additional points in P1[d(n+ 1) +m].

Stable Maps: These are the Kontsevich-Manin functors:

M0,m(Pn, d)(S) =





families of genus 0 maps
C

eS→ Pn

π ↓⇑ ρi

S





built out of the spaces M 0,d(n+1)+m and these generalize to higher genus:

Mg,m(Pn, d)(S) =





families of genus g maps
C

eS→ Pn

π ↓⇑ ρi

S





with a little more care (e.g. since Mg,m is itself a Deligne-Mumford stack).

Also in this case, the stack is not, in general, smooth.

Maps to other targets: If X ⊂ Pn, let I(X) = 〈F1, ..., Fm〉 be its ideal,

where Fi ∈ H0(Pn,OPn(li)). Then each Fi determines a section

F i ∈ H
0(Mapd(P

1,Pn), π∗e
∗OPn(li))

(i.e. a vector bundle with descent data on the equivalence relation R⇒ U)

and the zero schemes give equivalence relations that patch to construct:

Mapd(P
1, X) (and Mapd,m(P1, X),M0,m(X, d), etc.)

Notice that the homology class β = e∗[Cs] ∈ H2(X,Z) is constant over

a connected base scheme, so it follows that we obtain a decomposition:

Mapd(P
1, X) =

∐

deg(β)=d

Mapβ(P1, X)

as a disjoint union (again, this makes sense at the equivalence class level).

And of course the other moduli spaces have a similar decomposition.
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In particular, if we consider the pair of maps (e, f) defining a family in

Mapβ(P1, X) to be a single map (e, f) : C → P1 ×X of “bidegree” (1, β),

then we can identify:

Mapβ(P1, X) =M0,0(P
1 ×X, (β, 1))

and so all the “map” stacks are Kontsevich-Manin stacks of stable maps.

Deformation Theory: With the functor of points comes the possibility of

analyzing the “local properties” of the stacksMapβ(P1, X) (and the others)

by means of deformation theory. It is evident from the construction that:

M0,0(P
n, d) is smooth, of dimension d(n+1)−3+n, since it is patched out

of (C∗)n bundles over open subsets of M 0,d(n+1) (modulo étale equivalence).

But what about the others?

We will define the Zariski tangent space at a “closed point” (C; f) ∈
Mg,0(X,β)(Spec(C)) to be the space of extensions to families:

(Cε; fε) ∈Mg,0(X,β)(Spec(C[ε]))

and this turns out to sit in an exact sequence:

0→ H0(C, TC)→ H0(C, f∗TX)→ (tangent space)→

→ H1(C, TC)→ H1(C, f∗TX)→ (obstruction space)→ 0

where the obstruction space measures the obstructions to the infinitessimal

lifting that would give the smoothness of the stack. Notice in particular that

if H1(C, f∗TX) = 0 for all maps, then the stack is smooth, of dimension:

(∗) χ(C, f ∗TX)− χ(C, TC) = dim(X) +

∫

β
c1(TX)− (3− 3g)

and there is one important case where this holds, namely:

When X is homogeneous and g = 0 then theM0,0(X,β) are all smooth,

of dimension (∗) above (and it has been shown that they are also irreducible).

Note: When g > 0, then even the stacks Mg,0(P
n, d) are not smooth.

Final Remarks: Analogous to the blow-down of the configuration space:

P1[n]→ Pn
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there is a “blow-down” to the naive space of rational maps from §2:

Φ :Mapd(P
1,Pn)→ Pn

d

This is literally the blow-down of configuration spaces on the level of

equivalence relations. It is interesting to note that if we blow down R ⇒ U

we get an equivalence relation describing Pn
d , but not an étale one.

Also, the stratification of P1[n] has the natural analogue:

γd0,..,,dν :Mapd0,ν(P
1,Pn)×X

ν∏

i=1

M0,1(P
n, di)→Mapd(P

1,Pn)

stratifying the map space into maps of “comb”-like curves.

4 Enumerative Geometry

I’m going to focus here on the stacks:

M0,0(X,β)

where X is a homogeneous space, though you should be aware that much of

what I will say can be extended to arbitrary targets and genus by means of

a “virtual fundamental class.”

There is, in this case, a well-defined Chow ring (over Q) with the nice

properties of Fulton-Macpherson’s intersection theory:

A∗
Q(M0,0(X,β))

with which to compute intersection numbers. In this Chow ring, we want to

study “tautological” classes, which are derived from the universal family:

C
e
→ X

π ↓
M0,0(X,β)

These come in three flavors. There are the “enumerative” classes derived

from X, which I will name (following the introduction):

• σc := π∗e
∗c ∈ Ak−1

Q (M0,0(X,β)) for c ∈ Ak(X)

(the expected class of maps that meet α)
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• τE := ctop(π∗e
∗E) for a “positive” vector bundle E

(the expected class of maps to the zero scheme of a section of E)

There is a very useful class on C itself, namely:

• ψ = c1(ωπ) for ωπ the relative dualizing (cotangent) line bundle

which we use to define classes π∗ψ
k ∈ Ak−1

Q (M0,0(X,β))

And finally, there are push-forwards of the classes above under various

“gluing” maps, like the comb-stratification maps:

γβ0,...,βν :Mapβ0,ν(P
1, X) ×X

ν∏

i=1

M0,1(P
n, βi)→Map∑ βi

(P1, X)

So following the introduction, we wish to find a method for computing

intersection numbers of the form:

∫

M0,0(X,β)
σc1 ∪ ... ∪ σcn =: 〈c1, ..., cn〉β

(the Gromov-Witten invariants of X) assuming, of course, that:

(c1 − 1) + (c2 − 1) + ...+ (cn − 1) = dim(M0,0(X,β))

or, more generally, we wish to compute:

∫

M0,0(X,β)
σc1 ∪ ... ∪ σcn ∪ τE =: 〈c1, ..., cn〉

E
β

assuming that (c1−1)+...+(cn−n)+(
∫
β c1(E)+rk(E)) = dim(M0,0(X,β)).

Examples: If pi ∈ A2(P2) are each (the same) class of a point, then:

∫

M0,0(P2,d)
σp1 ∪ ... ∪ σp3d−1

=: Nd

is the # of rational curves of degree d through 3d− 1 general points of P2.

(Here, dim(M0,0(P
2, d)) = 3d−1.) Another example of some interest is:

∫

M0,0(P4 ,d)
τO(5) =: nd

the expected numbers of degree d maps to a quintic hypersurface S ⊂ P4.

(Here, dim(M0,0(P
4, d)) = 5d+ 1.)
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But unlike the Grassmannian case, we need to make these computations

without complete knowledge of A∗
Q(M0,0(P

n, d)), basically because these

rings are too complicated! There are now several methods for doing this.

The first, exploited by Kontsevich-Manin, is to induct down on the number

of σ’s using:

The WDVV Equations: Assume for simplicity that A∗
Q(X) = H∗(X,Q)

and choose a basis {ei}, with intersection pairing:

gij =

∫

X
ei ∪ ej

Then:

(n=4 version) For any 4 classes c1, c2, c3, c4 ∈ H∗(X,Q) and β ∈ H2(X,Z):

∑

β1+β2=β

(∫

M0,0(X,β1)
σc1σc2σei

)
gij

(∫

M0,0(X,β2)
σej

σc1σc2

)
=

∑

β1+β2=β

(∫

M0,0(X,β1)
σc1σc3σei

)
gij

(∫

M0,0(X,β1)
σej

σc2σc4

)

(with the convention, entirely consistent, that:
∫

M0,0(X,0)
σc1σc2σc3 =

∫

X
c1 ∪ c2 ∪ c3)

Corollary (Witten): Choose t1, ..., tm ∈ H2(X,Z) independent over Q

with the property that each curve class β = f∗[C] is a non-negative (integer)

linear combination of the ti. Let qi = eti , and if β =
∑
diti, let qβ =

∏
qdi

i .

Then there is an associative, commutative “quantum” product ∗ with 1 on

the Q[[q1, ..., qm]]-module:

QH∗(X) := H∗(X)[[q1, ..., qm]]

uniquely defined by the “structure constants”:

∫

X
(c ∗ c′) ∪ c′′ =

∑

β

(∫

M0,0(X,β)
σcσc′σc′′

)
qβ

(general version) For any classes c1, ..., c4, c
′
1, ..., c

′
m ∈ H

∗(X,Q) and β:

∑

S⊆{1,...,m}

∑

β1+β2=β

(∫

M0,0(X,β1)
σc1σc2σei

∏

s∈S

σc′s

)
gij



∫

M0,0(X,β2)
σej

σc3σc4

∏

s6∈S

σc′s
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=

∑

S⊆{1,...,m}

∑

β1+β2=β

(∫

M0,0(X,β1)
σc1σc3σei

∏

s∈S

σc′s

)
gij



∫

M0,0(X,β1)
σej

σc2σc4

∏

s6∈S

σc′s




Corollary [11]: Let {ti} be the dual basis to {ei}. There is an associative,

commutative “big quantum” product • with 1 on the Q[[t1, ..., tn]]-module:

BQH∗(X) := H∗(X)[[t1, ..., tn]]

uniquely defined by the “structure constants”:

∫

X
(c • c′) ∪ c′′ =

∑

β

∑

m≥0

∑

m1+...+mn=m

(∫

M0,0(X,β)
σcσc′σc′′

n∏

i=1

σmi
ei

)
n∏

i=1

tmi
i

mi!

Remark: BQH∗(X) specializes to QH∗(X) (setting some of the t’s to zero)

and QH∗(X) specializes to H∗(X) (setting all of the q’s to zero). There is

much more to this story, starting with the “potential” function whose third

partials give the structure constants above when c, c′, c′′ = ei, ej , ek. But I

want to focus on the application of WDVV, noticed by Kontsevich-Manin,

to the computation of Gromov-Witten invariants. But first:

Proof of WDVV (Sketch): Using the projection formula, we reinterpret

Gromov-Witten invariants as intersection numbers on pointed map stacks:
∫

M0,0(X,β)
σc1 · · · σcn =

∫

M0,n(X,β)
e∗1c1 · · · e

∗
ncn

where ei = e ◦ ρi are determined by the universal family:

C
e
→ X

π ↓⇑ ρi

M0,n(X,β)

Next, for m ≥ 0, there is a “cross-ratio” cr : M0,4+m(X,β) → M 0,4 = P1

forgetting the map e and all but the first four points. Let 0,∞ ∈M 0,4 = P1

correspond to curves with two components whose marked points are grouped

as (respectively) {1, 2} ∪ {3, 4} and {1, 3} ∪ {2, 4} on the two components.

Then the left side of WDVV (general version) is:

∫

M0,4+m(X,β)

4∏

i=1

e∗i ci ∪
m∏

j=1

e∗j+4c
′
j ∪ cr

∗[0]
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where [0] ∈ A1(P1) is the class of {0} and the right side is:

∫

M0,4+m(X,β)

4∏

i=1

e∗i ci ∪
m∏

j=1

e∗j+4c
′
j ∪ cr

∗[∞]

and [0] = [∞] ∈ A1(P1) gives WDVV.

Application to Enumerative Geometry: First of all, notice that:

σ[X] = 0 (since [X] ∈ A0(X)) and

σ[D] =
(∫

β[D]
)

[M 0,0(X,β)] ∈ A0(M0,0(X,β)) when D is a divisor class.

Thus
∫

M0,0(X,β)
σc1 · · · σcnσ[D] =

(∫

β
[D]

) ∫

M0,0(X,β)
σc1 · · · σcn

so we can eliminate any divisor classes from the c1, ..., cn. The Kontsevich-

Manin reconstruction theorem allows us to eliminate divisor classes from

within the ci’s. The key observation is the following. If we plug:

c1, c2, c3, [D], c′1, ..., c
′
m

into the general version of WDVV, we get:

∫

M0,0(X,β)
σc1σc2σ[D]∪c3

m∏

i=1

c′i+

∫

M0,0(X,β)
σc1∪c2σ[D]σc3

m∏

i=1

c′i+{lower β terms} =

∫

M0,0(X,β)
σc1σc3σ[D]∪c2

m∏

i=1

c′i+

∫

M0,0(X,β)
σc1∪c3σ[D]σc2

m∏

i=1

c′i+{lower β terms}

(from which we can eliminate the σ[D]’s).

Thus we can inductively express the first term (the one involving σ[D]∪c3)

in terms of Gromov-Witten invariants involving either lower β, fewer c’s, and

one term (the first on the second line) with the same β and same number of

c’s, but with [D] eliminated from σ[D]∪c3 (and moved over to c[D]∪c2). This

gives the following corollary by induction:

Kontsevich-Manin Reconstruction: All the (σ) invariants of X can be

recursively reconstructed from “2-point” invariants:
∫

M0,0(X,β)
σc1σc2
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and invariants of classes c1, ..., cn that are “primitive” (i.e. not obtainable

from divisors cupped with other classes). In particular, ifH ∗(X) is generated

by divisor classes, then the 2-point invariants determine all the others.

Remark: This is particularly remarkable when X = Pn, since in that case:
∫

M0,0(Pn ,1)
σp1σp2 = 1

(the line through 2 points!) is the only 2-point invariant (dimension count!)

So reconstruction even gives a new way of performing Schubert calculus:
∫

G(2,n+1)
σm1−1σm2−1 · · · σma−1

on the Grassmannian of lines (by recursing from the 1 line through 2 points)

and this method, unlike the ordinary Schubert calculus, generalizes to give

recursions for the counts of rational curves of all degrees on all manifolds!

Worked Example: X = P2.

For each d > 1, let c1 = c2 = [p], c3 = c4 = [H] and c′1 = ... = c′3d−4 = [p].

Then WDVV (general version) gives the following recursive formula for Nd:

Nd+
∑

d1+d2=d

di>0

(
3d− 4

3d1 − 3

)
(d1Nd1)(d

3
2Nd2) =

∑

d1+d2=d

di>0

(
3d− 4

3d1 − 2

)
(d2

1Nd1)(d
2
2Nd2)

This is very satisfactory for σ classes, but how do we work in the τ ’s?

The next development was inspired by mirror symmetry, and requires a new

tool, namely the localization theorem of Atiyah-Bott.

5 Equivariant Techniques

The WDVV relations and reconstruction corollary are already surprisingly

effective ways to compute Gromov-Witten invariants, but this next tech-

nique, introduced by Givental following hints from mirror symmetry, is mag-

ical. The idea here is to use the localization theorem of Atiyah-Bott, but in

a very clever way.

Quick Review of Equivariant Cohomology: If C∗ acts holomorphically

on a compact complex manifold X (the theory is more general than this!)

there is an equivariant cohomology ring:

H∗
C∗(X,Q)
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that “enriches” the ordinary cohomology ring H ∗(X,Q). The equivariant

cohomology ring H∗
C∗(X,Q) is an algebra over the polynomial ring Q[λ]

(the equivariant cohomology ring of a point with trivial action of C∗), and

more generally it is functorial in the usual sense for C∗-equivariant maps

f : X → Y . (i.e. there are equivariant pull-backs and proper push-forwards)

Examples: (a) A trivial action of C∗ on X gives:

H∗
C∗(X,Q) = H∗(X,Q)⊗Q Q[λ]

(b) A free action of C∗ on X gives:

H∗
C∗(X,Q) = H∗(X/C∗,Q)

(as a Q = Q[λ]/〈λ〉-module)

Borel’s definition gives equivariant cohomology as (ordinary) cohomology

of the twisted product of X with the universal principal bundle:

XC∗ := X ×C∗ EC∗ → BC∗; BC∗ = CP∞, EC∗ = C∞+1 − {0}

and H∗(BG) = Q[λ] gives the Q[λ] structure.

(In the algebraic setting, we should think of the equivariant Chow ring

A∗
C∗(X)

as the ordinary Chow ring of the (smooth!) equivalence relation X/(C∗ ×
X)).

Equivariant cohomology specializes to (a subring of) cohomology:

H∗
C∗(X,Q)

λ=0
→ H∗(X,Q)

and any C∗-linearized vector bundle E over X has equivariant Chern classes:

cC
∗

i (E) ∈ H2i
C∗(X,Q)

that specialize to the ordinary Chern classes ci(E) ∈ H2i(X,Q).

In particular, each connected component i : F ↪→ X of the locus of fixed

points (which is necessarily an embedded submanifold) has a canonically

linearized normal bundle (for the trivial action on F ) hence:

εC∗(F ) := cC
∗

top(NF/X)
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the equivariant “Euler class” of F in X.

Localization Theorem: An equivariant class cC
∗

∈ H∗
C∗(X,Q) is uniquely

determined (modulo torsion) by its restriction to the fixed components by

the “excess intersection” formula:

cC
∗

≡
∑

F⊂X

i∗

(
cC

∗

|F
εC∗(F )

)
(mod torsion)

(εC∗(F ) is invertible in the localization H∗
C∗(F,Q)λ = H∗(F ) ⊗ Q[λ, λ−1]

and i∗ : H∗
C∗(F,Q)λ → H∗

C∗(X,Q)λ is the extended proper push-forward.)

There are two important and useful corollaries to this:

Bott Residue Theorem: If p(c) is a polynomial of degree dim(X) in the

Chern classes of linearized vector bundles on X, then p(c) can be integrated

over fixed loci:
∫

X
p(c) =

∫

X
p(cC

∗

) =
∑

F⊂X

∫

F

p(cC
∗

)|F
εC∗(F )

and if the fixed loci are points, then
∫
F is just evaluation at the points.

Relative Localization: If f : X → X ′ is a C∗-equivariant map, then for

each cC
∗

∈ H∗
C∗(X,Q) and fixed locus i′ : F ′ ↪→ X ′,

∑

F⊂f−1(F ′)

(f |F )∗

(
cC

∗

|F
εC∗(F )

)
=

(f∗c
C∗

)|F ′

εC∗(F ′)

where (f |F )∗ : H∗
C∗(F,Q)λ → H∗

C∗(F ′,Q)λ is the extended push-forward.

Two New Ways to do Schubert Calculus (of Lines):

(i) Using the Bott Residue Theorem. Consider the action of C∗ on (Cn)∨

(the dual space to Cn):

z × (x0, x1, ..., xn) 7→ (x0, zx1, z
2x2, ..., z

nxn)

The induced action of C∗ on CPn has isolated fixed points e0, ..., en ∈
CPn (the coordinate points of CPn) and the induced action on G(2, n+ 1)

has isolated fixed points eij := eiej ∈ G(2, n+ 1) (for i < j).

The equivariant Euler classes are then:

εC∗(eij) =
(−1)i+ji!j!(n− i)!(n− j)!

(j − i)2
λ2n−2



28 A. Bertram

as one checks from the Hom(W,Cn+1/W ) description of the tangent space.

Next, if U∨ is the dual of the universal sub-bundle, one computes:

cC
∗

1 (U∨)|eij
= (i+ j)λ and cC

∗

2 (U∨)|eij
= (ij)λ2

and then for any symmetric p(q1, q2) of degree 2n− 2 in the Chern roots,

∫

G(2,n+1)
p(q1, q2) =

∑

i<j

(−1)i+j p(i, j)(j − i)2

i!j!(n− i)!(n− j)!

(note the similarity with the Vafa-Intriligator residue formula of §1).

(ii) Using relative localization. Consider the action of C∗ on (C2)∨:

z × (x : y) 7→ (x : zy)

and the induced action on Map1(P
1,Pn). Then the map of compactifica-

tions:

Φ : Map1(P
1,Pn)→ Pn

1 = P(Hom(C2,Cn+1))

is C∗-equivariant, and we will apply relative localization to it. There are

two fixed loci for the action of C∗ on Pn
1 :

F ′
0 = {(0 : 1)} ×Pn ⊂ Pn

1

F ′
∞ = {(1 : 0)} ×Pn ⊂ Pn

1

The equivariant Euler classes of these are, respectively:

εC∗(F ′
0) = (H + λ)n+1 and εC∗(F ′

∞) = (H − λ)n+1

Their preimages happen to be also fixed loci. They are:

F0 := Φ−1(F ′
0) = {(0 : 1)} × C and F∞ := Φ−1(F ′

∞) = {(1 : 0)} × C

where C = F l(1, 2, n+ 1) is the universal line over the Grassmannian. Their

equivariant Euler classes are described in terms of the ψ classes (see §4). I.e.

εC∗(F0) = λ(λ− ψ) and εC∗(F∞) = (−λ)(−λ− ψ)

We need one more piece of data before we invoke relative localization.

Namely, recall that the universal bundle on G(2, n+ 1) is U ∨ = π∗e
∗OPn(1)

from the universal curve:

C
e
→ Pn

π ↓
G(2, n+ 1)

and if we consider
C

e
→ Pn

π ↓
Map1(P

1,Pn)
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then the same construction gives a linearized vector bundle on Map1(P
1,Pn):

U∨
C∗ := π∗e

∗OPn(1)

that restricts to U on both fixed loci. The linearization however is trivial

only over F0. Over F∞ the action is multiplication by z on the fibers, giving:

cC
∗

1 (U∨
C∗)|F0 = π∗c1(U

∨), cC
∗

2 (U∨
C∗)|F0 = π∗c2(U

∨)

cC
∗

1 (U∨
C∗)|F∞

= π∗c1(U
∨)− 2λ, cC

∗

2 (U∨
C∗)|F∞

= π∗c2(U
∨)− λπ∗c1(U

∨) + λ2

It is better to think in terms of Chern roots. If qC
∗

i are the roots of U∨
C∗ and

qi are the roots of U∨, then they are related as follows:

qi
C∗

|F0 = π∗qi and qi
C∗

|F∞
= π∗qi − λ

These are the ingredients, which are a bit harder to assemble than in (i),

but the payoff is also greater. Forget about F∞ and concentrate on:

Map1(P
1,Pn)

Φ
→ Pn

1

∪ ∪

F0 = {(0 : 1)} × C
e
→ F ′

0 = {(0 : 1)} ×Pn

(Recall that Φ|F0 = e is the same as the evaluation map!)

Then relative localization applied to any polynomial p(cC
∗

1 , cC
∗

2 ) in the

equivariant Chern classes of U∨
C∗ says:

e∗

(
π∗p(c1, c2)

λ(λ− ψ)

)
= Φ|F0∗

(
p(cC

∗

1 , cC
∗

2 )|F0

εC∗(F0)

)
=

=

(
Φ∗p(c

C∗

1 , cC
∗

2 )|F ′

0

εC∗(F ′
0)

)
=

(
Φ∗p(c

C∗

1 , cC
∗

2 )|F ′

0

(H + λ)n+1

)

Let’s stop for a minute to ponder the meaning of this. The object:

Φ∗p(c
C∗

1 , cC
∗

2 )|F ′

0
= P (H,λ)

will be some polynomial in H and λ, and the two denominators invert as:

1

λ(λ− ψ)
= λ−2 + λ−3ψ + λ−4ψ2 + ... and
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1

(H + λ)n+1
= λ−(n+1) −

(
n+ 1

1

)
λ−(n+2)H +

(
n+ 2

2

)
λ−(n+3)H2 − ...

so for each class Hk ∈ H∗(Pn,Z), the formula says:

∫

C
e∗Hk · p(c1, c2) · (λ

−2 + λ−3ψ + λ−4ψ2 + ...) =

=

∫

Pn
Hk · P (H,λ) ·

(
λ−(n+1) −

(
n+ 1

1

)
λ−(n+2)H + ...

)

In particular we address our original question!

∫

G(2,n+1)
p(c1, c2) =

∫

C
e∗H · p(c1, c2) = coeff of λ−2 in

∫

Pn

H · P (H,λ)

(H + λ)n+1

So now we have to figure out what P (H,λ) is. It turns out to be better to find

a good “approximation” to it. Namely, if we rewrite p(c1, c2) as a symmetric

polynomial in the Chern roots: p(c1, c2) = p(q1 + q2, q1q2) = p′(q1, q2), then:

Lemma: (See §5)

P (H,λ)

(H + λ)n+1
=
p′(H,H + λ)

(H + λ)n+1
+ a−1(H)λ−1 + a0(H)λ0 + ...

(we should think of a−1(H)λ−1 + a0(H)λ0 + ... as an “error term”)

The Upshot: If p′(q1, q2) is a symmetric polynomial in the Chern roots,

then: ∫

G(2,n+1)
p′(q1, q2) = coeff of λ−2 in

∫

Pn

Hp′(H,H + λ)

(H + λ)n+1

Examples: (a) The lines on a cubic surface are counted this way as:

∫

G(2,4)
3q1(2q1 + q2)(q1 + 2q2)3q2 =

= coeff of λ−2 in

∫

P3

3H2(3H + λ)(3H + 2λ)(3H + 3λ)

(H + λ)4
= 27

(b) The degree of the Plücker embedding is computed this way as:

∫

G(2,n+1)
(q1 + q2)

2n−2 = coeff of λ−2 in

∫

Pn

H(2H + λ)2n−2

(H + λ)n+1
=

= coeff of λ−2 in

∫

Pn

Hn−1

(H + λ)

(
2n− 2

n− 2

)
+

Hn

(H + λ)2

(
2n− 2

n− 1

)
=
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=

(
2n− 2

n− 1

)
−

(
2n− 2

n− 2

)

Remarks: (i) Kontsevich generalized the technique of (i) to compute Gromov-

Witten invariants onM0,0(P
n, d) by the Bott residue theorem. His approach

was successful in theory in the sense that he characterized the fixed loci and

their equivariant Euler classes. The problem is that it seems impossible to

make any sense of the answer given in this way! There are so many of these

fixed loci (which are not points in general!) that it is very difficult to see

how to simplify the sum over them. And without simplifications, the sum is

impossible to carry out in all but a few cases.

(ii) By contrast, the technique of (ii) will generalize to make some of the

computations relevant to mirror symmetry and to give computable answers

that are compatible with the physics predictions. One can already see virtue

in this technique by noticing that it readily generalizes to the relative setting.

If V is a vector bundle over a base B, then it gives a Porteous-type formula:

∫

G(2,V )
p′(q1, q2) = coeff of λ−2 in

∫

P(V )

Hp′(H,H + λ)
∏rk(V )

i=1 (H + π∗ρi + λ)

where qi are the Chern roots of the universal bundle U∨ on G(2, V ) and ρi

are the Chern roots of V on B. This idea was generalized to Grassmann

bundles of any rank by Jian Kong in his PhD thesis.

6 Higher Degree Curves and J-Functions

First, we want to generalize the technique (ii) of the previous section to maps

of degree d to Pn. An equivariant intersection theory with localization is

available for smooth Deligne-Mumford stacks, so we may pretend we are in

the compact complex manifold case.

There are d+ 1 fixed loci for the action of C∗ on Pn
d :

F ′
k0+(d−k)∞ := {(a0x

kyd−k : ... : anx
kyd−k)} ⊂ Pn

d

and their equivariant Euler classes are not hard to compute. We will need

only one of them, namely:

εC∗(F ′
d0) =

d∏

k=1

(H + kλ)n+1
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We follow the same game-plan as in §4 and apply relative localization to:

Mapd(P
1,Pn)

Φ
→ Pn

d

∪ ∪

Fd0 = {(0 : 1)} × C
e
→ F ′

d0 = Pn

π ↓
M0,0(P

n, d)

and work with the Chern classes of the “universal bundles” U ∨
k := π∗e

∗OPn(k)

and their equivariant counterparts. Unlike the d = 1 case these bundles are

not equal to SymkU∨
1 , and we will need to treat them each separately.

The equivariant Euler class of Fd0 is still λ(λ − ψ) and relative local-

ization now gives the following. If p(c) is a polynomial in Chern classes

of the U∨
k bundles, let p(cC

∗

) be the same polynomial in the equivari-

ant Chern classes of the corresponding linearized bundles π∗e
∗OPn(k) on

Mapd(P
1,Pn). Then:

e∗

(
π∗p(c)

λ(λ− ψ)

)
=

P (H,λ)
∏d

k=1(H + kλ)n+1

where

P (H,λ) = Φ∗p(c
C∗

)|F ′

d0

And then, as before, we would be able to compute:
∫

M0,0(Pn,d)
p(c) = coeff of λ−2 in

1

d

∫

Pn

H · P (H,λ)
∏d

k=1(H + kλ)n+1

if we could figure out P (H,λ), or a good enough approximation (see §5).
(Note that here the projection formula requires us to divide by d.)

This turns out to be harder to do in degree d > 1. In fact, no one has

been able to figure out what to do except for the classes:

(a) τOPn(l) = cdl+1(U
∨
l ) and

(b) τ̂OPn(−l) = cdl−1(R
1π∗e

∗OPn(−l))

and products of such classes. Notice that each has an equivariant counterpart

that restricts to the ordinary class on Fd0.

I should mention one case, which is already interesting, namely p(c) = 1:

e∗

(
1

λ(λ− ψ)

)
=

1
∏d

k=1(H + kλ)n+1
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(This is gives the J -function of projective space. See below.)

To see what happens in general, we need to recall the “comb” strata:

γ~d
= γd0,..,,dν :Mapd0,ν(P

1,Pn)×X

ν∏

i=1

M0,1(P
n, di)→Mapd(P

1,Pn)

from §2. These (including the case ν = 0) map under Φ as follows:

Mapd(P
1,Pn)

Φ
→ Pn

d

↑ γ~d
↑ γ′~d

Mapd0,ν(P
1,Pn)×X

∏ν
i=1M0,1(P

n, di)
Φ~d→ Pn

d0
× (P1)ν

where γ′~d
is the map:

(P0(x, y) : ... : Pn(x, y))× ((a1 : b1), ..., (aν : bν)) 7→ (QP0 : ... : QPn)

where Q = Qd1
1 · · ·Q

dν
ν and each Qi = bix − aiy (i.e. Qi(ai : bi) = 0). The

point is that the classes τ and τ̂ and their products behave well with respect

to this. From the point of view developed here, the key is the following:

Theorem 1: (a) The equivariant Chern class τC∗

OPn(l) decomposes as:

τC∗

OPn(l) =
∑

~d

1

ν!
γ~d∗


cC∗

~d
∪ Φ∗

~d

d0l∏

k=0

(lH + kλ)




for some collection of classes cC
∗

~d
, where H = cC

∗

1 (OPn
d0

(1)) ∈ H2
C∗(Pn

d0
,Q)

for the given linearization. Similarly,

(b) The equivariant Chern class τ̂C∗

OPn(−l) decomposes as:

τ̂C∗

OPn(−l) =
∑

~d

1

ν!
γ~d∗


bC∗

~d
∪ Φ∗

~d

ν∏

i=1

ξi

d0l−1∏

k=1

(−lH − kλ)




for some classes bC
∗

~d
, where ξi = cC

∗

1 (TP1) is the first equivariant Chern class

of the tangent bundle pulled back from the ith projection of (P1)ν .

And more generally, if

τ =
m∏

i=1

τOPn(li)

m′∏

j=1

τ̂OPn(−l′
j
)
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then the corresponding τC∗

decomposes according to the same pattern:

∑

~d

1

d!
γ~d∗


aC

∗

~d
∪ Φ∗

~d

∏

i

d0li∏

k=0

(liH + kλ)
∏

j

ν∏

i=1

ξi

d0l′j−1∏

k=1

(−l′jH − kλ)




The excess intersection formula now gives the following:

Corollary: For the equivariant Chern classes τOPn(l):

P (H,λ)
∏d

k=1(H + λ)n+1
=
∑

~d

(
Φ~d∗

cC
∗

~d
|F ′

d0

)∏d0l
k=0(lH + kλ)

λν
∏d0

k=1(H + kλ)n+1

and similarly (but even better...see below) for the classes τ̂C∗

OPn(−l):

P (H,λ)
∏d

k=1(H + λ)n+1
=
∑

~d

(
Φ~d∗

bC
∗

~d
|F ′

d0

)∏d0l−1
k=1 (−lH − kλ)

∏d0
k=1(H + kλ)n+1

(note the missing λν in the denominator!) and similarly for the general τ .

Part of the Punchline: This already puts severe restrictions on the cC
∗

~d

(or rather on their contributions
(
Φ~d∗

cC
∗

~d
|F ′

d0

)
to P (H,λ)), and even more

severe restrictions on the bC
∗

~d
and aC

∗

~d
. The point is that if l is small, then(

Φ~d∗
cC

∗

~d
|F ′

d0

)
= 0 because it has negative degree!

Namely, one computes from the Corollary above:

deg
(
Φ~d∗

cC
∗

~d
|F ′

d0

)
= dl + 1− d0l + 1 + d0(n+ 1)− d(n+ 1) + ν

= (d− d0)(l − n− 1) + ν

and since ν ≤ d− d0, and necessarily deg
(
Φ~d∗

cC
∗

~d
|F ′

d0

)
≥ 0, we get:

Corollary: If l < n, then only one term survives in the previous corollary:

P (H,λ)
∏d

k=1(H + λ)n+1
=

∏dl
k=0(lH + kλ)

∏d
k=1(H + kλ)n+1

so that (just as in the case of the Grassmannian of lines):

e∗

(
π∗τOPn(l)

λ(λ− ψ)

)
=

∏dl
k=0(lH + kλ)

∏d
k=1(H + kλ)n+1
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In the general case, we compute:

deg
(
Φ~d∗

aC
∗

~d
|F ′

d0

)
=

∑m
i=1(dli + 1) +

∑m′

j=1(dl
′
j − 1)−

∑m
i=1(d0li + 1)

−
∑m′

j=1(d0l
′
j − 1) + d0(n+ 1)− d(n+ 1) + ν −m′ν

= (d− d0)(
∑
li +

∑
l′j − n− 1) + (1−m′)ν

and we conclude that in this case:

Corollary: If
∑
li +

∑
l′j < n or

∑
li +

∑
l′j = n and m′ ≥ 1 or finally∑

li +
∑
l′j = n+ 1 and m′ > 1, then:

e∗

(
π∗τ

λ(λ− ψ)

)
=

∏m
i=1

∏dl
k=0(lH + kλ)

∏m′

j=1

∏dl−1
k=1 (−lH − kλ)

∏d
k=1(H + kλ)n+1

Application: If one computes (as we will do) the intersection number:

nd :=

∫

M0,0(P4,d)
τO

P4(5)

then one obtains a rational (not integral) number of maps of degree d to

a rational curve in a quintic threefold when d > 1. One reason for this is

that multiple covers of a P1 (of lower degree) count for rational numbers.

The specific count for a degree d map to a smooth curve of normal bundle

OP1(−1)⊕OP1(−1) is given by the following τ integral:

Aspinwall-Morrison Number:

∫

M0,0(P1(d)
τ̂2
O

P1(−1) = coeff of λ2 in
1

d

∫

P1

(
∏d−1

k=1(−H − kλ))2
∏d

k=1(H + kλ)2
=

1

d3

and this is valid because m′ = 2 and l1 + l2 = 2.

But we really want to compute nd above, and for this we notice:

Corollary: If
∑
li = n+ 1 and m′ = 0, then:

deg
(
Φ~d∗

aC
∗

~d
|F ′

d0

)
= ν

Theorem 2: In this case (i.e.
∑
li = n+ 1 and m′ = 0) define:

adH + bdλ := Φ0,d∗a
C∗

0,d |F ′

d0



36 A. Bertram

Then:

(a) Φ(d0,d1)∗
aC

∗

(d0 ,d1)
|F ′

(d0+d1)0
= ad1(H + d0λ) + bd1λ for “simple” ~d =

(d0, d1), and more generally:

(b) Φ~d∗
aC

∗

~d
|F ′

d0
=
∏ν

i=1

(
adi

(H + (
∑i

k=0 dk)λ) + bdi
λ
)

The Rest of the Punchline: When
∑
li = n+1 and m′ = 0, that is, when

τ measures the expected class of rational curves of degree d in a Calabi-Yau

complete intersection in Pn, then Theorem 2 recursively determines all the

pairs (ad, bd), hence it gives a simple (and very computable!) algorithm for

counting the degree d maps of rational curves to such a Calabi-Yau manifold.

Application: To compute the numbers nd above for the quintic threefold:

(1) e∗

(
π∗τO

P4(5)

λ(λ− ψ)

)
=

∏5
k=0(5H + kλ)

(H + λ)5
+

(a1H + b1λ)

λ

⇒ n1 = 2875 and a1 = −770, b1 = −120

(2) e∗

(
π∗τO

P4(5)

λ(λ− ψ)

)
=

∏10
k=0(5H + kλ)

∏2
k=1(H + kλ)5

+
(a1(H + λ) + b1λ)

∏5
k=0(5H + kλ)

λ(H + λ)5

+
(a1H + b1λ)(a1(H + λ) + b1λ)

λ2
+

(a2H + b2λ)

λ

⇒ n2 = 609250 +
2875

8
and a2 = −421375, b2 = −60000

(Recall the Aspinwall-Morrison correction!) etc.

General Remarks: These computations are motivated by mirror sym-

metry, which, among other things, relates Gromov-Witten invariants of a

Calabi-Yau manifold to the Hodge theory of the family of mirror Calabi-

Yau manifolds. From this point of view, the “correct” way of packaging the

enumerative data of rational curves on a projective manifold X is with:

JX
β := e∗

(
1

λ(λ− ψ)

)
∈ λ−2H∗(X)[λ−1]

which (as in the Pn case) is the push-forward of the equivariant Euler class:

Mapβ(P1,Pn)

∪

{(0 : 1)} × C
e
→ X

π ↓
M0,0(X,β)
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but there is no way to fill in with a smooth Xβ analogue of Pn
d when X 6= Pn.

Nevertheless, this appears to be an important invariant, not just for

Calabi-Yau manifolds. Precisely, the J -function is the generating function:

JX(q) := 1 +
∑

β 6=0

JX
β q

β

and there is an entire D-module theory of Gromov-Witten invariants that I

have not mentioned, which motivates the following:

Principle: The J -function solves interesting differential equations

One example of this comes from mirror symmetry, but another is:

Proposition: (Dijkgraaf, Givental) Recall the small quantum cohomology

and in particular the interpretation qβ = eβ1t1+...+βmtm where the ti generate

the curve classes, and let Hi be the dual divisor classes in H2(X). If:

D = D(λ, λ
∂

∂ti
, eti)

is any polynomial operator that satisfies: D(e
t1H1+...+tmHm

λ J(et)) = 0, then

D(0,Hi, qi) = 0 is a relation in small quantum cohomology.

Example: The J -function of Pn is:

JPn

(et) = 1 +
∑

d>0

edt

∏n+1
k=1(H + kλ)n+1

and one can easily check that:

D =

(
λ
∂

∂t

)n+1

− et

satisfies D(e
tH
λ J(et)) = 0, hence that Hn+1 − q is a relation in QH∗(Pn).

This is no surprise since this relation is easy to see by more direct meth-

ods. But Givental’s generalization to Fano complete intersections X ⊂ Pn

gives a relation that is very hard to see any other way.

One other remark I should make about these is the following:

Theorem: (Lee-Pandharipande [13], Bertram-Kley [6]) Suppose the coeffi-

cients of the J -function of X lie in a subalgebra R ⊆ H ∗(X) satisfying the

following:
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• R is generated as an algebra by classes of divisors

• the intersection pairing
∫
X c ∪ c′ is non-degenerate on R.

Then as in the Kontsevich-Manin theorem, every Gromov-Witten invariant

of rational curves can be reconstructed from the J -function.
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